Rochon Prisms


  • Two Orthogonally Polarized Outputs with Small Separation Angle
  • High Extinction Ratio
  • Broad Operating Wavelength Ranges
  • MgF2 or YVO4 Substrate

RPV10

YVO4 Rochon Prism

Ordinary Ray Remains on Same Optical Axis as Input while Extraordinary Ray Exits at an Angle

RPM10

MgF2 Rochon Prism

Output Beams are Orthogonally Polarized

Related Items


Please Wait
Specifications
Item # RPM10 RPV10
Substratea MgF2 YVO4
Substrate Wavelength Range 200 nm - 6.0 µm 488 nm - 3.4 µm
Transmission
(Click for Graph)

Raw Data

Raw Data
Beam Separation Angle (Typical) 1.5° at 4 µm 10.6° at 2 µm
Beam Deviation
(Click for Graph)

Raw Data

Raw Data
Extinction Ratiob >10 000:1 >100 000:1
Clear Aperture (Min) 10 mm x 10 mm
Transmitted Wavefront Error λ/4 at 633 nm
Surface Quality 20-10 Scratch-Dig
Optic Thickness 35 mm 12 mm
Housing Dimensions
Ø1.00" x 1.55"
(Ø25.4 mm x 39.4 mm)
Ø1.00" x 0.55"
(Ø25.4 mm x 14.0 mm)
  • Click the links for detailed specifications on the substrates.
  • The extinction ratio (ER) is the ratio of maximum to minimum transmission of a sufficiently linearly polarized input. When the transmission axis and input polarization are parallel, the transmission is at its maximum; rotate the polarizer by 90° for minimum transmission.

Click to Enlarge

The housing is engraved with a diagram showing the input and output beams.

Features

  • Separate Unpolarized Light into Two Orthogonally Polarized Outputs
  • 1.5° or 10.6° Beam Separation Angle
  • High Extinction Ratio for Each Output
  • Uncoated Magnesium Fluoride or Yttrium Orthovanadate Substrate
  • Mounted in Ø1" Aluminum Housing

Thorlabs' Rochon Prisms split an arbitrarily polarized input beam into two orthogonally polarized output beams. The ordinary ray remains on the same optical axis as the input beam, while the extraordinary ray deviates by an angle, which depends on the wavelength of the light and the material of the prism (see the Beam Deviation graphs in the table to the right). The output beams have a high polarization extinction ratio of >10 000:1 for the MgF2 prism and >100 000:1 for the YVO4 prism. See the table to the right for complete specifications.

Each prism consists of two halves that are optically contacted. They are mounted in Ø1" anodized aluminum housings. The housing is engraved with the item # and a diagram showing the direction and polarization states of the input and output beams. The prism housing can be mounted in an SM1 lens tube using a retaining ring. The lens tube can then be threaded onto a rotation mount or other SM1-threaded mount for use in a variety of applications.

If your application would benefit from an unmounted Rochon prism or a prism with an AR coating, please contact Tech Support.

Birefringent Crystal Beamsplitters
Type Ordinary Ray Anglea Extraordinary Ray Anglea
Calcite Beam Displacers Parallel Parallel
YVO4 Beam Displacers
Rochon Prisms Parallel Deviated
Wollaston Prisms Deviated Deviated
  • With Respect to Input Beam

Schematic and Ray Diagram of Mounted Rochon Prisms

Beamsplitter Selection Guide

Thorlabs' portfolio contains many different kinds of beamsplitters, which can split beams by intensity or by polarization. We offer plate and cube beamsplitters, though other form factors exist, including pellicle and birefringent crystal. For an overview of the different types and a comparison of their features and applications, please see our overview. Many of our beamsplitters come in premounted or unmounted variants. Below is a complete listing of our beamsplitter offerings. To explore the available types, wavelength ranges, splitting/extinction ratios, transmission, and available sizes for each beamsplitter category, click More [+] in the appropriate row below.

Plate Beamsplitters

Non-Polarizing Plate Beamsplitters
Polarizing Plate Beamsplitters
  • 45° AOI Unless Otherwise Noted
  • 30 arcmin Wedge on Round Optics Only
  • Designed for use with P-polarized light.

Cube Beamsplitters

Non-Polarizing Cube Beamsplitters
Polarizing Cube Beamsplitters

Pellicle Beamsplitters

Non-Polarizing Pellicle Beamsplitters

Crystal Beamsplitters

Polarizing Crystal Beamsplitters
  • Mounted in a protective box, unthreaded ring, or cylinder.
  • Available unmounted or mounted in a protective box or unthreaded cylinder.

Other

Other Beamsplitters

Selection Guide for Prisms

Thorlabs offers a wide variety of prisms, which can be used to reflect, invert, rotate, disperse, steer, and collimate light. For prisms and substrates not listed below, please contact Tech Support.

Beam Steering Prisms

Prism Material Deviation Invert Reverse or Rotate Illustration Applications
Right Angle Prisms N-BK7, UV Fused Silica, Calcium Fluoride, or Zinc Selenide 90° 90° No 1

90° reflector used in optical systems such as telescopes and periscopes.

180° 180° No 1

180° reflector, independent of entrance beam angle.

Acts as a non-reversing mirror and can be used in binocular configurations.

TIR Retroreflectors
(Unmounted and Mounted)
and Specular Retroreflectors
(Unmounted and Mounted)
N-BK7 180° 180° No Retroreflector

180° reflector, independent of entrance beam angle.

Beam alignment and beam delivery. Substitute for mirror in applications where orientation is difficult to control.

Unmounted Penta Prisms
and
Mounted Penta Prisms
N-BK7 90° No No 1

90° reflector, without inversion or reversal of the beam profile.

Can be used for alignment and optical tooling.

Roof Prisms N-BK7 90° 90° 180o Rotation 1

90° reflector, inverted and rotated (deflected left to right and top to bottom).

Can be used for alignment and optical tooling.

Unmounted Dove Prisms
and
Mounted Dove Prisms
N-BK7 No 180° 2x Prism Rotation 1

Dove prisms may invert, reverse, or rotate an image based on which face the light is incident on.

Prism in a beam rotator orientation.

180° 180° No 1

Prism acts as a non-reversing mirror.

Same properties as a retroreflector or right angle (180° orientation) prism in an optical setup.

Wedge Prisms N-BK7 Models Available from 2° to 10° No No 1

Beam steering applications.

By rotating one wedged prism, light can be steered to trace the circle defined by 2 times the specified deviation angle.

No No Wedge Prism Pair

Variable beam steering applications.

When both wedges are rotated, the beam can be moved anywhere within the circle defined by 4 times the specified deviation angle.

Coupling Prisms Rutile (TiO2) or GGG Variablea No No Coupling Prism

High index of refraction substrate used to couple light into films.

Rutile used for nfilm > 1.8

GGG used for nfilm < 1.8

  • Depends on Angle of Incidence and Index of Refraction


Dispersive Prisms

Prism Material Deviation Invert Reverse or Rotate Illustration Applications
Equilateral Prisms F2, N-F2,
N-SF11,
Calcium Fluoride,
or Zinc Selenide
Variablea No No

Dispersion prisms are a substitute for diffraction gratings.

Use to separate white light into visible spectrum.

Dispersion Compensating Prism Pairs Fused Silica, Calcium Fluoride, SF10, or N-SF14 Variable Vertical Offset No No Dispersion-Compensating Prism Pair

Compensate for pulse broadening effects in ultrafast laser systems.

Can be used as an optical filter, for wavelength tuning, or dispersion compensation.

 

Pellin Broca Prisms N-BK7,
UV Fused Silica,
or Calcium Fluoride
90° 90° No 1

Ideal for wavelength separation of a beam of light, output at 90°.

Used to separate harmonics of a laser or compensate for group velocity dispersion.

  • Depends on Angle of Incidence and Index of Refraction

Beam Manipulating Prisms

Prism Material Deviation Invert Reverse or Rotate Illustration Applications
Anamorphic Prism Pairs N-KZFS8 or
N-SF11
Variable Vertical Offset No No 1

Variable magnification along one axis.

Collimating elliptical beams (e.g., laser diodes)

Converts an elliptical beam into a circular beam by magnifying or contracting the input beam in one axis.

Axicons (UVFS, ZnSe) UV Fused Silica
or Zinc Selenide
Variablea No No 1

Creates a conical, non-diverging beam with a Bessel intensity profile from a collimated source.

  • Depends on Prism Physical Angle

Polarization Altering Prisms

Prism Material Deviation Invert Reverse or Rotate Illustration Applications
Glan-Taylor, Glan-Laser, and α-BBO Glan-Laser Polarizers Glan-Taylor:
Calcite

Glan-Laser:
α-BBO or Calcite
p-pol. - 0°

s-pol. - 112°a
No No Glan-Taylor Polarizer

Double prism configuration and birefringent calcite produce extremely pure linearly polarized light.

Total Internal Reflection of s-pol. at the gap between the prism while p-pol. is transmitted.

Rutile Polarizers Rutile (TiO2) s-pol. - 0°

p-pol. absorbed by housing
No No Rutile Polarizer Diagram

Double prism configuration and birefringent rutile (TiO2) produce extremely pure linearly polarized light.

Total Internal Reflection of p-pol. at the gap between the prisms while s-pol. is transmitted.

 

Double Glan-Taylor Polarizers Calcite p-pol. - 0°

s-pol. absorbed by housing
No No Glan-Taylor Polarizer

Triple prism configuration and birefringent calcite produce maximum polarized field over a large half angle.

Total Internal Reflection of s-pol. at the gap between the prism while p-pol. is transmitted.

Glan Thompson Polarizers Calcite p-pol. - 0°

s-pol. absorbed by housing
No No Glan-Thompson Polarizer

Double prism configuration and birefringent calcite produce a polarizer with the widest field of view while maintaining a high extinction ratio.

Total Internal Reflection of s-pol. at the gap between the prism while p-pol. is transmitted.

Wollaston Prisms and
Wollaston Polarizers
Quartz, Magnesium Fluoride, α-BBO, Calcite, Yttrium Orthovanadate Symmetric
p-pol. and
s-pol. deviation angle
No No Wollaston Prism

Double prism configuration and birefringent calcite produce the widest deviation angle of beam displacing polarizers.

s-pol. and p-pol. deviate symmetrically from the prism. Wollaston prisms are used in spectrometers and polarization analyzers.

Rochon Prisms Magnesium Fluoride
or
Yttrium Orthovanadate
Ordinary Ray: 0°

Extraordinary Ray: deviation angle
No No

Double prism configuration and birefringent MgF2 or YVO4 produce a small deviation angle with a high extinction ratio.

Extraordinary ray deviates from the input beam's optical axis, while ordinary ray does not deviate.

Beam Displacing Prisms Calcite 2.7 or 4.0 mm Beam Displacement No No Beam Displacing Prism

Single prism configuration and birefringent calcite separate an input beam into two orthogonally polarized output beams.

s-pol. and p-pol. are displaced by 2.7 or 4.0 mm. Beam displacing prisms can be used as polarizing beamsplitters where 90o separation is not possible.

Fresnel Rhomb Retarders N-BK7 Linear to circular polarization

Vertical Offset
No No Fresnel Rhomb Quarter Wave

λ/4 Fresnel Rhomb Retarder turns a linear input into circularly polarized output.

Uniform λ/4 retardance over a wider wavelength range compared to birefringent wave plates.

Rotates linearly polarized light 90° No No Fresnel Rhomb Half Wave

λ/2 Fresnel Rhomb Retarder rotates linearly polarized light 90°.

Uniform λ/2 retardance over a wider wavelength range compared to birefringent wave plates.

  • S-polarized light is not pure and contains some P-polarized reflections.

Beamsplitter Prisms

Prism Material Deviation Invert Reverse or Rotate Illustration Applications
Beamsplitter Cubes N-BK7 50:50 splitting ratio, 0° and 90°

s- and p- pol. within 10% of each other
No No Non-polarizing Beamsplitter

Double prism configuration and dielectric coating provide 50:50 beamsplitting nearly independent of polarization.

Non-polarizing beamsplitter over the specified wavelength range.

Polarizing Beamsplitter Cubes N-BK7, UV Fused Silica, or N-SF1 p-pol. - 0°

s-pol. - 90°
No No Polarizing Beamsplitter Cube

Double prism configuration and dielectric coating transmit p-pol. light and reflect s-pol. light.

For highest polarization use the transmitted beam.


Posted Comments:
Julien Roul  (posted 2020-11-17 11:25:36.843)
Hi, Do you have any information about the LIDT for the RPM10 ? Thanks Julien
YLohia  (posted 2020-11-20 10:44:56.0)
Hello Julien, unfortunately, we have not performed LIDT tests on RPM10 as this is uncoated magnesium fluoride, the information for which can be found in literature.

Polarizer Selection Guide

Thorlabs offers a diverse range of polarizers, including wire grid, film, calcite, alpha-BBO, rutile, and beamsplitting polarizers. Collectively, our line of wire grid polarizers offers coverage from the visible range to the beginning of the Far-IR range. Our nanoparticle linear film polarizers provide extinction ratios as high as 100 000:1. Alternatively, our other film polarizers offer an affordable solution for polarizing light from the visible to the Near-IR. Next, our beamsplitting polarizers allow for use of the reflected beam, as well as the more completely polarized transmitted beam. Finally, our alpha-BBO (UV), calcite (visible to Near-IR), rutile (Near-IR to Mid-IR), and yttrium orthovanadate (YVO4) (Near-IR to Mid-IR) polarizers each offer an exceptional extinction ratio of 100 000:1 within their respective wavelength ranges.

To explore the available types, wavelength ranges, extinction ratios, transmission, and available sizes for each polarizer category, click More [+] in the appropriate row below.

Wire Grid Polarizers
Film Polarizers
Beamsplitting Polarizers
alpha-BBO Polarizers
Calcite Polarizers
Quartz Polarizers
Magnesium Fluoride Polarizers
Yttrium Orthovanadate (YVO4) Polarizers
Rutile Polarizers
  • Click on the graph icons in this column to view a transmission curve for the corresponding polarizer. Each curve represents one substrate sample or coating run and is not guaranteed.
  • Mounted in a protective box, unthreaded ring, or cylinder.
  • Available unmounted or in an SM05-threaded (0.535"-40) mount that indicates the polarization axis.
  • Available unmounted or in an SM1-threaded (1.035"-40) mount that indicates the polarization axis.
  • PBS519: Average TP:TS > 1000:1
  • Available unmounted or mounted in cubes for cage system compatibility.
  • Calcite's transmittance of light near 350 nm is typically around 75% (see Transmission column).
  • Available unmounted or in an unthreaded Ø1/2" housing.
  • The transmission curves for calcite are valid for linearly polarized light with a polarization axis aligned with the mark on the polarizer's housing.
  • The 1064 nm V coating corresponds to a -C26 suffix in the item number.
  • Available unmounted or mounted in a protective box or unthreaded cylinder that indicates the polarization axis.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
RPM10 Support Documentation
RPM10Customer Inspired! Rochon Prism, MgF2, 1.5° Beam Separation
$963.90
Today
RPV10 Support Documentation
RPV10Customer Inspired! Rochon Prism, YVO4, 10.6° Beam Separation
$963.90
Today