Rochon Prisms
- Two Orthogonally Polarized Outputs with Small Separation Angle
- High Extinction Ratio
- Broad Operating Wavelength Ranges
- MgF2 or YVO4 Substrate
RPV10
YVO4 Rochon Prism
Ordinary Ray Remains on Same Optical Axis as Input while Extraordinary Ray Exits at an Angle
RPM10
MgF2 Rochon Prism
Output Beams are Orthogonally Polarized
Please Wait
Specifications | ||
---|---|---|
Item # | RPM10 | RPV10 |
Substratea | MgF2 | YVO4 |
Substrate Wavelength Range | 200 nm - 6.0 µm | 488 nm - 3.4 µm |
Transmission (Click for Graph) |
Raw Data |
Raw Data |
Beam Separation Angle (Typical) | 1.5° at 4 µm | 10.6° at 2 µm |
Beam Deviation (Click for Graph) |
Raw Data |
Raw Data |
Extinction Ratiob | >10 000:1 | >100 000:1 |
Clear Aperture (Min) | 10 mm x 10 mm | |
Transmitted Wavefront Error | λ/4 at 633 nm | |
Surface Quality | 20-10 Scratch-Dig | |
Optic Thickness | 35 mm | 12 mm |
Housing Dimensions |
Ø1.00" x 1.55" |
Ø1.00" x 0.55" |
Click to Enlarge
The housing is engraved with a diagram showing the input and output beams.
Features
- Separate Unpolarized Light into Two Orthogonally Polarized Outputs
- 1.5° or 10.6° Beam Separation Angle
- High Extinction Ratio for Each Output
- Uncoated Magnesium Fluoride or Yttrium Orthovanadate Substrate
- Mounted in Ø1" Aluminum Housing
Thorlabs' Rochon Prisms split an arbitrarily polarized input beam into two orthogonally polarized output beams. The ordinary ray remains on the same optical axis as the input beam, while the extraordinary ray deviates by an angle, which depends on the wavelength of the light and the material of the prism (see the Beam Deviation graphs in the table to the right). The output beams have a high polarization extinction ratio of >10 000:1 for the MgF2 prism and >100 000:1 for the YVO4 prism. See the table to the right for complete specifications.
Each prism consists of two halves that are optically contacted. They are mounted in Ø1" anodized aluminum housings. The housing is engraved with the item # and a diagram showing the direction and polarization states of the input and output beams. The prism housing can be mounted in an SM1 lens tube using a retaining ring. The lens tube can then be threaded onto a rotation mount or other SM1-threaded mount for use in a variety of applications.
If your application would benefit from an unmounted Rochon prism or a prism with an AR coating, please contact Tech Support.
Birefringent Crystal Beamsplitters | ||
---|---|---|
Type | Ordinary Ray Anglea | Extraordinary Ray Anglea |
Calcite Beam Displacers | Parallel | Parallel |
YVO4 Beam Displacers | ||
Rochon Prisms | Parallel | Deviated |
Wollaston Prisms | Deviated | Deviated |
Schematic and Ray Diagram of Mounted Rochon Prisms
Beamsplitter Selection Guide
Thorlabs' portfolio contains many different kinds of beamsplitters, which can split beams by intensity or by polarization. We offer plate and cube beamsplitters, though other form factors exist, including pellicle and birefringent crystal. For an overview of the different types and a comparison of their features and applications, please see our overview. Many of our beamsplitters come in premounted or unmounted variants. Below is a complete listing of our beamsplitter offerings. To explore the available types, wavelength ranges, splitting/extinction ratios, transmission, and available sizes for each beamsplitter category, click More [+] in the appropriate row below.Plate Beamsplitters
Non-Polarizing Plate Beamsplitters |
---|
Polarizing Plate Beamsplitters |
---|
Cube Beamsplitters
Non-Polarizing Cube Beamsplitters |
---|
Polarizing Cube and Polyhedron Beamsplitters |
---|
Pellicle Beamsplitters
Non-Polarizing Pellicle Beamsplitters |
---|
Crystal Beamsplitters
Polarizing Crystal Beamsplitters |
---|
Other
Other Beamsplitters |
---|
Selection Guide for Prisms
Thorlabs offers a wide variety of prisms, which can be used to reflect, invert, rotate, disperse, steer, and collimate light. For prisms and substrates not listed below, please contact Tech Support.
Beam Steering Prisms
Prism | Material | Deviation | Invert | Reverse or Rotate | Illustration | Applications |
---|---|---|---|---|---|---|
Right Angle Prisms | N-BK7, UV Fused Silica, Calcium Fluoride, or Zinc Selenide | 90° | 90° | No |
90° reflector used in optical systems such as telescopes and periscopes. |
|
180° | 180° | No |
180° reflector, independent of entrance beam angle. Acts as a non-reversing mirror and can be used in binocular configurations. |
|||
TIR Retroreflectors (Unmounted and Mounted) and Specular Retroreflectors (Unmounted and Mounted) |
N-BK7 | 180° | 180° | No |
180° reflector, independent of entrance beam angle. Beam alignment and beam delivery. Substitute for mirror in applications where orientation is difficult to control. |
|
Unmounted Penta Prisms and Mounted Penta Prisms |
N-BK7 | 90° | No | No |
90° reflector, without inversion or reversal of the beam profile. Can be used for alignment and optical tooling. |
|
Roof Prisms | N-BK7 | 90° | 90° | 180o Rotation |
90° reflector, inverted and rotated (deflected left to right and top to bottom). Can be used for alignment and optical tooling. |
|
Unmounted Dove Prisms and Mounted Dove Prisms |
N-BK7 | No | 180° | 2x Prism Rotation |
Dove prisms may invert, reverse, or rotate an image based on which face the light is incident on. Prism in a beam rotator orientation. |
|
180° | 180° | No |
Prism acts as a non-reversing mirror. Same properties as a retroreflector or right angle (180° orientation) prism in an optical setup. |
|||
Wedge Prisms | N-BK7 | Models Available from 2° to 10° | No | No |
Beam steering applications. By rotating one wedged prism, light can be steered to trace the circle defined by 2 times the specified deviation angle. |
|
No | No |
Variable beam steering applications. When both wedges are rotated, the beam can be moved anywhere within the circle defined by 4 times the specified deviation angle. |
||||
Coupling Prisms | Rutile (TiO2) or GGG | Variablea | No | No |
High index of refraction substrate used to couple light into films. Rutile used for nfilm > 1.8 GGG used for nfilm < 1.8 |
Dispersive Prisms
Prism | Material | Deviation | Invert | Reverse or Rotate | Illustration | Applications |
---|---|---|---|---|---|---|
Equilateral Prisms | F2, N-F2, N-SF11, Calcium Fluoride, or Zinc Selenide |
Variablea | No | No |
Dispersion prisms are a substitute for diffraction gratings. Use to separate white light into visible spectrum. |
|
Dispersion Compensating Prism Pairs | Fused Silica, Calcium Fluoride, SF10, or N-SF14 | Variable Vertical Offset | No | No |
Compensate for pulse broadening effects in ultrafast laser systems. Can be used as an optical filter, for wavelength tuning, or dispersion compensation.
|
|
Pellin Broca Prisms | N-BK7, UV Fused Silica, or Calcium Fluoride |
90° | 90° | No |
Ideal for wavelength separation of a beam of light, output at 90°. Used to separate harmonics of a laser or compensate for group velocity dispersion. |
Beam Manipulating Prisms
Prism | Material | Deviation | Invert | Reverse or Rotate | Illustration | Applications |
---|---|---|---|---|---|---|
Anamorphic Prism Pairs | N-KZFS8 or N-SF11 |
Variable Vertical Offset | No | No |
Variable magnification along one axis. Collimating elliptical beams (e.g., laser diodes) Converts an elliptical beam into a circular beam by magnifying or contracting the input beam in one axis. |
|
Axicons (UVFS, ZnSe) | UV Fused Silica or Zinc Selenide |
Variablea | No | No |
Creates a conical, non-diverging beam with a Bessel intensity profile from a collimated source. |
Polarization Altering Prisms
Prism | Material | Deviation | Invert | Reverse or Rotate | Illustration | Applications |
---|---|---|---|---|---|---|
Glan-Taylor, Glan-Laser, and α-BBO Glan-Laser Polarizers | Glan-Taylor: Calcite Glan-Laser: α-BBO or Calcite |
p-pol. - 0° s-pol. - 112°a |
No | No |
Double prism configuration and birefringent calcite produce extremely pure linearly polarized light. Total Internal Reflection of s-pol. at the gap between the prism while p-pol. is transmitted. |
|
Rutile Polarizers | Rutile (TiO2) | s-pol. - 0° p-pol. absorbed by housing |
No | No |
Double prism configuration and birefringent rutile (TiO2) produce extremely pure linearly polarized light. Total Internal Reflection of p-pol. at the gap between the prisms while s-pol. is transmitted.
|
|
Double Glan-Taylor Polarizers | Calcite | p-pol. - 0° s-pol. absorbed by housing |
No | No |
Triple prism configuration and birefringent calcite produce maximum polarized field over a large half angle. Total Internal Reflection of s-pol. at the gap between the prism while p-pol. is transmitted. |
|
Glan Thompson Polarizers | Calcite | p-pol. - 0° s-pol. absorbed by housing |
No | No |
Double prism configuration and birefringent calcite produce a polarizer with the widest field of view while maintaining a high extinction ratio. Total Internal Reflection of s-pol. at the gap between the prism while p-pol. is transmitted. |
|
Wollaston Prisms and Wollaston Polarizers |
Quartz, Magnesium Fluoride, α-BBO, Calcite, Yttrium Orthovanadate | Symmetric p-pol. and s-pol. deviation angle |
No | No |
Double prism configuration and birefringent calcite produce the widest deviation angle of beam displacing polarizers. s-pol. and p-pol. deviate symmetrically from the prism. Wollaston prisms are used in spectrometers and polarization analyzers. |
|
Rochon Prisms | Magnesium Fluoride or Yttrium Orthovanadate |
Ordinary Ray: 0° Extraordinary Ray: deviation angle |
No | No |
Double prism configuration and birefringent MgF2 or YVO4 produce a small deviation angle with a high extinction ratio. Extraordinary ray deviates from the input beam's optical axis, while ordinary ray does not deviate. |
|
Beam Displacing Prisms | Calcite | 2.7 or 4.0 mm Beam Displacement | No | No |
Single prism configuration and birefringent calcite separate an input beam into two orthogonally polarized output beams. s-pol. and p-pol. are displaced by 2.7 or 4.0 mm. Beam displacing prisms can be used as polarizing beamsplitters where 90o separation is not possible. |
|
Fresnel Rhomb Retarders | N-BK7 | Linear to circular polarization Vertical Offset |
No | No |
λ/4 Fresnel Rhomb Retarder turns a linear input into circularly polarized output. Uniform λ/4 retardance over a wider wavelength range compared to birefringent wave plates. |
|
Rotates linearly polarized light 90° | No | No |
λ/2 Fresnel Rhomb Retarder rotates linearly polarized light 90°. Uniform λ/2 retardance over a wider wavelength range compared to birefringent wave plates. |
Beamsplitter Prisms
Prism | Material | Deviation | Invert | Reverse or Rotate | Illustration | Applications |
---|---|---|---|---|---|---|
Beamsplitter Cubes | N-BK7 | 50:50 splitting ratio, 0° and 90° s- and p- pol. within 10% of each other |
No | No |
Double prism configuration and dielectric coating provide 50:50 beamsplitting nearly independent of polarization. Non-polarizing beamsplitter over the specified wavelength range. |
|
Polarizing Beamsplitter Cubes | N-BK7, UV Fused Silica, or N-SF1 | p-pol. - 0° s-pol. - 90° |
No | No |
Double prism configuration and dielectric coating transmit p-pol. light and reflect s-pol. light. For highest polarization use the transmitted beam. |
Posted Comments: | |
Julien Roul
 (posted 2020-11-17 11:25:36.843) Hi,
Do you have any information about the LIDT for the RPM10 ?
Thanks
Julien YLohia
 (posted 2020-11-20 10:44:56.0) Hello Julien, unfortunately, we have not performed LIDT tests on RPM10 as this is uncoated magnesium fluoride, the information for which can be found in literature. |
Polarizer Selection Guide
Thorlabs offers a diverse range of polarizers, including wire grid, film, calcite, alpha-BBO, rutile, and beamsplitting polarizers. Collectively, our line of wire grid polarizers offers coverage from the visible range to the beginning of the Far-IR range. Our nanoparticle linear film polarizers provide extinction ratios as high as 100 000:1. Alternatively, our other film polarizers offer an affordable solution for polarizing light from the visible to the Near-IR. Next, our beamsplitting polarizers allow for use of the reflected beam, as well as the more completely polarized transmitted beam. Finally, our alpha-BBO (UV), calcite (visible to Near-IR), rutile (Near-IR to Mid-IR), and yttrium orthovanadate (YVO4) (Near-IR to Mid-IR) polarizers each offer an exceptional extinction ratio of 100 000:1 within their respective wavelength ranges.
To explore the available types, wavelength ranges, extinction ratios, transmission, and available sizes for each polarizer category, click More [+] in the appropriate row below.
Wire Grid Polarizers |
---|
Film Polarizers |
---|
Beamsplitting Polarizers |
---|
alpha-BBO Polarizers |
---|
Calcite Polarizers |
---|
Quartz Polarizers |
---|
Magnesium Fluoride Polarizers |
---|
Yttrium Orthovanadate (YVO4) Polarizers |
---|
Rutile Polarizers |
---|