Create an Account  |   Log In

View All »Matching Part Numbers


Your Shopping Cart is Empty
         

Non-Polarizing Cube Beamsplitters (1100 - 1600 nm)


  • Beamsplitter Coating for 1100 - 1600 nm
  • 50:50, 70:30, or 90:10 (R:T) Split Ratio
  • AR Coating on Both Input and Output Faces

BS009

5 mm

BS006

1/2"

Engravings Mark the Direction
of Light Propagation

BS024

1"

BS033

2"

1" Beamsplitter Cube Mounted Directly to Breadboard Using BSH1 Prism Mount

Related Items


Please Wait

Click to Enlarge

1" Beamsplitter Cube Shown in C6W Cage Cube with B4CRP Rotation Platform and B6C Clamp
(Refer to the BS Cube Mounting tab for Other Options)
Beamsplitter Cube
Cube Beamsplitter Diagram (Coating and Cement Layer Not to Scale)
Non-Polarizing Cube Beamsplitters
Visible (400 - 700 nm) Beamsplitters
NIR (700 - 1100 nm) Beamsplitters
IR (1100 - 1600 nm) Beamsplitters
Mounted Cube Beamsplitters

Features

  • Broadband AR-Coated Faces for 1100 - 1600 nm
  • Broadband Beamsplitter Coating on Internal Diagonal Surface
  • 1" (25.4 mm) Cubes with 50:50, 70:30, or 90:10 (R:T) Split Ratio
  • 50:50 Cubes are Also Available in 5 mm, 10 mm, 1/2" (12.7 mm), 20 mm, or 2" (50.8 mm) Sizes
  • N-BK7 Substrate

Thorlabs' non-polarizing beamsplitter cubes are offered here with broadband AR and beamsplitter coatings designed for 1100 - 1600 nm. These cubes provide a 10:90, 30:70, 50:50, 70:30, or 90:10 split ratio that has a minimal dependence on the polarization of the incident light (see the Specs tab for the polarization split ratio tolerances).

Each cube is fabricated from N-BK7 and designed for minimal beam offset. A single reflecting surface also avoids ghost images. The dielectric beamsplitter coating is applied to the hypotenuse of one of the two prisms that make up the cube. Then, cement is used to bind the two prism halves together. On all sizes except the 1" and 2" cubes, a dot is engraved on the top of the cube indicating the prism with the beamsplitting coating (refer to the diagram to the right). In order to achieve the desired split ratio, the light can enter through any of the faces. The 1" and 2" cubes are engraved with arrows indicating one possible orientation.

Please refer to the BS Cube Mounting tab above for information on mounting options and compatibility. Alternatively, we offer mounted 1" non-polarizing beamsplitter cubes and 20 mm non-polarizing beamsplitter cubes. The 1" cubes are mounted inside 30 mm cage compatible cubes, each of which features four SM1-threaded (1.035"-40) access ports, while the 20 mm cubes are mounted within 16 mm cage compatible cubes, each of which features four SM05-threaded (0.535"-40) access ports. Additionally, Thorlabs offers pellicle beamsplitters (cube mounted and ring mounted) and plate beamsplitters. For a direct comparison of the performance of our non-polarizing beamsplitter cube, plate, and pellicle at 633 nm, see the Lab Facts tab.

General Specifications
Wavelength Range 1100 - 1600 nm
AR Coating (All Four Surfaces) Ravg < 0.5% at 0° AOI
from 1100 - 1600 nm
Damage Threshold
(50:50 Cubes Only)
0.25 J/cm2
(1542 nm, 10 ns, 10 Hz, Ø0.282 mm)
Material N-BK7a
Dimensional Tolerance +0.0/-0.2 mm
Reflected Beam Deviation 90° ± 5 arcmin
Clear Aperture >80% of Entrance Face
Surface Quality 40-20 Scratch-Dig
  • Click Link for Detailed Specifications on the Substrate
Item # Size Surface Flatness
(@ 633 nm)
Wavefront Error
(Wavefront Distortion)
(@ 633 nm)
Max Transmitted
Beam Deviation
Splitting Ratio (R:T) Overall Performance
BS009a 5 mm Cube λ/10 <λ/4 0° ± 5 arcmin 50:50 Tabs = 47 ± 10%, Rabs = 47 ± 10%, and Tabs + Rabs > 90%,
|Ts - Tp| < 10% and |Rs - Rp| < 10%, 0° AOI
BS012 10 mm Cube λ/10 <λ/4
BS006 1/2" (12.7 mm) Cube λ/10 <λ/4
BS018 20 mm Cube λ/10 <λ/4
BS015 1" (25.4 mm) Cube λ/10 <λ/4
BS033 2" (50.8 mm) Cube <λ/4 Tabs= 47 ± 10%, Rabs= 47 ± 10%,
T
abs + Rabs > 75%
Tavg + Ravg > 85%

|Ts - Tp| < 10% and |Rs - Rp| < 10%, 0° AOI
BS024 1" (25.4 mm) Cube λ/10 <λ/4 <5 arcmin 70:30 <15% Split Ratio Tolerance over Entire Wavelength Range
|Ts - Tp| < 15% and |Rs - Rp| < 15%
BS030 1" (25.4 mm) Cube λ/10 <λ/4 <5 arcmin 90:10

Thorlabs Lab Fact: Beamsplitter Package Matters

We present laboratory measurements of the polarization angle, split ratio, and total throughput power of a beam transmitted through Thorlabs plate, cube, and pellicle beamsplitters. While all non-polarizing beamsplitters function similarly, the exact performance is different for different types of beamsplitter. Each type of beamsplitter contains its own advantages and disadvantages compared to other types of beamsplitters. Appropriate choice of beamsplitter is essential to sensitive experimental systems. We present a complete analysis and comparison of optical parameters for three common types of non-polarizing beamsplitters.

For our experiment we used the former generation HRS015 stabilized HeNe laser (replaced by the HRS015B) as the light source for our investigation. A linear polarizer is used to set the laser beam's polarization axis to 45° in order to provide equal S- and P-polarized light incident on the beamsplitter. The beamsplitter under investigation was then placed in the beampath, and its split beams directed to appropriate detectors. The total power though the optic, polarization states, split ratios, and angle of incidence effects were investigated under this configuration.

The plots below summarize the measured results for all three types of beamsplitters. From these graphs the performance of each optic can be easily compared to one another. The bottom left plot summarizes the results for the total power throughput for each optic. The total power throughput is measured as the fraction of input power. While the plate and pellicle beamsplitters perform rather similarly, the cube shows signs of absorption inside the optic. Additionally, this plot shows the relative insensitivity of throughput power to angle of incidence. The bottom middle graph summarizes the results for the output polarization angle for each optic. The cube shows the most similar polarization angles between the reflected and transmitted beams, with the plate producing the largest difference in polarization between beams. The bottom right plot summarizes the results for the split ratio, as a fraction of input power, for the beamsplitters. Here it can be shown that the plate beamsplitter demonstrates the most ideal for 50/50 power splitting. For details on the experimental setup employed and the results summarized here, please click here.

Damage Threshold Specifications
Laser Type Damage Threshold
Pulsed* 0.25 J/cm2 (1542 nm, 10 ns, 10 Hz, Ø0.282 mm)

* Tested for 50:50 cubes only.

Damage Threshold Data for Thorlabs' Non-Polarizing Cube Beamsplitters

The specifications to the right are measured data for Thorlabs' non-polarizing cube beamsplitters with wavelength range from 1100 to 1600 nm. Damage threshold specifications are constant for all coatings, regardless of the size of the beamsplitter.

 

Laser Induced Damage Threshold Tutorial

The following is a general overview of how laser induced damage thresholds are measured and how the values may be utilized in determining the appropriateness of an optic for a given application. When choosing optics, it is important to understand the Laser Induced Damage Threshold (LIDT) of the optics being used. The LIDT for an optic greatly depends on the type of laser you are using. Continuous wave (CW) lasers typically cause damage from thermal effects (absorption either in the coating or in the substrate). Pulsed lasers, on the other hand, often strip electrons from the lattice structure of an optic before causing thermal damage. Note that the guideline presented here assumes room temperature operation and optics in new condition (i.e., within scratch-dig spec, surface free of contamination, etc.). Because dust or other particles on the surface of an optic can cause damage at lower thresholds, we recommend keeping surfaces clean and free of debris. For more information on cleaning optics, please see our Optics Cleaning tutorial.

Testing Method

Thorlabs' LIDT testing is done in compliance with ISO/DIS11254 and ISO 21254 specifications.

First, a low-power/energy beam is directed to the optic under test. The optic is exposed in 10 locations to this laser beam for 30 seconds (CW) or for a number of pulses (pulse repetition frequency specified). After exposure, the optic is examined by a microscope (~100X magnification) for any visible damage. The number of locations that are damaged at a particular power/energy level is recorded. Next, the power/energy is either increased or decreased and the optic is exposed at 10 new locations. This process is repeated until damage is observed. The damage threshold is then assigned to be the highest power/energy that the optic can withstand without causing damage. A histogram such as that below represents the testing of one BB1-E02 mirror.

LIDT metallic mirror
The photograph above is a protected aluminum-coated mirror after LIDT testing. In this particular test, it handled 0.43 J/cm2 (1064 nm, 10 ns pulse, 10 Hz, Ø1.000 mm) before damage.
LIDT BB1-E02
Example Test Data
Fluence # of Tested Locations Locations with Damage Locations Without Damage
1.50 J/cm2 10 0 10
1.75 J/cm2 10 0 10
2.00 J/cm2 10 0 10
2.25 J/cm2 10 1 9
3.00 J/cm2 10 1 9
5.00 J/cm2 10 9 1

According to the test, the damage threshold of the mirror was 2.00 J/cm2 (532 nm, 10 ns pulse, 10 Hz, Ø0.803 mm). Please keep in mind that these tests are performed on clean optics, as dirt and contamination can significantly lower the damage threshold of a component. While the test results are only representative of one coating run, Thorlabs specifies damage threshold values that account for coating variances.

Continuous Wave and Long-Pulse Lasers

When an optic is damaged by a continuous wave (CW) laser, it is usually due to the melting of the surface as a result of absorbing the laser's energy or damage to the optical coating (antireflection) [1]. Pulsed lasers with pulse lengths longer than 1 µs can be treated as CW lasers for LIDT discussions.

When pulse lengths are between 1 ns and 1 µs, laser-induced damage can occur either because of absorption or a dielectric breakdown (therefore, a user must check both CW and pulsed LIDT). Absorption is either due to an intrinsic property of the optic or due to surface irregularities; thus LIDT values are only valid for optics meeting or exceeding the surface quality specifications given by a manufacturer. While many optics can handle high power CW lasers, cemented (e.g., achromatic doublets) or highly absorptive (e.g., ND filters) optics tend to have lower CW damage thresholds. These lower thresholds are due to absorption or scattering in the cement or metal coating.

Linear Power Density Scaling

LIDT in linear power density vs. pulse length and spot size. For long pulses to CW, linear power density becomes a constant with spot size. This graph was obtained from [1].

Intensity Distribution

Pulsed lasers with high pulse repetition frequencies (PRF) may behave similarly to CW beams. Unfortunately, this is highly dependent on factors such as absorption and thermal diffusivity, so there is no reliable method for determining when a high PRF laser will damage an optic due to thermal effects. For beams with a high PRF both the average and peak powers must be compared to the equivalent CW power. Additionally, for highly transparent materials, there is little to no drop in the LIDT with increasing PRF.

In order to use the specified CW damage threshold of an optic, it is necessary to know the following:

  1. Wavelength of your laser
  2. Beam diameter of your beam (1/e2)
  3. Approximate intensity profile of your beam (e.g., Gaussian)
  4. Linear power density of your beam (total power divided by 1/e2 beam diameter)

Thorlabs expresses LIDT for CW lasers as a linear power density measured in W/cm. In this regime, the LIDT given as a linear power density can be applied to any beam diameter; one does not need to compute an adjusted LIDT to adjust for changes in spot size, as demonstrated by the graph to the right. Average linear power density can be calculated using the equation below. 

The calculation above assumes a uniform beam intensity profile. You must now consider hotspots in the beam or other non-uniform intensity profiles and roughly calculate a maximum power density. For reference, a Gaussian beam typically has a maximum power density that is twice that of the uniform beam (see lower right).

Now compare the maximum power density to that which is specified as the LIDT for the optic. If the optic was tested at a wavelength other than your operating wavelength, the damage threshold must be scaled appropriately. A good rule of thumb is that the damage threshold has a linear relationship with wavelength such that as you move to shorter wavelengths, the damage threshold decreases (i.e., a LIDT of 10 W/cm at 1310 nm scales to 5 W/cm at 655 nm):

CW Wavelength Scaling

While this rule of thumb provides a general trend, it is not a quantitative analysis of LIDT vs wavelength. In CW applications, for instance, damage scales more strongly with absorption in the coating and substrate, which does not necessarily scale well with wavelength. While the above procedure provides a good rule of thumb for LIDT values, please contact Tech Support if your wavelength is different from the specified LIDT wavelength. If your power density is less than the adjusted LIDT of the optic, then the optic should work for your application. 

Please note that we have a buffer built in between the specified damage thresholds online and the tests which we have done, which accommodates variation between batches. Upon request, we can provide individual test information and a testing certificate. The damage analysis will be carried out on a similar optic (customer's optic will not be damaged). Testing may result in additional costs or lead times. Contact Tech Support for more information.

Pulsed Lasers

As previously stated, pulsed lasers typically induce a different type of damage to the optic than CW lasers. Pulsed lasers often do not heat the optic enough to damage it; instead, pulsed lasers produce strong electric fields capable of inducing dielectric breakdown in the material. Unfortunately, it can be very difficult to compare the LIDT specification of an optic to your laser. There are multiple regimes in which a pulsed laser can damage an optic and this is based on the laser's pulse length. The highlighted columns in the table below outline the relevant pulse lengths for our specified LIDT values.

Pulses shorter than 10-9 s cannot be compared to our specified LIDT values with much reliability. In this ultra-short-pulse regime various mechanics, such as multiphoton-avalanche ionization, take over as the predominate damage mechanism [2]. In contrast, pulses between 10-7 s and 10-4 s may cause damage to an optic either because of dielectric breakdown or thermal effects. This means that both CW and pulsed damage thresholds must be compared to the laser beam to determine whether the optic is suitable for your application.

Pulse Duration t < 10-9 s 10-9 < t < 10-7 s 10-7 < t < 10-4 s t > 10-4 s
Damage Mechanism Avalanche Ionization Dielectric Breakdown Dielectric Breakdown or Thermal Thermal
Relevant Damage Specification No Comparison (See Above) Pulsed Pulsed and CW CW

When comparing an LIDT specified for a pulsed laser to your laser, it is essential to know the following:

Energy Density Scaling

LIDT in energy density vs. pulse length and spot size. For short pulses, energy density becomes a constant with spot size. This graph was obtained from [1].

  1. Wavelength of your laser
  2. Energy density of your beam (total energy divided by 1/e2 area)
  3. Pulse length of your laser
  4. Pulse repetition frequency (prf) of your laser
  5. Beam diameter of your laser (1/e2 )
  6. Approximate intensity profile of your beam (e.g., Gaussian)

The energy density of your beam should be calculated in terms of J/cm2. The graph to the right shows why expressing the LIDT as an energy density provides the best metric for short pulse sources. In this regime, the LIDT given as an energy density can be applied to any beam diameter; one does not need to compute an adjusted LIDT to adjust for changes in spot size. This calculation assumes a uniform beam intensity profile. You must now adjust this energy density to account for hotspots or other nonuniform intensity profiles and roughly calculate a maximum energy density. For reference a Gaussian beam typically has a maximum energy density that is twice that of the 1/e2 beam.

Now compare the maximum energy density to that which is specified as the LIDT for the optic. If the optic was tested at a wavelength other than your operating wavelength, the damage threshold must be scaled appropriately [3]. A good rule of thumb is that the damage threshold has an inverse square root relationship with wavelength such that as you move to shorter wavelengths, the damage threshold decreases (i.e., a LIDT of 1 J/cm2 at 1064 nm scales to 0.7 J/cm2 at 532 nm):

Pulse Wavelength Scaling

You now have a wavelength-adjusted energy density, which you will use in the following step.

Beam diameter is also important to know when comparing damage thresholds. While the LIDT, when expressed in units of J/cm², scales independently of spot size; large beam sizes are more likely to illuminate a larger number of defects which can lead to greater variances in the LIDT [4]. For data presented here, a <1 mm beam size was used to measure the LIDT. For beams sizes greater than 5 mm, the LIDT (J/cm2) will not scale independently of beam diameter due to the larger size beam exposing more defects.

The pulse length must now be compensated for. The longer the pulse duration, the more energy the optic can handle. For pulse widths between 1 - 100 ns, an approximation is as follows:

Pulse Length Scaling

Use this formula to calculate the Adjusted LIDT for an optic based on your pulse length. If your maximum energy density is less than this adjusted LIDT maximum energy density, then the optic should be suitable for your application. Keep in mind that this calculation is only used for pulses between 10-9 s and 10-7 s. For pulses between 10-7 s and 10-4 s, the CW LIDT must also be checked before deeming the optic appropriate for your application.

Please note that we have a buffer built in between the specified damage thresholds online and the tests which we have done, which accommodates variation between batches. Upon request, we can provide individual test information and a testing certificate. Contact Tech Support for more information.


[1] R. M. Wood, Optics and Laser Tech. 29, 517 (1998).
[2] Roger M. Wood, Laser-Induced Damage of Optical Materials (Institute of Physics Publishing, Philadelphia, PA, 2003).
[3] C. W. Carr et al., Phys. Rev. Lett. 91, 127402 (2003).
[4] N. Bloembergen, Appl. Opt. 12, 661 (1973).

In order to illustrate the process of determining whether a given laser system will damage an optic, a number of example calculations of laser induced damage threshold are given below. For assistance with performing similar calculations, we provide a spreadsheet calculator that can be downloaded by clicking the button to the right. To use the calculator, enter the specified LIDT value of the optic under consideration and the relevant parameters of your laser system in the green boxes. The spreadsheet will then calculate a linear power density for CW and pulsed systems, as well as an energy density value for pulsed systems. These values are used to calculate adjusted, scaled LIDT values for the optics based on accepted scaling laws. This calculator assumes a Gaussian beam profile, so a correction factor must be introduced for other beam shapes (uniform, etc.). The LIDT scaling laws are determined from empirical relationships; their accuracy is not guaranteed. Remember that absorption by optics or coatings can significantly reduce LIDT in some spectral regions. These LIDT values are not valid for ultrashort pulses less than one nanosecond in duration.

Intensity Distribution
A Gaussian beam profile has about twice the maximum intensity of a uniform beam profile.

CW Laser Example
Suppose that a CW laser system at 1319 nm produces a 0.5 W Gaussian beam that has a 1/e2 diameter of 10 mm. A naive calculation of the average linear power density of this beam would yield a value of 0.5 W/cm, given by the total power divided by the beam diameter:

CW Wavelength Scaling

However, the maximum power density of a Gaussian beam is about twice the maximum power density of a uniform beam, as shown in the graph to the right. Therefore, a more accurate determination of the maximum linear power density of the system is 1 W/cm.

An AC127-030-C achromatic doublet lens has a specified CW LIDT of 350 W/cm, as tested at 1550 nm. CW damage threshold values typically scale directly with the wavelength of the laser source, so this yields an adjusted LIDT value:

CW Wavelength Scaling

The adjusted LIDT value of 350 W/cm x (1319 nm / 1550 nm) = 298 W/cm is significantly higher than the calculated maximum linear power density of the laser system, so it would be safe to use this doublet lens for this application.

Pulsed Nanosecond Laser Example: Scaling for Different Pulse Durations
Suppose that a pulsed Nd:YAG laser system is frequency tripled to produce a 10 Hz output, consisting of 2 ns output pulses at 355 nm, each with 1 J of energy, in a Gaussian beam with a 1.9 cm beam diameter (1/e2). The average energy density of each pulse is found by dividing the pulse energy by the beam area:

Pulse Energy Density

As described above, the maximum energy density of a Gaussian beam is about twice the average energy density. So, the maximum energy density of this beam is ~0.7 J/cm2.

The energy density of the beam can be compared to the LIDT values of 1 J/cm2 and 3.5 J/cm2 for a BB1-E01 broadband dielectric mirror and an NB1-K08 Nd:YAG laser line mirror, respectively. Both of these LIDT values, while measured at 355 nm, were determined with a 10 ns pulsed laser at 10 Hz. Therefore, an adjustment must be applied for the shorter pulse duration of the system under consideration. As described on the previous tab, LIDT values in the nanosecond pulse regime scale with the square root of the laser pulse duration:

Pulse Length Scaling

This adjustment factor results in LIDT values of 0.45 J/cm2 for the BB1-E01 broadband mirror and 1.6 J/cm2 for the Nd:YAG laser line mirror, which are to be compared with the 0.7 J/cm2 maximum energy density of the beam. While the broadband mirror would likely be damaged by the laser, the more specialized laser line mirror is appropriate for use with this system.

Pulsed Nanosecond Laser Example: Scaling for Different Wavelengths
Suppose that a pulsed laser system emits 10 ns pulses at 2.5 Hz, each with 100 mJ of energy at 1064 nm in a 16 mm diameter beam (1/e2) that must be attenuated with a neutral density filter. For a Gaussian output, these specifications result in a maximum energy density of 0.1 J/cm2. The damage threshold of an NDUV10A Ø25 mm, OD 1.0, reflective neutral density filter is 0.05 J/cm2 for 10 ns pulses at 355 nm, while the damage threshold of the similar NE10A absorptive filter is 10 J/cm2 for 10 ns pulses at 532 nm. As described on the previous tab, the LIDT value of an optic scales with the square root of the wavelength in the nanosecond pulse regime:

Pulse Wavelength Scaling

This scaling gives adjusted LIDT values of 0.08 J/cm2 for the reflective filter and 14 J/cm2 for the absorptive filter. In this case, the absorptive filter is the best choice in order to avoid optical damage.

Pulsed Microsecond Laser Example
Consider a laser system that produces 1 µs pulses, each containing 150 µJ of energy at a repetition rate of 50 kHz, resulting in a relatively high duty cycle of 5%. This system falls somewhere between the regimes of CW and pulsed laser induced damage, and could potentially damage an optic by mechanisms associated with either regime. As a result, both CW and pulsed LIDT values must be compared to the properties of the laser system to ensure safe operation.

If this relatively long-pulse laser emits a Gaussian 12.7 mm diameter beam (1/e2) at 980 nm, then the resulting output has a linear power density of 5.9 W/cm and an energy density of 1.2 x 10-4 J/cm2 per pulse. This can be compared to the LIDT values for a WPQ10E-980 polymer zero-order quarter-wave plate, which are 5 W/cm for CW radiation at 810 nm and 5 J/cm2 for a 10 ns pulse at 810 nm. As before, the CW LIDT of the optic scales linearly with the laser wavelength, resulting in an adjusted CW value of 6 W/cm at 980 nm. On the other hand, the pulsed LIDT scales with the square root of the laser wavelength and the square root of the pulse duration, resulting in an adjusted value of 55 J/cm2 for a 1 µs pulse at 980 nm. The pulsed LIDT of the optic is significantly greater than the energy density of the laser pulse, so individual pulses will not damage the wave plate. However, the large average linear power density of the laser system may cause thermal damage to the optic, much like a high-power CW beam.

Thorlabs offers a variety of mounting solutions for our beamsplitter cubes. The mounts below allow our cubes to be post-mounted or integrated into our 16 mm or 30 mm cage systems. Post-mountable solutions are compatible with our Ø1/2" Posts as well as Ø1" Posts with 8-32 (M4) taps.

Post-Mountable Mounts for Beamsplitter Cubes
Click Photo to Enlarge
(Cubes Not Included)
Item # PCM(/M) BSH1(/M) FBTB(/M) KM100PM(/M) KM200PM(/M) KM100B(/M) KM200B(/M) K6XS
Required Accessories Base: PCMP(/M) - - Clamp:
PM3(/M) or PM4(/M)
Clamp:
PM3(/M) or PM4(/M)
Clamp:
PM3(/M) or PM4(/M)
Clamp:
PM3(/M) or PM4(/M)
Adapter:
K6A1(/M)
Mounting Options Ø1/2" Posts Ø1/2" Posts or
Directly to Optical Table
Ø1/2" Posts Ø1/2" Posts Ø1/2" Posts Ø1/2" Posts Ø1/2" Posts Ø1/2" Posts
Features Compact Compact Glue-In Mount with Precision Tip, Tilt, and Rotation Tip and Rotation Tip and Rotation Kinematic Mount Kinematic Mount 6-Axis Mount
Compatible
Beamsplitter
Cube Size(s)
Up to 20 mm 1" 5 mm Up to 20 mma
Up to 1" b
Up to 20 mma
Up to 1" b
Up to 2" c
Up to 20 mma
Up to 1" b
Up to 20 mma
Up to 1" b
Up to 2" c
5 mm
10 mm
1/2"
  • With PM3(/M) Clamp
  • With PM4(/M) Clamp
  • With PM4(/M) and PM4SP(/M) Extension Post
Cage System Mounts for Beamsplitter Cubes
Click Photo to Enlarge
(Cubes Not Included)
Item # Cage Cube:
SC6W
ARV1 CRM1(/M) or CRM1P(/M) Cage Cube: C4W or C6W a CCM1-4ER(/M) CCM1-A4ER(/M) CCM1-B4ER(/M) CCM1-C4ER(/M)
Required Accessories Clamp: SB6C,
Platform: SPM2
- Adapter:
K6A1(/M)
Clamp: B6C,
Platform:
B3C(/M) or B4C(/M)
Clamp: B6C,
Platform:
B3CR(/M) or B4CRP(/M)
- - - -
Mounting
Options
16 mm Cage Systems 30 mm Cage Systems 30 mm Cage Systems or Ø1/2" Posts 30 mm Cage Systems 30 mm Cage Systems or Ø1/2" Posts
Features Compact Compact Rotation Mount Fixed or Kinematic Platforms Rotation Platforms - One Rotation Mount Two Rotation Mounts @ 180° Two Rotation Mounts @ 90°
Compatible
Beamsplitter
Cube Size(s)
10 mm 5 mm
10 mm
5 mm
10 mm
1/2"
1/2"
20 mm
1"
5 mm (with BS5CAM Adapter)
10 mm (with BS10CAM Adapter)
1/2" (with BS127CAM Adapter)
20 mm (with BS20CAM Adapter)
1" (Directly Compatible)
  • These photos illustrate two possible combinations. Any combination of cage cube, clamp, and platform is possible.

Please Give Us Your Feedback
 
Email Feedback On
(Optional)
Contact Me:
Your email address will NOT be displayed.
 
 
Please type the following key into the field to submit this form:
Click Here if you can not read the security code.
This code is to prevent automated spamming of our site
Thank you for your understanding.
  
 
Would this product be useful to you?   Little Use  1234Very Useful

Enter Comments Below:
 
Characters remaining  8000   
Posted Comments:
Poster:ekocabas
Posted Date:2016-07-10 07:18:14.24
Do you have specs/graphs for the change in output polarization angle for the reflected and transmitted beams as a function of wavelength in the range 1100-1600 nm for the BS015 beam splitter cube?
Poster:tcohen
Posted Date:2012-09-06 10:39:00.0
Response from Tim at Thorlabs: We are able to manufacturer smaller sizes and I have contacted you to discuss your requirements. As for damage thresholds, typically lower wavelengths will reduce the damage threshold of an optic and a longer pulse length with increase it. Our “Damage Threshold” tutorial linked to this page explains more on relating our values for use with different parameters. That being said your energy density is lower than where we would expect to see damage. As always, make sure that the optic is kept clean and the surface quality is maintained to have the best performance.
Poster:paul.taylor
Posted Date:2012-08-31 08:13:51.0
I am considering buying a BS015 cube. I am working with a 1mJ pulse in a 0.45 cm (1e^2) radius beam of 1064 nm light in a Gaussian profile with a 100 ns pulse duration. Given that the fluence is only 1.6mJ/cm^2 - do you think it would be OK from a damage threshold standpoint - given that we are a long way from the specified parameters?
Poster:jikim
Posted Date:2012-08-30 17:58:40.0
Could you manufacture a small size of the "BS024" and the "BS030", e.g. 5 mm or 10 mm?

Thorlabs' portfolio contains many different kinds of beamsplitters, which can split beams by intensity or by polarization. We offer plate and cube beamsplitters, though other form factors exist, including pellicle and birefringent crystal. Many of our beamsplitters come in premounted or unmounted variants. Below is a complete listing of our beamsplitter offerings. To explore the available types, wavelength ranges, splitting/extinction ratios, transmission, and available sizes for each beamsplitter category, click More [+] in the appropriate row below. 

Non-Polarizing Beamsplitters

Plate Beamsplitters
Cube Beamsplitters
Pellicle Beamsplitters
  • 45° AOI Unless Otherwise Noted

Polarizing Beamsplitters

Plate Beamsplitters
Cube Beamsplitters
Birefringent Crystal Beamsplitters
  • Mounted in a protective box, unthreaded ring, or cylinder.
  • Available unmounted or mounted in a protective box or unthreaded cylinder.

Other Beamsplitters

Other Beamsplitters

50:50 (R:T) Cube Beamsplitters

50:50 Cube Beamsplitter Transmission
Click to Enlarge

Click Here for a Raw Data File with an Extended Range of 800 - 2100 nm
  • 50:50 (R:T) Split Ratio
  • 5 mm, 10 mm, 1/2" (12.7 mm), 20 mm, 1" (25.4 mm), and 2" (50.8 mm) Cubes Available
  • Damage Threshold: 0.25 J/cm2 (1542 nm, 10 ns, 10 Hz, Ø0.282 mm)
  • N-BK7 Substrate

The shaded region in the graph to the right indicates the specified operating wavelength range. Note that the data shown here is typical, and run-to-run variations will occur within the specifications given in the Specs tab.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available / Ships
BS009 Support Documentation
BS00950:50 Non-Polarizing Beamsplitter Cube, 1100-1600 nm, 5 mm
$150.00
Today
BS012 Support Documentation
BS01250:50 Non-Polarizing Beamsplitter Cube, 1100-1600 nm, 10 mm
$173.00
Today
BS006 Support Documentation
BS006Customer Inspired!50:50 Non-Polarizing Beamsplitter Cube, 1100-1600 nm, 1/2"
$179.00
Today
BS018 Support Documentation
BS01850:50 Non-Polarizing Beamsplitter Cube, 1100-1600 nm, 20 mm
$194.00
Today
BS015 Support Documentation
BS01550:50 Non-Polarizing Beamsplitter Cube, 1100-1600 nm, 1"
$211.00
Today
BS033 Support Documentation
BS033Customer Inspired!50:50 Non-Polarizing Beamsplitter Cube, 1100-1600 nm, 2"
$475.00
Today

70:30 (R:T) Cube Beamsplitter

70:30 Cube Beamsplitter Transmission
Click to Enlarge

Click Here for the Raw Data File
  • 70:30 (R:T) Split Ratio
  • 1" (25.4 mm) Cube
  • N-BK7 Substrate

The shaded region in the graph to the right indicates the specified operating wavelength range. Note that the data shown here is typical, and run-to-run variations will occur within the specifications given in the Specs tab.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available / Ships
BS024 Support Documentation
BS024Customer Inspired!70:30 (R:T) Non-Polarizing Beamsplitter Cube, 1100-1600 nm, 1"
$211.00
Today

90:10 (R:T) Cube Beamsplitter

90:10 Cube Beamsplitter Transmission
Click to Enlarge

Click Here for a Raw Data File with an Extended Range of 900 - 2100 nm
  • 90:10 (R:T) Split Ratio
  • 1" (25.4 mm) Cube
  • N-BK7 Substrate

The shaded region in the graph to the right indicates the specified operating wavelength range. Note that the data shown here is typical, and run-to-run variations will occur within the specifications given in the Specs tab.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available / Ships
BS030 Support Documentation
BS03090:10 (R:T) Non-Polarizing Beamsplitter Cube, 1100-1600 nm, 1"
$211.00
Today
Log In  |   My Account  |   Contact Us  |   Careers  |   Privacy Policy  |   Home  |   FAQ  |   Site Index
Regional Websites: West Coast US | Europe | Asia | China | Japan
Copyright 1999-2017 Thorlabs, Inc.
Sales: 1-973-300-3000
Technical Support: 1-973-300-3000


High Quality Thorlabs Logo 1000px:Save this Image