Bergamo® III Series Multiphoton Microscopes


Bergamo® III Series Multiphoton Microscopes


Please Wait
Sam Tesfai
Sam Tesfai
General Manager,
Thorlabs Imaging Systems

Feedback?

Questions?

Need a Quote?

Contact Me

Bergamo® III Series Multiphoton Microscopy Platform

Following the principle that the microscope should conform to the specimen, rather than the other way around, we created a completely modular multiphoton imaging platform that adapts to a wide range of experimental requirements. Our Bergamo III Multiphoton Microscopes enable simultaneous readout and manipulation of neuron populations at higher speed, greater depth, and higher intensity than with traditional research techniques, such as using microelectrodes.

Choose the Microscope that Fits Your Experiment

The modular nature of our Bergamo III Multiphoton Microscopy Platform allows us to modify configurations to meet individual experimental needs or adjust the functionality of a microscope after installation. We have outlined the highlights of Bergamo III modularity below; for detailed information on these features and more, please see the Modules tab. To understand how our Bergamo III microscopes have been used in laboratory settings, please see the Applications and Publications tabs.

 

Bring the Microscope to Your Sample

Designed to be brought to your sample, our Bergamo III microscopes are available in three body configurations. Our rotating Bergamo III microscope bodies include five axes of motion, providing near-total freedom to study in vivo systems. Our upright bodies feature an industry-leading throat depth and offer either one or three axes of motion control.

  • Rotating Bodies
    • Up to 90° Rotation Around the Sample or Subject
    • 5" of Coarse Vertical Motion
    • 2" of Fine XY Motion
    • 1" of Fine Z Motion
    • X, Y, and Z Rotate with Objective
  • Upright Bodies
    • 2" of Fine XY Motion (XYZ Configuration Only)
    • 1" of Fine Z Motion
    • Industry Leading 7.74" Throat Depth
  • Further Fine Z-Focus Options
    • High-Speed Piezo Objective Scanner
    • Liquid Crystal Remote Focus for Fast, Vibration-Free Imaging

 

Image in Multiple Modalities with One System

Up to two laser scanning pathways and numerous auxiliary imaging modules can be incorporated into Bergamo III microscopes, offering users the flexibility to switch between multiple imaging modalities with just one system. The modular design also means that your microscope can be reconfigured and upgraded as your experimental requirements evolve.

  • Single- or Dual-Scan Paths
    • Co-Registered Confocal Imaging
    • Simultaneous Multiphoton Imaging and Spatial Light Modulation
  • Transmitted Light Imaging
    • Dodt Gradient Contrast (Widefield and Laser Scanned)
    • DIC (Widefield and Laser Scanned)
    • Visible and NIR LEDs
  • Bessel Beam Imaging

Click to Enlarge

This Bergamo III microscope has been configured for both multiphoton and transmitted light imaging. The WFA1000 transmitted light module can be quickly removed to make room for multiphoton imaging of live specimens.

Collect Data with Higher Speed

We offer 8 kHz and 12 kHz Galvo-Resonant (GR) and Resonant-Galvo-Galvo (RGG) scanners with our Bergamo III microscopes, allowing for high-speed image acquisition.  For simultaneous high-speed imaging and photomanipulation/photoactivation of the sample, a Galvo-Galvo (GG) Scanner or spatial light modulator (SLM) can be set up as a secondary pathway.

  • 8 kHz and 12 kHz GR and RGG Scanners for
    High-Speed Imaging
  • GG Scanners for User-Defined ROI Shapes and Photostimulation Patterns
  • SLM for Simultaneous Multi-Point Targeting


Click to Enlarge

The primary scan path of this Bergamo III microscope features a Galvo-Resonant scanner for high-speed image acquisition. A Galvo-Galvo scanner has been installed on a secondary pathway allowing for simultaneous, area-specific photoactivation.

See More of Your Sample

Bergamo III microscopes can be configured with a Field Number (FN) of 40, allowing users to image multiple regions of interest (ROI) within a single field of view (FOV). Large FOV configurations also offer the option for a secondary scan path for manipulation of a smaller portion of the field.

  • Image Size with FN40 and 8 kHz Scanner at 1X Zoom:
    • 2.82 mm x 2.82 mm FOV with a 10X Objective
    • 1.88 mm x 1.88 mm FOV with a 15X Objective

Click to Enlarge

The image above was taken with a Bergamo III microscope configured with an FN of 40 and equipped with a Thorlabs
TL10X-2P Objective. The outer box represents the FN40 FOV of 2.82 mm x 2.82 mm.

 

Higher Sensitivity Detection to Protect Your Sample

To maximize detection efficiency, we utilize high-sensitivity GaAsP PMTs in a non-descanned geometry in our Bergamo III microscopes. This allows the users to detect faint signals from deep samples and/or work at a reduced laser power, protecting their sample from photodamage. 

  • Up to Four Simultaneous Detection Channels
  • Non-Descanned Geometry
  • High-Sensitivity GaAsP PMTs
    • Cooled PMTs for Weak Signals
    • Non-Cooled PMTs for Larger Collection Angles
  • Multialkali PMTs Also Available
  • Free-Space Photodetectors for Other Imaging Modalities

Click to Enlarge

Because emitted signal can be scattered by thick tissue as it exits the specimen, we designed our detection modules with wide collection angles. With full collection angles of 8°, 10°, or 14° (for a Ø20 mm entrance pupil), our proprietary detection modules enable deep physiological imaging.

Image Deeper with Super-Broadband Scan Optics

The excitation wavelength ranges supported by Bergamo III microscopes accommodate the most recent lasers, fluorophores, and techniques. Our scan optics can be optimized for wavelengths up to 1800 nm, allowing users to see deeper into their sample utilizing three-photon imaging techniques.

  • Super-Broadband Scan Optics Optimized for:
    • Photoactivation / Uncaging
    • Two-Photon Imaging
    • Three-Photon Imaging

Click to Enlarge

Our Super-Broadband Scan Optics Cover Wavelengths for Photoactivation, 2P, and 3P Imaging

Ultra-Stable Multiphoton Platform

All of our Bergamo III microscope bodies can be configured with a fiber-coupled 2P laser on one or both of their scan paths. Fiber-couples eliminate the need for complicated alignment procedures and provide a more stable imaging configuration compared to free-space lasers.

  • Alignment-Free Imaging
  • Highly-Stable Imaging Configuration
  • Minimized Microscope Footprint Provides Extra Space for Sample or Subject
  • Allows Quick and Easy Reconfiguration of Microscope

Click to Enlarge

This Bergamo Microscope Features Dual Fiber-Coupled Scan Paths

Bergamo® III Modules

Thorlabs' Bergamo III microscopes are modular systems that can be customized in the design process to meet the exact needs of the experiment. 

 


Click to Enlarge

The primary scan path of this Bergamo III microscope features a Galvo-Resonant scanner for high-speed image acquisition. A Galvo-Galvo scanner has been installed on a secondary pathway allowing for simultaneous, area-specific photoactivation.

Galvo-Resonant Scanners, Galvo-Galvo Scanners, and Spatial Light Modulators

Bergamo III microscopes can be configured with one or two co-registered scan paths to propagate, condition, and direct an input laser beam. Each path can utilize a resonant-galvo-galvo scanner, galvo-resonant scanner, galvo-galvo scanner, and/or a spatial light modulator (SLM). These choices allow the user to optimize each experiment as needed for high frame rates, high sensitivity, and/or targeted exposure of the regions of interest.

Resonant-Galvo-Galvo Scanners for Multimodal Scanning
Thorlabs offers 8 kHz and 12 kHz resonant-galvo-galvo (RGG) scanners. The design of our RGG scanners is registered under US Patent 10,722,977. This multimodal scanner provides features of both the galvo-resonant and galvo-galvo scanners in a single scan head. Our 8 kHz scanners utilize the entire field of view and offer a maximum frame rate of 400 fps, while our 12 kHz scanners provide an increased frame rate of 600 fps.

Galvo-Resonant Scanners for High-Speed Imaging
Thorlabs offers 8 kHz and 12 kHz galvo-resonant scanners. Our 8 kHz scanners utilize the entire field of view and offer a maximum frame rate of 400 fps, while our 12 kHz scanners provide an increased frame rate of 600 fps.

Galvo-Galvo Scanners for User-Defined ROI Shapes
Galvo-galvo scanners support user-drawn scan geometries (lines, polylines, squares, and rectangles) and also support custom photoactivation patterns (circles, ellipses, polygons, and points). They offer consistent pixel dwell times for better signal integration and image uniformity.

Spatial Light Modulators for Simultaneous Targeting
Unlike scanners, which physically move from point to point, spatial light modulators (SLMs) use holography to diffract the beam and shape it in a user-defined pattern. This includes general beam shaping as well as the creation of multiple focal points at the FOV; the latter allows multiple sites in a sample to be photoexcited simultaneously. To learn more about Spatial Light Modulation, please see our Highlights tab.

 

Bergamo Piezo Objective Scanner
Click to Enlarge

Upright Bergamo III Microscope Equipped with a PFM450E Piezo Objective Scanner for Fine Z-Positioning of a Thorlabs TL15X-2P Objective

Fast Z-Focus Options for Volume Imaging

We offer two options for fast Z-focus control in our Bergamo III microscopes: a remote focus system based on liquid crystal technology, or a Thorlabs PFM450E high-speed piezo objective scanner.

Remote Liquid Crystal Focus
Our remote focus system uses liquid crystal lenses to switch between 16 discrete focal planes quickly and without introducing vibrations that could disturb the focus or the specimen. Total Z-travel range is objective dependent:

  • ~400 µm Travel Range with a TL10X-2P Objective
  • ~180 µm Travel Range with a TL15X-2P Objective

Piezo Objective Scanner
The piezo objective scanner offers access to a 450 µm Z-travel range with 3 nm closed-loop resolution and a 25 ms typical settling time for discrete steps as large as 100 µm. It is ideal for precisely setting the focal position of the microscope as well as high-speed, high-resolution Z scanning.

 


Click to Enlarge
Close-Up of a Gaussian Beam

Click to Enlarge
Close-Up of a Bessel Beam

Volumetric Imaging Technique Using Bessel Beams

Thorlabs offer an ultra-fast imaging technique that uses a Bessel beam to provide video-rate volumetric functional imaging of neuronal pathways and interactions in vivo. These unique beams are non-diffractive and self-healing, which allows them to maintain a tight focus and even reform as they pass through tissue. This technique is offered for Thorlabs' Bergamo III multiphoton microscopes and Thorlabs' Multiphoton Mesoscope

The images to the right depict a Bessel beam and a Gaussian beam, respectively. As you can see in the images, the Gaussian beam has a singular point of focus that progressively becomes weaker as it diverges from the central point, whereas the Bessel beam has a beam annulus that maintains its focus.

To learn more about this technique, please see our Highlights tab.

 

Bergamo III Non-Rotating Body
Click to Enlarge

Upright Bergamo III systems are equipped with periscopes that permit the microscope's full travel range in X, Y, and Z to be used without compromising the optical performance.

Click to Enlarge

This Bergamo III Microscope has been configured with two fiber-coupled scan paths offering a compact footprint for in vivo applications.

Periscopes and Fiber Couples

Most lasers used in multiphoton microscopy are delivered by a free-space beam. The Bergamo III's ability to translate the objective around the focal plane in up to four axes (X, Y, Z, and θ) also requires the beam path to translate along the same axes while maintaining alignment. Bergamo III systems overcome this engineering challenge using multi-jointed periscopes. Periscopes are configurable on both Bergamo upright and rotation bodies and accommodate all excitation wavelengths.

We also offer fiber-coupled Bergamo III configurations on one or both of their scan paths. Fiber-coupled lasers eliminate the need for complicated alignment procedures associated with free-space lasers, provide an ultra-stable imaging configuration, and take up less space compared to pericopes. Fiber couples offered with Bergamo III microscopes are designed for use with 2P lasers and are compatible with all microscope body configurations.

 

Bergamo III Filter Exchange
Click to Enlarge

Emission filters and dichroic cubes are held behind magnetically sealed doors on the front of the PMT detection module.

Super-Broadband Scan Optics

Bergamo III microscopes feature proprietary scan optics that are optimized and corrected for excitation wavelengths within the 450 - 1100 nm, 680 - 1300 nm, or 800 - 1800 nm wavelength range, ideal for photostimulation, two-photon imaging, and three-photon imaging, respectively. These broad ranges, extending from the visible well into the near infrared, were chosen to support the latest OPO systems, as well as dual-output lasers.

Large-Angle Signal Collection Optics

Deriving the most signal from limited photons is the fundamental goal of any detection system. By positioning the PMTs immediately after the objective (a "non-descanned" geometry), light that is scattered by the sample, which therefore appears to originate outside the objective's field of view, still strikes the PMTs and adds to the collected signal. This is a benefit unique to multiphoton microscopy. Collecting beyond the objective's design field of view greatly enhances overall detection efficiency when imaging deep in tissue.

In the epi direction, we offer signal collection angles of 8°, 10°, or 14°, while in the transmitted direction, we offer a signal collection angle of 13° (angles quoted for an objective with a Ø20 mm entrance pupil). Our collection modules can optionally be outfitted with mechanical shutters for photoactivation experiments.

Easy-to-Reach Emission Filters and Dichroic Holders

Bergamo III systems are fully compatible with industry-standard fluorescence filter sets that include Ø25 mm fluorescence filters and 25 mm x 36 mm dichroic mirrors. Unlike competing designs, Thorlabs' detector modules have magnetic holders that make it simple and quick to exchange filters for different measurements. We also offer detection modules for large-area Ø32 mm fluorescence filters and 32 mm x 44 mm dichroics, which support greater collection angles for increased signal.

Detectors in Epi and Transmitted Directions

We employ high-sensitivity GaAsP PMTs in our multiphoton systems, which offer high quantum efficiency, aiding in imaging weakly fluorescent or highly photosensitive samples. Our PMTs can either be thermoelectrically cooled for improved sensitivity toward weak signals or non-cooled for a smaller package size and greater numerical aperture. Multialkali PMTs are also available.

All Bergamo III microscopes can be equipped with either two or four detection channels in the epi direction, and/or two detection channels in the forward direction. The user can configure the forward-direction channels to detect the same fluorescent tags as the epi-direction PMTs, raising the microscope's sensitivity toward thin, weakly fluorescent specimens.

 

Bergamo III Controller
Click to Enlarge

Bergamo III XYZ Rotation Body Controller

Multi-Axis Controller with Touchscreen

This controller is specifically designed for rotating Bergamo III microscope bodies. It uses knobs to control up to five motorized axes. On rotating systems, a rocker switch changes between fine objective focusing and translation of the elevator base. Each axis can be disabled on an individual basis in order to maintain a location along the desired direction.

The integrated touchscreen lets two spatial locations be saved and retrieved locally. Up to eight spatial locations can be saved on the computer running ThorImage®LS. The touchscreen also reads out the position of every motor.

 

Bergamo III Objectives
Click to Enlarge

Thorlabs' TL10X-2P (Left) and TL15X-2P (Right) Multiphoton Objectives

Objectives

Bergamo III microscopes accept infinity-corrected objectives with M34 x 1.0, M32 x 0.75, M25 x 0.75, or RMS threads. Together, these options encompass the majority of low-magnification, high-NA objectives used in multiphoton microscopy. With a large field number up to 40, our scan optics completely utilize the optical designs of these specialized objectives, offering enhanced light-gathering ability compared to competing microscopes using the same objectives.

 

Bergamo III Rigid Stands
Click to Enlarge

Thorlabs' Manual Rigid Stands

Rigid Stand Sample Holders

Thorlabs' Rigid Stands are rotatable, lockable, low-profile platforms for mounting slides, recording chambers, our Z-axis piezo stages, and custom experimental apparatuses. Each fixture is supported by a solid Ø1.5" stainless steel post for passive vibrational damping, which is in turn held to the workstation by the red post holder.

A locking collar maintains the height of the platform, allowing it to easily rotate into and out of the optical path, and a quick-release mechanism holds the post in place once the desired position is achieved.

For a motorized option, we offer our MPM250 motorized vertical rigid stand, offering precise height adjustment with a 1" travel range.

 

Quantulux and 1.4 Megapixel Scientific Cameras
Click to Enlarge

A Zelux sCMOS Camera and a Quantulux sCMOS Camera

Scientific Cameras

Our low-noise sCMOS and CMOS cameras were designed for full compatibility with Thorlabs’ multiphoton microscopy systems. Useful for widefield and fluorescence microscopy, they are capable of visualizing in vitro and in vivo samples using reflected light and fluorescence emission. They work in conjunction with the epi-fluorescence module to help locate fiducial markers, and they also enable imaging modalities that do not require laser exposure.

Thorlabs' cameras are driven by our internally developed ThorCam software package. The sCMOS camera is available with a 2.1 MP sensor, and our CMOS cameras are available with either a 1.3 MP, 2.3 MP, 5 MP, 8.9 MP, or 12.3 MP sensor. Generally speaking, cameras with lower resolution offer higher maximum frame rates. These cameras also feature a separate auxiliary port that permits the image acquisition to be driven by an external electrical trigger signal.

Bergamo III microscopes are also directly compatible with any camera using industry-standard C-mount or CS-mount threads.

 


Click to Enlarge
Trans-Illumination Module, Motorized Condenser Stage, and
Rigid Stand Sample Holder Underneath the Objective

User-Installable Dodt Contrast and DIC Imaging Modules

The modular construction of the Bergamo III makes it exceptionally easy for the user to convert the microscope between in vitro and in vivo applications. Our user-installable trans-illumination modules for Dodt contrast, laser-scanned Dodt contrast, and differential interference contrast (DIC) take less than 5 minutes to attach or remove from the microscope body. These modules are available for both rotating and upright bodies.

Each option is paired with our basic 3-axis controller, which optimizes the illumination conditions by translating our motorized condenser stage over a 1" range. This versatile design is compatible with air and high-NA oil immersion condensers designed by Nikon.

To complement these modules, we manufacture slim-profile rigid stand sample holders that are ideal for positioning slides between the transmitted light module and the objective.

Thorlabs recognizes that each imaging application has unique requirements.
If you have any feedback, questions, or need a quotation, please use our
multiphoton microscopy contact form or call (703) 651-1700.

Highlights

 

Rapid Volumetric Imaging Using Bessel Beams
In partnership with the Howard Hughes Medical Institute and Prof. Na Ji (University of California at Berkeley), Thorlabs offers a Bessel beam module for our Bergamo® multiphoton laser scanning microscope. In vivo volume imaging of neuronal activity requires both submicron spatial resolution and millisecond temporal resolution. While conventional methods create 3D images by serially scanning a diffraction-limited Gaussian beam, Bessel-beam-based multiphoton imaging relies on an axially elongated focus to capture volumetric images. The excitation beam’s extended depth of field creates a 2D projection of a 3D volume, effectively converting the 2D frame rate into a 3D volumetric rate. 

As demonstrated in Ji’s pioneering work, this rapid Bessel beam-based imaging technique has synaptic resolution, capturing Ca2+ dynamics and tuning properties of dendritic spines in mouse and ferret visual cortices. The power of this Bessel-beam-based multiphoton imaging technique is illustrated in the images below, which compare a 300 µm x 300 μm scan of a Thy1-GFP-M mouse brain slice imaged with Bessel (left) and Gaussian (right) scanning. 45 optical slices taken with a Gaussian focus are vertically stacked to generate a volume image, while the same structural features are visible in a single Bessel scan taken with a 45 μm-long focus. This indicates a substantial gain in volume-imaging speed, making this technique suitable for investigating sparsely labeled samples in vivo.

If you are interested in upgrading your Bergamo microscope to include the Bessel beam imaging modality, please fill out our multiphoton microscope contact form or call (703) 651-1700.

Source: Lu R, Sun W, Liang Y, Kerlin A, Bierfeld J, Seelig JD, Wilson DE, Scholl B, Mohar B, Tanimoto M, Koyama M, Fitzpatrick D, Orger MB, and Ji N. "Video-rate volumetric functional imaging of the brain at synaptic resolution." Nature Neuroscience. 2017 Feb 27; 20: 620-628.

A single Bessel scan (left) captures the same structural information obtained from a Gaussian volume scan created by stacking 45 optical sections (right), reducing the total scan time by a factor of 45. The images show a brain slice scanned over a 300 μm x 300 μm area. Scan depth for the Gaussian stack is indicated by the scale bar. Sample Courtesy of Qinrong Zhang, PhD and Matthew Jacobs; the Ji Lab, Department of Physics, University of California, Berkeley.

 

Three-Photon Imaging
For our Bergamo multiphoton microscope, we have developed scan path optics for the 800 - 1800 nm range to open the door to three-photon techniques. Three-photon excitation is ideal for deep tissue imaging and requires a high-pulse-energy excitation source, typically around 1300 nm or 1700 nm. Compared to two-photon imaging, three-photon imaging offers less tissue scattering and reduced out-of-focus background, which results in an improved signal-to-background ratio.

3P Image
Click to Enlarge

A Thy1-YFP male mouse, 21 weeks old, imaged at 1300 nm, 326 kHz repetition rate, pulse width ~60 fs. At the top of the cortex (0 µm, 1.1 mW laser power), the window was centered at 2.5 mm lateral and 2 mm posterior from the Bregma point over somatosensory cortex. Courtesy of the Chris Xu Group, Cornell University.

Configurations capable of three-photon imaging, such as the one shown below, can include a dichroic mirror to support simultaneous two-photon and three-photon imaging, as well as electronics to support low-repetition-rate lasers with high bandwidth sampling. ThorImage®LS software has been enhanced with important features for three-photon detection. For instance, users can synchronize the three-photon signal detection to the excitation pulses and control the phase delay for peak signal-to-noise ratio. For more details, please see the ThorImageLS tab.

If you are interested in upgrading your Bergamo microscope to include the three-photon imaging modality, please fill out our multiphoton microscope contact form or call (703) 651-1700.

Source: Wang T and Xu C. "Three-photon neuronal imaging in deep mouse brain." Optica. 2020; 7 (8): 947-960.

Configuration for 2P and 3P
Click to Enlarge

Two- and Three-Photon Imaging Configuration

 

Spatial Light Modulator for Simultaneous Multi-Site Activation
Thorlabs’ Spatial Light Modulator (SLM) uses holography patterns to enable photoactivation of multiple locations in a specimen simultaneously. Designed for two-photon excitation with femtosecond pulses, the SLM manipulates the phase across the stimulation laser beam profile to generate hundreds of user-determined focal points.

The diagrams below illustrate the benefits of using the SLM with two-photon activation over two-photon activation alone and single-photon activation. With single-photon activation, unintended nearby cells as well as the target cell become activated because this technique lacks the ability to target a single cell. This problem can be solved with two-photon activation, which allows single-cell resolution targeting; however, only one cell can be targeted at a time. Two-photon activation with SLM overcomes these limitations by generating a number of focal points and allowing multiple target cells to be activated simultaneously. Each beam can be shaped to improve the efficacy of photoactivation, a crucial feature for activating neural populations at varying depths within a single FOV. The SLM phase mask pattern can be rapidly switched, enabling multiple individual focal points to be targeted independently in any sequence. The calibration process, hologram generation, and external hardware synchronization are entirely managed through the ThorImage®LS software, enabling seamless control. For more details, please see the ThorImageLS tab.

If you are interested in upgrading your Bergamo microscope to include the SLM imaging modality, please fill out our multiphoton microscope contact form or call (703) 651-1700. 

Two-Photon Activation + Spatial Light Modulator

  • Generate Multiple Focal Points
  • Simultaneously Activate Multiple Target Cells
Gaussian Scan
Click to Enlarge

Two-Photon Activation

  • Single-Cell Resolution Targeting
  • Activate Only Target Cell
Gaussian Scan
Click to Enlarge

Single-Photon Activation

  • Lack of Depth Control for 3D Neural Activation
  • Activate Target Cell and Unintended Nearby Cells
Gaussian Scan
Click to Enlarge

Two-photon activation with SLM (right) allows simultaneous excitation of multiple target cells, which is not possible with single-photon (left) or two-photon (middle) activation.

Thorlabs' Bergamo® III Series Multiphoton Microscopy Platform is a powerful tool adapted to meet experimental needs across a wide range of research fields. Click on the images below to explore how a Bergamo can and has been utilized for each application.


Structural Neurobiology


Neurological Disorders


Neural Development and Plasticity


Neurogenetics


Functional and Molecular Imaging


Synapses and Circuits

Ion Channels, Transporters, and Neurotransmitter Reporters


Cell Biology of Neurons, Muscles, and Glia


Drug Discovery

Close


Click for Full Size Image

Top: Astrocytes are labelled with SR101 (red). Arrows point to astrocytes that had Ca2+ elevations during tDCS. The numbers correspond to the cells and neurogliopil regions plotted in the graphs below. Bottom: Fluorescent intensity (ΔF/F) traces of astrocytes (orange), neurons (green) and neurogliopil (brown). Figure Courtesy of Monai H. et al. (See Below)

Application Summary

The study of cell biology, muscles, and glia often involves imaging in vitro or in vivo samples tagged with multiple fluorophores. Through multiphoton imaging with these fluorescent markers, researchers are able to observe gene expression related to neural function in different areas of the brain. For this application Bergamo microscopes can be configured with a small footprint and a large throat depth to provide ample room for numerous sample mounting options, including in vivo imaging of mammalian brains via transcranial windows.

Publications

Rose T, Jaepel J, Hübener M, and Bonhoeffer T. "Cell-specific restoration of stimulus preference after monocular deprivation in the visual cortex." Science. 2016 Jun 10; 352 (6291): 1319-1322.

Monai H, Ohkura M, Tanaka M, Oe Y, Konno A, Hirai H, Mikoshiba K, Itohara S, Nakai J, Iwai Y, and Hirase H. "Calcium imaging reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain." Nature Communications. 2016 March 22; 7: 11100.

Lu W, Xie Z, Tang Y, Bai L, Yao Y, Fu C, and Ma G. "Photoluminescent mesoporous silicon nanoparticles with siccr2 improve the effects of mesenchymal stromal cell transplantation after acute myocardial infarction." Theranostics. 2015 Jun 25; 5 (10): 1068-1082.

Qin X, Qiu C, and Zhao L. "Maslinic acid protects vascular smooth muscle cells from oxidative stress through Akt/Nrf2/HO-1 pathway." Molecular and Cellular Biochemistry. 2014 Feb 20; 390 (1-2): 61-67.

Close


Click for Full Size Image

Artistic Rendering of DNA

Application Summary

Drug discovery research is rapidly expanding and often requires a wide variety of experimental setups and imaging techniques. Two-photon imaging is frequently used to measure the characteristics of drug applications, including depth of drug penetration and the area of its spread throughout the cortex. For this application, Bergamo microscopes can be configured for both in vitro and fixed stage in vivo microscopy research. The modularity of the Bergamo systems' removable trans-illumination module provides versatility in regard to experimental techniques, imaging modalities, and sample subjects.

Publications

Strobl MJ, Freeman D, Patel J, Poulsen R, Wendler CC, Rivkees SA, and Coleman E. " Opposing effects of maternal hypo- and hyperthyroidism on the stability of thalamocortical synapses in the visual cortex of adult offspring." Cerebral Cortex. 2017 May 1; 27 (5): 3015-3027.

Scattolini V, Luni C, Zambon A, Galvanin S, Gagliano O, Ciubotaru CD, Avogaro A, Mammano F, Elvassore N, and Fadini GP. "Simvastatin rapidly and reversibly inhibits insulin secretion in intact single-islet cultures." Diabetes Therapy. 2016 Nov 9; 7 (4): 679-693.

Close

Imaging Visually Evoked Synaptic Calcium Transient In Vivo, Using Dendrite Labels with GCAMP6, 200 µm Deep in Layer 2/3 Visual Cortex, Courtesy of David Fitzpatrick, Max Plank Institute for Neurobiology, Jupiter, FL, USA

Application Summary

In vivo functional imaging of organisms and the individual neurons linked to specific organism behaviors requires high-speed and high-sensitivity imaging. For these applications, we recommend a Bergamo configured with a 8 or 12 kHz galvo-resonant imaging scanner and our 10° or 14° wide-angle collection optics to enable fast, high-resolution imaging.

Publications

Aghayee S, Bowen Z, Winkowski DE, Harrington M, Kanold P, and Losert W. "Particle tracking facilitates real time motion compensation in 2D or 3D two-photon imaging of neuronal activity." Frontiers in Neural Circuits. 2017 Aug 15; 11: 56.

Schnell B, Ros IG, and Dickinson MH. "A descending neuron correlated with the rapid steering maneuvers of flying Drosophila." Current Biology. 2017 Apr 6; 27 (8): 1200-1205.

Roth MM, Dahmen JC, Muir DR, Imhof F, Martini FJ, and Hofer SB. "Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex." Nature Neuroscience. 2015 Dec 21; 19: 299-307.

Barnstedt O, Keating P, Weissenberger Y, King AJ, and Dahmen JC. "Functional microarchitecture of the mouse dorsal inferior colliculus revealed through in vivo two-photon calcium imaging." The Journal of Neuroscience. 2015 Aug 5; 35 (31): 10927-10939.

Boyd AM, Kato HK, Komiyama T, and Isaacson JS. "Broadcasting of cortical activity to the olfactory bulb." Cell Reports. 2015 Feb 24; 10 (7): 1032-1039.

Close

Cochlear Organotypic Culture Loaded with Fluo4-AM and DM-Nitrophen AM, Calcium Release Triggered Using Galvo-Galvo Uncaging Pathway in Outer Hair Cell Indicated by Red Box After ~13 Seconds, Courtesy of Federico Ceriani and Walter Marcotti, University of Sheffield

Application Summary

In this application, scientists are interested in neural connections and intercellular movement. With multiphoton imaging, they are able to trace the direction and speed of ions moving through channel membrane proteins or neurotransmitters moving from one neuron to another. This research requires a Bergamo microscope configured for high-resolution and high-speed imaging of multiple fields of view (FOVs). This area of research often requires both in vivo and in vitro imaging within the same study, so within each configuration, our transmitted light modules can be installed or removed by the user in just a few minutes, making it exceptionally easy to switch between the two imaging modalities.

Publications

De Toni L, Garolla A, Menegazzo M, Magagna S, Di Nisio A, Šabovic I, Rocca MS, Scattolini V, Filippi A, and Foresta C. "Heat sensing receptor TRPV1 is a mediator of thermotaxis in human spermatozoa." PLoS One. 2016 Dec 16; 11 (12): e0167622.

Mongeon R, Venkatachalam V, and Yellen G. "Cytosolic NADH-NAD+ redox visualized in brain slices by two-photon fluorescence biosensor imaging." Antioxidants & Redox Signaling. 2016 Oct 1; 25 (10): 553-563.

Lewin AE, Vicini S, Richardson J, Dretchen KL, Gillis RA, and Sahibzada N. "Optogenetic and pharmacological evidence that somatostatin-GABA neurons are important regulators of parasympathetic outflow to the stomach." The Journal of Physiology. 2016 Mar 9; 594 (10): 2661-2679.

Cossell L, Iacaruso MF, Muir DR, Houlton R, Sader EN, Ko H, Hofer SB, and Mrsic-Flogel TD. "Functional organization of excitatory synaptic strength in primary visual cortex." Nature. 2015 Feb 19; 518: 399-403.

Close

Laser-Scanned Two-Photon SHG+Dodt Gradient Contrast of Zebrafish Embryo

Application Summary

Neurogenetic studies require a wide variety of experimental setups for in vivo research. Multiphoton imaging is ideal for studying live organisms, especially embryos, as it reduces the occurrence of photobleaching and phototoxicity that is common with other light microscopy techniques. For this application, we recommend a Bergamo configured with a small footprint and large throat depth to provide ample room for sample mounts and experimental apparatus, such as the large setup used for Drosophilia studies by Chen et al. (click here for supplementary videos).

Publications

Chen CL, Hermans L, Viswanathan MC, Fortun D, Aymanns F, Unser M, Cammarato A, Dickinson MH, and Ramdya P. "Imaging neural activity in the ventral nerve cordof behaving adult Drosophila." Nature Communications. 2018 October 22; 9: 4390.

Dechen K, Richards CD, Lye JC, Hwang JEC, and Burke R. "Compartmentalized zinc deficiency and toxicities caused by ZnT and Zip gene over expression result in specific phenotypes in Drosophila." The International Journal of Biochemistry & Cell Biology. 2015 Jan 3; 60: 23-33.

Close


Click for Full Size Image

Two-Photon Image of Neurons Expressing Thy1-YFP in a Cleared Region of the Hippocampus, Courtesy of the 2017 Imaging Structure and Function in the Nervous System Course at Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

Application Summary

Scientists interested in this application focus on tracing neuronal pathways and researching dendritic spine plasticity. Imaging systems used in this type of research are capable of two-photon calcium imaging and/or confocal fluorescence imaging. For this application, we recommend a Bergamo configured for high-resolution and high-sensitivity imaging.

Publications

Gillet SN, Kato HK, Justen MA, Lai M, and Isaacson JS. "Fear learning regulates cortical sensory representations by suppressing habituation." Frontiers in Neural Circuits. 2018 Jan 10; 11: 112.

Micu I, Brideau C, Lu L, and Stys PK. "Effects of laser polarization on responses of the fluorescent Ca2+ indicator X-Rhod-1 in neurons and myelin." Neurophotonics. 2017 Jun 5; 4 (2): 025002.

Chen SX, Kim AN, Peters AJ, and Komiyama T. "Subtype-specific plasticity of inhibitory circuits in motor cortex during motor learning." Nature Neuroscience. 2015 Jun 22; 18: 1109-1115.

Peters AJ, Chen SX, and Komiyama T. "Emergence of reproducible spatiotemporal activity during motor learning." Nature. 2014 Jun 12; 510: 263-267.

Close


Click for Full Size Image

Stitched Confocal Fluorescence Image of Rat Retina Stained with DAPI, Alexa Fluor® 555 and Alexa Fluor® 633, Courtesy of Dr. Jennifer Kielczewski, National Eye Institute, National Institutes of Health, Bethesda, MD

Application Summary

Researching neurological disorders involves measuring neural function using two-photon calcium imaging. This research requires a Bergamo microscope with dual scan paths for fast image acquisition and photostimulation.

Publications

Murphy SC, Palmer LM, Nyffeler T, Müri RM, and Larkum ME. "Transcranial magnetic stimulation (TMS) inhibits cortical dendrites." eLife. 2016 Mar 18; 5: e13598.

Lalchandani RR, van der Goes MS, Partridge JG, and Vicini S. "Dopamine D2 receptors regulate collateral inhibition between striatal medium spiny neurons." The Journal of Neuroscience. 2013 Aug 28; 33 (35): 14075-14086.

Close

1.2 mm In Vivo Deep Brain 3D Image Stack, Courtesy of Dr. Hajime Hirase and Katsuya Ozawa, RIKEN Brain Science Institute, Wako, Japan

Application Summary

Scientists investigate the structure of the brain to understand functions of neuronal proteins as well as the causes of neurological diseases. Due to the difficulty of imaging through brain tissue, this study often requires a multi-modality Bergamo configuration allowing for a range of experimental conditions using any combination of multiphoton, confocal, and epi-fluorescence imaging.

Publications

Lee KS, Huang X, and Fitzpatrick D. "Topology of ON and OFF inputs in visual cortex enables an invariant columnar architecture." Nature. 2016 May 5; 533: 90-94.

Lang X and Lyubovitsky JG. "Structural dependency of collagen fibers on ion types revealed by in situ second harmonic generation (SHG) imaging Ion channels and G coupled receptors." Analytical Methods. 2014 Nov 13; 7 (5): 1637-2230.

Ehmke T, Nitzsche TH, Knebl A, and Heisterkamp A. "Molecular orientation sensitive second harmonic microscopy by radially and azimuthally polarized light." Biomedical Optics Express. 2014 Jul 1; 5 (7): 2231-2246.

Lang X, Spousta M, Hwang YJ, and Lyubovitsky JG. "Noninvasive imaging of embryonic stem cell cultures by multiphoton microscopy reveals the significance of collagen hydrogel preparation parameters." Analytical Methods. 2011 Jan 20; 3 (3): 529-536.

Cai F, Yu J, Qian J, Wang Y, Chen Z, Huang J, Ye Z, and He S. "Use of tunable second-harmonic signal from KNbO3 nanoneedles to find optimal wavelength for deep-tissue imaging." Laser & Photonics Review. 2014 Jun 17; 8 (6): 865-874.

Poguzhelskaya E, Artamonov D, Bolshakova A, Vlasova O, and Bezprozvanny I. "Simplified method to perform CLARITY imaging." Molecular Neurodegeneration. 2014 May 26; 9 (19).

Close

Simultaneous Photostimulation of 100 Cells Co-Expressing GCaMP6f (Green) and C1V1 (Red), Courtesy of Lloyd Russell, Dr. Adam Packer, and Professor Michael Häusser, University College London, United Kingdom

Application Summary

By studying synapses and circuits, researchers are able to understand neuronal activity. Imaging synapses and circuits often requires simultaneous stimulation of populations of neurons. To achieve this, Bergamo III microscopes can be configured for fast image acquisition of multiple regions within a single field of view.

Publications

Scholl B, Wilson DE, and Fitzpatrick D. "Local order within global disorder: synaptic architecture of visual space." Neuron. 2017 Dec 6; 96 (5): 1127-1138.

Leinweber M, Ward DR, Sobczak JM, Attinger A, and Keller GB. "A sensorimotor circuit in mouse cortex for visual flow predictions." Neuron. 2017 Sep 13; 95 (6): 1420-1432.

Iacaruso, MF, Gasler IT, and Hofer SB. "Synaptic organization of visual space in primary visual cortex." Nature. 2017 Jul 27; 547: 449-452.

Dipoppa M, Ranson A, Krumin M, Pachitariu M, Carandini M, and Harris KD. "Vision and locomotion shape the interactions between neuron types in mouse visual cortex." Neuron. 2016 May 2; 98 (3): 602-615.

Selected Publications Using Thorlabs' Imaging Systems

2024

 

Sheahan, T. D., Warwick, C. A., Cui, A. Y., Baranger, D. A., Perry, V. J., Smith, K. M., ... & Ross, S. E. (2024). Kappa opioids inhibit spinal output neurons to suppress itch. Science Advances, 10(39), eadp6038.

Lemeshko, P., Korepanov, O., Podkovyrina, E., Spivak, Y., Moshnikov, V., & Kozodaev, D. (2024). Porous silicon photoluminescence enhancement by silver dendrites registered with multiphoton microscopy. Optics & Laser Technology, 181, 111825.

Farrants, H., Shuai, Y., Lemon, W. C., Monroy Hernandez, C., Zhang, D., Yang, S., ... & Schreiter, E. R. (2024). A modular chemigenetic calcium indicator for multiplexed in vivo functional imaging. Nature Methods, 1-10.

Bowen, Z., De Zoysa, D., Shilling-Scrivo, K., Aghayee, S., Di Salvo, G., Smirnov, A., ... & Losert, W. (2024). NeuroART: Real-time analysis and targeting of neuronal population activity during calcium imaging for informed closed loop experiments. eNeuro.

Ou, Z., Duh, Y. S., Rommelfanger, N. J., Keck, C. H., Jiang, S., Brinson Jr, K., ... & Hong, G. (2024). Achieving optical transparency in live animals with absorbing molecules. Science, 385(6713), eadm6869.

Kopyeva, I., Goldner, E. C., Hoye, J. W., Yang, S., Regier, M. C., Bradford, J. C., ... & DeForest, C. A. (2024). Stepwise Stiffening/Softening of and Cell Recovery from Reversibly Formulated Hydrogel Interpenetrating Networks. Advanced Materials, 2404880.

Ferron, L., Harding, E. K., Gandini, M. A., Brideau, C., Stys, P. K., & Zamponi, G. W. (2024). Functional remodeling of presynaptic voltage-gated calcium channels in superficial layers of the dorsal horn during neuropathic pain. Iscience, 27(6).

Carlton, A. J., Jeng, J. Y., Grandi, F. C., De Faveri, F., Amariutei, A. E., De Tomasi, L., ... & Marcotti, W. (2024). BAI1 localizes AMPA receptors at the cochlear afferent post-synaptic density and is essential for hearing. Cell reports, 43(4).

Westeinde, E. A., Kellogg, E., Dawson, P. M., Lu, J., Hamburg, L., Midler, B., ... & Wilson, R. I. (2024). Transforming a head direction signal into a goal-oriented steering command. Nature, 626(8000), 819-826.

Batalov, I., Filteau, J. R., Francis, R. M., Jaindl, G., Orr, L., Rapp, T. L., ... & DeForest, C. A. (2024). Grayscale 4D Biomaterial Customization at High Resolution and Scale. bioRxiv, 2024-01.

Brockett, A. T., & Francis, N. A. (2024). Psilocybin biphasically modulates cortical and behavioral activity in mice. bioRxiv, 2024-01.

Goldberg, A. R., Dovas, A., Torres, D., Sharma, S. D., Mela, A., Merricks, E. M., ... & Canoll, P. (2024). Glioma-Induced Alterations in Excitatory Neurons are Reversed by mTOR Inhibition. bioRxiv.

Bowen, Z., Shilling-Scrivo, K., Losert, W., & Kanold, P. O. (2024). Fractured columnar small-world functional network organization in volumes of L2/3 of mouse auditory cortex. PNAS nexus, 3(2), pgae074.

Znamenskiy, P., Kim, M. H., Muir, D. R., Iacaruso, M. F., Hofer, S. B., & Mrsic-Flogel, T. D. (2024). Functional specificity of recurrent inhibition in visual cortex. Neuron, 112(6), 991-1000.

Ribeiro, T. L., Jendrichovsky, P., Yu, S., Martin, D. A., Kanold, P. O., Chialvo, D. R., & Plenz, D. (2024). Trial-by-trial variability in cortical responses exhibits scaling of spatial correlations predicted from critical dynamics. Cell reports, 43(2).

2023

 

Lu, T. Y., Hanumaihgari, P., Hsu, E. T., Agarwal, A., Kawaguchi, R., Calabresi, P. A., & Bergles, D. E. (2023). Norepinephrine modulates calcium dynamics in cortical oligodendrocyte precursor cells promoting proliferation during arousal in mice. Nature Neuroscience, 26(10), 1739-1750.

Das, A., Holden, S., Borovicka, J., Icardi, J., O’Niel, A., Chaklai, A., ... & Dana, H. (2023). Large-scale recording of neuronal activity in freely-moving mice at cellular resolution. Nature Communications, 14(1), 6399.

O’Toole, S. M., Oyibo, H. K., & Keller, G. B. (2023). Molecularly targetable cell types in mouse visual cortex have distinguishable prediction error responses. Neuron, 111(18), 2918-2928.

Wool, L., Lak, A., Carandini, M., & Harris, K. (2023). Mouse frontal cortex nonlinearly encodes stimuli, choices, and outcomes. Wellcome Open Research, 8(451), 451.

Sela, M., Poley, M., Mora-Raimundo, P., Kagan, S., Avital, A., Kaduri, M., ... & Schroeder, A. (2023). Brain-targeted liposomes loaded with monoclonal antibodies reduce alpha-synuclein aggregation and improve behavioral symptoms in Parkinson's disease. Advanced Materials, 35(51), 2304654.

Hussain, R., Tithof, J., Wang, W., Cheetham-West, A., Song, W., Peng, W., ... & Nedergaard, M. (2023). Potentiating glymphatic drainage minimizes post-traumatic cerebral oedema. Nature, 623(7989), 992-1000.

Barth-Maron, A., D’Alessandro, I., & Wilson, R. I. (2023). Interactions between specialized gain control mechanisms in olfactory processing. Current Biology, 33(23), 5109-5120.

Chang, H., Esteves, I. M., Neumann, A. R., Mohajerani, M. H., & McNaughton, B. L. (2023). Cortical reactivation of spatial and non-spatial features coordinates with hippocampus to form a memory dialogue. Nature communications, 14(1), 7748.

Ciabatti, E., González-Rueda, A., de Malmazet, D., Lee, H., Morgese, F., & Tripodi, M. (2023). Genomic stability of self-inactivating rabies. eLife12, e83459.

Fiore, F., Alhalaseh, K., Dereddi, R. R., Bodaleo Torres, F., Çoban, I., Harb, A., & Agarwal, A. (2023). Norepinephrine regulates calcium signals and fate of oligodendrocyte precursor cells in the mouse cerebral cortex. Nature Communications, 14(1), 8122.

Tsuji, M., Nishizuka, Y. & Emoto, K. (2023). Threat gates visual aversion via theta activity in Tachykinergic neurons. Nature Communications, 14(1), 3987. 

Villanueva, C. B., Stephensen, H. J. T., Mokso, R., Benraiss, A., Sporring, J., Goldman, S.A. (2023). Astrocytic engagement of the corticostriatal synaptic cleft is disrupted in a mouse model of Huntington's disease. Proceedings of the National Academy of Sciences, 120(24), e2210719120.

Holstein-Rønsbo, S., Gan, Y., Giannetto, M.J. et al. (2023). Glymphatic influx and clearance are accelerated by neurovascular coupling. Nature Neuroscience, 26, 1042–1053.

Serradj, N., Marino, F., Moreno-López, Y. et al. (2023). Task-specific modulation of corticospinal neuron activity during motor learning in mice. Nature Communications, 14(1), 2708.

Inayat, S., McAllister, B. B., Whishaw, I. Q., & Mohajerani, M. H. (2023). Hippocampal conjunctive and complementary CA1 populations relate sensory events to movement. Iscience, 26(4), 106481.

Untiet, V., Beinlich, F. R., Kusk, P., Kang, N., Ladrón-de-Guevara, A., Song, W., ... & Nedergaard, M. (2023). Astrocytic chloride is brain state dependent and modulates inhibitory neurotransmission in mice. Nature Communications, 14(1), 1871.

Anthoney, N., Tainton-Heap, L., Luong, H., Notaras, E., Zhao, Q., Perry, T., ... & van Swinderen, B. (2023). Experimentally induced active and quiet sleep engage non-overlapping transcriptomes in Drosophila. bioRxiv, 535331.

Boster, K. A., Cai, S., Ladrón-de-Guevara, A., Sun, J., Zheng, X., Du, T., ... & Kelley, D. H. (2023). Artificial intelligence velocimetry reveals in vivo flow rates, pressure gradients, and shear stresses in murine perivascular flows. Proceedings of the National Academy of Sciences, 120(14), e2217744120.

Scarpetta, V., Bodaleo, F., Salio, C., Agarwal, A., Sassoè-Pognetto, M., & Patrizi, A. (2023). Morphological and mitochondrial changes in murine choroid plexus epithelial cells during healthy aging. Fluids and Barriers of the CNS, 20(1), 1-16.

McDermott, K. D., Frechou, M. A., Jordan, J. T., Martin, S. S., & Gonçalves, J. T. (2023). Delayed formation of neural representations of space in aged mice. bioRxiv, 531021.

Matthews, M. D., Cook, E., Naguib, ,N., Wiesner, U. B., & Lewis, K. J. (2023). Intravital imaging of osteocyte integrin dynamics with locally injectable fluorescent nanoparticles. Bone, 174, 116830.

Tort-Colet, N., Resta, F., Montagni, E., Pavone, F., Allegra Mascaro, A. L., & Destexhe, A. (2023). Assessing brain state and anesthesia level with two-photon calcium signals. Scientific Reports, 13(1), 3183.

Esteves, I. M., Chang, H., Neumann, A. R., & McNaughton, B. L. (2023). Consolidation of cellular memory representations in superficial neocortex. Iscience, 26(2), 105970.

Quezada, A., Ward, C., Bader, E. R., Zolotavin, P., Altun, E., Hong, S., ... & Hébert, J. M. (2023). An in vivo platform for rebuilding functional neocortical tissue. Bioengineering, 10(2), 263.

Yang, J. Y., O’Connell, T. F., Hsu, W. M. M., Bauer, M. S., Dylla, K. V., Sharpee, T. O., & Hong, E. J. (2023). Restructuring of olfactory representations in the fly brain around odor relationships in natural sources. bioRxiv, 528627.

Carlton, A. J., Jeng, J. Y., Grandi, F. C., De Faveri, F., Ceriani, F., De Tomasi, L., ... & Marcotti, W. (2023). A critical period of prehearing spontaneous Ca2+ spiking is required for hair-bundle maintenance in inner hair cells. The EMBO Journal, 42(4), e112118.

Hamling, K. R., Zhu, Y., Auer, F., & Schoppik, D. (2023). Tilt In Place Microscopy (TIPM): a simple, low-cost solution to image neural responses to body rotations. Journal of Neuroscience, 43(6), 936-948.

Vestergaard, M., Carta, M., Güney, G., & Poulet, J. F. A. (2023). The cellular coding of temperature in the mammalian cortex. Nature, 614(7949), 725-731.

Contreras-López, R., Alatriste-León, H., Díaz-Hernández, E., Ramírez-Jarquín, J. O., & Tecuapetla, F. (2023). The deep cerebellar nuclei to striatum disynaptic connection contributes to skilled forelimb movement. Cell Reports, 42(1), 112000.

Mabuchi, Y., Cui, X., Xie, L., Kim, H., Jiang, T., & Yapici, N. (2023). GABA-mediated inhibition in visual feedback neurons fine-tunes Drosophila male courtship. bioRxiv, 525544.

Das, A., Margevicius, D., Borovicka, J., Icardi, J., Patel, D., Paquet, M. E., & Dana, H. (2023). Enhanced detection sensitivity of neuronal activity patterns using CaMPARI1 vs. CaMPARI2. Frontiers in Neuroscience, 16, 2291.

Lee, S., Lee, K., Choi, M., & Park, J. (2023). Implantable acousto-optic window for monitoring ultrasound-mediated neuromodulation in vivo. Neurophotonics, 9(3), 032203.

Zhuo, G. Y., Chen, M. C., Lin, T. Y., Lin, S. T., Chen, D. T. L., & Lee, C. W. S. (2023). Opioid-Modulated Receptor Localization and Erk1/2 Phosphorylation in Cells Coexpressing μ-Opioid and Nociceptin Receptors. International Journal of Molecular Sciences, 24(2), 1048.

Diaz-Cuadros, M., Miettinen, T. P., Skinner, O. S., Sheedy, D., Díaz-García, C. M., Gapon, S., ... & Pourquié, O. (2023). Metabolic regulation of species-specific developmental rates. Nature, 613(7944), 550-557.

Evrard, M., Mansuryan, T., Couderc, V., Désévédavy, F., Strutynski, C., Dussauze, M., ... & Smektala, F. (2023). Highly Nonlinear Multimode Tellurite Fibers: From Glass Synthesis to Practical Applications in Multiphoton Imaging. Advanced Photonics Research, 4(1), 2200213.

2022

 

Graham, R. T., Parrish, R. R., Alberio, L., Johnson, E. L., Owens, L., & Trevelyan, A. J. (2022). Optogenetic stimulation reveals a latent tipping point in cortical networks during ictogenesis. Brain, awac487.

Shiozaki, H. M., Wang, K., Lillvis, J. L., Xu, M., Dickson, B. J., & Stern, D. L. (2022). Neural coding of distinct motor patterns during Drosophila courtship song. bioRxiv, 520499.

Fisher, Y. E., Marquis, M., D’Alessandro, I., & Wilson, R. I. (2022). Dopamine promotes head direction plasticity during orienting movements. Nature, 612(7939), 316-322.

Wang, X., Delle, C., Asiminas, A., Akther, S., Vittani, M., Brxxxgger, P., ... & Hirase, H. (2022). Liver-secreted fluorescent blood plasma markers enable chronic imaging of the microcirculation. Cell Reports Methods, 2(10), 100302.

Lu, Y., Wei, X., Li, W., Wu, X., Chen, C., Li, G., ... & Gan, W. B. (2022). Large-volume and deep brain imaging in rabbits and monkeys using COMPACT two-photon microscopy. Scientific Reports, 12(1), 17736.

Huang, J. S., Kunkhyen, T., Rangel, A. N., Brechbill, T. R., Gregory, J. D., Winson-Bushby, E. D., ... & Cheetham, C. E. (2022). Immature olfactory sensory neurons provide behaviourally relevant sensory input to the olfactory bulb. Nature Communications, 13(1), 6194.

Govindaraju, I., Muraleedharan, M., Maidin, S., Chakraborty, I., Zhuo, G. Y., Mahato, K. K., & Mazumder, N. (2022). Investigation of the effect of gamma irradiation on the morphological structures of starch using advanced microscopic techniques. In Frontiers in Optics, JTu5A-74.

Hwang, F. J., Roth, R. H., Wu, Y. W., Sun, Y., Kwon, D. K., Liu, Y., & Ding, J. B. (2022). Motor learning selectively strengthens cortical and striatal synapses of motor engram neurons. Neuron, 110(17), 2790-2801.

Yue, Y., Ash, R. T., Boyle, N., Kinter, A., Li, Y., Zeng, C., & Lu, H. (2022). MeCP2 deficiency impairs motor cortical circuit flexibility associated with motor learning. Molecular Brain, 15(1), 1-12.

Liu, Z., Lu, X., Villette, V., Gou, Y., Colbert, K. L., Lai, S., Guan, S., ... & St-Pierre, F. (2022). Sustained deep-tissue voltage recording using a fast indicator evolved for two-photon microscopy. Cell, 185(18), 3408-3425.

Aragon, M. J., Mok, A. T., Shea, J., Wang, M., Kim, H., Barkdull, N., ... & Yapici, N. (2022). Multiphoton imaging of neural structure and activity in Drosophila through the intact cuticle. eLife, 11, e69094.

Matheson, A. M., Lanz, A. J., Medina, A. M., Licata, A. M., Currier, T. A., Syed, M. H., & Nagel, K. I. (2022). A neural circuit for wind-guided olfactory navigation. Nature Communications, 13(1), 4613.

Chornyy, S., Borovicka, J. A., Patel, D., Shin, M. K., Vázquez-Rosa, E., Miller, E., ... & Dana, H. (2022). Longitudinal in vivo monitoring of axonal degeneration after brain injury. Cell Reports Methods3(5), 100481.

Sheng, W., Zhao, X., Huang, X., & Yang, Y. (2022). Real-time image processing toolbox for all-optical closed-loop control of neuronal activities. Frontiers in Cellular Neuroscience, 16, 917713.

Tadres, D., Shiozaki, H. M., Tastekin, I., Stern, D. L., & Louis, M. (2022). An essential experimental control for functional connectivity mapping with optogenetics. bioRxiv, 493610.

Koveal, D., Rosen, P. C., Meyer, D. J., Díaz-García, C. M., Wang, Y., Cai, L. H., ... & Yellen, G. (2022). A high-throughput multiparameter screen for accelerated development and optimization of soluble genetically encoded fluorescent biosensors. Nature Communications, 13(1), 2919.

Fukuda, M., Matsumura, T., Suda, T., & Hirase, H. (2022). Depth-targeted intracortical microstroke by two-photon photothrombosis in rodent brain. Neurophotonics, 9(2), 021910-021910.

Jackson, J. G., Krizman, E., Takano, H., Lee, M., Choi, G. H., Putt, M. E., & Robinson, M. B. (2022). Activation of Glutamate Transport Increases Arteriole Diameter in vivo: Implications for Neurovascular Coupling. Frontiers in Cellular Neuroscience, 16, 831061.

Du, T., Mestre, H., Kress, B. T., Liu, G., Sweeney, A. M., Samson, A. J., ... & Nedergaard, M. (2022). Cerebrospinal fluid is a significant fluid source for anoxic cerebral oedema. Brain, 145(2), 787-797.

Govindaraju, I., Zhuo, G. Y., Chakraborty, I., Melanthota, S. K., Mal, S. S., Sarmah, B., ... & Mazumder, N. (2022). Investigation of structural and physico-chemical properties of rice starch with varied amylose content: A combined microscopy, spectroscopy, and thermal study. Food Hydrocolloids, 122, 107093.

Choe, K., Hontani, Y., Wang, T., Hebert, E., Ouzounov, D. G., Lai, K., ... & Xu, C. (2022). Intravital three-photon microscopy allows visualization over the entire depth of mouse lymph nodes. Nature Immunology, 23(2), 330-340.

Spivak, Y. M., & Lemeshko, P. S. (2022). Multiphoton microscopy of mesoporous silicon. In Journal of Physics: Conference Series. 2227(1), 012013.

2021

 

Maset, A., Albanesi, M., di Soccio, A., Canova, M., Dal Maschio, M., & Lodovichi, C. (2021). Aberrant Patterns of Sensory-Evoked Activity in the Olfactory Bulb of LRRK2 Knockout Mice. Cells, 10(11), 3212.

Schmidt, E. R., Zhao, H. T., Park, J. M., Dipoppa, M., Monsalve-Mercado, M. M., Dahan, J. B., ... & Polleux, F. (2021). A human-specific modifier of cortical connectivity and circuit function. Nature, 599(7886), 640-644.

Hermans, L., Kaynak, M., Braun, J., Lobato Ríos, V., Chen, C. L., Günel, S., ... & Ramdya, P. (2021). Long-term imaging of the ventral nerve cord in behaving adult Drosophila. bioRxiv, 463778.

Carlsen, E. M. M., Falk, S., Skupio, U., Robin, L., Pagano Zottola, A. C., Marsicano, G., & Perrier, J. F. (2021). Spinal astroglial cannabinoid receptors control pathological tremor. Nature Neuroscience, 24(5), 658-666.

Moussa, N. O., Mansuryan, T., Hage, C. H., Fabert, M., Krupa, K., Tonello, A., ... & Couderc, V. (2021). Spatiotemporal beam self-cleaning for high-resolution nonlinear fluorescence imaging with multimode fiber. Scientific Reports, 11(1), 18240.

Eleftheriou, C. G., Corona, C., Khattak, S., Alam, N. M., Ivanova, E., Bianchimano, P., ... & Sagdullaev, B. T. (2021). Retinoschisin deficiency induces persistent aberrant waves of activity affecting neuroglial signaling in the retina. Journal of Neuroscience, 42(36), 6983-7000.

Han, J., Kim, S., Choi, P., Lee, S., Jo, Y., Kim, E., & Choi, M. (2021). Robust functional imaging of taste sensation with a Bessel beam. Biomedical Optics Express, 12(9), 5855-5864.

Favuzzi, E., Huang, S., Saldi, G. A., Binan, L., Ibrahim, L. A., Fernández-Otero, M., ... & Fishell, G. (2021). GABA-receptive microglia selectively sculpt developing inhibitory circuits. Cell, 184(15), 4048-4063.

Chornyy, S., Das, A., Borovicka, J. A., Patel, D., Chan, H. H., Hermann, J. K., ... & Dana, H. (2021). Cellular-resolution monitoring of ischemic stroke pathologies in the rat cortex. Biomedical Optics Express, 12(8), 4901-4919.

Malina, K. C. K., Tsivourakis, E., Kushinsky, D., Apelblat, D., Shtiglitz, S., Zohar, E., ... & Spiegel, I. (2021). NDNF interneurons in layer 1 gain-modulate whole cortical columns according to an animal’s behavioral state. Neuron, 109(13), 2150-2164.

Bruzzone, M., Chiarello, E., Albanesi, M., Miletto Petrazzini, M. E., Megighian, A., Lodovichi, C., & Dal Maschio, M. (2021). Whole brain functional recordings at cellular resolution in zebrafish larvae with 3D scanning multiphoton microscopy. Scientific Reports, 11(1), 11048.

Mridha, Z., de Gee, J. W., Shi, Y., Alkashgari, R., Williams, J., Suminski, A., ... & McGinley, M. J. (2021). Graded recruitment of pupil-linked neuromodulation by parametric stimulation of the vagus nerve. Nature Communications, 12(1), 1539.

Ivanova, E., Corona, C., Eleftheriou, C. G., Bianchimano, P., & Sagdullaev, B. T. (2021). Retina-specific targeting of pericytes reveals structural diversity and enables control of capillary blood flow. Journal of Comparative Neurology, 529(6), 1121-1134.

Hung, C. W., Mazumder, N., Lin, D. J., Chen, W. L., Lin, S. T., Chan, M. C., & Zhuo, G. Y. (2021). Label-free characterization of collagen crosslinking in bone-engineered materials using nonlinear optical microscopy. Microscopy and Microanalysis, 27(3), 587-597.

Hontani, Y., Xia, F., & Xu, C. (2021). Multicolor three-photon fluorescence imaging with single-wavelength excitation deep in mouse brain. Science Advances, 7(12), eabf3531.

Resnik, J., & Polley, D. B. (2021). Cochlear neural degeneration disrupts hearing in background noise by increasing auditory cortex internal noise. Neuron, 109(6), 984-996.

Tainton-Heap, L. A., Kirszenblat, L. C., Notaras, E. T., Grabowska, M. J., Jeans, R., Feng, K., ... & van Swinderen, B. (2021). A paradoxical kind of sleep in Drosophila melanogaster. Current Biology, 31(3), 578-590.

Hortholary, T., Carrion, C., Chouzenoux, E., Pesquet, J. C., & Lefort, C. (2021). Multiplex-multiphoton microscopy and computational strategy for biomedical imaging. Microscopy Research and Technique, 84(7), 1553-1562.

Clayton, K. K., Williamson, R. S., Hancock, K. E., Tasaka, G. I., Mizrahi, A., Hackett, T. A., & Polley, D. B. (2021). Auditory corticothalamic neurons are recruited by motor preparatory inputs. Current Biology, 31(2), 310-321.

Esteves, I. M., Chang, H., Neumann, A. R., Sun, J., Mohajerani, M. H., & McNaughton, B. L. (2021). Spatial information encoding across multiple neocortical regions depends on an intact hippocampus. Journal of Neuroscience, 41(2), 307-319.

Schumacher, J. W., McCann, M. K., Maximov, K. J., & Fitzpatrick, D. (2021). Selective enhancement of neural coding in V1 underlies fine-discrimination learning in tree shrew. Current Biology, 32(15), 3245-3260.

2020

 

Keller, A. J., Dipoppa, M., Roth, M. M., Caudill, M. S., Ingrosso, A., Miller, K. D., & Scanziani, M. (2020). A disinhibitory circuit for contextual modulation in primary visual cortex. Neuron, 108(6), 1181-1193.

Lu, J., Behbahani, A. H., Hamburg, L., Westeinde, E. A., Dawson, P. M., Lyu, C., ... & Wilson, R. I. (2020). Transforming representations of movement from body-to world-centric space. Nature, 601(7891), 98-104.

Scholl, B., Thomas, C. I., Ryan, M. A., Kamasawa, N., & Fitzpatrick, D. (2020). Cortical response selectivity derives from strength in numbers of synapses. Nature, 590(7844), 111-114.

Robinson, N. T., Descamps, L. A., Russell, L. E., Buchholz, M. O., Bicknell, B. A., Antonov, G. K., ... & Häusser, M. (2020). Targeted activation of hippocampal place cells drives memory-guided spatial behavior. Cell, 183(6), 1586-1599.

Fan, J. L., Rivera, J. A., Sun, W., Peterson, J., Haeberle, H., Rubin, S., & Ji, N. (2020). High-speed volumetric two-photon fluorescence imaging of neurovascular dynamics. Nature Communications, 11(1), 6020.

Okubo, T. S., Patella, P., D’Alessandro, I., & Wilson, R. I. (2020). A neural network for wind-guided compass navigation. Neuron, 107(5), 924-940.

Mazzarda, F., D'Elia, A., Massari, R., De Ninno, A., Bertani, F. R., Businaro, L., ... & Mammano, F. (2020). Organ-on-chip model shows that ATP release through connexin hemichannels drives spontaneous Ca 2+ signaling in non-sensory cells of the greater epithelial ridge in the developing cochlea. Lab on a Chip, 20(16), 3011-3023.

Bowen, Z., Winkowski, D. E., & Kanold, P. O. (2020). Functional organization of mouse primary auditory cortex in adult C57BL/6 and F1 (CBAxC57) mice. Scientific Reports, 10(1), 10905.

Feng, K., Sen, R., Minegishi, R., Dübbert, M., Bockemühl, T., Büschges, A., & Dickson, B. J. (2020). Distributed control of motor circuits for backward walking in Drosophila. Nature Communications, 11(1), 6166.

Keller, A. J., Roth, M. M., & Scanziani, M. (2020). Feedback generates a second receptive field in neurons of the visual cortex. Nature, 582(7813), 545-549.

Eschbach, C., Fushiki, A., Winding, M., Afonso, B., Andrade, I. V., Cocanougher, B. T., ... & Zlatic, M. (2020). Circuits for integrating learnt and innate valences in the fly brain. bioRxiv, 058339.

Montgomery, M. K., Kim, S. H., Dovas, A., Zhao, H. T., Goldberg, A. R., Xu, W., ... & Hillman, E. M. (2020). Glioma-induced alterations in neuronal activity and neurovascular coupling during disease progression. Cell Reports, 31(2), 107500.

Shiozaki, H. M., Ohta, K., & Kazama, H. (2020). A multi-regional network encoding heading and steering maneuvers in Drosophila. Neuron, 106(1), 126-141.

Mestre, H., Du, T., Sweeney, A. M., Liu, G., Samson, A. J., Peng, W., ... & Nedergaard, M. (2020). Cerebrospinal fluid influx drives acute ischemic tissue swelling. Science, 367(6483), eaax7171.

Jeng, J. Y., Ceriani, F., Hendry, A., Johnson, S. L., Yen, P., Simmons, D. D., ... & Marcotti, W. (2020). Hair cell maturation is differentially regulated along the tonotopic axis of the mammalian cochlea. The Journal of Physiology, 598(1), 151-170.

Kovacs-Oller, T., Ivanova, E., Bianchimano, P., & Sagdullaev, B. T. (2020). The pericyte connectome: spatial precision of neurovascular coupling is driven by selective connectivity maps of pericytes and endothelial cells and is disrupted in diabetes. Cell Discovery, 6(1), 39.

Oe, Y., Wang, X., Patriarchi, T., Konno, A., Ozawa, K., Yahagi, K., ... & Hirase, H. (2020). Distinct temporal integration of noradrenaline signaling by astrocytic second messengers during vigilance. Nature Communications, 11(1), 471.

2019

 

Romero, S., Hight, A. E., Clayton, K. K., Resnik, J., Williamson, R. S., Hancock, K. E., & Polley, D. B. (2019). Cellular and widefield imaging of sound frequency organization in primary and higher order fields of the mouse auditory cortex. Cerebral Cortex, 30(3), 1603-1622.

Nardin, C., Peres, C., Mazzarda, F., Ziraldo, G., Salvatore, A. M., & Mammano, F. (2019). Photosensitizer activation drives apoptosis by interorganellar Ca2+ transfer and superoxide production in bystander cancer cells. Cells, 8(10), 1175.

Scholl, B., Wilson, D. E., Jaepel, J., & Fitzpatrick, D. (2019). Functional logic of layer 2/3 inhibitory connectivity in the ferret visual cortex. Neuron, 104(3), 451-457.

Ceriani, F., Johnson, S. L., Sedlacek, M., Hendry, A., Kachar, B., Marcotti, W., & Mammano, F. (2019). Dynamic coupling of cochlear inner hair cell intrinsic Ca2+ action potentials to Ca2+ signaling of non-sensory cells. bioRxiv, 731851.

Brawek, B and Garaschuk O. (2019). Single-cell electroporation for measuring in vivo calcium dynamics in microglia. Microglia Methods and Protocols, 231-241.

Brawek, B., Olmedillas del Moral, M., & Garaschuk, O. (2019). In vivo visualization of microglia using tomato lectin. Microglia Methods and Protocols, 165-175.

Liang, Y. & Garaschuk O. (2019). Labeling microglia with genetically encoded calcium indicators. Microglia Methods and Protocols, 243–265.

Royzen, F., Williams, S., Fernandez, F. R., & White, J. A. (2019). Balanced synaptic currents underlie low-frequency oscillations in the subiculum. Hippocampus, 29(12), 1178-1189.

Rathore, A. P. S., Mantri, C. K., Aman, S. A. B., Syenina, A., Ooi, J., Jagaraj, C. J., ... & St. John, A. L. (2019). Dengue virus-elicited tryptase induces endothelial permeability and shock. Journal of Clinical Investiagtion, 129(10), 4180-4193.

Stringer, C., Pachitariu, M., Steinmetz, N., Carandini, M., & Harris, K. D. (2019). High-dimensional geometry of population responses in visual cortex. Nature, 571(7765), 361–365.

Ziraldo, G., Buratto, D., Kuang, Y., Xu, L., Carrer, A., Nardin, C., ... & Mammano, F. (2019). A human-derived monoclonal antibody targeting extracellular connexin domain selectively modulates hemichannel function. Frontiers in Physiology, 10, 392.

Díaz-García, C. M., Lahmann, C., Martínez-François, J. R., Li, B., Koveal, D., Nathwani N., ... & Yellen, G. (2019). Quantitative in vivo imaging of neuronal glucose concentrations with a genetically encoded fluorescence lifetime sensor. Journal of Neuroscience Research, 97(8), 946–960.

Philip, V., Newton, D., Oh, H., Collins, S., Bercik, P., & Sibille, E. (2019). The Effect of Gut Microbiota on Glutamatergic/GABAergic Gene Expression in Adult Mice. Biological Psychiatry, 85, S127–S128.

Bowen, Z., Winkowski, D. E., Seshadri, S., Plenz, D., & Kanold, P. O. (2019). Neuronal avalanches in input and associative layers of auditory cortex. Frontiers in Systems Neuroscience, 13, 45.

Burgold, J., Schulz-Trieglaff, E. K., Voelkl, K., Gutiérrez-Ángel, S., Bader, J. M., Hosp, F., ... & Dudanova, I. (2019). Cortical circuit alterations precede motor impairments in Huntington’s disease mice. Scientific Reports, 9(1), 6634.

Matovic, S., Ichiyama, A., Igarashi, H., Salter, E. W., Wang, X. F., Henry, M., ... & Inoue, W. (2019). Stress-induced neuronal hypertrophy decreases the intrinsic excitability in stress habituation. bioRxiv, 593665.

Weissenberger, Y., King, A. J., & Dahmen, J. C. (2019). Decoding mouse behavior to explain single-trial decisions and their relationship with neural activity. bioRxiv, 567479.

Ceriani, F., Hendry, A., Jeng, J. Y., Johnson, S. L., Stephani, F., Olt, J., ... & Marcotti, W. (2019). Coordinated calcium signalling in cochlear sensory and non-sensory cells refines afferent innervation of outer hair cells. The EMBO Journal, 38(9), e99839.

Lee, K. S., Vandemark, K., Mezey, D., Shultz, N., & Fitzpatrick, D. (2019). Functional synaptic architecture of callosal inputs in mouse primary visual cortex. Neuron, 101(3), 421-428.

2018

 

Marvin, J. S., Scholl, B., Wilson, D. E., Podgorski, K., Kazemipour, A., Müller, J. A., ... & Looger, L. L. (2018). Stability, affinity, and chromatic variants of the glutamate sensor iGluSnFR. Nature Methods, 15(11), 936–939.

Moeyaert, B., Holt, G., Madangopal, R., Perez-Alvarez, A., Fearey, B. C., Trojanowski, N. F., ... & Schreiter, E. R. (2018). Improved methods for marking active neuron populations. Nature Communications, 9(1), 440.

Chen, C. L., Hermans, L., Viswanathan, M. C., Fortun, D., Aymanns, F., Unser, M., ... & Ramdya, P. (2018). Imaging neural activity in the ventral nerve cord of behaving adult Drosophila. Nature Communications9(1), 4390.

Corns, L. F., Johnson, S. L., Roberts, T., Ranatunga, K. M., Hendry, A., Ceriani, F., ... & Marcotti, W. (2018). Mechanotransduction is required for establishing and maintaining mature inner hair cells and regulating efferent innervation. Nature Communications, 9(1), 4015.

Saleem, A. B., Diamanti, E. M., Fournier, J., Harris, K. D., & Carandini, M. (2018). Coherent encoding of subjective spatial position in visual cortex and hippocampus. Nature, 562(7725), 124-127.

Dipoppa, M., Ranson, A., Krumin, M., Pachitariu, M., Carandini, M., & Harris, K. D. (2018). Vision and locomotion shape the interactions between neuron types in mouse visual cortex. Neuron, 98(3), 602-615.

Gillet, S. N., Kato, H. K., Justen, M. A., Lai, M., & Isaacson, J. S. (2018). Fear learning regulates cortical sensory representations by suppressing habituation. Frontiers in Neural Circuits, 11, 112.

2017

 

Scholl, B., Wilson, D. E., & Fitzpatrick, D. (2017). Local order within global disorder: synaptic architecture of visual spaceNeuron, 96(5), 1127-1138.

Klapoetke, N. C., Nern, A., Peek, M. Y., Rogers, E. M., Breads, P., Rubin, G. M., ... & Card, G. M. (2017). Ultra-selective looming detection from radial motion opponencyNature Neuroscience, 551(7679), 237-241.

Kato, H. K., Asinof, S. K., & Isaacson, J. S. (2017). Network-level control of frequency tuning in auditory cortexNeuron, 95(2), 412-423.

Lu, R., Sun, W., Liang, Y., Kerlin, A., Bierfeld, J., Seelig, J.D., W... & Ji, N. (2017). Video-rate volumetric functional imaging of the brain at synaptic resolutionNature Neuroscience, 20(4), 620-628.

2016

 

Mongeon, R., Venkatachalam, V., & Yellen, G. (2016). Cytosolic NADH-NAD+ redox visualized in brain slices by two-photon fluorescence lifetime biosensor imaging.Antioxid Redox Signal, 25(10), 553-563.

Pachitariu, M., Stringer, C., Schröder, S., Dipoppa, M., Rossi, L. F., Carandini, M., & Harris, K. D. (2016). Suite2p: beyond 10,000 neurons with standard two-photon microscopybioRxiv, 061507.

Rose, T., Jaepel, J., Hübener, M., & Bonhoeffer, T. (2016). Cell-specific restoration of stimulus preference after monocular deprivation in the visual cortexScience, 352(6291), 1319–1322.

Strobl, M. J., Freeman, D., Patel, J., Poulsen, R., Wendler, C. C., Rivkees, S. A., & Coleman, J. E. (2016). Opposing effects of maternal hypo-and hyperthyroidism on the stability of thalamocortical synapses in the visual cortex of adult offspring.Cerebral Cortex, 27(5), 3015-3027.

Lee, K. S., Huang, X., & Fitzpatrick, D. (2016). Topology of ON and OFF inputs in visual cortex enables an invariant columnar architectureNature, 533(7601), 90-94.

Monai, H., Ohkura, M., Tanaka, M., Oe, Y., Konno, A., Hirai, H., ... & Hirase, H. (2016). Calcium imaginq reveals glial involvement in transcranial direct current stimulation-induced plasticity in mouse brain. Nature Communications7(1), 11100.

Ganmor, E., Krumin, M., Rossi, L. F., Carandini, M., & Simoncelli, E. P. (2016). Direct estimation of firing rates from calcium imaging data. arXiv, 1601.00364.

2015

 

Roth, M. M., Dahmen, J.C., Muir, D. R., Imhof, F., Martini, F. J., & Hofer, S. B. (2015). Thalamic nuclei convey diverse contextual information to layer 1 of visual cortexNature Neuroscience, 19(2), 299-307.

Barnstedt, O., Keating, P., Weissenberger, Y., King, A. J., & Dahmen, J. C. (2015). Functional microarchitecture of the mouse dorsal inferior colliculus revealed through in vivo two-photon calcium imaging.. Journal of Neuroscience, 35(31), 10927-10939.

Chen, S. X., Kim, A. N., Peters, A. J., & Komiyama, T. (2015). Subtype-specific plasticity of inhibitory circuits in motor cortex during motor learningNature Neuroscience, 18(8), 1109-1115.

Jia, Y., Zhang, S., Miao, L., Wang, J., Jin, Z., Gu, B., ... & Li, Z. (2015). Activation of platelet protease-activated receptor-1 induces epithelial-mesenchymal transition and chemotaxis of colon cancer cell line SW620Oncology Reports, 33(6), 2681-2688.

Lu, W., Tang, Y., Zhang, Z., Zhang, X., Yao, Y., Fu, C., ... & Ma, G. (2015). Inhibiting the mobilization of Ly6Chigh monocytes after acute myocardial infarction enhances the efficiency of mesenchymal stromal cell transplantation and curbs myocardial remodeling.American Journal of Translational Research, 7(3), 587-597.

Boyd, A. M., Kato, H. K., Komiyama, T., & Isaacson, J. S. (2015). Broadcasting of cortical activity to the olfactory bulbCell Reports, 10(7), 1032-1039.

Cossell, L., Iacaruso, M. F., Muir, D. R., Houlton, R., Sader, E. N., Ko, H., H... & Mrsic-Flogel, T. D. (2015). Functional organization of excitatory synaptic strength in primary visual cortexNature, 518(7539), 399-403.

2014

 

Partridge, J. G., Lewin, A. E., Yasko, J. R., & Vicini, S. (2014). Contrasting actions of group I metabotropic glutamate receptors in distinct mouse striatal neuronesJournal of Physiology, 592(13), 2721-2733.

Peters, A. J., Chen, S, X., Komiyama, T. (2014). Emergence of reproducible spatiotemporal activity during motor learningNature, 510(7504), 263-267.

Ehmke, T., Nitzsche, T. H., Knebl, A., & Heisterkamp, A. (2014). Molecular orientation sensitive second harmonic microscopy by radially and azimuthally polarized lightBiomedical Optics Express, 5(7), 2231-46.

Liu, J., Wu, N., Ma, L., Liu, M., Liu, G., Zhang, Y., & Lin, X. (2014). Oleanolic acid suppresses aerobic glycolysis in cancer cells by switching pyruvate kinase type M isoformsPLoS One, 9(3), e91606.

Palmer, L. M., Shai, A. S., Reeve, J.E., Anderson, H. L., Paulsen, O., & Larkum, M. E. (2014). NMDA spikes enhance action potential generation during sensory inputNature Neuroscience17(3), 383-390.

Cai, F., Yu, J., Qian, J., Wang, Y., Chen, Z., Huang, J., ... & He, S. (2014). Use of tunable second-harmonic signal from KNbO3 nanoneedles to find optimal wavelength for deep-tissue imagingLaser & Photonics Reviews, 8(6), 865-874.

2013

 

Kato, H. K., Gillet, S. N., Peters, A. J., Isaacson, J. S., & Komiyama, T. (2013). Parvalbumin-expressing interneurons linearly control olfactory bulb outputNeuron, 80(5), 1218-1231.

Takata, N., Nagai, T., Ozawa, K., Oe, Y., Mikoshiba, K., & Hirase, H. (2013). Cerebral blood flow modulation by Basal forebrain or whisker stimulation can occur independently of large cytosolic Ca2+ signaling in astrocytesPLoS One, 8(6), e66525.

The full source code for ThorImage®LS is available for owners of a Bergamo®, Cerna® Confocal, Veneto®, or confocal microscope. Click here to receive your copy.

ThorImageLS Brochure

ThorImage®LS Software

ThorImageLS is an open-source image acquisition program that controls Thorlabs' microscopes, as well as supplementary external hardware. From prepared-slice multiphoton Z-stacks to simultaneous in vivo photoactivation and imaging, ThorImageLS provides an integrated, modular workspace tailored to the individual needs of the scientist. Its workflow-oriented interface supports single image, Z-stacks, time series, and image streaming acquisition, visualization, and analysis. See the video to the lower right for a real-time view of data acquisition and analysis with ThorImageLS.

ThorImageLS is included with a Thorlabs microscope system purchase and is open source, allowing full customization of software features and performance. ThorImageLS also includes Thorlabs’ customer support and regular software updates to continually meet the imaging demands of the scientific community.

For additional details, see the full web presentation.

Advanced Software Functionality

  • Multi-Column Customizable Workspace
  • Image Acquisition Synced with Hardware Inputs and Timing Events
  • Live Image Correction and ROI Analysis
  • Independent Galvo-Galvo and Galvo-Resonant Scan Areas and Geometries
  • Tiling for High-Resolution Large-Area Imaging
  • Independent Primary and Secondary Z-Axis Control for Fast Deep-Tissue Scans
  • Automated Image Capture with Scripts
    • Compatible with ImageJ Macros
  • Multi-User Settings Saved for Shared Workstations
  • Individual Colors for Detection Channels Enable Simple Visual Analysis

Seamless Integration with Experiments

  • Simultaneous Multi-Point Photoactivation and Imaging with Spatial Light Modulator
  • Fast Z Volume Acquisition with PFM450E or Third-Party Objective Scanners
  • Electrophysiology Signaling
  • Wavelength Switching with Coherent Chameleon Lasers
  • Pockels Cell ROI Masking
  • Power Ramped with Depth to Minimize Damage and Maximize Signal-to-Noise

Features of ThorImage®LS

Laser Scanning
Scan Path Wavelength Range 450 - 1100 nm, 680 - 1300 nm, or 800 - 1800 nm
Scan Paths Resonant-Galvo-Galvo Scanner, Galvo-Resonant Scanners,
Galvo-Galvo Scanners, or Spatial Light Modulator;
Single or Dual Scan Paths
Scan Speed 8 kHz Resonant-Galvo-Galvo
or Galvo-Resonant
2 fps at 4096 x 4096 Pixels
30 fps at 512 x 512 Pixels
400 fps at 512 x 32 Pixels
12 kHz Resonant-Galvo-Galvo
or Galvo-Resonant
4.4 fps at 2048 x 2048 Pixels
45 fps at 512 x 512 Pixels
600 fps at 512 x 32 Pixels
Galvo-Galvo 3 fps at 512 x 512 Pixels
48 fps at 512 x 32 Pixels
70 fps at 32 x 32 Pixels
Pixel Dwell Time: 0.4 to 20 µs
Galvo-Galvo Scan Modes Imaging: Line, Polyline, Square, or Rectangle
Non-Imaging: Circle, Ellipse, Polygon, or Point
Field of View FN40 Equivalent to 40 mm Diagonal Square (Max) at the Intermediate Image Plane
>2.8 mm x 2.8 mm at the Sample plane with a 10X Objective
FN20 Equivalent to 20 mm Diagonal Square (Max) at the Intermediate Image Plane
>1.4 mm x 1.4 mm at the Sample plane with a 10X Objective
Scan Zoom 1X to 16X (Continuously Variable)
Scan Resolution Up to 2048 x 2048 Pixels (Bi-Directional) [Up to 1168 x 1168 Pixels for 12 kHz Scanners]
Up to 4096 x 4096 Pixels (Unidirectional) [Up to 2336 x 2336 Pixels for 12 kHz Scanners]
Compatible Objective Threadings M34 x 1.0, M32 x 0.75, M25 x 0.75, and RMS
Spatial Light Modulator (SLM)
Stimulation Area
(with a 16X Objective)
600 µm x 600 µm (X and Y)
±150 µm (Z)
Resolution 1024 pixels x 1024 pixels
Maximum Pattern Refresh Rate 4 ms
Multiphoton Signal Detection
Epi Detection Up to Four Ultrasensitive GaAsP PMTs, Cooled or Non-Cooled
Forward-Direction Detection Two Ultrasensitive GaAsP PMTs
Maximum of Four PMTs Controlled by the Software at a Given Time
Collection Optics 8°, 10°, or 14° Collection Angle
(Angles Quoted When Using an Objective with a 20 mm Entrance Pupil)
Easy-to-Exchange Emission Filters and Dichroic Mirrors
Confocal Imaging
Motorized Pinhole Wheel with 16 Round Pinholes from Ø25 µm to Ø2 mm
Two to Four Laser Lines (488 nm Standard; Other Options Range from 405 nm to 660 nm)
Standard Multialkali or High-Sensitivity GaAsP PMTs
Easy-to-Exchange Emission Filters and Dichroic Mirrors
Widefield Viewing
Manual or Motorized Switching Between Scanning and Widefield Modes
Illumination Provided via LED or Liquid Light Guide
C-Mount Threads for Scientific Cameras
Transmitted Light Imaging
Differential Interference Contrast (DIC) or Dodt Gradient Contrast
Widefield or Laser Scanned
Illumination Provided by Visible and/or NIR LEDs
Compatible with Air or Oil Immersion Condensers
Three-Photon Imaging
Scan Optics for 800 - 1800 nm Range
Achieve Reduced Background Scatter for Greater Sensitivity in Deep-Tissue Imaging
Volume Imaging Using Bessel Beams
3D Volumetric Functional Imaging at Video Frame Rates
Enhanced Temporal Resolution for Studying Internal Systems at Cellular Lateral Resolution In Vivo
Translation
Microscope Body Rotation
(Rotating Bodies Only)
0° to 90° or -45° to +45° Around Objective Focus
0.1° Encoder Resolution
Coarse Elevator Base Z
(Rotating Bodies Only)
5" (127 mm) Total Travel; 1 µm Encoder Resolution
Fine Microscope Body X and Y 2" (50.8 mm) Total Travel; 0.5 µm Encoder Resolution
Fine Microscope Arm Z  1" (25.4 mm) Total Travel; 0.1 µm Encoder Resolution
Fine Z Focus
Piezo Objective Scanner Open Loop: 600 µm ± 10% Travel Range; 1 nm Resolution
Closed Loop: 450 µm Travel Range; 3 nm Resolution
Vibrationless Remote Focus 16 Discrete Steps
~400 µm Travel Range with a 10X Objective
~160 µm Travel Range with a 16X Objective

Thorlabs recognizes that each imaging application has unique requirements.
If you have any feedback, questions, or need a quotation, please use our
multiphoton microscopy contact form or call (703) 651-1700.

To schedule an in-person or virtual demo appointment, please email ImagingSales@thorlabs.com.

Showroom Icon
Contact Us
China Demo Room
Click to Enlarge

China Demo Room

Try Our Microscopes In Person or Virtually

Thorlabs' sales engineers and field service staff are based out of nine offices across four continents. We look forward to helping you determine the best imaging system to meet your specific experimental needs. Our customers are attempting to solve biology's most important problems; these endeavors require matching systems that drive industry standards for ease of use, reliability, and raw capability.

Thorlabs' worldwide network allows us to operate demo rooms in a number of locations where you can see our systems in action. We welcome the opportunity to work with you in person or virtually. A demo can be scheduled at any of our showrooms or virtually by contacting ImagingSales@thorlabs.com.

Customer Support Sites
(Click Each Location for More Details)

Demo Rooms and Customer Support Sites
(Click Each Location for More Details)


Posted Comments:
gaiqing Wang  (posted 2020-05-07 11:13:33.577)
I am looking for a cheap way to do confocal imaging in vivo. Is this Bergamo II Series Multiphoton Microscope my best option? Can you send me a quote?
YLohia  (posted 2020-05-07 09:45:11.0)
Thank you for contacting Thorlabs. We will reach out to you directly to discuss your requirements.
jfpena  (posted 2016-12-19 18:15:55.003)
I am looking for a cheap way to do confocal imaging in vivo. Is this Bergamo II Series Multiphoton Microscope my best option? Can you send me a quote?
tfrisch  (posted 2016-12-22 11:44:31.0)
Hello, thank you for contacting Thorlabs. A member of our Imaging Team will reach out to you directly to discuss this system and your application.
birech  (posted 2016-11-17 06:33:49.463)
I asked for a price quote for this product, Bergamo II Series Multiphoton Microscopes three days ago. I am working at the University of Nairobi in Kenya and would wish to order one. Regards, Birech
tfrisch  (posted 2016-11-17 06:56:23.0)
Hello, thank you for contacting Thorlabs. I have forwarded this request to our Imaging Sales Team. I apologize for the delay.
Back to Top

Multiphoton Imaging Platform

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
BERGAMO Support Documentation
BERGAMOMultiphoton Imaging Microscope
Request
Lead Time
Last Edited: Nov 08, 2013 Author: Dan Daranciang