"; _cf_contextpath=""; _cf_ajaxscriptsrc="/cfthorscripts/ajax"; _cf_jsonprefix='//'; _cf_websocket_port=8578; _cf_flash_policy_port=1244; _cf_clientid='A9AE89D6641AFF4E3349C0D87E1438E7';/* ]]> */
| |||||||||||||||||||||||||||||||||||
Microscopy Slide and Test Target Holders![]()
C4SH01 Multi-Slide Holder Tray MAX3SLH Fixed Microscope Slide Holder Application Idea The LPSA1 slide holder with a microscope slide mounted on the LPS710 piezo stage. SLH1 Microscope Slide Clips XYF1 XY Translation Mount for Rectangular Optics Related Items ![]() Please Wait Features
Fixed Microscope Slide Holders Translating Microscope Slide Holders Microscope Slide Spring Clips ![]() Click to Enlarge Figure 1: An example of how to read a vernier scale. The red arrow indicates what is known as the pointer. Since the tick mark labeled 10 on the vernier scale aligns with one of the tick marks on the main scale, this vernier scale is reading 75.60 (in whatever units the tool measures). Reading a Vernier ScaleVernier scales are typically used to add precision to standard, evenly divided scales (such as the scale on Thorlabs' rotation mounts). A vernier scale has found common use in many precision measurement tools, the most common being calipers and micrometers. The direct vernier scale uses two scales side-by-side: the main scale and the vernier scale. The vernier scale has a slightly smaller spacing between its tick marks (10% smaller than the main). Hence, the lines on the main scale will not line up with all the lines on the vernier scale. Only one line from the vernier scale will match well with one line of the main scale, and that is the trick to reading a vernier scale. Figures 1 through 3 show a vernier scale system for three different situations. In each case, the scale on the left is the main scale, while the small scale on the right is the vernier scale. When reading a vernier scale, the main scale is used for the gross number, and the vernier scale gives the precision value. In this manner, a standard ruler or micrometer can become a precision tool. The 0 on the vernier scale is the "pointer" (marked by a red arrow in Figs. 1 - 3) and will indicate the main scale reading. In Figure 1 we see the pointer is lined up directly with the 75.6 line. Notice that the only other vernier scale tick mark that lines up well with the main scale is 10. Since the vernier 0 lines up with the main scale’s 75.6, the reading from Figure 1 is 75.60 (in whatever units the tool measures in). That is essentially all there is to reading a vernier scale. It's a very straightforward way of increasing the precision of a measurement tool. To expound, let’s look at Figure 2. Here we see that the pointer is no longer aligned with a scale line, instead it is slightly above 75.6, but below 75.7; thus the gross measurement is 75.6. The first vernier line that coincides with a main scale line is the 5, shown with a blue arrow. The vernier scale gives the final digit of precision; since the 5 is aligned to the main scale, the precision measurement for Figure 2 is 75.65. Since the vernier scale is 10% smaller than the main scale, moving 1/10 of the main scale will align the next vernier marking. This asks the obvious question: what if the measurement is within the 1/10 precision of the vernier scale? Figure 3 shows just this. Again, the pointer line is in between 75.6 and 75.7, yielding the gross measurement of 75.6. If we look closely, we see that the vernier 7 (marked with a blue arrow) is very closely aligned to the main scale, giving a precision measurement of 75.67. However, the vernier 7 is very slightly above the main scale mark, and we can see that the vernier 8 (directly above 7) is slightly below its corresponding main scale mark. Hence, the scale on Figure 3 could be read as 75.673 ± 0.002. A reading error of about 0.002 would be appropriate for this tool. As we've seen here, vernier scales add precision to a standard scale measurement. While it takes a bit of getting used to, with a little practice, reading these scales is fairly straightforward. All vernier scales, direct or retrograde, are read in the same fashion. ![]() Click to Enlarge Figure 2: An Example of a vernier scale. The red arrow indicates the pointer and the blue arrow indicates the vernier line that matches the main scale. This scale reads 75.65. ![]() Click to Enlarge Figure 3: An Example of a vernier scale. The red arrow indicates the pointer and the blue arrow indicates the vernier line that matches the main scale. This scale reads 75.67, but can be accurately read as 75.673 ± 0.002.
![]() ![]() Click to Enlarge The MAX3SLH Slide Holder can be Mounted Directly to our 3-Axis Nanopositioning Stage
The MAX3SLH Microscopy Slide Holder allows petri dishes and microscope slides to be mounted on motion control stages for integration into custom microscopy setups such as optical tweezers. Two sets of mounting holes allow versatility. One set of four #6 (M3) counterbores is compatible with our 3-axis NanoMax flexure stages. A set of 1/4" (M6) slots with 2" (50.8 mm) separation is designed for mounting to many other components, including those with a 2" imperial hole pattern. The spring clips are rotatable to accommodate easy swapping of petri dishes and microscope slides. There is a 1" long clear aperture between the mounting surfaces of the clips. They are also interchangeable with the SLH1 Microscope Slide Spring Clips sold below, as they both use 8-32 screws to secure them. ![]() ![]() Click to Enlarge Bottom of the C4SH01 Holder with Mounted Slide
The C4SH01 Four-Position Microscope Slide Holder, made from black PEI plastic, allows up to four 25 mm x 75 mm, 1.1 ± 0.2 mm thick slides to be mounted into our imaging cytometers or on microscope stages. Designed for inverted microscopes, this slide holder is highly versatile and adaptable for automated tissue analysis on multiple slides. As shown in the image to the right, slides are loaded into the bottom of the tray, ensuring excellent stability and maintaining near parfocality from slide to slide. This slide holder has the external footprint of a standard multiwell plate (127.6 mm × 85.5 mm), allowing it to be easily integrated into existing microscope stages (e.g., Thorlabs' MLS203 fitted with MLS203P1 or MZS500-E) or robotic plate loaders. Note: The C4SH01 is not compatible with the 26 mm x 76 mm slides sold by Thorlabs. ![]() ![]() Click to Enlarge A channel allows for translation of the lockable support arms for accommodating optics with different widths.
Thorlabs' One-Axis Rectangular Optic Mounts accept rectangular optics up to 4 mm (0.16") thick. The XF50(/M) offers 50 mm of travel and can mount optics from 12.7 mm (1/2") to 76.2 mm (3") wide. The XF100(/M) offers 100 mm of travel and can mount optics from 12.7 mm (1/2") to 126.2 mm (5") wide. These mounts are designed for use with our selection of resolution, distortion, slant edge, and calibration test targets. In addition, they are also compatible with our rectangular microscope slides, filters, dichroic mirrors, variable ND filters, and fluorescence imaging filters. The actuator on the side of each mount enables travel along a single axis. The actuator can be adjusted by hand or with a 5/64" (2.0 mm) hex key (not included). A vernier scale that provides a resolution of 100 µm allows for repeatable positioning of the mounted optic. The actuator can be locked by a side-located 5/64" (2.0 mm) hex setscrew. Seven 8-32 (M4) tapped holes support several possible mounting orientations when used with our Ø1/2" posts. The three tapped holes along the front face of the mount are through holes allowing a post to be mounted on either side. Three of the mounting faces feature tapped holes spaced so that two Ø1/2" posts in post holders can be used next to each other for added stability. Optics are secured with two support arms that each contain two nylon-tipped setscrews with a 5/64" (2.0 mm) hex. Each support arm can slide along a channel in the mount to accommodate different optic sizes; a 5/64" (2.0 mm) hex setscrew is used to lock each support arm in place. This mounting mechanism can be seen in the photo to the upper right. By loosening the top locking screws, the arms can be removed from the channel and interchanged, as shown in the image to the bottom left. When reattaching the arms, simply align each locking screw with one of the 2-56 captive nuts in the channel and tighten. This feature is useful in applications that require the target to be positioned close to a lens or other optical element in a system. ![]() Click to Enlarge The support arms can be removed from the channel and interchanged by loosening the locking screws. ![]() Click to Enlarge Each mount has seven 8-32 (M4) taps, allowing for several post-mountable orientations (see images to the right). These Rectangular Optic Mounts can be used to position a rectangular optic horizontally, vertically, or perpendicular to the post axis and can be mounted using one or two posts. ![]() ![]() Click to Enlarge A channel allows for translation of the lockable support arms for accommodating optics with different widths.
Thorlabs' XYF1(/M) Two-Axis Rectangular Optic Mount accepts 1/2" (12.7 mm) to 3" (76.2 mm) wide rectangular optics up to 0.16" (4 mm) thick. The mount is ideal for general applications as well as home-built microscopy systems. It is designed for use with our selection of resolution, distortion, slant edge, and calibration test targets. In addition, it is also compatible with our rectangular microscope slides, filters, dichroic mirrors, variable ND filters, and fluorescence imaging filters. Two actuator knobs on the side of the mount enable manual positioning over a 50 mm (1.97") x 30 mm (1.18") area, providing both vertical and horizontal translation. These actuators can be adjusted by hand or with a 5/64" (2 mm) hex key or ball driver (not included). Next to each knob is a brass setscrew with a 5/64" (2 mm) hex for locking the translation axes, allowing for lockable, repeatable positioning of the mounted optic. This mount is also equipped with a vernier scale that provides a resolution of 100 µm. Five 8-32 (M4) tapped holes support six possible mounting orientations when used with our Ø1/2" posts, of which a selection are shown below. Optics are secured with two support arms that each contain two 5/64" (2 mm) hex, nylon-tipped setscrews. Each support arm can slide along a channel in the mount to accommodate different optic sizes; a 5/64” (2 mm) hex setscrew is used to lock each support arm in place. This mounting mechanism can be seen in the photo to the upper right. By loosening the top locking screws, the arms can be removed from the channel and reversed, as shown in the image to the bottom left. When reattaching the arms, simply align each locking screw with one of the 2-56 captive nuts in the channel and tighten. This feature is useful in applications that require the target to be positioned close to a lens or other optical element in a system. ![]() Click to Enlarge The support arms can be removed from the channel and reversed by loosening the locking screws. ![]() Click to Enlarge The XYF1 Mount has five 8-32 (M4) taps, allowing for six post-mountable orientations (see images to the right). The XYF1 Mount can be used to position a test target horizontally, vertically, or perpendicular to the post axis. ![]() ![]() Click to Enlarge Once mounted onto the LPS710(/M) stage, secure a microscope slide onto the LPSA1(/M) holder using the spring-loaded plunger.
The LPS710E(/M) Amplified Piezo Stage provides long range, fine focus Z-axis travel for a microscope slide while maintaining a compact, low-profile footprint. It features submicron repeatability, nanometer positioning resolution, low angular error, and fast millisecond response and settling times. Each stage is shipped with a piezo controller that has been factory calibrated to the specific stage to achieve maximum accuracy. When used with the LPSA1(/M) microscope slide holder, the stage is ideal for imaging modalities requiring sensitive sample positioning and sectioning, such as confocal laser scanning microscopy. This stage is not compatible with trans-illumination. The stage is driven by a discrete piezo stack housed within a hardened steel flexure structure that preloads the piezo stack and amplifies its displacement. See the table to the right for key specifications. The base of the stage includes two slots for 1/4"-20 (M6) cap screws and two slots for 4-40 (M3) cap screws that can be used to secure the stage to a stage or breadboard for use with a microscope, such as our Rigid Stands or Translating Platforms, or directly to an optical table. In addition, the stage has two bottom- and side-located 4-40 (M3) mounting holes that can be used to secure the stage using our line of mini-series components. The LPSA1(/M) slide holder uses two countersunk cap screws to attach to the 21.0 mm x 21.0 mm mounting surface on the top of the LPS710E(/M) stage. The mounting surface is equipped with four 4-40 (M3) blind mounting holes that are 4.8 mm deep to orient the slide holder in two orthogonal positions on the stage. The slide holder is compatible with microscope slides and test targets, as well as any rectangular optic from 2.88" (73.1 mm) to 3.00" (76.5 mm) wide and up to 0.055" (1.4 mm) thick and 1.00" (25.4 mm) tall. Slides are secured using the red, spring-loaded plunger, as shown in the image to the upper right. More details on this piezo stage and microscope slide holder are available at their full web presentation. ![]() ![]() Click to Enlarge SLH1 Spring Clips Attached to the XYT1 Translation Stage, Holding a Test Target That is Aligned Over the Central Aperture Using the Provided Dowel Pins
These steel spring clips, which are ideal for securely holding various sizes of microscope slides and test targets, come with two 8-32 (M4) threaded shoulder screws, each of which has a 3/32" (2.5 mm) hex socket for simple attachment to a variety of stages. Each clip is 2.51" (63.7 mm) long with a 0.20" (5.1 mm) wide tip and can be rotated 360° for easy access to, or positioning of, a slide. The tip of the clip is curved upwards to help prevent damage and facilitate the mounting of slides, while also providing enough holding force to secure it in place. The inclusion of three Ø1/8" x 1/4" dowel pins makes these spring clips an excellent choice for use with our XYR1(/M) and XYT1(/M) Translation Stages (see the image to the right). These stages have a central Ø1" hole that is SM1 threaded (1.035"-40), and the top plate contains three alignment holes that are used with the Ø1/8" dowel pins. The dowel pins are positioned on the stage so that standard 1" x 3" (25.4 mm x 76.2 mm) slides are centered over the aperture, allowing for repeatable and accurate positioning of the slides. Please note that any XYR1(/M) stage purchased before June 4, 2014 does not have dowel pin holes in the top mounting plate. | |||||||||||||||||||||||||||||||||||
|