"; _cf_contextpath=""; _cf_ajaxscriptsrc="/cfthorscripts/ajax"; _cf_jsonprefix='//'; _cf_websocket_port=8578; _cf_flash_policy_port=1244; _cf_clientid='07844970BE165E1BBBFA81A81CD8E956';/* ]]> */
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Handheld Optical Power and Energy Meter Console with Multi-Touch Technology![]()
PM400 Touchscreen Power The PM400 allows power or energy measurements and temperature data to be recorded, saved, and analyzed at a later time. The graphs can be zoomed and scrolled using multi-touch gestures. ![]() Please Wait
Features
The PM400 console is designed to be used with Thorlabs' power, position & power, and energy sensors to measure the optical power of laser light, other monochromatic, or near monochromatic light sources, or the energy of pulsed light sources. The projected capacitive touchscreen uses multi-touch technology, allowing data displays to be zoomed and scrolled with hand gestures. Capacitive touch buttons on the front of the unit enable fast access to set the source wavelength or spectrum, a delta mode that shows the change in power from a user-selected set point, the zeroing function, and device main menu. The touchscreen is sensitive enough that it can be operated while wearing latex, nitrile, or cotton gloves. The screen is also backlit and can be dimmed to 1% of the maximum brightness. ![]() Click to Enlarge The PM400 features a variety of input ports for compatible optical sensors and temperature sensors, as well as a 14-pin auxiliary input for custom applications. In the simplest operating mode, power and energy measurements can be viewed with a simulated analog needle or numerical display. Alternatively, data can be logged over time and saved to the device's internal memory. A graph display allows the user to examine and analyze the results with multi-touch enabled zoom and scrolling features, while a statistics display allows the user to program and analyze a sequence of measurements. In addition to pre-programming source wavelengths or spectra for calibrating their measurements, users can also enter and save up to twelve attenuation values or data files to correct for effects that external devices (such as filters or beamsplitters) may have on the power measurement. Measured data, calibration information, and attenuation curves can all be saved to the unit's internal 4 GB flash memory. The user can modify and copy the files saved to internal memory by connecting the unit to a PC via the USB port. The PM400 is compatible with more than 35 photodiode, integrating sphere, fiber, thermal, and pyroelectric sensors designed for use from the UV to the Mid-IR, available below. The Sensor Selection tab offers a comparison of the operating wavelengths and power or energy ranges for each sensor. Thorlabs' compatible C-series sensors can be hot-swapped when used with the PM400 console. The sensor connector contains the sensor information, including NIST-traceable responsivity curves, sensor types, and model numbers, which the PM400 uses to produce calibrated power measurements. These details can be shown on the sensor information display screen of the PM400. Alternatively, the console can be connected to compatible third-party and custom sensors via either the female DB9 connector or the 14-pin auxiliary input (see the Specs and Pin Diagrams tab for sensor compatibility information).
An external humidity sensor or combined humidity/temperature sensor unit can be connected via the 14-pin auxiliary input (see the Pin Diagrams tab). This input also provides access to the four programmable I/O ports for controlling shutters, interlock devices, laser warning lights, and other common lab devices. Alternatively, a 2.5 mm stereo (3P) jack accepts the TSP-TH thermistor temperature probe, as shown in the image below. A 3.5 mm mono audio (2P) jack provides a 0 to 2 V analog signal that corresponds to the ratio of the measured value to the full scale value; a BNC adapter for this jack is included so that the output can be easily viewed using an oscilloscope or other device. Data can also be recorded via the USB PC connection and optical power monitor software. This software is capable of handling up to eight consoles simultaneously. The features of the PC control software are highlighted in the Software tab. As the PM400 uses a projected capacitive touchscreen, the outer surface is glass that can be easily cleaned with any common screen cleaning fluid. To view the full range of Thorlabs' power and energy meter consoles, please refer to the Console Selection tab.
Recalibration Service
![]() Click to Enlarge The Front Panel of the Touchscreen Power Meter Touchscreen Power Meter Front PanelThorlabs' PM400 Power Meter features a front panel with several key elements, as shown in the photo to the right. The projected capacitive touchscreen and buttons are sensitive enough to allow smooth operation even when the user wears cotton, latex, or nitrile gloves, but durable enough to be cleaned with standard screen cleaning solvents.
Additional Features
The Touchscreen DisplayThe screenshots below provide an overview of some of the measurement views, measurement settings, functions, and calculators accessible through the touchscreen display. Numerical Display![]()
The numerical display shows a digital measurement of the power or energy with a bar graph along the bottom. The orange and blue triangles on the bar graph show the min and max values detected during the measurement. To reset the min and max values, press the reset button on the front panel. The six rectangular subpanels immediately above the power or energy measurement are configurable displays, allowing the user to select which parameters to view. The Subpanel Display Options table provides a summary of available settings for each style of detector. Simulated Analog Needle![]() Measurements can be viewed with a simulated analog needle. The orange and blue marks are indicators for the max and min measured power, and the scale can be zoomed by a factor of 10. Icons down the side of the screen allow the user to set the bandwidth, adjust the resolution of the digital value at the bottom of the display, change units, adjust the display update rate or change screens. Graph View![]() In the graph view, the user can monitor the optical power or energy of a source as it changes over time. A second, optional display can be added that shows the readout from a connected temperature sensor (the upper graph in the screenshot above). Icons on the side of the window allow the user to start and stop the measurement, scroll through the data, and open the folder where the measurement is saved. Statistics Display![]() In the statistics display, the user can start a sequential measurement. The sample rate and duration can be adjusted from the Capture Settings screen, accessible from the main menu. The bottom bar of the display shows the number of measurements taken, total elapsed time since the measurements were started, and the measurement interval. The main part of the display shows statistics for the accumulated measurements, including the minimum, maximum, mean, and standard deviation. Spectral Correction![]() This mode can be entered by pressing the λ symbol on the front panel. The unit can store up to 12 preset spectral correction entries, editable by the user. In their simplest form, these entries can consist of a single user-entered wavelength that will be used in conjunction with the NIST-traceable calibration data from a Thorlabs' sensor to produce a calibrated power measurement. Alternatively, each entry can be a .csv file with the source spectrum that has been uploaded and saved. When a spectral correction entry is selected, the entry name will be displayed in the field above the spectral correction button. Attenuation Correction![]() External devices within a setup, such as a filter or beamsplitter, may be needed to attenuate the signal being measured. The attenuation correction function allows the PM400 to display a power reading that accounts for these sources of attenuation. Attenuation values can be assigned as a multiplier (e.g. x2), in percent, in dB, or in OD (optical density). Alternatively, complete filter transmission curves can be uploaded and saved. Up to 12 different attenuation settings can be programmed and stored. Main Menu![]() The PM400 main menu allows access to device features including the screen brightness, the menus to set the parameters for power, energy, and temperature measurements, a screen for calculating laser pulse characteristics, and a unit converter. Capture Settings![]() This screen allows the user to set the parameters for taking data. User-selectable settings include manual or automatic data acquisition, the exposure time, the number of samples, and the capture interval. It also allows the temperature logging parameters to be set. Once all of the settings are selected, this screen will return an estimated file size so that the user can ensure there is enough free memory on the device. In the case of manual operation (the user manually starts and stops the measurement), the estimated output file size will be the rate at which memory is used up as the data is collected. Sensor Measurement Settings![]() This screen allows the user to view sensor-dependent content, adjust common settings such as wavelength, attenuation, mode, etc., and enter beam parameters. Temperature Sensor Settings![]() If an external temperature sensor is hooked up to the PM400, the user can adjust the parameters here. Laser Calculator and Unit Converter![]() The PM400 has several calculators. The laser calculator screen allows the user to calculate laser beam parameters based on available inputs. A unit converter provides quick conversions between Watts and dBm or between wavelength, frequency, wavenumbers, and photon energy. Position Trace Display (Thermal Position Sensors Only)![]() When used with the S440C or S442C thermal position sensors, the PM400 console can display a trace of the beam's position within a Ø1 mm circle or Ø6 mm circle on the sensor surface. The total beam power is also monitored in this mode. Position Graph Display (Thermal Position Sensors Only)![]() Similar to the graph display above, the console can display a graph of the beam's X and Y coordinates over time when used with the S440C or S442C sensors. The user can toggle between this plot and a plot of the the beam's total power over time. The PM400 is capable of supporting any of Thorlabs' C-Series sensor heads as well as some third-party and custom detectors. The main connections are shown in the photo below, and the pin diagrams below are provided to aid in determining sensor compatibility. Compatible sensor specifications are provided on the Specs tab.
Optical Sensor Head Input![]() 9-Pin Female D-Sub
Auxiliary Connector![]() 14-Pin Dual-In-Line Socket, 0.1" (2.54 mm) Pitch
Mini-B USB 2.0 Port![]() For Remote Control with a Mini-USB Device and Charging Analog Output![]() 0 to 2 V, 3.5 mm Mono Audio (2P) Jack Temperature Sensor Input![]() 2.5 mm Stereo Audio (2P) Jack for NTC ![]() Click to Enlarge The PM400 is shipped in an eco-friendly package. Included Components
Compatible Power Meters
The Optical Power Monitor software is not compatible with the PM320E Benchtop Power Meter. Optical Power MonitorThe Optical Power Monitor GUI software features power measurement, readout from up to eight power meters, and remote wireless operation. For details on specific software features, please see the user manual, which can be downloaded here. Users interested in the legacy Power Meter Software can find it by visiting the software page here. The PM101 Series Power Meters are only compatible with version 2.0 or later. The PM102 Series Power Meters are only compatible with version 2.1 or later. Optical Power Monitor GUI Software for Touchscreen, Handheld, and USB-Interface Power MetersFeatures
The Optical Power Monitor software GUI enables seamless control of up to eight power meters that are connected via USB, RS232, or Bluetooth® wireless technologya. The latest software, firmware, drivers, and utilities for these power meters can be downloaded here. Multiple data measurement and analysis functions are integrated into the GUI package. The interface offers a user-friendly design with minimal use of color and low brightness that is ideal use in dark lab environments while wearing laser safety glasses. Measured data can be displayed in real time as a simulated analog needle, digital values, line graph, or bar graph. Continuously logged and short-term measurements can be recorded for data viewing and analysis at a later point. A built-in statistics mode analyzes measured data and continuously updates to reflect new measurements within the pre-determined measurement period. Beam position measurements are also supported when used with our thermal position & power sensors. The Optical Power Monitor software package installs the GUI, which then can be used to control the touchscreen, handheld, or USB-interface power meters. Firmware updates for supported power meters are also available. Programming examples and drivers for interfacing with our power and energy meter consoles using LabVIEW, C/C++, Visual C#, and Python are installed with the software; refer to the manual for details. Please note that the Optical Power Monitor Software uses different drivers than the Power Meter Utilities Software and Thorlabs recommends using the new driver TLPM.dll. For users who wish to use the legacy Power Meter Software or use custom software designed using the older PM100D.dll driver, a Power Meter Driver Switcher program is included for easy swapping of the installed driver between the two versions. a. The PM160, PM160T, and PM160T-HP power meters are equipped with Bluetooth® connections. ![]() Click to Enlarge Power Measurement Mode: Set up and configure up to eight power meters. ![]() Click to Enlarge Power Tuning Mode: Simulated analog needle and digital measurement value provided. Delta Mode, enabled above, shows the fluctuation range during the measurement period. ![]() Click to Enlarge Power Statistics Mode: Calculate numerical statistics for a pre-determined measurement period. The panel displays the analyzed values in a bar graph and the results as numerical values. ![]() Click to Enlarge Position Tuning Mode: Tuning mode can be used with a thermal position & power sensor to aid in beam alignment. ![]() Click to Enlarge Position Statistics Mode: Statistics mode also provides aggregate information for thermal position & power sensors. ![]() Click to Enlarge Data Logging: Enable long-term measurement and simultaneous recording from up to eight power meters. Save data as .csv files for later processing while measurement results are displayed in a graph in real time. ![]() Click to Enlarge The PM160 wireless power meter, shown here with an iPad mini (not included), can be remotely operated using Apple mobile devices. This tab outlines the full selection of Thorlabs' power and energy sensors. Refer to the lower right table for power meter console and interface compatibility information. In addition to the power and energy sensors listed below, Thorlabs also offers all-in-one, wireless, handheld power meters and compact USB power meter interfaces that contain either a photodiode or a thermal sensor, as well as power meter bundles that include a console, sensor head, and post mounting accessories. Thorlabs offers four types of sensors:
Power and Energy Sensor Selection GuideThere are two options for comparing the specifications of our Power and Energy Sensors. The expandable table below sorts our sensors by type (e.g., photodiode, thermal, or pyroelectric) and provides key specifications. Alternatively, the selection guide graphic further below arranges our entire selection of photodiode and thermal power sensors by wavelength (left) or optical power range (right). Each box contains the item # and specified range of the sensor. These graphs allow for easy identification of the sensor heads available for a specific wavelength or power range.
Sensor Options
|
Posted Comments: | |
zhaozhao mao
 (posted 2020-12-08 01:01:28.267) 需要功率计表头和探头,1250~1550nm,mW级 wskopalik
 (posted 2020-12-08 10:16:41.0) Thank you for your inquiry! We will contact you directly to provide further assistance. Juyoung Kim
 (posted 2020-04-21 21:28:05.647) Dear PM400 support team,
I would like to confirm with the team with one question: Can C(++) talk to PM400 and get the power meter output and the instrument clock at the same time? I am pretty sure about this feature, but could you point me relevant C(++) functions? If possible, could you send me any example code for this basic operation? I would appreciate it much. Thank you.
Best regards,
Juyoung wskopalik
 (posted 2020-04-22 11:49:39.0) This is a response from Wolfgang at Thorlabs. Thank you very much for your inquiry!
You would need to use two commands in this case. At first, you need to use one of the measurement commands, e.g. "TLPM_measPower" or "TLPM_measEnergy" depending on the sensor you use. After that, you can read the time by using "TLPM_getTime". This command is available on PM100D, PM200, and PM400 power meters and returns the time as it is set on the power meter. Alternatively, you can also read the time which is set on your computer by using a C/C++ library.
I will contact you directly to provide further assistance. Matt Dabrowski
 (posted 2020-03-04 16:55:00.953) I am using a PM400. Recently, I went to update the firmware, and I connected the PM400 to the computer. When I used the latest OPM software to update the firmware I always got the following warning: "user abort the download operation" but I haven't done anything. Hoping for your answer. Thanks. Regards, Matt Dabrowski dpossin
 (posted 2020-03-06 10:05:31.0) Dear Matt,
Thank you for your feedback. We are currently working on an firmware revision to eliminate this issue. We already contacted you regarding an solution. We will upload an firmware update on the website as soon as possible. user
 (posted 2018-05-24 12:34:50.27) On your old PM100 Powermeters the display backlight could be turned off. Can the display on the PM400 also be turned off, while continuing to capture data via LabView/USB? mvonsivers
 (posted 2018-06-07 03:56:07.0) This is a response from Moritz at Thorlabs. Thank you for your inquiry. The display cannot be completely turned off but the brightness can be dimmed to 1%. zahariev
 (posted 2018-03-23 09:42:41.347) The power meter do the great job.
However I have a comment. Even been specified in the shipping list, the idea to sell it without power adapter (charger) could cos some inconvenience. swick
 (posted 2018-04-16 04:40:04.0) This is a response from Sebastian at Thorlabs. Thank you for the feedback. We are glad to hear you are happy with our PM400.
The PM400 includes a USB cable which can be used to charge the device via USB ports. I understand that it would be helpful to have an USB charger included to the PM400. We will internally discuss your comment. arkke.eskola
 (posted 2016-10-27 13:14:48.693) Hi,
I am thinking to buy PM400. Important option for my application would be to control it using LabVIEW, in my case LabVIEW2015. Do you have LabVIEW2015 drivers for PM400?
Thanks,
Arkke Eskola wskopalik
 (posted 2016-10-28 03:59:43.0) This is a response from Wolfgang at Thorlabs. Thank you for your inquiry.
We provide LabView drivers as well as drivers for C/C++ and DotNet for the PM400. They are included in the installation package you can find here on the website.
I will contact you directly to provide further details. |
Thorlabs offers a wide selection of power and energy meter consoles and interfaces for operating our power and energy sensors. Key specifications of all of our power meter consoles and interfaces are presented below to help you decide which device is best for your application. We also offer self-contained wireless power meters and compact USB power meters.
When used with our C-series sensors, Thorlabs' power meter consoles and interfaces recognize the type of connected sensor and measure the current or voltage as appropriate. Our C-series sensors have responsivity calibration data stored in their connectors. The console will read out the responsivity value for the user-entered wavelength and calculate a power or energy reading.
The consoles and interfaces are also capable of providing a readout of the current or voltage delivered by the sensor. Select models also feature an analog output.
Item # | PM100A | PM100D | PM400 | PM320E |
---|---|---|---|---|
(Click Photo to Enlarge) | ![]() |
![]() |
![]() |
![]() |
Key Features | Analog Power Measurements | Digital Power and Energy Measurements | Digital Power and Energy Measurements, Touchscreen Control | Dual Channel |
Compatible Sensors | Photodiode and Thermal Power | Photodiode and Thermal Power; Pyroelectric | ||
Housing Dimensions (H x W x D) |
7.24" x 4.29" x 1.61" (184 mm x 109 mm x 41 mm) |
7.09" x 4.13" x 1.50" (180 mm x 105 mm x 38 mm) |
5.35" x 3.78" x 1.16" (136.0 mm x 96.0 mm x 29.5 mm) |
4.8" x 8.7" x 12.8" (122 mm x 220 mm x 325 mm) |
Channels | 1 | 2 | ||
External Temperature Sensor Input (Sensor not Included) | - | - | Instantaneous Readout and Record Temperature Over Time | - |
External Humidity Sensor Input (Sensor not Included) | - | - | Instantaneous Readout and Record Humidity Over Time | - |
GPIO Ports | - | 4, Programmable | - | |
Source Spectral Correction | - | - | ![]() |
- |
Attenuation Correction | - | - | ![]() |
- |
External Trigger Input | - | - | - | ![]() |
Display | ||||
Type | Mechanical Needle and LCD Display with Digital Readout | 320 x 240 Pixel Backlit Graphical LCD Display | Protected Capacitive Touchscreen with Color Display | 240 x 128 Pixels Graphical LCD Display |
Dimensions | Digital: 1.9" x 0.5" (48.2 mm x 13.2 mm) Analog: 3.54" x 1.65" (90.0 mm x 42.0 mm) |
3.17" x 2.36" (81.4 mm x 61.0 mm) |
3.7" x 2.1" (95 mm x 54 mm) |
3.7" x 2.4" (94.0 mm x 61.0 mm) |
Refresh Rate | 20 Hz | 10 Hz (Numerical) 25 Hz (Analog Simulation) |
20 Hz | |
Measurement Viewsa | ||||
Numerical | ![]() |
![]() |
![]() |
![]() |
Mechanical Analog Needle | ![]() |
- | - | - |
Simulated Analog Needle | - | ![]() |
![]() |
![]() |
Bar Graph | - | ![]() |
![]() |
![]() |
Trend Graph | - | ![]() |
![]() |
![]() |
Histogram | - | ![]() |
- | ![]() |
Statistics | ![]() |
![]() |
![]() |
![]() |
Memory | ||||
Type | - | SD Card | NAND Flash | - |
Size | - | 2 GB | 4 GB | - |
Power | ||||
Battery | LiPo 3.7 V 1300 mAh | LiPo 3.7 V 2600 mAh | - | |
External | 5 VDC via USB or Included AC Adapter | 5 VDC via USB | Selectable Line Voltage: 100 V, 115 V, 230 V (±10%) |
Item # | PM101 | PM102 | PM101A | PM102A | PM101R | PM101U | PM102U | PM100USB |
---|---|---|---|---|---|---|---|---|
(Click Photo to Enlarge) | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Key Features | USB, RS232, UART, and Analog Operation |
USB and Analog SMA Operation | USB and RS232 Operation | USB Operation | USB Operation | |||
Compatible Sensors | PM101 Series: Photodiode and Thermal Power PM102 Series: Thermal Power and Thermal Position & Power |
Photodiode and Thermal Power; Pyroelectric |
||||||
Housing Dimensions (H x W x D) |
3.80" x 2.25" x 1.00" (96.5 x 57.2 x 25.4 mm) |
3.94" x 2.25" x 1.00" (100.0 x 57.2 x 25.4 mm) |
3.78" x 2.25" x 1.00" (95.9 x 57.2 x 25.4 mm) |
3.68" x 2.25" x 1.00" (93.6 x 57.2 x 25.4 mm) |
3.67" x 2.38 " x 1.13" (93.1 x 60.4 x 28.7 mm) |
|||
Channels | 1 | |||||||
External Temperature Sensor Input (Sensor Not Included) |
NTC Thermistor | - | ||||||
External Humidity Sensor Input (Sensor not Included) |
- | |||||||
GPIO Ports | - | |||||||
Source Spectral Correction | - | |||||||
Attenuation Correction | - | |||||||
External Trigger Input | - | |||||||
Display | ||||||||
Type | No Built-In Display; Controlled via GUI for PC | |||||||
Refresh Rate | Up to 1000 Hza | Up to 300 Hza | ||||||
Measurement Viewsb | ||||||||
Numerical | Requires PCb | |||||||
Mechanical Analog Needle | - | |||||||
Simulated Analog Needle | Requires PCb | |||||||
Bar Graph | Requires PCb | |||||||
Trend Graph | Requires PCb | |||||||
Histogram | Requires PCb | |||||||
Statistics | Requires PCb | |||||||
Memory | ||||||||
Type | Internal Non-Volatile Memory for All Settings | - | ||||||
Size | - | |||||||
Power | ||||||||
Battery | - | |||||||
External | 5 VDC via USB or 5 to 36 VDC via DA-15 |
5 VDC via USB |
Thorlabs' PM400 power meter console is compatible with over 30 power and energy sensors, available below. When used with these sensors, the console will automatically detect and read the sensor calibration information stored in the sensor connector and combine this data with a user-set measurement wavelength to provide calibrated power or energy measurements. The console can also be used with third-party or custom sensors that meet the compatibility requirements outlined on the Specs tab.
Thorlabs offers a recalibration service for the PM400; contact Tech Support for details. Alternatively, if you have a corresponding sensor that needs recalibrating, you can include the PM400 with the sensor for recalibration at no additional cost. To order this service, scroll to the bottom of the page and select the appropriate Item # that corresponds to your sensor.
These Standard Photodiode Power Sensors are ideal for metering low power coherent and incoherent sources from the UV to the NIR. Each NIST-Traceable, calibrated sensor features an integrated viewing target for easy alignment, enhanced shielding against electromagnetic interference, an over-temperature-alert device, and a large Ø9.5 mm sensor aperture. The sensors are compatible with 30 mm cage systems, Ø1/2" posts, and SM1 (1.035"-40) lens tubes, and are ideal for free-space and fiber-coupled sources.
Thorlabs offers a recalibration service for these photodiode power sensors, which can be ordered below (see Item # CAL1 for Si sensors and Item # CAL2 for Ge sensors).
Item #a | S120VC | S120C | S121C | S122C |
---|---|---|---|---|
Sensor Image (Click the Image to Enlarge) |
||||
Aperture Size | Ø9.5 mm | |||
Wavelength Range | 200 - 1100 nm | 400 - 1100 nm | 400 - 1100 nm | 700 - 1800 nm |
Power Range | 50 nW - 50 mW | 500 nW - 500 mW | 50 nW - 40 mW | |
Detector Type | Si Photodiode (UV Extended) | Si Photodiode | Ge Photodiode | |
Linearity | ±0.5% | |||
Resolutionb | 1 nW | 10 nW | 2 nW | |
Measurement Uncertaintyc | ±3% (440 - 980 nm) ±5% (280 - 439 nm) ±7% (200 - 279 nm, 981 - 1100 nm) |
±3% (440 - 980 nm) ±5% (400 - 439 nm) ±7% (981 - 1100 nm) |
±5% | |
Responsivityd (Click for Plot) | ![]() Raw Data |
![]() Raw Data |
![]() Raw Data |
![]() Raw Data |
Coating/Diffuser | Reflective ND (OD1.5)e | Reflective ND (OD1)f | Reflective ND (OD2)g | Absorptive ND (Schott NG9) |
Head Temperature Measurement | NTC Thermistor 4.7 kΩ | |||
Housing Dimensions | Ø30.5 mm x 12.7 mm | |||
Cable Length | 1.5 m | |||
Post Mountinge,f,g | Universal 8-32 / M4 Tap, Post Not Included | |||
Aperture Thread | External SM1 (1.035"-40) | |||
Compatible Fiber Adapters | S120-FC, S120-APC, S120-SMA, S120-ST, S120-LC, and S120-SC (Not Included) | |||
Compatible Consoles | PM400, PM100D, PM100A, and PM320E | |||
Compatible Interfaces | PM101, PM101A, PM101R, PM101U, and PM100USB |
These Slim Photodiode Power Sensors are designed to take optical source power measurements in locations where space and accessibility are at a premium. The 5 mm thin sensor end can fit between closely spaced optics, cage systems, and other arrangements where standard power meters may not fit. The NIST-Traceable, calibrated sensors also feature a large Ø9.5 mm sensor aperture and slideable neutral density filter for dual power ranges in one compact device.
A separately available SM1A29 adapter can be attached by 2 setscrews to any S130 series power sensor to mount fiber adapters, light shields, filters or any other SM1-threaded (1.035"-40) mechanics or optics. The FBSM Mount allows our S130 series power sensors to be mounted vertically into FiberBench systems for stable mounting with a minimal footprint.
Thorlabs offers a recalibration service for these photodiode power sensors, which can be ordered below (see Item # CAL-S130 for Si sensors and Item # CAL-S132 for Ge sensors).
Item #a | S130VC | S130C | S132C | |
---|---|---|---|---|
Sensor Image (Click the Image to Enlarge) |
||||
Aperture Size | Ø9.5 mm | |||
Wavelength Range | 200 - 1100 nm | 400 - 1100 nm | 700 - 1800 nmb | |
Power Range (with Filter) |
500 pW - 0.5 mWc (Up to 50 mW)c |
500 pW - 5 mW (Up to 500 mW) |
5 nW - 5 mW (Up to 500 mW) |
|
Detector Type | Si Photodiode (UV Extended) | Si Photodiode | Ge Photodiode | |
Linearity | ±0.5% | |||
Resolution | 100 pWd | 1 nWe | ||
Measurement Uncertaintyf | ±3% (440 - 980 nm) ±5% (280 - 439 nm) ±7% (200 - 279 nm, 981 - 1100 nm) |
±3% (440 - 980 nm) ±5% (400 - 439 nm) ±7% (981 - 1100 nm) |
±5% | |
Responsivityg (Click for Plot) | ![]() Raw Data |
![]() Raw Data |
![]() Raw Data |
|
Coating/Diffuser | Reflective ND (OD1.5)c | Reflective ND (OD2)h | Absorptive ND (Schott NG9/KG3)b | |
Housing Dimensions | 150 mm x 19 mm x 10 mm; 5 mm Thickness on Sensor Side | |||
Cable Length | 1.5 m | |||
Post Mounting | 8-32 and M4 Taps | |||
Adapters (Not Included) | SM1A29: Add SM1 Thread and Viewing Target to Aperture Fiber Adapters Compatible with SM1A29 Adapter: S120-FC, S120-APC, S120-SMA, S120-ST, S120-LC, and S120-SC FBSM: Integrate Sensor into FiberBench Setups |
|||
Compatible Consoles | PM400, PM100D, PM100USB, PM100A, and PM320E | |||
Compatible Interfaces | PM101, PM101A, PM101R, PM101U, and PM100USB |
Item #a | S170C |
---|---|
Sensor Image (Click Image to Enlarge) |
![]() |
Overall Dimensions | 76.0 mm x 25.2 mm x 5.0 mm (2.99" x 0.99" x 0.20") |
Active Detector Area | 18 mm x 18 mm |
Input Aperture | 20 mm x 20 mm |
Wavelength Range | 350 - 1100 nm |
Optical Power Working Range | 10 nW - 150 mW |
Detector Type | Silicon Photodiode |
Linearity | ±0.5% |
Resolutionb | 1 nW |
Calibration Uncertaintyc | ±3% (440 - 980 nm) ±5% (350 - 439 nm) ±7% (981 - 1100 nm) |
Responsivityd (Click for Plot) | ![]() Raw Data |
Neutral Density Filter | Reflective (OD 1.5) |
Cable Length | 1.5 m |
Post Mounting | Universal 8-32 / M4 Tap, Post Not Included |
Compatible Consoles | PM400, PM100D, PM100A, and PM320E |
Compatible Interfaces | PM101, PM101A, PM101R, PM101U, and PM100USB |
The S170C Microscope Slide Power Sensor Head is a silicon photodiode sensor designed to measure the power at the sample in microscopy setups. The silicon photodiode can detect wavelengths between 350 nm and 1100 nm at optical powers between 10 nW and 150 mW. The sensor head's 76.0 mm x 25.2 mm footprint matches that of a standard microscope slide and is compatible with most standard upright and inverted microscopes.
The photodiode has an 18 mm x 18 mm active area and is contained in a sealed housing behind a neutral density (ND) filter with OD 1.5. A 20 mm x 20 mm indentation around the surface of the ND filter is sized to accept standard microscope cover slips. An immersion medium (water, glycerol, oil) may be placed in this well directly over the ND filter, or a cover slip may be inserted first to simplify clean up. The gap between the photodiode and the neutral density filter has been filled with an index matching gel in order to prevent internal reflections from causing significant measurement errors when using high NA objectives with oil or water.
The bottom of the sensor housing features a laser-engraved grid to aid in aligning and focusing the beam. In standard microscopes, this grid can be used for beam alignment before flipping the sensor head to face the objective for power measurements. In inverted microscopes, turn on the transmitted illuminator to align the grid on the detector housing with the beam, thereby centering the sensor in front of the objective. Alternatively, the diffusive surface of the ND filter can be used as a focusing plane.
Sensor specifications and the NIST- and PTB-traceable calibration data are stored in non-volatile memory in the sensor connector and can be read out by the latest generation of Thorlabs power meters. We recommend yearly recalibration to ensure accuracy and performance. Calibration may be ordered using the CAL1 recalibration service available below. Please contact technical support for more information.
Thorlabs also offers a Microscope Slide Sensor Head with a thermal sensor; for complete specifications, the full presentation can be found here.
Item #a | S175C |
---|---|
Sensor Image (Click Image to Enlarge) |
![]() |
Active Detector Area | 18 mm x 18 mm |
Wavelength Range | 0.3 - 10.6 µm |
Power Range | 100 µW - 2 W |
Detector Type | Thermal Surface Absorber (Thermopile) |
Linearity | ±0.5% |
Resolutionb | 10 µW |
Measurement Uncertaintyc | ±3% @ 1064 nm; ±5% @ 300 nm - 10.6 µm |
Response Time | 3 s (<2 s from 0 to 90%) |
Housing Dimensions | 76 mm x 25.2 mm x 4.8 mm (2.99" x 0.99" x 0.19") |
Cable Length | 1.5 m |
Housing Features | Integrated Glass Cover Engraved Laser Target on Back |
Post Mounting | N/A |
Cage Mounting | N/A |
Aperture Thread | N/A |
Compatible Consoles | PM400, PM100D, PM100A, and PM320E |
Compatible Interfaces | PM101, PM101A, PM101R, PM101U, PM102, PM102A, PM102U, and PM100USB |
The S175C Microscope Slide Thermal Power Sensor Head is designed to measure the power at the sample in microscopy setups. The thermal sensor can detect wavelengths between 300 nm and 10.6 µm at optical powers between 100 µW and 2 W. The sensor head's 76.0 mm x 25.2 mm footprint matches that of a standard microscope slide and is compatible with most standard upright and inverted microscopes.
The thermal sensor has an 18 mm x 18 mm active area and is contained in a sealed housing behind a glass cover. An immersion medium (water, glycerol, oil) may be placed over the glass cover plate.
As seen in the image to the right, the bottom of the sensor housing features a laser-engraved target to aid in aligning and focusing the beam. In standard microscopes, the target can be used for beam alignment before flipping the sensor head to face the objective for power measurements. In inverted microscopes, turn on the trans-illumination lamp and align the target on the detector housing with the beam; this will center the sensor in front of the objective.
Sensor specifications and the NIST- and PTB-traceable calibration data are stored in non-volatile memory in the sensor connector and can be read out by the latest generation of Thorlabs power meters. We recommend yearly recalibration to ensure accuracy and performance. Calibration may be ordered using the CAL-S200 recalibration service available below. Please contact technical support for more information.
Thorlabs also offers a Microscope Slide Sensor Head with a photodiode sensor for low-power, high-resolution measurements; the full presentation may be found here.
These Integrating Sphere Photodiode Power Sensors are the ideal choice for power measurements independent of beam uniformity, divergence angle, beam shape, or entrance angle, making them excellent for use with fiber sources and off-axis free space sources.
Our integrating spheres are designed for wavelength ranges from the visible through the NIR. Sensor heads for use between 350 and 2500 nm use a single Ø1" or Ø2" sphere made from Zenith® PTFE and feature a black housing to minimize reflected light around the entrance aperture. These sensors use either a silicon photodiode for detection in the 350 - 1100 nm range or an InGaAs photodiode for detection in the 800 - 1700 nm, 900 - 1650 nm, or 1200 - 2500 nm wavelength range.
The S180C integrating sphere for 2.9 - 5.5 µm uses two connected, gold-plated Ø20 mm spheres, with an entrance port in the first sphere and a port for the MCT (HgCdTe) detector located in the second sphere. Compared to single-sphere designs, the two-sphere configuration improves device sensitivity by minimizing the internal sphere surface area while still effectively shielding the detector from direct illumination. This design reduces the effect of input angle, divergence, and beam shape on the measurement result by effectively shielding the photodiode without the use of a baffle or other shielding mechanism.
The integrating spheres below feature large Ø5 mm, Ø7 mm, or Ø12 mm apertures, externally SM1-threaded (1.035"-40) front connections, enhanced shielding against electromagnetic interference, and an over-temperature alert sensor. Because of the large active detector areas of these sensors, the included S120-FC fiber adapter can be used with FC/PC- or FC/APC-terminated fiber. The externally SM1-threaded adapter can be removed using a size 1 screwdriver to place components closer to the window. NIST-traceable data is stored in the sensor connector.
Thorlabs offers a recalibration service for these photodiode power sensors, which can be ordered below. See Item # CAL1 for the S140C and S142C Si sensors; Item # CAL2 for the S144C, S145C, and S146C InGaAs sensors; and Item # CAL4 for the S148C InGaAs sensor or S180C MCT sensor.
Item #a | S140C | S142C | S144C | S145C | S146C | S148C | S180C |
---|---|---|---|---|---|---|---|
Sensor Image (Click the Image to Enlarge) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Aperture | Ø5 mm | Ø12 mm | Ø5 mm | Ø12 mm | Ø5 mm | Ø7 mm | |
Wavelength Range | 350 - 1100 nm | 800 - 1700 nm | 900 - 1650 nm | 1200 - 2500 nm | 2.9 µm - 5.5 µm | ||
Power Range | 1 µW - 500 mW | 1 µW - 5 W | 1 µW - 500 mW | 1 µW - 3 W | 10 µW - 20 W | 1 µW - 1 W | 1 µW - 3 W |
Detector Type | Si Photodiode | InGaAs Photodiode | MCT (HgCdTe) Photodiode |
||||
Linearity | ±0.5% | ||||||
Resolutionb | 1 nW | 10 nW | 1 nW | 10 nW | |||
Measurement Uncertaintyc |
±3% (440 - 980 nm) ±5% (350 - 439 nm) ±7% (981 - 1100 nm) |
±5% | |||||
Responsivityd (Click for Plot) |
![]() Raw Data |
![]() Raw Data |
![]() Raw Data |
![]() Raw Data |
![]() Raw Data |
![]() Raw Data |
![]() Raw Data |
Integrating Sphere Material (Size) |
Zenith® PTFE (Ø1") |
Zenith® PTFE (Ø2") |
Zenith® PTFE (Ø1") |
Zenith® PTFE (Ø2") |
Zenith® PTFE (Ø1") |
Gold Plating (Two Ø20 mm Spheres) |
|
Head Temperature Measurement |
NTC Thermistor 4.7 kΩ | ||||||
Housing Dimensions |
Ø45 mm x 30.5 mm | 70 mm x 74 mm x 70 mm | Ø45 mm x 30.5 mm | 70 mm x 74 mm x 70 mm | Ø45 mm x 30.5 mm | 59.0 mm x 50.0 mm x 28.5 mm |
|
Cable Length | 1.5 m | ||||||
Post Mounting | 8-32 and M4 Taps | ||||||
Aperture Thread | Included Adapter with SM1 (1.035"-40) External Thread | ||||||
Compatible Fiber Adapters |
S120-FC (Included) S120-APC, S120-SMA, S120-ST, S120-SC, S120-LC, and S140-BFA Bare Fiber Adapter (Not Included) |
||||||
Compatible Consoles | PM400, PM100D, PM100A, and PM320E | ||||||
Compatible Interfaces | PM101, PM101A, PM101R, PM101U, and PM100USB |
The S15xC Compact Fiber Photodiode Power Sensor is designed to take power measurements from a wide variety of fiber coupled sources. The compact sensor, integrated into the power meter connector, features a unique integrated design housing the photodiode sensor, fiber coupling, and NIST-traceable data. Standard FC (and SMA - S150C and S151C) connectors are easily interchanged with a variety of standard fiber connectors.
Thorlabs offers a recalibration service for these photodiode power sensors, which can be ordered below (see Item # CAL1 for Si sensors and Item # CAL2 for InGaAs sensors).
Item #a | S150C | S151C | S154C | S155C |
---|---|---|---|---|
Sensor Image (Click the Image to Enlarge) |
||||
Included Connectors | FCb & SMA | FCb | ||
Wavelength Range | 350 - 1100 nm | 400 - 1100 nm | 800 - 1700 nm | |
Power Range | 100 pW to 5 mW (-70 dBm to +7 dBm) |
1 nW to 20 mW (-60 dBm to +13 dBm) |
100 pW to 3 mW (-70 dBm to +5 dBm) |
1 nW to 20 mW (-60 dBm to +13 dBm) |
Detector Type | Si Photodiode | InGaAs Photodiode | ||
Linearity | ±0.5% | |||
Resolutionc | 10 pW (-80 dBm) | 100 pW (-70 dBm) | 10 pW (-80 dBm) | 100 pW (-70 dBm) |
Measurement Uncertaintyd | ±3% (440 - 980 nm) ±5% (350 - 439 nm) ±7% (981 - 1100 nm) |
±3% (440 - 980 nm) ±5% (400 - 439 nm) ±7% (981 - 1100 nm) |
±5% | |
Responsivityf (Click for Details) | ![]() Raw Data |
![]() Raw Data |
![]() Raw Data |
![]() Raw Data |
Coating/Diffuser | N/A | Absorptive ND (Schott NG3) | N/A | |
Head Temperature Measuremente | NTC Thermistor 3 kΩ | |||
Aperture Thread | External SM05 (0.535"-40) | |||
Fiber Adapters | Included: PM20-FC and PM20-SMA Optional: PM20-APC, PM20-LC, PM20-SC, and PM20-ST |
Included: PM20-FC Optional: PM20-APC, PM20-LC, PM20-SC, PM20-ST, and PM20-SMA |
||
Compatible Consoles | PM400, PM100D, PM100A, and PM320E | |||
Compatible Interfaces | PM101, PM101A, PM101R, PM101U, and PM100USB |
Item #a | S401C | S405C |
---|---|---|
Sensor Image (Click the Image to Enlarge) |
![]() |
![]() |
Wavelength Range | 190 nm - 20 µm | 190 nm - 20 µm |
Optical Power Range | 10 µW - 1 W (3 Wb) | 100 µW - 5 W |
Input Aperture Size | Ø10 mm | Ø10 mm |
Active Detector Area |
10 mm x 10 mm | 10 mm x 10 mm |
Max Optical Power Density | 500 W/cm² (Avg.) | 1.5 kW/cm² (Avg.) |
Detector Type | Thermal Surface Absorber (Thermopile) with Background Compensation |
Thermal Surface Absorber (Thermopile) |
Linearity | ±0.5% | ±0.5% |
Resolutionc | 1 µW | 5 µW |
Measurement Uncertaintyd | ±3% @ 1064 nm ±5% @ 190 nm - 10.6 µm |
±3% @ 1064 nm ±5% @ 250 nm - 17 µm |
Response Timee | 1.1 s | 1.1 s |
Cooling | Convection (Passive) | |
Housing Dimensions (Without Adapter) |
(1.30" x 1.69" x 0.59") |
40.6 mm x 40.6 mm x 16.0 mm (1.60" x 1.60" x 0.63") |
Temperature Sensor (In Sensor Head) |
NTC Thermistor | NTC Thermistor |
Cable Length | 1.5 m | |
Post Mounting | Universal 8-32 / M4 Taps (Post Not Included) |
Universal 8-32 / M4 Taps (Post Not Included) |
30 mm Cage Mounting | - | Two 4-40 Tapped Holes & Two Ø6 mm Through Holes |
Aperture Threads | - | Internal SM05 |
Accessories | Externally SM1-Threaded Adapter Light Shield with Internal SM05 Threading |
Externally SM1-Threaded Adapter |
Compatible Consoles | PM400, PM100D, PM100A, and PM320E | |
Compatible Interfaces | PM101, PM101A, PM101R, PM101U, PM102, PM102A, PM102U and PM100USB |
Thorlabs offers two broadband thermal power sensors designed to measure low optical power sources with high resolution. Each thermal sensor's broadband coating has a flat spectral response over a wide wavelength range, as shown in the plot below.
An aperture size of Ø10 mm allows for easy alignment and measurement of large-spot-size laser sources. For easy integration with Thorlabs' lens tube systems and SM1-threaded (1.035"-40) fiber adapters, each sensor has either external SM1 threading or includes an externally SM1-threaded adapter.
The S401C uses active thermal background compensation to provide low-drift power measurements. This is implemented through the use of two similar sensor circuits. One sensor circuit is the type all thermal power sensors share: it measures heat flow from light absorber to heat sink. The other sensor circuit monitors the ambient temperature. It is located within the housing and measures heat flow from heat sink towards the absorber. The measurements of the two sensor circuits are subtracted, which minimizes the effect of thermal drift on the laser power measurement. (For information about how the external thermal disturbances can affect thermal power sensor readings, see the Operation tab.) The broadband coating used on this thermal sensor offers high absorption at wavelengths between 0.19 and 20 µm (shown in the graph), which makes the sensor ideal for use with aligning and measuring Mid-IR Quantum Cascade Lasers (QCLs). The included, internally SM05-threaded (0.535"-40) light shield is shown in the photo to the right.
The S405C has internal SM05 (0.535"-40) threading that is directly compatible with SM05 lens tubes, and it can also connect directly to Thorlabs' 30 mm Cage Systems.
Thorlabs offers a recalibration service for these sensors, which can be ordered below (see Item # CAL-S200).
Item #a | S415C | S425C |
---|---|---|
Sensor Image (Click Image to Enlarge) |
![]() |
![]() |
Wavelength Range | 190 nm - 20 µm | 190 nm - 20 µm |
Optical Power Range | 2 mW - 10 W (20 Wb) | 2 mW - 10 W (20 Wb) |
Input Aperture Size | Ø15 mm | Ø25.4 mm |
Active Detector Area |
Ø15 mm | Ø27 mm |
Max Optical Power Density |
1.5 kW/cm² (Avg.) | 1.5 kW/cm² (Avg.) |
Detector Type | Thermal Surface Absorber (Thermopile) | |
Linearity | ±0.5% | ±0.5% |
Resolutionc | 100 µW | 100 µW |
Measurement Uncertaintyd |
±3% @ 1064 nm ±5% @ 250 nm - 17 µm |
±3% @ 1064 nm ±5% @ 250 nm - 17 µm |
Response Timee | 0.6 s | 0.6 s |
Cooling | Convection (Passive) | |
Housing Dimensions (Without Adapter) |
(2.00" x 2.00" x 1.38") |
(2.00" x 2.00" x 1.38") |
Temperature Sensor (In Sensor Head) |
NTC Thermistor | |
Cable Length | 1.5 m | |
Post Mounting | Universal 8-32 / M4 Taps (Post Not Included) |
Universal 8-32 / M4 Taps (Post Not Included) |
30 mm Cage Mounting | - | - |
Aperture Threads | Internal SM1 | Internal SM1 |
Removable Heatsink | Yes | Yes |
Accessories | Externally SM1-Threaded Adapter | Externally SM1-Threaded Adapter |
Compatible Consoles | PM400, PM100D, PM100A, and PM320E | |
Compatible Interfaces | PM101, PM101A, PM101R, PM101U, PM102, PM102A, PM102U and PM100USB |
These thermal power sensors are designed for general broadband power measurements of low and medium power light sources. All include an externally SM1-threaded (1.035"-40) adapter, with threading concentric with the input aperture. The adapters are useful for mounting Ø1" Lens Tubes and Fiber Adapters (available below). The apertures of the S415C and S425C have internal SM1 threading.
These sensors operate with fast (<0.6 s) natural response times, and their removable heat sinks provide a high degree of flexibility to those interested in integrating them into custom setups or replacing the included heat sink with one that is water or fan cooled. If replacing the heat sink, please note that the replacement must provide heat dissipation adequate for the application.
Thorlabs offers a recalibration service for these sensors, which can be ordered below (see Item # CAL-S200).
These thermal power sensors are designed for general broadband power measurements of low and medium power light sources. With the exception of the S350C, all include an adapter with external SM1 (1.035"-40) threading concentric with the input aperture. This allows the sensors to be integrated into existing Ø1" lens tube systems in addition to being compatible with fiber adapters (available below). The aperture of the S425C-L has internal SM1 threading.
The S425C-L operates with a fast (<0.6 s) natural response time and has a removable heat sink, which provides a high degree of flexibility to those interested in integrating them into custom setups or replacing the included heat sink with one that is water or fan cooled. If replacing the heat sink, please note that the replacement must provide heat dissipation adequate for the application.
Thorlabs offers a recalibration service for these sensors, which can be ordered below (see Item # CAL-S200).
Item #a | S350C | S425C-L | S322C |
---|---|---|---|
Sensor Image (Click Image to Enlarge) |
![]() |
![]() |
![]() |
Wavelength Range | 190 nm- 1.1 µm, 10.6 µm | 190 nm - 20 µm | 250 nm - 11 µm |
Optical Power Range | 10 mW - 40 W (60 Wb) | 2 mW - 50 W (75 Wb) | 100 mW - 200 W (250 Wb) |
Input Aperture Size | Ø40 mm | Ø25.4 mm | Ø25 mm |
Active Detector Area |
Ø40 mm | Ø27 mm | Ø25 mm |
Max Optical Power Density | 2 kW/cm² (Avg.) | 1.5 kW/cm² (Avg.) | 4 kW/cm² (Avg., CO2) |
Detector Type | Thermal Surface Absorber (Thermopile) | ||
Linearity | ±1% | ±0.5% | ±1% |
Resolutionc | 1 mW | 100 µW | 5 mW |
Measurement Uncertaintyd | ±3% @ 351 nm ±5% @ 190 nm - 1100 nm |
±3% @ 1064 nm ±5% @ 250 nm - 17 µm |
±3% @ 1064 nm ±5% @ 266 nm - 1064 nm |
Response Timee | 9 s (1 s from 0 to 90%) |
0.6 s | 5 s (1 s from 0 to 90%) |
Cooling | Convection (Passive) | Forced Air with Fanf | |
Housing Dimensions (Without Adapter, if Applicable) |
100 mm x 100 mm x 54.2 mm (3.94" x 3.94" x 2.13") |
100.0 mm x 100.0 mm x 58.0 mm (3.94" x 3.94" x 2.28") |
100 mm x 100 mm x 86.7 mm (3.94" x 3.94" x 3.41") |
Temperature Sensor (In Sensor Head) |
NTC Thermistor | ||
Cable Length | 1.5 m | ||
Post Mounting | M6 Threaded Taps, Includes Ø1/2" Post, 75 mm Long |
Universal 8-32 / M4 Taps (Post Not Included) |
M6 Threaded Taps, Includes Ø1/2" Post, 75 mm Long |
30 mm Cage Mounting | - | - | Four 4-40 Tapped Holes |
Aperture Threads | - | Internal SM1 | - |
Removable Heatsink | - | Yes | - |
Accessories | - | Externally SM1-Threaded Adapter | Externally SM1-Threaded Adapter |
Compatible Consoles | PM400, PM100D, PM100A, and PM320E | ||
Compatible Interfaces | PM101, PM101A, PM101R, PM101U, PM102, PM102A, PM102U and PM100USB |
Item #a | S370C | S470C |
---|---|---|
Sensor Image (Click the Image to Enlarge) |
![]() |
![]() |
Wavelength Range | 400 nm - 5.2 µm | 250 nm - 10.6 µm |
Optical Power Range | 10 mW - 10 W (15 Wb) | 100 µW - 5 W (Pulsed and CW) |
Input Aperture Size | Ø25 mm | Ø15 mm |
Active Detector Area |
Ø25 mm | Ø16 mm |
Max Optical Power Density | 35 W/cm² (Avg.); 100 GW/cm² (Peak) | |
Detector Type | Thermal Volume Absorber (Thermopile) | |
Linearity | ±1% | ±0.5% |
Resolutionc | 250 µW | 10 µW |
Measurement Uncertaintyd | ±3% @ 1064 nm ±5% @ 400 nm - 1064 nm |
±3% @ 1064 nm ±5% @ 250 nm - 10.6 µm |
Response Timee | 45 s (3 s from 0 to 90%) |
6.5 s (<2 s from 0 to 90%) |
Cooling | Convection (Passive) | |
Housing Dimensions (Without Adapter, if Applicable) |
(2.95" x 2.95" x 2.02") |
(1.77" x 1.77" x 0.71") |
Temperature Sensor (In Sensor Head) |
N/A | N/A |
Cable Length | 1.5 m | |
Post Mounting | M6 Threaded Taps, Includes Ø1/2" Post, 75 mm Long |
Universal 8-32 / M4 Tap (Post Not Included) |
30 mm Cage Mounting | Four 4-40 Tapped Holes | - |
Aperture Threads | - | External SM1 |
Accessories | - | |
Compatible Consoles | PM400, PM100D, PM100A, and PM320E | |
Compatible Interfaces | PM101, PM101A, PM101R, PM101U, PM102, PM102A, PM102U and PM100USB |
The S370C and S470C Thermal Sensors are designed to measure short and highly energetic laser pulses. All of these units are post-mountable for free-space applications and feature NIST-traceable data stored in the sensor connector.
These thermal power sensors are unique in that they have thermal volume absorbers, where our other thermal power sensors have thermal surface absorbers. The volume absorber consists of a Schott glass filter. Incident pulses are absorbed and the heat is distributed throughout the volume. In this way, pulses that would have damaged the absorption coating of a thermal surface absorber are safely measured by these thermal volume absorbers.
The S370C features a large Ø25 mm aperture ideal for large-spot-size beams, and it is compatible with average powers from 10 mW to 10 W (CW).
In comparison, the S470C is faster, as the glass absorber volume is reduced and other design parameters have been optimized for speed. This results in a different optical power range, with the ability to measure powers down to 100 µW. The Ø15 mm aperture is of the S470C is smaller, and it has a lower max average power of 5 W. Its 10 µW resolution is better than the 250 µW resolution of the S370C.
Thorlabs offers a recalibration service for these sensors, which can be ordered below (see Item # CAL-S200).
Item #a | S440C | S442C |
---|---|---|
Sensor Image (Click the Image to Enlarge) |
![]() |
![]() |
Wavelength Range | 190 nm - 20 µm | |
Optical Power Range | 0.5 mW - 5 W | 10 mW - 50 W |
Input Aperture Size | 17 mm x 17 mm | Ø17.5 mm |
Max Optical Power Density | 1.5 kW/cm2 | |
Detector Type | Four Thermopiles in Quadrant Configuration | |
Linearity | ±1% | |
Resolutionb | 50 µW | 1 mW |
Measurement Uncertaintyc | ±5% at 1064 nm; ±7% for 250 nm - 17 µm |
|
Position Resolution | 5 µm | 10 µm |
Position Accuracyd | 50 µm (Ø1 mm Circle) 200 µm (Ø6 mm Circle) |
100 µm (Ø1 mm Circle) 300 µm (Ø6 mm Circle) |
Position Repeatabilityd | 15 µm (Ø1 mm Circle) 100 µm (Ø6 mm Circle) |
25 µm (Ø1 mm Circle) 150 µm (Ø6 mm Circle) |
Response Timee | <1.1 s | <0.6 s |
Cooling | Convection (Passive) | |
Housing Dimensions (Without Adapter) |
40.6 mm x 40.6 mm x 8.9 mm (1.60" x 1.60" x 0.35") |
100.0 m x 100.0 mm x 57.8 mm (3.94" x 3.94" x 2.28") |
Temperature Sensor (In Sensor Head) |
NTC Thermistor | |
Cable Length | 1.5 m | |
Post Mounting | One 8-32 / M4 Universal Tap | Two 8-32 / M4 Universal Taps |
30 mm Cage Mounting | Four Ø6 mm Through Holes | - |
Aperture Threads | - | Internal SM1 (1.035"-40) |
Accessories | - | Externally SM1-Threaded Adapter |
Compatible Consoles | PM400, PM102, PM102A, and PM102U |
The S440C and S442C position sensors use thermopiles to obtain high-resolution measurements of a beam's position and power. The detector area consists of four thermopile-based sensors arranged as quadrants of a square. The quadrants are mechanically coupled but electrically isolated; thus, heat is free to flow across the entire active area, but the signal from each quadrant measures the response in only that quadrant's thermopile. The XY position of the beam is determined by comparing the signal intensity measured for each quadrant.
The S440C detector is optimized for high sensitivity from 0.5 mW to 5 W. The housing features four Ø6 mm through holes for compatibility with 30 mm cage systems, as well as an 8-32 / M4 universal tap for post mounting. The S442C detector is compatible with higher power levels from 10 mW up to 50 W. The housing includes a heat sink for superior heat dissipation, as well as two 8-32 / M4 universal taps for post mounting.
Both detectors feature C-Series connectors which contain NIST- and PTB-traceable calibraion data. The sensors can be controlled using the PM400 power meter console or PM102 series power meter interfaces. The system can be configured to display a visual trace of the position over time, a graph of the X and Y positions over time, a table of measurement statistics, or a simple numerical readout of the incident power. See the full web presentation and the PM400 manual for details.
These Pyroelectric Sensors are designed to measure pulsed coherent and incoherent sources. Pyroelectric sensors are not suited for CW measurements, as they convert energy from light pulses into voltage pulses. A black broadband or ceramic coating is used for low or high power measurements, respectively. Large sensor areas from
Ø11 mm - Ø45 mm allow easy alignment. The energy sensors features BNC connectors for use with an oscilloscope, as well as standard power meter connectors which contain NIST and PTB-traceable calibration data.
These sensors are not compatible with the PM100A Analog Power Meter Console or the PM101 Series Power Meter Interfaces.
Thorlabs offers a recalibration service for these energy sensors, which can be ordered below (see Item # CAL-S200).
Item #a | ES111C | ES120C | ES145C | ES220C | ES245C |
---|---|---|---|---|---|
Sensor Image (Click the Image to Enlarge) |
![]() |
![]() |
![]() |
![]() |
![]() |
Aperture Size | Ø11 mm | Ø20 mm | Ø45 mm | Ø20 mm | Ø45 mm |
Wavelength Range | 0.185 - 25 µm | ||||
Energy Range | 10 µJ - 150 mJ | 100 µJ - 500 mJ | 500 µJ - 2 J | 500 µJ - 3 J | 1 mJ - 15 J |
Detector Type | Pyroelectric Energy Sensor with Black Broadband Coating | Pyroelectric Energy Sensor with Ceramic Coating | |||
Resolution | 100 nJ | 1 µJ | 1 µJ | 25 µJ | 50 µJ |
Linearity | ±1% | ||||
Measurement Uncertainty | ±5% @ 0.185 - 25 µm | ||||
Housing Dimensions | Ø36 mm x 16 mm | Ø50 mm x 18 mm | Ø75 mm x 21 mm | Ø50 mm x 18 mm | Ø75 mm x 21 mm |
Cable Length | 1.5 m | ||||
Post Mounting | 8-32 Mounting Thread, 8-32 and M4 Insulating Adapters Included | ||||
Cage Mounting | N/A | Four 4-40 Taps for 30 mm Cage Systems |
N/A | Four 4-40 Taps for 30 mm Cage Systems |
N/A |
Compatible Consoles | PM400, PM100D, and PM320E | ||||
Compatible Interfaces | PM100USB |
Calibration Service Item # | Compatible Sensors |
---|---|
CAL1 | S120VC, S120C, S121C, S170C, S140C, S142C, S150C, S151C |
CAL2 | S122C, S144C, S145C, S146C, S154C, S155C |
CAL-S130 | S130VC, S130C |
CAL-S132 | S132C |
CAL4 | S148C, S180C |
Thorlabs offers calibration services for our photodiode optical power sensors and consoles. To ensure accurate measurements, we recommend recalibrating the sensors annually. Recalibration of the console is included with the recalibration of a sensor at no additional cost. If you wish to recalibrate only your power meter console, please contact Tech Support for details.
Refer to the table to the right for the appropriate calibration service Item # that corresponds to your power meter sensor. Once the appropriate Item # is selected, enter the Part # and Serial # of the sensor that requires recalibration prior to selecting Add to Cart.
Sensor Type | Sensor Item #s |
---|---|
Thermal Power | S175C, S302Ca, S305Ca, S310Ca, S314Ca, S322C, S350C, S370C, S401C, S405C, S415C, S425C, S425C-L, S470C |
Pyroelectric Energy | ES111C, ES120C, ES145C, ES220C, ES245C |
Thorlabs offers recalibration services for our thermal power and pyroelectric energy sensors. To ensure accurate measurements, we recommend recalibrating the sensors annually. Recalibration of the console is included with the recalibration of a sensor at no additional cost. If you wish to recalibrate only your power meter console, please contact Tech Support for details.
The table to the right lists the sensors for which this calibration service is available. Please enter the Part # and Serial # of the sensor that requires recalibration prior to selecting Add to Cart.
Log In | My Account | Contact Us | Careers | Privacy Policy | Home | FAQ | Site Index | ||
Regional Websites: West Coast US | Europe | Asia | China | Japan | ||
Copyright © 1999-2021 Thorlabs, Inc. | ||
Sales: 1-973-300-3000 Technical Support: 1-973-300-3000 |