Create an Account  |   Log In

View All »Matching Part Numbers


Your Shopping Cart is Empty
         

Quantum Cascade Lasers: Fabry-Perot


  • Center Wavelengths: 4.40 - 9.55 µm (2273 - 1047 cm-1)
  • Output Powers up to 500 mW Ship from Stock
  • Custom Options Up to 2.5 W Available (Wavelength Dependent)
  • Broadband Emission over a Roughly 50 cm-1 Range

QF9550CM1

Quantum Cascade Laser

QF4400CM1

Quantum Cascade Laser

Related Items


Please Wait
MIR Laser Types
Fabry-Perot Two-Tab C-Mount
D-Mount
Turnkey
Distributed
Feedback
Two-Tab C-Mount
D-Mount
HHL
Webpage Features
info icon Clicking this icon opens a window that contains specifications and mechanical drawings.
info icon Clicking this icon allows you to download our standard support documentation.

Choose Item

Clicking the words "Choose Item" opens a drop-down list containing all of the in-stock lasers around the desired center wavelength. The red icon next to the serial number then allows you to download L-I-V and spectral measurements for that serial-numbered device.

Features

  • Broadband Fabry-Perot Quantum Cascade Lasers (QCLs)
  • CW Output Up to 500 mW (Custom Options Available Up to 2.5 W)
  • Center Wavelengths Between 4.40 µm and 9.55 μm (2273 cm-1 and 1047 cm-1)
  • Compact Two-Tab C-Mount Package: 6.4 mm x 4.3 mm x 7.9 mm (L x W x H)
  • Lasers are Electrically Isolated from their C-Mounts
  • Custom Wavelengths and Mounts Also Available (Contact Tech Support for Details)
  • Gain Chips with AR-Coated Front Facets Also Available as a Custom Order

Thorlabs' Fabry-Perot Quantum Cascade Lasers (QCLs) exhibit broadband emission in a range spanning roughly 50 cm-1. Each laser's specified output power is the sum over the full spectral bandwidth. Since these lasers have broadband emission, they are well suited for medical imaging, illumination, and microscopy applications. Thorlabs also manufactures Distributed Feedback QCLs, which emit at a well defined center wavelength and are tunable over a narrow frequency range.

Before shipment, the output spectrum and L-I-V curve are measured for each serial-numbered device by an automated test station. These measurements are available below and are also included on a data sheet with the laser. Each Fabry-Perot laser has an HR-coated back facet. As a custom option, our Fabry-Perot lasers can be ordered with an AR coating on the front facet; however, the custom item will operate as a gain chip and not as a CW laser. Though these QCLs are specified for CW output, they are compatible with pulsed applications. To order a Fabry-Perot QCL with a tested and specified pulsed optical power or other custom features, please contact Tech Support.

Packages
Each laser is mounted on a two-tab C-mount that provides high thermal conductivity and can be secured using a 2-56 or M2 screw with the counterbored Ø2.4 mm (Ø0.09") through hole. As measured from the bottom of the C-mount, the emission height of the QCLs is 7.15 mm; the outer dimensions of the C-mounts are the same. All lasers sold on this page are electrically isolated from their C-mounts. Please see the Handling tab for more tips and information for handling these laser packages.

Mounts, Drivers, and Temperature Control
We generally recommend the LDMC20 C-Mount Laser Mount and ITC4002QCL or ITC4005QCL Dual Current / Temperature Controller for these lasers. This device combination includes all the necessary components to mount, drive, and thermally regulate a two-tab C-mount laser. Other compatible current and temperature controllers are listed in the Drivers tab.

If designing your own mounting solution, note that due to these lasers' heat loads, we recommend that they be mounted in a thermally conductive housing to prevent heat buildup. Heat loads for Fabry-Perot QCLs can be up to 18 W (see the Handling tab for additional information).

The typical operating voltages of our QCLs are 7 - 16 V. These lasers do not have built-in monitor photodiodes and therefore cannot be operated in constant power mode.

High-Power QCLs
Click to Enlarge

Maximum Output Power of Custom Fabry-Perot QCLs

High-Power OEM & Custom Lasers

Thorlabs manufactures custom and OEM quantum cascade lasers in high volumes. We maintain chip inventory from 3 µm to 12 µm at our Jessup, Maryland, laser manufacturing facility and can reach multi-watt output on certain custom orders.

More details are available on the Custom & OEM Lasers tab. To inquire about pricing and availability, please contact us. A semiconductor specialist will contact you within 24 hours or the next business day.

Current and Temperature Controllers

Table Key
Current Controllers
Dual Current / Temperature Controllers

Use the tables below to select a compatible controller for our MIR lasers. The first table lists the controllers with which a particular MIR laser is compatible, and the second table contains selected information on each controller. Complete information on each controller is available in its full web presentation. We particularly recommend our ITC4002QCL and ITC4005QCL controllers, which have high compliance voltages of 17 V and 20 V, respectively. Together, these drivers support the current and voltage requirements of our entire line of Mid-IR Lasers. To get L-I-V and spectral measurements of a specific, serial-numbered device, click "Choose Item" next to the part number below, then click on the Docs Icon next to the serial number of the device.

Laser Mount Compatibility
Thorlabs' LDMC20 C-Mount Laser Mount ships with current and TEC cables for the LDC4005, ITC4001, ITC4002QCL, ITC4005, and ITC4005QCL controllers. To use the LDMC20 with our other controllers, custom cables will be required. If designing your own mounting solution, note that due to these lasers' heat loads, we recommend that they be secured in a thermally conductive housing to prevent heat buildup. Heat loads for Fabry-Perot QCLs can be up to 18 W.

Laser and Controller Compatibility

Laser Item # Wavelength Current Controllers Dual Current / Temperature Controllers
    Large Benchtop Large Benchtop
QF4400CM1 4.40 µm
(2273 cm-1)
LDC4005 ITC4002QCL, ITC4005ITC4005QCL
QF4550CM1 4.55 µm
(2198 cm-1)
LDC4005 ITC4002QCL, ITC4005ITC4005QCL
QF4800CM1 4.80 µm
(2083 cm-1)
- ITC4002QCLITC4005QCL
QF5300CM1 5.30 µm
(1887 cm-1)
LDC4005 ITC4002QCL, ITC4005ITC4005QCL
QF7200CM1 7.20 µm
(1389 cm-1)
LDC4005 ITC4002QCL, ITC4005ITC4005QCL
QF7700CM1 7.70 µm
(1299 cm-1)
LDC4005 ITC4002QCL, ITC4005ITC4005QCL
QF8350CM1 8.35 µm
(1198 cm-1)
LDC4005 ITC4002QCLITC4005ITC4005QCL
QF9550CM1 9.55 µm
(1047 cm-1)
LDC4005 ITC4002QCL, ITC4005ITC4005QCL

 

Controller Selection Guide

Controller Item # Controller Type Controller Package Current Range Current Resolution Voltage Cables for
LDMC20 Laser Mount
LDC210C Current Small Benchtop
(146 x 66 x 290 mm)
0 to ±1 A 100 µA >10 V Not Included with LDMC20a
LDC240C 0 to ±4 A 100 µA >5 V Not Included with LDMC20a
LDC4005 Large Benchtop
(263 x 122 x 307 mm)
0 to 5 A 1 mA (Front Panel)
80 µA (Remote Control)
12 V Included with LDMC20
LDC8010 Rack Mounted 0 to ±1 A 15 µA >5 V Not Included with LDMC20a
LDC8020 0 to ±2 A 30 µA >5 V Not Included with LDMC20a
LDC8040 0 to ±4 A 70 µA >5 V Not Included with LDMC20a
ITC4001 Current / Temperature Large Benchtop
(263 x 122 x 307 mm)
0 to 1 A 100 µA (Front Panel)
16 µA (Remote Control)
11 V Included with LDMC20
ITC4002QCL 0 to 2 A 100 µA (Front Panel)
32 µA (Remote Control)
17 V Included with LDMC20
ITC4005 0 to 5 A 1 mA (Front Panel)
80 µA (Remote Control)
12 V Included with LDMC20
ITC4005QCL 20 V Included with LDMC20
ITC8102 Rack Mounted 0 to ±1 A 15 µA >5 V Not Included with LDMC20a
  • Thorlabs does not currently offer cables that connect the LDMC20 mount to this controller. Custom cables will be required. 

Do

  • Provide External Temperature Regulation
    (e.g., Heat Sinks, Fans, and/or Water Cooling)
  • Use a Constant Current Source Specifically Designed for Lasers
  • Observe Static Avoidance Practices
  • Be Careful When Making Electrical Connections

Do Not

  • Use Thermal Grease
  • Expose the Laser to Smoke, Dust, Oils, Adhesive Films, or Flux Fumes
  • Blow on the Laser
  • Drop the Laser Package

Handling Two-Tab C-Mount Lasers

Proper precautions must be taken when handling and using two-tab C-mount lasers. Otherwise, permanent damage to the device will occur. Members of our Tech Support staff are available to discuss possible operation issues.

Avoid Static
Since these lasers are sensitive to electrostatic shock, they should always be handled using standard static avoidance practices.

Avoid Dust and Other Particulates
Unlike TO can and butterfly packages, the laser chip of a two-tab C-mount laser is exposed to air; hence, there is no protection for the delicate laser chip. Contamination of the laser facets must be avoided. Do not blow on the laser or expose it to smoke, dust, oils, or adhesive films. The laser facet is particularly sensitive to dust accumulation. During standard operation, dust can burn onto this facet, which will lead to premature degradation of the laser. If operating a two-tab C-mount laser for long periods of time outside a cleanroom, it should be sealed in a container to prevent dust accumulation.

Use a Current Source Specifically Designed for Lasers
These lasers should always be used with a high-quality constant current driver specifically designed for use with lasers, such as any current controller listed in the Drivers tab. Lab-grade power supplies will not provide the low current noise required for stable operation, nor will they prevent current spikes that result in immediate and permanent damage.

Thermally Regulate the Laser
Temperature regulation is required to operate the laser for any amount of time. The temperature regulation apparatus should be rated to dissipate the maximum heat load that can be drawn by the laser. For our quantum cascade lasers, it can be up to 18 W. The LDMC20 C-Mount Laser Mount, which is compatible with our two-tab C-mount lasers, is rated for >20 W of heat dissipation.

The back face of the C-mount package is machined flat to make proper thermal contact with a heat sink. Ideally, the heat sink will be actively regulated to ensure proper heat conduction. A Thermoelectric Cooler (TEC) is well suited for this task and can easily be incorporated into any standard PID controller.

A fan may serve to move the heat away from the TEC and prevent thermal runaway. However, the fan should not blow air on or at the laser itself. Water cooling methods may also be employed for temperature regulation. Do not use thermal grease with this package, as it can creep, eventually contaminating the laser facet. Pyrolytic graphite is an acceptable alternatives to thermal grease for these packages. Solder can also be used to thermally regulate two-tab C-mount lasers, although controlling the thermal resistance at the interface is important for best results.

Carefully Make Electrical Connections
When making electrical connections, care must be taken. The flux fumes created by soldering can cause laser damage, so care must be taken to avoid this. Solder can be avoided entirely for two-tab C-mount lasers by using the LDMC20 C-Mount Laser Mount. If soldering to the tabs, solder with the C-mount already attached to a heat sink to avoid unnecessary heating of the laser chip.

Minimize Physical Handling
As any interaction with the package carries the risk of contamination and damage, any movement of the laser should be planned in advance and carefully carried out. It is important to avoid mechanical shocks. Dropping the laser package from any height can cause the unit to permanently fail.

Choosing a Collimating Lens

Since the output of our MIR lasers is highly divergent, collimating optics are necessary. Aspheric lenses, which are corrected for spherical aberration, are commonly chosen when the desired beam diameter is between 1 - 5 mm. The simple example below illustrates the key specifications to consider when choosing the correct lens for a given application.

The following example uses our previous generation 3.8 µm Interband Cascade Laser.

Key Specifications
  • Center Wavelength: 3.80 µm
  • Parallel Beam Divergence Angle: 40°
  • Perpendicular Beam Divergence Angle: 60°
  • Desired Collimated Beam Diameter: 4 mm (Major Axis)

The specifications for the IF3800CM2 indicate that the typical parallel and perpendicular FWHM divergences are 40° and 60°, respectively. Therefore, as the light propagates, an elliptical beam will result. To collect as much light as possible during the collimation process, consider the larger of these two divergence angles in your calculations (in this case, 60°).

laser diode collimation drawing
θ = Divergence Angle
Ø = Beam Diameter

Using the information above, the focal length needed to obtain the desired beam diameter can be calculated:

focal length calculation

This information allows the appropriate collimating lens to be selected. Thorlabs offers a large selection of black diamond aspheric lenses for the mid-IR spectral range. Since this laser emits at 3.80 µm, the best AR coating is our -E coating, which provides Ravg < 0.6% per surface from 3 to 5 µm. The lenses with focal lengths closest to the calculated value of 3.46 mm are our 390036-E (unmounted) or C036TME-E (mounted) Molded Aspheric Lenses, which have f = 4.00 mm. Plugging this focal length back into the equation shown above gives a final beam diameter of 4.62 mm along the major axis.

Next, we verify that the numerical aperture (NA) of the lens is larger than the NA of the laser:

NALens = 0.56

NALaser ~ sin (30°) = 0.5

NALens > NALaser

Since NALens > NALaser, the 390036-E or C036TME-E lenses will give acceptable beam quality. However, by using the FWHM beam diameter, we have not accounted for a significant fraction of the beam power. A better practice is to use the 1/e2 beam diameter. For a Gaussian beam profile, the 1/e2 beam diameter is approximately equal to 1.7X the FWHM diameter. The 1/e2 beam diameter is therefore a more conservative estimate of the beam size, containing more of the laser's intensity. Using this value significantly reduces far-field diffraction (since less of the incident light is clipped) and increases the power delivered after the lens.

A good rule of thumb is to pick a lens with an NA of twice the NA of the laser diode. For example, either the 390037-E or the C037TME-E could be used as these lenses each have an NA of 0.85, which a little less than twice that of our IF3800CM2 laser (NA 0.5). Compared to the first set of lenses we identified, these have a shorter focal length of 1.873 mm, resulting in a smaller final beam diameter of 2.16 mm.

Beam Profile Characterization of a Mid-IR Laser

Because quantum cascade lasers (QCLs) and interband cascade lasers (ICLs) have intrinsically large divergence angles, it is necessary to install collimating optics in front of the laser face, as shown in the Collimation tab. We are frequently asked what beam quality can be reasonably expected once the beam has been collimated. This tab presents an M2 measurement we performed using our previous generation 3.80 µm Interband Cascade Laser.

For this system, we obtained M= 1.2 ± 0.08 in the parallel direction and M= 1.3 ± 0.2 in the perpendicular direction. While this is just one example, we believe these results to be representative of well-collimated mid-IR lasers manufactured by Thorlabs, as corroborated by supplementary measurements we have performed in-house.

Experimental Setup

Pyroelectric Camera Upstream of Focus
Click to Enlarge

Pyroelectric Camera Upstream of Focus
Pyroelectric Camera Downstream of Focus
Click to Enlarge

Pyroelectric Camera Downstream of Focus

The apparatus we used to determine M2 is shown schematically in the figure above. In order to ensure that our results were rigorous, all data acquisition and analysis were consistent with the ISO11146 standard.

The IF3800CM2 Interband Cascade Laser used for this measurement emitted CW laser light with a center wavelength of 3.781 µm. Our LDMC20 temperature-stabilized mount held the laser's temperature at 25 °C. The output beam was collimated by a C037TME-E lens located immediately downstream of the laser face. This lens was selected because of its large NA of 0.85 (which helped maximize collection of the emitted light) and because of its AR coating (Ravg < 0.6% per surface from 3 µm to 5 µm). We measured 10 mW of output power after the lens.

A pyroelectric camera (Spiricon Pyrocam IV) with 80 µm square pixels was scanned along the beam propagation direction, and the beam width was measured along the parallel and perpendicular directions using the second-order moment (D4σ) definition. Hyperbolas were fit to the beam width to extract M2 for each direction. The camera's internal chopper was triggered at 50 Hz since the pyroelectric effect is sensitive to changes in temperature rather than absolute temperature differences. A ZnSe window was present in front of the detector array to help minimize visible light contributions to the signal.

Beam Profile Measurement
Click to Enlarge

D4σ Beam Width of Collimated IF3800CM2 Laser

Data Analysis
Presented to the right are the second-order moment (D4σ) beam widths for the parallel and perpendicular directions as a function of distance from the laser face (denoted as z). Along the parallel direction, we obtained a minimum beam width of 1.5 mm, while along the perpendicular direction, we obtained a minimum beam width of 1.3 mm. The spatial profiles we observed at the two minimum beam width positions, as obtained by the pyroelectric camera, are shown below.

The divergence of the beam can be described by a hyperbola, as written in Equation 1:

Hyperbola for M^2 Equation (Eq. 1)

In order to obtain the hyperbola coefficients a, b, and c for the parallel and perpendicular directions, we fit the discrete beam width measurements along each direction to hyperbolas, as shown in the graph to the right. These coefficients were substituted into Equation 2 (taking λ = 3.781 µm) to yield M2.

M^2 Equation (Eq. 2)

The hyperbola coefficients and M2 values derived by this method are listed in the table below.

Value Parallel Perpendicular
a 3.6 ± 0.1 mm2 9.7 ± 0.2 mm2
b -0.0096 ± 0.0007 mm -0.0268 ± 0.0008 mm
c (1.61 ± 0.08) × 10-5 (2.27 ± 0.08) × 10-5
M2 1.2 ± 0.08 1.3 ± 0.2

The 0.85 NA of the collimating lens we used is the largest NA of any lens for this wavelength range that is offered in our catalog. Despite this large NA, we observed lobes in the far field (shown by the figure below) that are consistent with clipping of the laser-emitted light. An ideal measurement would not contain these artifacts.

As shown by the graph above and to the right, we observed significant astigmatism in the collimated beam: the beam waist of the parallel direction occurred around z = 300 mm, while the beam waist of the perpendicular direction occurred around z = 600 mm. This astigmatism corresponds closely to what is expected for this laser, given that the IF3800CM2 laser is specified with a parallel FWHM beam divergence of 40° and a perpendicular FWHM beam divergence of 60°.

Beam Profile from Pyrocam
Beam Profile at Beam Waist of Parallel Direction
(Each Pixel is 80 µm Square)
Beam Profile from Pyrocam
Beam Profile at Beam Waist of Perpendicular Direction
(Each Pixel is 80 µm Square)
Laser Packages of QCLs
Click to Enlarge

Some of Our Available Packages
Wire Bonding
Click for Details

Wire Bonding a Quantum Cascade Laser on a C-Mount

Custom & OEM Quantum Cascade and Interband Cascade Lasers

At our semiconductor manufacturing facility in Jessup, Maryland, we build a wide range of mid-IR lasers and gain chips. Our engineering team performs in-house epitaxial growth, wafer fabrication, and laser packaging. We maintain chip inventory from 3 µm to 12 µm, and our vertically integrated facilities are well equipped to fulfill unique requests.

High-Power Fabry-Perot QCLs
For Fabry-Perot lasers, we can reach multi-watt output power on certain custom orders. The available power depends upon several factors, including the wavelength and the desired package.

DFB QCLs at Custom Wavelengths
For distributed feedback (DFB) lasers, we can deliver a wide range of center wavelengths with user-defined wavelength precision. Our semiconductor specialists will take your application requirements into account when discussing the options with you.

The graphs below and photos to the right illustrate some of our custom capabilities. Please visit our semiconductor manufacturing capabilities presentation to learn more.

Contact Thorlabs

Custom QCL Wavelengths
Click to Enlarge

Available Wavelengths for Custom QCLs and ICLs
High-Power QCLs
Click to Enlarge

Maximum Output Power of Custom Fabry-Perot QCLs
QCL Gain Chips
Click to Enlarge

Electroluminescence Spectra of Available Gain Chip Material

Posted Comments:
inhobae24  (posted 2014-04-09 00:41:19.683)
Is there any two tap c-mount for IF3420CM1? I can't find suitable laser mount for IF3420CM1. I only found one tap c-mount.
cdaly  (posted 2014-04-09 11:51:06.0)
Response from Chris at Thorlabs: Thank you for your inquiry. At the moment we are still working on releasing a two-tab temperature controller mount suitable for our c-mount lasers. We currently have a prototype, but there is no set release date. My best estimate would be that it is a few months away.
amirke  (posted 2013-08-07 07:36:10.757)
Hello !, Please advice about the diode flange plating: 1. what is the maximum gold thickness ? 2. Do you use nickel under the gold ? Thanks !
jlow  (posted 2013-08-07 14:14:00.0)
Response from Jeremy at Thorlabs: The maximum gold thickness is around 2µm. There's a thin layer of Ni underneath.
jouko.viitanen  (posted 2013-05-16 05:43:02.71)
The 9.55µm QCL seems to be for CW use. I am looking for a pulsed or modulable laser close to the 10µm band. It can be broadband, from 9µm to 13µm. I guess the QF9550 can still be modulated by the driver current, but what is then the maximum modulation frequency? I would need pulses with maximum width of 400ns. The modulation depth could be from 10% to 100%. Best regards, Jouko Viitanen VTT
cdaly  (posted 2013-05-21 13:56:00.0)
Response from Chris at Thorlabs: Thank you for using our web feedback. We have not measured small signal modulation bandwidth on the QF9550CM1. However, we routinely test QCLs of all different wavelengths with pulses from 100-500 ns with no problems at 100% modulation depth (square pulses). Proper electronics design can result in <20 ns rise times. So there should be no problem with this operation regime.

The rows shaded green below denote single-frequency lasers.

Item #WavelengthOutput
Power
Operating
Current
Operating
Voltage
Beam
Divergence
Spatial
Mode
Package
ParallelPerpendicular
L375P70MLD375 nm70 mW110 mA5.4 V22.5°Single ModeØ5.6 mm
L404P400M404 nm400 mW370 mA4.9 V13° (1/e2)42° (1/e2)MultimodeØ5.6 mm
LP405-SF10405 nm10 mW50 mA5.0 V--Single ModeØ5.6 mm, SM Pigtail
L405P20405 nm20 mW38 mA4.8 V8.5°19°Single ModeØ5.6 mm
L405G2405 nm35 mW50 mA4.9 V10°21°Single ModeØ3.8 mm
DL5146-101S405 nm40 mW70 mA5.2 V19°Single ModeØ5.6 mm
L405P150405 nm150 mW138 mA4.9 VSingle ModeØ3.8 mm
LP405-MF300405 nm300 mW350 mA4.5 V--MultimodeØ5.6 mm, MM Pigtail
L405G1405 nm1000 mW900 mA5.0 V13°45°MultimodeØ9 mm
L450G1447 nm3000 mW2000 mA5.2 V30°MultimodeØ9 mm
LP450-SF15450 nm15 mW85 mA5.5 V--Single ModeØ9 mm, SM Pigtail
PL450B450 nm80 mW100 mA5.8 V4 - 11°18 - 25°Single ModeØ3.8 mm
L450P1600MM450 nm1600 mW1200 mA4.8 V19 - 27°MultimodeØ5.6 mm
L473P100473 nm100 mW120 mA5.7 V1024Single ModeØ5.6 mm
LP488-SF20488 nm20 mW70 mA6.0 V--Single ModeØ5.6 mm, SM Pigtail
L488P60488 nm60 mW75 mA6.8 V23°Single ModeØ5.6 mm
L515A1515 nm10 mW50 mA5.4 V6.5°21°Single ModeØ5.6 mm
LP520-SF15520 nm15 mW140 mA6.5 V--Single ModeØ9 mm, SM Pigtail
L520P50520 nm45 mW150 mA7.0 V22°Single ModeØ5.6 mm
PL520520 nm50 mW150 mA7.0 V22°Single ModeØ3.8 mm
DJ532-10532 nm10 mW220 mA1.9 V0.69°0.69°Single ModeØ9.5 mm (non-standard)
DJ532-40532 nm40 mW330 mA1.9 V0.69°0.69°Single ModeØ9.5 mm (non-standard)
LP633-SF50633 nm50 mW170 mA2.6 V--Single ModeØ5.6 mm, SM Pigtail
HL63163DG633 nm100 mW170 mA2.6 V8.5°18°Single ModeØ5.6 mm
LPS-635-FC635 nm2.5 mW70 mA2.2 V--Single ModeØ9.5 mm, SM Pigtail
LPS-PM635-FC635 nm2.5 mW70 mA2.2 V--Single ModeØ9.5 mm, PM Pigtail
L635P5635 nm5 mW30 mA<2.7 V32°Single ModeØ5.6 mm
HL6312G635 nm5 mW55 mA<2.7 V31°Single ModeØ9 mm
LPM-635-SMA635 nm8 mW50 mA2.2 V--MultimodeØ9 mm, MM Pigtail
LP635-SF8635 nm8 mW60 mA2.3 V--Single ModeØ5.6 mm, SM Pigtail
HL6320G635 nm10 mW70 mA<2.7 V31°Single ModeØ9 mm
HL6322G635 nm15 mW85 mA<2.7 V30°Single ModeØ9 mm
L637P5637 nm5 mW20 mA<2.4 V34°Single ModeØ5.6 mm
LP637-SF50637 nm50 mW140 mA2.6 V--Single ModeØ5.6 mm, SM Pigtail
LP637-SF70637 nm70 mW220 mA2.7 V--Single ModeØ5.6 mm, SM Pigtail
HL63142DG637 nm100 mW140 mA2.7 V18°Single ModeØ5.6 mm
HL63133DG637 nm170 mW250 mA2.8 V17°Single ModeØ5.6 mm
HL6388MG637 nm250 mW340 mA2.3 V10°40°MultimodeØ5.6 mm
L638P040638 nm40 mW92 mA2.4 V10°21°Single ModeØ5.6 mm
L638P150638 nm150 mW230 mA2.7 V918Single ModeØ3.8 mm
L638P200638 nm200 mW280 mA2.9 V814Single ModeØ5.6 mm
L638P700M638 nm700 mW820 mA2.2 V35°MultimodeØ5.6 mm
HL6358MG639 nm10 mW40 mA2.3 V21°Single ModeØ5.6 mm
HL6323MG639 nm30 mW95 mA2.3 V8.5°30°Single ModeØ5.6 mm
HL6362MG640 nm40 mW90 mA2.4 V10°21°Single ModeØ5.6 mm
LP642-SF20642 nm20 mW90 mA2.5 V--Single ModeØ5.6 mm, SM Pigtail
LP642-PF20642 nm20 mW90 mA2.5 V--Single ModeØ5.6 mm, PM Pigtail
HL6364DG642 nm60 mW125 mA2.5 V10°21°Single ModeØ5.6 mm
HL6366DG642 nm80 mW155 mA2.5 V10°21°Single ModeØ5.6 mm
HL6385DG642 nm150 mW280 mA2.6 V17°Single ModeØ5.6 mm
L650P007650 nm7 mW28 mA2.2 V28°Single ModeØ5.6 mm
LPS-660-FC658 nm7.5 mW65 mA2.6 V--Single ModeØ5.6 mm, SM Pigtail
LP660-SF20658 nm20 mW80 mA2.6 V--Single ModeØ5.6 mm, SM Pigtail
LPM-660-SMA658 nm22.5 mW65 mA2.6 V--MultimodeØ5.6 mm, MM Pigtail
HL6501MG658 nm30 mW65 mA2.6 V8.5°22°Single ModeØ5.6 mm
L658P040658 nm40 mW75 mA2.2 V10°20°Single ModeØ5.6 mm
LP660-SF40658 nm40 mW135 mA2.5 V--Single ModeØ5.6 mm, SM Pigtail
LP660-SF60658 nm60 mW210 mA2.4 V--Single ModeØ5.6 mm, SM Pigtail
HL6544FM660 nm50 mW115 mA2.3 V10°17°Single ModeØ5.6 mm
LP660-SF50660 nm50 mW140 mA2.3 V--Single ModeØ5.6 mm, SM Pigtail
HL6545MG660 nm120 mW170 mA2.45 V10°17°Single ModeØ5.6 mm
L660P120660 nm120 mW175 mA2.5 V10°17°Single ModeØ5.6 mm
LPS-675-FC670 nm2.5 mW55 mA2.2 V--Single ModeØ9 mm, SM Pigtail
HL6748MG670 nm10 mW30 mA2.2 V25°Single ModeØ5.6 mm
HL6714G670 nm10 mW55 mA<2.7 V22°Single ModeØ9 mm
HL6756MG670 nm15 mW35 mA2.3 V24°Single ModeØ5.6 mm
SLD1332V670 nm500 mW800 mA2.4 V23°MultimodeØ9 mm
LP685-SF15685 nm15 mW55 mA2.1 V--Single ModeØ5.6 mm, SM Pigtail
HL6750MG685 nm50 mW75 mA2.3 V21°Single ModeØ5.6 mm
HL6738MG690 nm30 mW90 mA2.5 V8.5°19°Single ModeØ5.6 mm
LP705-SF15705 nm15 mW55 mA2.3 V--Single ModeØ5.6 mm, SM Pigtail
HL7001MG705 nm40 mW75 mA2.5 V18°Single ModeØ5.6 mm
HL7302MG730 nm40 mW75 mA2.5 V18°Single ModeØ5.6 mm
DBR760PN761 nm9 mW125 mA2.0 V--Single FrequencyButterfly, PM Pigtail
L780P010780 nm10 mW24 mA1.8 V30°Single ModeØ5.6 mm
LP780-SAD15780 nm15 mW180 mA2.2 V--Single FrequencyØ9 mm, SM Pigtail
DBR780PN781 nm45 mW250 mA1.9 V--Single FrequencyButterfly, PM Pigtail
L785P5785 nm5 mW28 mA1.9 V10°29°Single ModeØ5.6 mm
LPS-PM785-FC785 nm6.25 mW65 mA---Single ModeØ5.6 mm, PM Pigtail
LPS-785-FC785 nm10 mW65 mA1.85 V--Single ModeØ5.6 mm, SM Pigtail
LP785-SF20785 nm20 mW85 mA1.9 V--Single ModeØ5.6 mm, SM Pigtail
DBR785S785 nm25 mW230 mA2.0 V--Single FrequencyButterfly, SM Pigtail
DBR785P785 nm25 mW230 mA2.0 V--Single FrequencyButterfly, PM Pigtail
L785P25785 nm25 mW45 mA1.9 V30°Single ModeØ5.6 mm
FPV785S785 nm50 mW410 mA2.2 V--Single FrequencyButterfly, SM Pigtail
LP785-SAV50785 nm50 mW500 mA2.2 V--Single FrequencyØ9 mm, SM Pigtail
L785P090785 nm90 mW120 mA2.0 V16°Single ModeØ5.6 mm
LP785-SF100785 nm100 mW300 mA2.0 V--Single ModeØ9 mm, SM Pigtail
L785H1785 nm200 mW220 mA2.5 V8.5°16°Single ModeØ5.6 mm
FPL785S-250785 nm250 mW (Min)500 mA2.0 V--Single ModeButterfly, SM Pigtail
LD785-SEV300785 nm300 mW500 mA (Max)2.0 V16°Single FrequencyØ9 mm
LD785-SH300785 nm300 mW400 mA2.0 V18°Single ModeØ9 mm
FPL785C785 nm300 mW400 mA2.0 V18°Single Mode3 mm x 5 mm Submount
LD785-SE400785 nm400 mW550 mA2.0 V16°Single ModeØ9 mm
ML620G40805 nm500 mW650 mA1.9 V34°MultimodeØ5.6 mm
L808P010808 nm10 mW50 mA2 V10°30°Single ModeØ5.6 mm
L808P030808 nm30 mW65 mA2 V10°30°Single ModeØ5.6 mm
M9-808-0150808 nm150 mW180 mA1.9 V17°Single ModeØ9 mm
L808P200808 nm200 mW260 mA2 V10°30°MultimodeØ5.6 mm
LD808-SEV500808 nm500 mW800 mA (Max)2.2 V14°Single FrequencyØ9 mm
FPL808S808 nm200 mW750 mA2.3 V--Single ModeButterfly, SM Pigtail
LD808-SE500808 nm500 mW750 mA2.2 V14°Single ModeØ9 mm
L808P500MM808 nm500 mW650 mA1.8 V12°30°MultimodeØ5.6 mm
L808P1000MM808 nm1000 mW1100 mA2 V30°MultimodeØ9 mm
LP820-SF80820 nm80 mW230 mA2.3 V--Single ModeØ5.6 mm, SM Pigtail
L820P100820 nm100 mW145 mA2.1 V17°Single ModeØ5.6 mm
L820P200820 nm200 mW250 mA2.4 V17°Single ModeØ5.6 mm
DBR828PN828 nm24 mW250 mA2.0 V--Single FrequencyButterfly, PM Pigtail
LPS-830-FC830 nm10 mW120 mA---Single ModeØ5.6 mm, SM Pigtail
LPS-PM830-FC830 nm10 mW120 mA---Single ModeØ5.6 mm, PM Pigtail
LP830-SF30830 nm30 mW115 mA1.9 V--Single ModeØ9 mm, SM Pigtail
HL8338MG830 nm50 mW75 mA1.9 V22°Single ModeØ5.6 mm
FPL830S830 nm350 mW900 mA2.5 V--Single ModeButterfly, SM Pigtail
LD830-SE650830 nm650 mW900 mA2.3 V13°Single ModeØ9 mm
LD830-MA1W830 nm1 W1.330 A2.1 V24°MultimodeØ9 mm
LD830-ME2W830 nm2 W3 A (Max)2.0 V21°MultimodeØ9 mm
L840P200840 nm200 mW255 mA2.4 V917Single ModeØ5.6 mm
L850P010850 nm10 mW50 mA2 V10°30°Single ModeØ5.6 mm
L850P030850 nm30 mW65 mA2 V8.5°30°Single ModeØ5.6 mm
LP850-SF80850 nm80 mW230 mA2.3 V--Single ModeØ5.6 mm, SM Pigtail
L850P200850 nm200 mW255 mA2.4 V917Single ModeØ5.6 mm
FPV852S852 nm20 mW400 mA2.2 V--Single FrequencyButterfly, SM Pigtail
DBR852PN852 nm24 mW300 mA2.0 V--Single FrequencyButterfly, PM Pigtail
LP852-SF30852 nm30 mW115 mA1.9 V--Single ModeØ9 mm, SM Pigtail
L852P50852 nm50 mW75 mA1.9 V22°Single ModeØ5.6 mm
L852P100852 nm100 mW120 mA1.9 V28°Single ModeØ9 mm
L852P150852 nm150 mW170 mA1.9 V18°Single ModeØ9 mm
FPL852S852 nm350 mW900 mA2.5 V--Single ModeButterfly, SM Pigtail
LD852-SE600852 nm600 mW950 mA2.3 V7° (1/e2)13° (1/e2)Single ModeØ9 mm
LD852-SEV600852 nm600 mW1050 mA (Max)2.2 V13° (1/e2)Single FrequencyØ9 mm
LP880-SF3880 nm3 mW25 mA2.2 V--Single ModeØ5.6 mm, SM Pigtail
L880P010880 nm10 mW30 mA2.0 V12°37°Single ModeØ5.6 mm
L904P010904 nm10 mW50 mA2 V10°30°Single ModeØ5.6 mm
LP915-SF40915 nm40 mW130 mA1.5 V--Single ModeØ9 mm, SM Pigtail
M9-915-0300915 nm300 mW370 mA1.9 V28°Single ModeØ9 mm
LP940-SF30940 nm30 mW90 mA1.5 V--Single ModeØ9 mm, SM Pigtail
M9-940-0200940 nm200 mW270 mA1.9 V28°Single ModeØ9 mm
FPV976S976 nm30 mW400 mA (Max)2.2 V--Single FrequencyButterfly, SM Pigtail
DBR976PN976 nm33 mW450 mA2.0 V--Single FrequencyButterfly, PM Pigtail
DBR976S976 nm50 mW150 mA2.0 V--Single FrequencyButterfly, SM Pigtail
BL976-SAG300976 nm300 mW470 mA2.0 V--Single ModeButterfly, SM Pigtail
BL976-PAG500976 nm500 mW830 mA2.0 V--Single ModeButterfly, PM Pigtail
BL976-PAG700976 nm700 mW1090 mA2.0 V--Single ModeButterfly, PM Pigtail
BL976-PAG900976 nm900 mW1480 mA2.5 V--Single ModeButterfly, PM Pigtail
L980P010980 nm10 mW25 mA2 V10°30°Single ModeØ5.6 mm
LP980-SF15980 nm15 mW70 mA1.5 V--Single ModeØ5.6 mm, SM Pigtail
L980P030980 nm30 mW100 mA1.5 V10°30°Single ModeØ5.6 mm
L9805E2P5980 nm50 mW95 mA1.5 V33°Single ModeØ5.6 mm
L980P100A980 nm100 mW150 mA1.6 V32°MultimodeØ5.6 mm
L980P200980 nm200 mW300 mA1.5 V30°MultimodeØ5.6 mm
L1060P200J1060 nm200 mW280 mA1.3 V32°Single ModeØ9 mm
DBR1064S1064 nm40 mW150 mA2.0 V--Single FrequencyButterfly, SM Pigtail
DBR1064P1064 nm40 mW150 mA2.0 V--Single FrequencyButterfly, PM Pigtail
DBR1064PN1064 nm110 mW550 mA2.0 V--Single FrequencyButterfly, PM Pigtail
LPS-1060-FC1064 nm50 mW220 mA1.4 V--Single ModeØ9 mm, SM Pigtail
M9-A64-02001064 nm200 mW280 mA1.7 V28°Single ModeØ9 mm
M9-A64-03001064 nm300 mW390 mA1.7 V28°Single ModeØ9 mm
LP1310-SAD21310 nm2.0 mW40 mA1.1 V--Single FrequencyØ5.6 mm, SM Pigtail
LPS-1310-FC1310 nm2.5 mW20 mA1.1 V--Single ModeØ5.6 mm, SM Pigtail
LPS-PM1310-FC1310 nm2.5 mW20 mA1.1 V--Single ModeØ5.6 mm, PM Pigtail
L1310P5DFB1310 nm5 mW20 mA1.1 VSingle FrequencyØ5.6 mm
ML725B8F1310 nm5 mW20 mA1.1 V25°30°Single ModeØ5.6 mm
LPSC-1310-FC1310 nm50 mW350 mA2 V--Single ModeØ5.6 mm, SM Pigtail
FPL1053S1310 nm130 mW400 mA1.7 V--Single ModeButterfly, SM Pigtail
FPL1053P1310 nm130 mW400 mA1.7 V--Single ModeButterfly, PM Pigtail
FPL1053T1310 nm300 mW (Pulsed)750 mA2 V15°28°Single ModeØ5.6 mm
FPL1053C1310 nm300 mW (Pulsed)750 mA2 V15°27°Single ModeChip on Submount
L1310G11310 nm2000 mW5 A1.5 V24°MultimodeØ9 mm
L1370G11370 nm2000 mW5 A1.4 V22°MultimodeØ9 mm
L1450G11450 nm2000 mW5 A1.4 V22°MultimodeØ9 mm
L1480G11480 nm2000 mW5 A1.6 V20°MultimodeØ9 mm
LPS-1550-FC1550 nm1.5 mW30 mA1.0 V--Single ModeØ5.6 mm, SM Pigtail
LPS-PM1550-FC1550 nm1.5 mW30 mA1.1 V--Single ModeØ5.6 mm, SM Pigtail
LP1550-SAD21550 nm2.0 mW40 mA1.0 V--Single FrequencyØ5.6 mm, SM Pigtail
L1550P5DFB1550 nm5 mW20 mA1.1 V10°Single FrequencyØ5.6 mm
ML925B45F1550 nm5 mW30 mA1.1 V25°30°Single ModeØ5.6 mm
SFL1550S1550 nm40 mW300 mA1.5 V--Single FrequencyButterfly, SM Pigtail
SFL1550P1550 nm40 mW300 mA1.5 V--Single FrequencyButterfly, PM Pigtail
LPSC-1550-FC1550 nm50 mW250 mA2 V--Single ModeØ5.6 mm, SM Pigtail
FPL1009S1550 nm100 mW400 mA1.4 V--Single ModeButterfly, SM Pigtail
FPL1009P1550 nm100 mW400 mA1.4 V--Single ModeButterfly, PM Pigtail
FPL1001C1550 nm150 mW400 mA1.4 V18°31°Single ModeChip on Submount
FPL1055T1550 nm300 mW (Pulsed)750 mA2 V15°28°Single ModeØ5.6 mm
FPL1055C1550 nm300 mW (Pulsed)750 mA2 V15°28°Single ModeChip on Submount
L1550G11550 nm1700 mW5 A1.5 V28°MultimodeØ9 mm
L1575G11575 nm1700 mW5 A1.5 V28°MultimodeØ9 mm
LPSC-1625-FC1625 nm50 mW350 mA1.5 V--Single ModeØ5.6 mm, SM Pigtail
FPL1054S1625 nm80 mW400 mA1.7 V--Single ModeButterfly, SM Pigtail
FPL1054P1625 nm80 mW400 mA1.7 V--Single ModeButterfly, PM Pigtail
FPL1054C1625 nm250 mW (Pulsed)750 mA2 V15°28°Single ModeChip on Submount
FPL1054T1625 nm250 mW (Pulsed)750 mA2 V15°28°Single ModeØ5.6 mm
FPL1059S1650 nm80 mW400 mA1.7 V--Single ModeButterfly, SM Pigtail
FPL1059P1650 nm80 mW400 mA1.7 V--Single ModeButterfly, PM Pigtail
FPL1059C1650 nm225 mW (Pulsed)750 mA2 V15°28°Single ModeChip on Submount
FPL1059T1650 nm225 mW (Pulsed)750 mA2 V15°28°Single ModeØ5.6 mm
FPL1940S1940 nm15 mW400 mA2 V--Single ModeButterfly, SM Pigtail
FPL2000S2 µm15 mW400 mA2 V--Single ModeButterfly, SM Pigtail
FPL2000C2 µm30 mW400 mA5.2 V19°Single ModeChip on Submount
QD4500CM14.00 - 5.00 µm (DFB)40 mW<500 mA10.5 V30°40°Single FrequencyTwo-Tab C-Mount
QF4050D24.05 µm (FP)800 mW750 mA13 V30°40°Single ModeD-Mount
QF4050D34.05 µm (FP)1200 mW1000 mA13 V30°40°Single ModeD-Mount
QF4400CM14.40 µm (FP)500 mW1020 mA10.7 V26°53°Single ModeTwo-Tab C-Mount
QD4580CM14.54 - 4.62 µm (DFB)40 mW<600 mA10.5 V50°30°Single FrequencyTwo-Tab C-Mount
QF4550CM14.55 µm (FP)450 mW900 mA10.5 V30°55°Single ModeTwo-Tab C-Mount
QF4600T14.60 µm (FP)400 mW800 mA12.0 V40°30°Single ModeØ9 mm
QF4800CM14.80 µm (FP)500 mW850 mA15.5 V33°53°Single ModeTwo-Tab C-Mount
QD5500CM15.00 - 8.00 µm (DFB)40 mW<700 mA9.5 V30 °45 °Single FrequencyTwo-Tab C-Mount
QD5250CM15.20 - 5.30 µm (DFB)120 mW<660 mA10.2 V41°52°Single FrequencyTwo-Tab C-Mount
QF5300CM15.30 µm (FP)150 mW1200 mA9.0 V30°55°Single ModeTwo-Tab C-Mount
QD6500CM16.00 - 7.00 µm (DFB)40 mW<650 mA10 V35 °50 °Single FrequencyTwo-Tab C-Mount
QF7200CM17.20 µm (FP)250 mW1300 mA8.5 V35°65°Single ModeTwo-Tab C-Mount
QD7500CM17.00 - 8.00 µm (DFB)40 mW<600 mA10 V40°50°Single FrequencyTwo-Tab C-Mount
QD7500DM17.00 - 8.00 µm (DFB)100 mW<600 mA11.5 V40°55°Single FrequencyD-Mount
QF7700CM17.70 µm (FP)250 mW1100 mA7.8 V37°65°Single ModeTwo-Tab C-Mount
QD7950CM17.90 - 8.00 µm (DFB)100 mW<1000 mA9.5 V55°70°Single FrequencyTwo-Tab C-Mount
QD8050CM18.00 - 8.10 µm (DFB)100 mW<1000 mA9.5 V55°70°Single FrequencyTwo-Tab C-Mount
QD8500CM18.00 - 9.00 µm (DFB)100 mW<900 mA9.5 V40 °55 °Single FrequencyTwo-Tab C-Mount
QD8500HHLH8.00 - 9.00 µm (DFB)100 mW<600 mA10.2 V--Single FrequencyHorizontal HHL
QF8350CM18.55 µm (FP)300 mW1750 mA8.5 V55°70°Single ModeTwo-Tab C-Mount
QD8650CM18.60 - 8.70 µm (DFB)50 mW<900 mA9.5 V55°70°Single FrequencyTwo-Tab C-Mount
QD9500CM19.00 - 10.00 µm (DFB)60 mW<800 mA9.5 V40°55°Single FrequencyTwo-Tab C-Mount
QD9500HHLH9.00 - 10.00 µm (DFB)100 mW<600 mA10.2 V--Single FrequencyHorizontal HHL
QF9550CM19.55 µm (FP)80 mW1500 mA7.8 V35°60°Single ModeTwo-Tab C-Mount
QD10500CM110.00 - 11.00 µm (DFB)40 mW<600 mA10 V40°55°Single FrequencyTwo-Tab C-Mount

The rows shaded green above denote single-frequency lasers.

4.40 - 4.80 µm Center Wavelength Fabry-Perot QCLs

Item # Info Center Wavelengtha Power Typical/Max Operating Current Wavelength Tested Spatial Mode
QF4400CM1 info 4.40 µm (2273 cm-1) 500 mW 1020 mA / 1100 mA Yes Single
QF4550CM1b info 4.55 µm (2198 cm-1) 450 mW 900 mA / 1100 mA Yes Single
QF4800CM1 info 4.80 µm (2083 cm-1) 500 mW 850 mA / 1050 mA Yes Single
  • These lasers exhibit broadband emission. The center wavelength is defined as a weighted average over all the modes. Each device has a unique spectrum. To get the spectrum of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs Icon next to the serial number of the device. If you need spectral characteristics different than those shown below, please contact Tech Support to request a custom laser.
  • If emission at a single wavelength is preferred, please consider our 4.00 - 5.00 µm Distributed Feedback Lasers.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemQF4400CM1 Support Documentation
QF4400CM1Fabry-Perot Quantum Cascade Laser, 4.40 µm CWL, 500 mW, Two-Tab C-Mount
$5,156.34
Lead Time
This item is out of stock and currently has a  lead time
Choose ItemQF4550CM1 Support Documentation
QF4550CM1Fabry-Perot Quantum Cascade Laser, 4.55 µm CWL, 450 mW, Two-Tab C-Mount
$5,156.34
Today
Choose ItemQF4800CM1 Support Documentation
QF4800CM1Fabry-Perot Quantum Cascade Laser, 4.80 µm CWL, 500 mW, Two-Tab C-Mount
$5,156.34
Today

5.30 µm Center Wavelength Fabry-Perot QCL

Item # Info Center Wavelengtha Power Typical/Max Operating Current Wavelength Tested Spatial Mode
QF5300CM1b info 5.30 µm (1887 cm-1) 150 mW 1200 mA / 1300 mA Yes Single
  • These lasers exhibit broadband emission. The center wavelength is defined as a weighted average over all the modes. Each device has a unique spectrum. To get the spectrum of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs Icon next to the serial number of the device. If you need spectral characteristics different than those shown below, please contact Tech Support to request a custom laser.
  • If emission at a single wavelength is preferred, please consider our 5.20 - 5.30 µm Distributed Feedback Lasers.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemQF5300CM1 Support Documentation
QF5300CM1Fabry-Perot Quantum Cascade Laser, 5.30 µm CWL, 150 mW, Two-Tab C-Mount
$5,156.34
Today

7.20 - 7.70 µm Center Wavelength Fabry-Perot QCLs

Item # Info Center Wavelengtha Power Typical/Max Operating Current Wavelength Tested Spatial Mode
QF7200CM1b info 7.20 µm (1389 cm-1) 250 mW 1300 mA / 1500 mA Yes Single
QF7700CM1b info 7.70 µm (1299 cm-1) 250 mW 1100 mA / 1300 mA Yes Single
  • These lasers exhibit broadband emission. The center wavelength is defined as a weighted average over all the modes. Each device has a unique spectrum. To get the spectrum of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs Icon next to the serial number of the device. If you need spectral characteristics different than those shown below, please contact Tech Support to request a custom laser.
  • If emission at a single wavelength is preferred, please consider our 7.00 - 8.00 µm Distributed Feedback Lasers.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemQF7200CM1 Support Documentation
QF7200CM1Fabry-Perot Quantum Cascade Laser, 7.20 µm CWL, 250 mW, Two-Tab C-Mount
$5,156.34
Today
Choose ItemQF7700CM1 Support Documentation
QF7700CM1Fabry-Perot Quantum Cascade Laser, 7.70 µm CWL, 250 mW, Two-Tab C-Mount
$5,156.34
Today

8.35 µm Center Wavelength Fabry-Perot QCL

Item # Info Center Wavelengtha Power Typical/Max Operating Current Wavelength Tested Spatial Mode
QF8350CM1 info 8.35 µm (1198 cm-1) 300 mW 1750 mA / 2000 mA Yes Single
  • These lasers exhibit broadband emission. The center wavelength is defined as a weighted average over all the modes. Each device has a unique spectrum. To get the spectrum of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs Icon next to the serial number of the device. If you need spectral characteristics different than those shown below, please contact Tech Support to request a custom laser.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemQF8350CM1 Support Documentation
QF8350CM1Fabry-Perot Quantum Cascade Laser, 8.35 µm CWL, 300 mW, Two-Tab C-Mount
$5,156.34
Today

9.55 µm Center Wavelength Fabry-Perot QCL

Item # Info Center Wavelengtha Power Typical/Max Operating Current Wavelength Tested Spatial Mode
QF9550CM1b info 9.55 µm (1047 cm-1) 80 mW 1500 mA / 1700 mA Yes Single
  • These lasers exhibit broadband emission. The center wavelength is defined as a weighted average over all the modes. Each device has a unique spectrum. To get the spectrum of a specific, serial-numbered device, click "Choose Item" below, then click on the Docs Icon next to the serial number of the device. If you need spectral characteristics different than those shown below, please contact Tech Support to request a custom laser.
  • If emission at a single wavelength is preferred, please consider our 9.00 - 10.00 µm Distributed Feedback Lasers.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemQF9550CM1 Support Documentation
QF9550CM1Fabry-Perot Quantum Cascade Laser, 9.55 µm CWL, 80 mW, Two-Tab C-Mount
$5,156.34
Today
Log In  |   My Account  |   Contact Us  |   Careers  |   Privacy Policy  |   Home  |   FAQ  |   Site Index
Regional Websites: West Coast US | Europe | Asia | China | Japan
Copyright 1999-2019 Thorlabs, Inc.
Sales: 1-973-300-3000
Technical Support: 1-973-300-3000


High Quality Thorlabs Logo 1000px:Save this Image

Last Edited: Aug 06, 2013 Author: Dan Daranciang