Create an Account  |   Log In

View All »Matching Part Numbers


Your Shopping Cart is Empty
         

Laser Diodes: Ø3.8 mm, Ø5.6 mm, Ø9 mm, and Ø9.5 mm TO Cans


  • Ø3.8 mm, Ø5.6 mm, Ø9 mm, and Ø9.5 mm Laser Diodes
  • Center Wavelengths Ranging from 375 to 1650 nm
  • Output Powers from 5 mW to 2 W

Ø3.8 mm

Ø9 mm

Ø5.6 mm

Application Idea

Our Laser Diode Driver Kits Include an
LD Controller, TEC Controller,
LD/TEC Mount, and Accessories

Ø9.5 mm

(DPSS Laser)

Ø9 mm

(High Heat Load)

Related Items


Please Wait
Contact ThorlabsLaser Diode Tutorial
Webpage Features
info icon Clicking this icon opens a window that contains specifications and mechanical drawings.
info icon Clicking this icon allows you to download our standard support documentation.

Choose Item

Clicking the words "Choose Item" opens a drop-down list containing all of the in-stock lasers around the desired center wavelength. The red icon next to the serial number then allows you to download L-I-V and spectral measurements for that serial-numbered device.

Features

  • Fabry-Perot (FP), Distributed Feedback (DFB), Volume Holographic Grating (VHG), and Diode-Pumped Solid-State (DPSS) Laser Diodes
  • Output Powers from 5 mW to 2 W
  • Center Wavelengths Available from 375 nm to 1650 nm
  • Easily Choose a Compatible Mount Using Our LD Pin Codes
  • Compatible with Thorlabs' Laser Diode and TEC Controllers

TO-packaged laser diodes are available in standard Ø3.8 mm, Ø5.6 mm, or Ø9 mm TO cans, as well as Ø9.5 mm cans. We have categorized the pin configurations into standard A, B, C, D, E, F, G, and H pin codes (see the diagram below). This pin code allows the user to easily determine compatible mounts.

Some of our diodes that are offered in header packages can be converted to a sealed TO can package by request, as indicated in the tables below. Please contact Tech Support for details.

Post-Mounted Laser Diode
Click to Enlarge

Ø9 mm TO-Can Laser Diode Secured in Post-Mounted LM9F Holder

Notes on Center Wavelength
While the center wavelength is listed for each diode, this is only a typical number. The center wavelength of a particular diode varies from production run to production run. Thus, the diode you receive may not operate at the typical center wavelength. Diodes can be temperature tuned, which will alter the lasing wavelength. A number of items below are listed as Wavelength Tested, which means that the dominant wavelength of each unit has been measured and recorded. For many of these items, after clicking "Choose Item" below, a list will appear that contains the dominant wavelength, output power, and operating current of each in-stock unit. Clicking on the red Docs Icon next to the serial number provides access to a PDF with serial-number-specific L-I-V and spectral characteristics. Customers may also contact Tech Support to select one of these diodes based on the tested wavelength if serial-number-specific information is not available below.

Spatial Mode and Linewidth
We offer laser diodes with different output characteristics (power, wavelength, beam size, shape, etc.). Most lasers offered here are single spatial mode (single mode, or SM) and a few are designed for higher-power, multi-spatial-mode (multimode, or MM) operation. Our wavelength stabilized VHG laser diodes, sold below, have excellent single mode performance. Some single mode laser diodes can be operated with limited single-longitudinal-mode characteristics. For better side mode suppression ratio (SMSR) performance, other devices such as DFB lasers, DBR lasers, or external cavity lasers should be considered. Please see our Laser Diode Tutorial for more information on these topics and laser diodes in general.

Laser diodes are sensitive to electrostatic shock. Please take the proper precautions when handling the device (see our electrostatic shock accessories). These lasers are also sensitive to optical feedback, which can cause significant fluctuations in the output power of the laser diode depending on the application. See our optical isolators for potential solutions to this problem. Members of our Tech Support staff are available to help you select a laser diode and to discuss possible operation issues.

Pin Codes

Pin Codes A through G
Laser Diode pin codes indicate which mounts and diodes are compaitble. The drawings do not represent exact wiring diagrams.
For warranty information and the Thorlabs Life Support and Military Use Policy for laser diodes, please refer to the LD Operation tab.

Choosing a Collimation Lens for Your Laser Diode

Since the output of a laser diode is highly divergent, collimating optics are necessary. Since aspheric lenses do not introduce spherical aberration, they are commonly chosen when the collimated laser beam is to be between one and five millimeters. A simple example will illustrate the key specifications to consider when choosing the correct lens for a given application.

Example:
Laser Diode to be Used: L780P010
Desired Collimated Beam Diameter: Ø3 mm (Major Axis)

The specifications for the L780P010 laser diode indicate that the typical parallel and perpendicular FWHM beam divergences are 10° and 30°, respectively. Therefore, as the light diverges, an elliptical beam will result. To collect as much light as possible during the collimation process, consider the larger of these two divergence angles in any calculations (i.e., in this case use 30°). If you wish to convert your elliptical beam in to a round one, we suggest using an Anamorphic Prism Pair, which magnifies one axis of your beam.

laser diode collimation drawing

Ø = Beam Diameter

Θ = Divergence Angle

From the information above, the focal length of the lens can be determined, using the thin lens approximation:

focal length calculation

With this information known, it is now time to choose the appropriate collimating lens. Thorlabs offers a large selection of aspheric lenses to choose from. For this application the ideal lens is a -B AR-coated molded glass aspheric lens with focal length near 5.6 mm. The C171TMD-B (mounted) or 354171-B (unmounted) aspheric lenses have a focal length of 6.20 mm, which will result in a collimated beam diameter (major axis) of 3.3 mm. Next, check to see if the numerical aperture (NA) of the diode is smaller than the NA of the lens:

0.30 = NALens > NADiode ≈ sin(15°) = 0.26

Up to this point, we have been using the FWHM beam diameter to characterize the beam. However, a better practice is to use the 1/e2 beam diameter. For a Gaussian beam profile, the 1/e2 diameter is almost equal to 1.7X the FWHM diameter. The 1/e2 beam diameter therefore captures more of the laser diode's output light (for greater power delivery) and minimizes far-field diffraction (by clipping less of the incident light).

A good rule of thumb is to pick a lens with an NA twice of the NA of the laser diode. For example, either the A390-B or the A390TM-B could be used as these lenses each have an NA of 0.53, which is more than twice the approximate NA of our laser diode (0.26). Note that these lenses each have a focal length of 4.6 mm, resulting in an approximate major beam diameter of 2.5 mm.

Laser Diode and Laser Diode Pigtail Warranty

When operated within their specifications, laser diodes have extremely long lifetimes. Most failures occur from mishandling or operating the lasers beyond their maximum ratings. Laser Diodes are among the most static-sensitive devices currently made. Proper ESD Protection should be worn whenever handling a laser diode. Due to their extreme electrostatic sensitivity, laser diodes cannot be returned after their sealed package has been open. Laser diodes in their original sealed package can be returned for a full refund or credit.

Handling and Storage Precautions

Due to their extreme susceptibility to damage from electrostatic discharge (ESD), care should be taken whenever handling and operating laser diodes:

  • Wrist Straps: Use grounded anti-static wrist straps whenever handling diodes.
  • Anti-Static Mats: Always work on grounded anti-static mats.
  • Laser Diode Storage: When not in use, short the leads of the laser together to protect against ESD damage.

Operating and Safety Precautions

Use an Appropriate Driver:
Laser diodes require precise control of operating current and voltage to avoid overdriving the laser diode. In addition, the laser driver should provide protection against power supply transients. Select a laser driver appropriate for your application. Do not use a voltage supply with a current limiting resistor since it does not provide sufficient regulation to protect the laser.

Power Meters:
When setting up and calibrating a laser diode with its driver, use a NIST-traceable power meter to precisely measure the laser output. It is usually safest to measure the laser output directly before placing the laser in an optical system. If this is not possible, be sure to take all optical losses (transmissive, aperture stopping, etc.) into consideration when determining the total output of the laser.

Reflections:
Flat surfaces in the optical system in front of a laser diode can cause some of the laser energy to reflect back onto the laser’s monitor photodiode giving an erroneously high photodiode current. If optical components are moved within the system and energy is no longer reflected onto the monitor photodiode, a constant power feedback loop will sense the drop in photodiode current and try to compensate by increasing the laser drive current and possibly overdriving the laser. Back reflections can also cause other malfunctions or damage to laser diodes. To avoid this, be sure that all surfaces are angled 5-10°, and when necessary, use optical isolators to attenuate direct feedback into the laser.

Heat Sinks:
Laser diode lifetime is inversely proportional to operating temperature. Always mount the laser in a suitable heat sink to remove excess heat from the laser package.

Voltage and Current Overdrive:
Be careful not to exceed the maximum voltage and drive current listed on the specification sheet with each laser diode, even momentarily. Also, reverse voltages as little as 3 V can damage a laser diode.

ESD Sensitive Device:
Currently operating lasers are susceptible to ESD damage. This is particularly aggravated by using long interface cables between the laser diode and its driver due to the inductance that the cable presents. Avoid exposing the laser or its mounting apparatus to ESDs at all times.

ON/OFF and Power Supply Coupled Transients:
Due to their fast response times, laser diodes can be easily damaged by transients less than 1 µs. High current devices such as soldering irons, vacuum pumps, and fluorescent lamps can cause large momentary transients. Thus, always use surge-protected outlets.

If you have any questions regarding laser diodes, please call your local Thorlabs Technical Support office for assistance.

Life Support and Military Use Application Policy

Thorlabs' products are not authorized for use as critical components in life support devices or systems or in any military applications without the express written approval of the president of Thorlabs:

  1. Life support devices or systems are devices or systems intended for either surgical implantation into the body or to sustain life and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
  2. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.
  3. Thorlabs' laser diodes are not intended nor warranted for usage in Military Applications.

Laser Safety and Classification

Safe practices and proper usage of safety equipment should be taken into consideration when operating lasers. The eye is susceptible to injury, even from very low levels of laser light. Thorlabs offers a range of laser safety accessories that can be used to reduce the risk of accidents or injuries. Laser emission in the visible and near infrared spectral ranges has the greatest potential for retinal injury, as the cornea and lens are transparent to those wavelengths, and the lens can focus the laser energy onto the retina. 

Laser Glasses Blackout Materials Enclosure Systems
Laser Viewing Cards Alignment Tools Shutter and Controllers
Laser Safety Signs

Safe Practices and Light Safety Accessories

  • Thorlabs recommends the use of safety eyewear whenever working with laser beams with non-negligible powers (i.e., > Class 1) since metallic tools such as screwdrivers can accidentally redirect a beam.
  • Laser goggles designed for specific wavelengths should be clearly available near laser setups to protect the wearer from unintentional laser reflections.
  • Goggles are marked with the wavelength range over which protection is afforded and the minimum optical density within that range.
  • Blackout Materials can prevent direct or reflected light from leaving the experimental setup area.
  • Thorlabs' Enclosure Systems can be used to contain optical setups to isolate or minimize laser hazards.
  • A fiber-pigtailed laser should always be turned off before connecting it to or disconnecting it from another fiber, especially when the laser is at power levels above 10 mW.
  • All beams should be terminated at the edge of the table, and laboratory doors should be closed whenever a laser is in use.
  • Do not place laser beams at eye level.
  • Carry out experiments on an optical table such that all laser beams travel horizontally.
  • Remove unnecessary reflective items such as reflective jewelry (e.g., rings, watches, etc.) while working near the beam path.
  • Be aware that lenses and other optical devices may reflect a portion of the incident beam from the front or rear surface.
  • Operate a laser at the minimum power necessary for any operation.
  • If possible, reduce the output power of a laser during alignment procedures.
  • Use beam shutters and filters to reduce the beam power.
  • Post appropriate warning signs or labels near laser setups or rooms.
  • Use a laser sign with a lightbox if operating Class 3R or 4 lasers (i.e., lasers requiring the use of a safety interlock).
  • Do not use Laser Viewing Cards in place of a proper Beam Trap.

 

Laser Classification

Lasers are categorized into different classes according to their ability to cause eye and other damage. The International Electrotechnical Commission (IEC) is a global organization that prepares and publishes international standards for all electrical, electronic, and related technologies. The IEC document 60825-1 outlines the safety of laser products. A description of each class of laser is given below:

Class Description Warning Label
1 This class of laser is safe under all conditions of normal use, including use with optical instruments for intrabeam viewing. Lasers in this class do not emit radiation at levels that may cause injury during normal operation, and therefore the maximum permissible exposure (MPE) cannot be exceeded. Class 1 lasers can also include enclosed, high-power lasers where exposure to the radiation is not possible without opening or shutting down the laser.  Class 1
1M Class 1M lasers are safe except when used in conjunction with optical components such as telescopes and microscopes. Lasers belonging to this class emit large-diameter or divergent beams, and the MPE cannot normally be exceeded unless focusing or imaging optics are used to narrow the beam. However, if the beam is refocused, the hazard may be increased and the class may be changed accordingly.  Class 1M
2 Class 2 lasers, which are limited to 1 mW of visible continuous-wave radiation, are safe because the blink reflex will limit the exposure in the eye to 0.25 seconds. This category only applies to visible radiation (400 - 700 nm).  Class 2
2M Because of the blink reflex, this class of laser is classified as safe as long as the beam is not viewed through optical instruments. This laser class also applies to larger-diameter or diverging laser beams.  Class 2M
3R Lasers in this class are considered safe as long as they are handled with restricted beam viewing. The MPE can be exceeded with this class of laser, however, this presents a low risk level to injury. Visible, continuous-wave lasers are limited to 5 mW of output power in this class.  Class 3R
3B Class 3B lasers are hazardous to the eye if exposed directly. However, diffuse reflections are not harmful. Safe handling of devices in this class includes wearing protective eyewear where direct viewing of the laser beam may occur. In addition, laser safety signs lightboxes should be used with lasers that require a safety interlock so that the laser cannot be used without the safety light turning on. Class-3B lasers must be equipped with a key switch and a safety interlock.  Class 3B
4 This class of laser may cause damage to the skin, and also to the eye, even from the viewing of diffuse reflections. These hazards may also apply to indirect or non-specular reflections of the beam, even from apparently matte surfaces. Great care must be taken when handling these lasers. They also represent a fire risk, because they may ignite combustible material. Class 4 lasers must be equipped with a key switch and a safety interlock.  Class 4
All class 2 lasers (and higher) must display, in addition to the corresponding sign above, this triangular warning sign  Warning Symbol

Posted Comments:
michael.fitch  (posted 2018-11-16 16:47:18.98)
About the HL6750, when I look at the manufacturers spec sheet in the link, it appears to be pin code A. But it is listed as pin code C. Could you please check the listing?
paul.nachman  (posted 2018-07-11 12:09:32.84)
The drawings you provide in this image ... https://www.thorlabs.com/images/popupimages/HL8338MG_DWG.gif ... don't label the pin numbers in the pin diagram for comparison with the bottom view. It's lucky that you make the manufacturer's data available ... https://www.thorlabs.com/drawings/fd0e8f0902043f28-6AFA1F67-E78D-AFDC-C6C2BB53EE55033C/HL8338MG-MFGSpec.pdf ... else I would have guessed wrong.
YLohia  (posted 2018-07-12 09:57:42.0)
Hello, thank you for your feedback and bringing this issue to our attention. We are currently working on making all drawings for this item more consistent with each other.
chih.hao.li  (posted 2018-05-23 08:53:36.27)
Hi We are wondering if there is AR coating on the laser diode front window. If no, how much do you charge for an AR coated laser diode? Thank you!
YLohia  (posted 2018-05-23 05:07:46.0)
Hello, thank you for contacting Thorlabs. The windows on laser diode cans are almost always AR coated.
user  (posted 2018-03-12 15:35:01.523)
The PL450B pin connections reported in the Thorlabs selling packages and datasheets are different from the one reported in pag. 7 of the PL450B MFG Spec.
YLohia  (posted 2018-03-22 08:25:57.0)
Hello, thank you for your feedback. We took a look at this and, while they are labeled differently, the pin connections are still the same. The only thing that is different here is that the arbitrary pin numbers (Pin 1 and Pin 3) are switched in designation.
robert  (posted 2017-10-11 16:29:34.97)
It should be made clear to prospective buyers that these diodes are exceptionally sensitive to optically feedback. To quote the Thorlabs Tech Support staff "Our engineers that designed this told me that any reflection with more than 2% of the power will kill diode." That is not typical of laser diodes in this wavelength range.
tcampbell  (posted 2018-03-23 02:17:13.0)
Hello, thank you for contacting Thorlabs. After discussing with our engineers, we have added a warning for select laser diodes on this page. Please feel free to contact us if you have concerns about any other products on our site.
vg.buesaquillo  (posted 2017-06-03 13:17:19.2)
Do you can give me the spectrum of the diode laser DL5146-101S? THANKS
tfrisch  (posted 2017-06-30 01:11:14.0)
Hello, thank you for contacting Thorlabs. The spectrum will change because of differences from one production lot to another and because of differences in use, such as operating temperature and drive current. I will reach out to you directly to discuss your application.
dmitry.busko  (posted 2016-11-16 11:59:52.17)
In a datasheet for M9-940-0200 there is no any information about the LD and PD pin connections.
tfrisch  (posted 2016-11-22 08:21:01.0)
Hello, thank you for pointing out the missing circuit information. We will correct the spec sheet, but until then, if you are looking at the bottom of laser diode (pins pointing towards you), and the square cutout is down, the left pin is the Photodiode Anode, the center pin ties the Photodiode Cathode to the Laser Diode Anode and the case, and the right pin is the Laser Diode Cathode.
tfrisch  (posted 2016-11-22 08:21:01.0)
Hello, thank you for pointing out the missing circuit information. We will correct the spec sheet, but until then, if you are looking at the bottom of laser diode (pins pointing towards you), and the square cutout is down, the left pin is the Photodiode Anode, the center pin ties the Photodiode Cathode to the Laser Diode Anode and the case, and the right pin is the Laser Diode Cathode.
mitch  (posted 2016-06-18 08:50:58.713)
Hi, I would like to drive the L850P010 fast. Initially I will be using your bias-T and driver, but I plan on designing my own bias-T for 2.4GHz operation. I was wondering if you could provide details on this laser diodes approximate impedance and more importantly it's capacitance? Thanks
besembeson  (posted 2016-06-22 08:50:15.0)
Response from Bweh at Thorlabs USA: Such high speed modulation will not be suitable with this diode. You may want to consider a VCSEL instead and we don't have one for your application at this time.
pedrueze  (posted 2016-02-02 13:23:02.757)
Hi all, I have your profile current and temperature controller "Profile PRO 8000" with a combined module LD/TE controller ITC 8052. (I can send by email the pics of them.) I also have a laser diode L9805E2P5, (50 mW, 980 nm, A Pin code). The problem is that I need to choose an appropiate Temperature Controlled Laser Diode Mount for it. I was checking the TCLDM9 device. The problem is that the output of the controller is DB-15 (15 pins), and very close to it is the LD output of 9 pins. It is better understood if you can see the pics. I need to be sure which are the appropiate cables to connect between my controller and the TE mount, regarding the pin congiguration of my LD, and if they have enough space to put in the module. Could you please help me with that? Thank you very much.
besembeson  (posted 2016-02-04 10:21:59.0)
Response from Bweh at Thorlabs USA: The cables you would need will be the CAB400 for the laser control and CAB420-15 for the temperature controller. These can be found at the following page: http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=966&pn=ITC8052
cmrogers  (posted 2015-12-07 21:36:29.773)
I am looking for is a diode centered near 656nm, with as a wide a gain bandwidth as possible, for use in an ECDL. What is the gain bandwidth of the relevant diodes that you sell? Also, are any of your diodes AR coated? Thanks!
besembeson  (posted 2015-12-08 10:14:54.0)
Response from Bweh at Thorlabs USA: The Fabry Perot lasers that you would need for your wavelength of interest will typically have optical bandwidth in the 5-10nm range. The high power diode lasers, for example the HL6545MG are AR coated.
pedrueze  (posted 2015-10-12 11:42:15.523)
Hello. I just recently bought one L9805E2P5 laser diode + a cable SR9A-DB9. We have a current controller whose pin diagram could be find here: http://assets.newport.com/webDocuments-EN/images/70041001_LDC-37x4C_IX.PDF (see please page 17) As you may see, doesn't match with the pins of the cable, so we must re-wired it. My concern is which pins should I re-wire. In principle, I wired 3, 5 and 9 to use the laser diode, cathode, anode and ground chassis. Is this correct/enough to make the laser emitting? should I connect the PD cathode and Anode as well? What is the use of anode/cathode voltage sense pins in the manual? Concerning the temperature, I will use the laser at low-power (for alignement). Thanks a lot for your help.
jlow  (posted 2015-10-12 04:55:23.0)
Response from Jeremy at Thorlabs: At a minimum, you will want to connect Pin2 and Pin7 on the SR9A-DB9 to your controller. If you want to use the internal photodiode for feedback, you will want to connect Pin4 as well. I will contact you directly via e-mail to help with this.
hmagh001  (posted 2015-05-08 10:53:27.903)
We just bought L808P200 for our lab and it is supposed to have a maximum power of 200 mW, and the spec. file of Laser diodes says that the threshold current is 100 mA. However, when I set the current to 80 mW from the LD controller (bought from thorlab as well, LDC220C) and measure the power with an optical power meter, it shows only 5 mW. I was wondering, how can we reach to higher power numbers with this laser diode. Thanks, Hadi.
jlow  (posted 2015-05-13 11:05:19.0)
Response from Jeremy at Thorlabs: The threshold current is the current needed for the LD to lase. To get to the 200mW power, you would need to drive this near the operating current (somewhere between 220 to 300mA for the L808P200). Please use an optical power meter to measure the output power instead of relying just on the supplied current. Also, the light from the LD is divergent so please make sure your optical power meter will capture all the light from the LD to get an accurate reading.
rssi_2nava  (posted 2014-11-24 19:25:25.74)
Hello guys, i was hoping you can tell me the amplitude reflection coefficients of the diode rear and front faces of the L1060P100J laser diode, i can't find them anywhere and i need them to compute the transmision function of the diode cavity. I'll appreciate reading from you soon Kind Regards
jlow  (posted 2014-12-11 01:30:49.0)
Response from Jeremy at Thorlabs: The coating information on the chip facet is proprietary and is not something that we can provide.
jimzambuto  (posted 2014-10-03 11:13:51.5)
For the diode part number L404P400M, what is the extent of the SLOW AAXIS. I am trying to design a collimator and the residual divergence caused by the extent of the laser facet in the slow or multimode direction is very important.
jlow  (posted 2014-10-13 09:05:41.0)
Response from Jeremy at Thorlabs: You can find the far-field emission pattern/angle on page 3 of the MFG spec sheet in the supporting documents. The direct link is http://www.thorlabs.com/thorcat/QTN/L404P400M-MFGSpec.pdf.
ar_1348  (posted 2014-04-26 15:03:07.077)
i need a driver for M5-905-0100
cdaly  (posted 2014-05-08 02:58:52.0)
Response from Chris at Thorlabs: This laser can be mounted in TCLDM9 and driven with LDC202C which can provide 200mA, covering the M5-905-0100's max operating current of 170mA. I'd suggest using a temperature controller as well, such as TED200C.
t.meinert  (posted 2014-01-08 08:36:55.39)
ask for Quotation: LD Type: DL 5146-101s Quantity: 100pcs/a 1000pcs/a
jlow  (posted 2014-01-08 10:15:34.0)
Response from Jeremy at Thorlabs: We will contact you directly to provide a quote.

The rows shaded green below denote single-frequency lasers.

Item #WavelengthOutput
Power
Operating
Current
Operating
Voltage
Beam
Divergence
Spatial
Mode
Package
ParallelPerpendicular
L375P70MLD375 nm70 mW110 mA5.4 V22.5°Single ModeØ5.6 mm
L404P400M404 nm400 mW370 mA4.9 V13° (1/e2)42° (1/e2)MultimodeØ5.6 mm
LP405-SF10405 nm10 mW50 mA5.0 V--Single ModeØ5.6 mm, SM Pigtail
L405P20405 nm20 mW38 mA4.8 V8.5°19°Single ModeØ5.6 mm
DL5146-101S405 nm40 mW70 mA5.2 V19°Single ModeØ5.6 mm
L405P150405 nm150 mW138 mA4.9 VSingle ModeØ3.8 mm
LP405-MF300405 nm300 mW350 mA4.5 V--MultimodeØ5.6 mm, MM Pigtail
L405G1405 nm1000 mW900 mA5.0 V13°45°MultimodeØ9 mm
LP450-SF15450 nm15 mW85 mA5.5 V--Single ModeØ9 mm, SM Pigtail
PL450B450 nm80 mW100 mA5.8 V4 - 11°18 - 25°Single ModeØ3.8 mm
L450P1600MM450 nm1600 mW1200 mA4.8 V19 - 27°MultimodeØ5.6 mm
LP462-MF1W462 nm1000 mW1100 mA5.0 V--MultimodeØ9 mm, MM Pigtail
L473P100473 nm100 mW120 mA5.7 V1024Single ModeØ5.6 mm
LP488-SF20488 nm20 mW70 mA6.0 V--Single ModeØ5.6 mm, SM Pigtail
L488P60488 nm60 mW75 mA6.8 V723Single ModeØ5.6 mm
LP520-SF15520 nm15 mW140 mA6.5 V--Single ModeØ9 mm, SM Pigtail
L520P50520 nm45 mW150 mA7.0 V22°Single ModeØ5.6 mm
PL520520 nm50 mW150 mA7.0 V22°Single ModeØ3.8 mm
LP520-MF100520 nm100 mW320 mA6.0 V--MultimodeØ5.6 mm, MM Pigtail
DJ532-10532 nm10 mW220 mA1.9 V0.69°0.69°Single ModeØ9.5 mm (non-standard)
DJ532-40532 nm40 mW330 mA1.9 V0.69°0.69°Single ModeØ9.5 mm (non-standard)
LP633-SF50633 nm50 mW170 mA2.6 V--Single ModeØ5.6 mm, SM Pigtail
HL63163DG633 nm100 mW170 mA2.6 V8.5°18°Single ModeØ5.6 mm
LPS-635-FC635 nm2.5 mW70 mA2.2 V--Single ModeØ9.5 mm, SM Pigtail
LPS-PM635-FC635 nm2.5 mW70 mA2.2 V--Single ModeØ9.5 mm, PM Pigtail
L635P5635 nm5 mW30 mA<2.7 V32°Single ModeØ5.6 mm
HL6312G635 nm5 mW55 mA<2.7 V31°Single ModeØ9 mm
LPM-635-SMA635 nm8 mW50 mA2.2 V--MultimodeØ9 mm, MM Pigtail
LP635-SF8635 nm8 mW60 mA2.3 V--Single ModeØ5.6 mm, SM Pigtail
HL6320G635 nm10 mW70 mA<2.7 V31°Single ModeØ9 mm
HL6322G635 nm15 mW85 mA<2.7 V30°Single ModeØ9 mm
L637P5637 nm5 mW20 mA<2.4 V34°Single ModeØ5.6 mm
LP637-SF50637 nm50 mW140 mA2.6 V--Single ModeØ5.6 mm, SM Pigtail
LP637-SF70637 nm70 mW220 mA2.7 V--Single ModeØ5.6 mm, SM Pigtail
HL63142DG637 nm100 mW140 mA2.7 V18°Single ModeØ5.6 mm
HL63133DG637 nm170 mW250 mA2.8 V17°Single ModeØ5.6 mm
HL6388MG637 nm250 mW340 mA2.3 V10°40°MultimodeØ5.6 mm
L638P040638 nm40 mW92 mA2.4 V10°21°Single ModeØ5.6 mm
L638P150638 nm150 mW230 mA2.7 V918Single ModeØ3.8 mm
L638P200638 nm200 mW280 mA2.9 V814Single ModeØ5.6 mm
L638P700M638 nm700 mW820 mA2.2 V35°MultimodeØ5.6 mm
HL6358MG639 nm10 mW40 mA2.3 V21°Single ModeØ5.6 mm
HL6323MG639 nm30 mW95 mA2.3 V8.5°30°Single ModeØ5.6 mm
HL6362MG640 nm40 mW90 mA2.4 V10°21°Single ModeØ5.6 mm
LP642-SF20642 nm20 mW90 mA2.5 V--Single ModeØ5.6 mm, SM Pigtail
LP642-PF20642 nm20 mW90 mA2.5 V--Single ModeØ5.6 mm, PM Pigtail
HL6364DG642 nm60 mW125 mA2.5 V10°21°Single ModeØ5.6 mm
HL6366DG642 nm80 mW155 mA2.5 V10°21°Single ModeØ5.6 mm
HL6385DG642 nm150 mW280 mA2.6 V17°Single ModeØ5.6 mm
L650P007650 nm7 mW28 mA2.2 V28°Single ModeØ5.6 mm
LPS-660-FC658 nm7.5 mW65 mA2.6 V--Single ModeØ5.6 mm, SM Pigtail
LP660-SF20658 nm20 mW80 mA2.6 V--Single ModeØ5.6 mm, SM Pigtail
LPM-660-SMA658 nm22.5 mW65 mA2.6 V--MultimodeØ5.6 mm, MM Pigtail
HL6501MG658 nm30 mW65 mA2.6 V8.5°22°Single ModeØ5.6 mm
L658P040658 nm40 mW75 mA2.2 V10°20°Single ModeØ5.6 mm
LP660-SF40658 nm40 mW135 mA2.5 V--Single ModeØ5.6 mm, SM Pigtail
LP660-SF60658 nm60 mW210 mA2.4 V--Single ModeØ5.6 mm, SM Pigtail
HL6544FM660 nm50 mW115 mA2.3 V10°17°Single ModeØ5.6 mm
LP660-SF50660 nm50 mW140 mA2.3 V--Single ModeØ5.6 mm, SM Pigtail
HL6545MG660 nm120 mW170 mA2.45 V10°17°Single ModeØ5.6 mm
L660P120660 nm120 mW175 mA2.5 V10°17°Single ModeØ5.6 mm
LPS-675-FC670 nm2.5 mW55 mA2.2 V--Single ModeØ9 mm, SM Pigtail
HL6748MG670 nm10 mW30 mA2.2 V25°Single ModeØ5.6 mm
HL6714G670 nm10 mW55 mA<2.7 V22°Single ModeØ9 mm
HL6756MG670 nm15 mW35 mA2.3 V24°Single ModeØ5.6 mm
SLD1332V670 nm500 mW800 mA2.4 V23°MultimodeØ9 mm
LP685-SF15685 nm15 mW55 mA2.1 V--Single ModeØ5.6 mm, SM Pigtail
HL6750MG685 nm50 mW75 mA2.3 V21°Single ModeØ5.6 mm
HL6738MG690 nm30 mW90 mA2.5 V8.5°19°Single ModeØ5.6 mm
LP705-SF15705 nm15 mW55 mA2.3 V--Single ModeØ5.6 mm, SM Pigtail
HL7001MG705 nm40 mW75 mA2.5 V18°Single ModeØ5.6 mm
HL7302MG730 nm40 mW75 mA2.5 V18°Single ModeØ5.6 mm
DBR760PN761 nm9 mW125 mA2.0 V--Single FrequencyPM, Butterfly
L780P010780 nm10 mW24 mA1.8 V30°Single ModeØ5.6 mm
LP780-SAD15780 nm15 mW180 mA2.2 V--Single FrequencyØ9 mm, SM Pigtail
L785P5785 nm5 mW28 mA1.9 V10°29°Single ModeØ5.6 mm
LPS-PM785-FC785 nm6.25 mW65 mA---Single ModeØ5.6 mm, PM Pigtail
LPS-785-FC785 nm10 mW65 mA1.85 V--Single ModeØ5.6 mm, SM Pigtail
LP785-SF20785 nm20 mW85 mA1.9 V--Single ModeØ5.6 mm, SM Pigtail
DBR785S785 nm25 mW230 mA2.0 V--Single FrequencySM, Butterfly
DBR785P785 nm25 mW230 mA2.0 V--Single FrequencyPM, Butterfly
L785P25785 nm25 mW45 mA1.9 V30°Single ModeØ5.6 mm
FPV785S785 nm50 mW410 mA2.2 V--Single FrequencySM, Butterfly
LP785-SAV50785 nm50 mW500 mA2.2 V--Single FrequencyØ9 mm, SM Pigtail
L785P090785 nm90 mW120 mA2.0 V16°Single ModeØ5.6 mm
LP785-SF100785 nm100 mW300 mA2.0 V--Single ModeØ9 mm, SM Pigtail
FPL785S-250785 nm250 mW (Min)500 mA2.0 V--Single ModeSM Butterfly
LD785-SEV300785 nm300 mW500 mA (Max)2.0 V16°Single FrequencyØ9 mm
LD785-SH300785 nm300 mW400 mA2.0 V18°Single ModeØ9 mm
FPL785C785 nm300 mW400 mA2.0 V18°Single Mode3 mm x 5 mm Submount
FPL785CM785 nm300 mW400 mA2.0 V18°Single ModeC-Mount
LD785-SE400785 nm400 mW550 mA2.0 V16°Single ModeØ9 mm
ML620G40805 nm500 mW650 mA1.9 V34°MultimodeØ5.6 mm
L808P010808 nm10 mW50 mA2 V10°30°Single ModeØ5.6 mm
L808P030808 nm30 mW65 mA2 V10°30°Single ModeØ5.6 mm
M9-808-0150808 nm150 mW180 mA1.9 V17°Single ModeØ9 mm
L808P200808 nm200 mW260 mA2 V10°30°MultimodeØ5.6 mm
LD808-SEV500808 nm500 mW800 mA (Max)2.2 V14°Single FrequencyØ9 mm
FPL808S808 nm200 mW750 mA2.3 V--Single ModeSM Butterfly
LD808-SE500808 nm500 mW750 mA2.2 V14°Single ModeØ9 mm
L808P500MM808 nm500 mW650 mA1.8 V12°30°MultimodeØ5.6 mm
L808P1000MM808 nm1000 mW1100 mA2 V30°MultimodeØ9 mm
LP820-SF80820 nm80 mW230 mA2.3 V--Single ModeØ5.6 mm, SM Pigtail
L820P100820 nm100 mW145 mA2.1 V17°Single ModeØ5.6 mm
L820P200820 nm200 mW250 mA2.4 V17°Single ModeØ5.6 mm
LPS-830-FC830 nm10 mW120 mA---Single ModeØ5.6 mm, SM Pigtail
LPS-PM830-FC830 nm10 mW120 mA---Single ModeØ5.6 mm, PM Pigtail
LP830-SF30830 nm30 mW115 mA1.9 V--Single ModeØ9 mm, SM Pigtail
HL8338MG830 nm50 mW75 mA1.9 V22°Single ModeØ5.6 mm
FPL830S830 nm350 mW900 mA2.5 V--Single ModeSM Butterfly
LD830-SE650830 nm650 mW900 mA2.3 V13°Single ModeØ9 mm
LD830-MA1W830 nm1 W1.330 A2.1 V24°MultimodeØ9 mm
LD830-ME2W830 nm2 W3 A (Max)2.0 V21°MultimodeØ9 mm
L840P200840 nm200 mW255 mA2.4 V917Single ModeØ5.6 mm
L850P010850 nm10 mW50 mA2 V10°30°Single ModeØ5.6 mm
L850P030850 nm30 mW65 mA2 V8.5°30°Single ModeØ5.6 mm
LP850-SF80850 nm80 mW230 mA2.3 V--Single ModeØ5.6 mm, SM Pigtail
L850P200850 nm200 mW255 mA2.4 V917Single ModeØ5.6 mm
FPV852S852 nm20 mW400 mA2.2 V--Single FrequencySM, Pigtail
LP852-SF30852 nm30 mW115 mA1.9 V--Single ModeØ9 mm, SM Pigtail
L852P50852 nm50 mW75 mA1.9 V22°Single ModeØ5.6 mm
L852P100852 nm100 mW120 mA1.9 V28°Single ModeØ9 mm
L852P150852 nm150 mW170 mA1.9 V18°Single ModeØ9 mm
FPL852S852 nm350 mW900 mA2.5 V--Single ModeSM Butterfly
LD852-SE600852 nm600 mW950 mA2.3 V7° (1/e2)13° (1/e2)Single ModeØ9 mm
LD852-SEV600852 nm600 mW1050 mA (Max)2.2 V13° (1/e2)Single FrequencyØ9 mm
LP880-SF3880 nm3 mW25 mA2.2 V--Single ModeØ5.6 mm, SM Pigtail
L880P010880 nm10 mW30 mA2.0 V12°37°Single ModeØ5.6 mm
L904P010904 nm10 mW50 mA2 V10°30°Single ModeØ5.6 mm
LP915-SF40915 nm40 mW130 mA1.5 V--Single ModeØ9 mm, SM Pigtail
M9-915-0300915 nm300 mW370 mA1.9 V28°Single ModeØ9 mm
LP940-SF30940 nm30 mW90 mA1.5 V--Single ModeØ9 mm, SM Pigtail
M9-940-0200940 nm200 mW270 mA1.9 V28°Single ModeØ9 mm
DBR976S976 nm50 mW150 mA2.0 V--Single FrequencySM, Butterfly
DBR976PN976 nm33 mW450 mA2.0 V--Single FrequencyPM, Butterfly
BL976-SAG300976 nm300 mW470 mA2.0 V--Single ModeSM, Butterfly
BL976-PAG500976 nm500 mW830 mA2.0 V--Single ModePM, Butterfly
BL976-PAG700976 nm700 mW1090 mA2.0 V--Single ModePM, Butterfly
BL976-PAG900976 nm900 mW1480 mA2.5 V--Single ModePM, Butterfly
L980P010980 nm10 mW25 mA2 V10°30°Single ModeØ5.6 mm
LP980-SF15980 nm15 mW70 mA1.5 V--Single ModeØ5.6 mm, SM Pigtail
L980P030980 nm30 mW100 mA1.5 V10°30°Single ModeØ5.6 mm
L9805E2P5980 nm50 mW95 mA1.5 V33°Single ModeØ5.6 mm
L980P100A980 nm100 mW150 mA1.6 V32°MultimodeØ5.6 mm
L980P200980 nm200 mW300 mA1.5 V30°MultimodeØ5.6 mm
L1060P200J1060 nm200 mW280 mA1.3 V32°Single ModeØ9 mm
DBR1064S1064 nm40 mW150 mA2.0 V--Single FrequencySM, Butterfly
DBR1064P1064 nm40 mW150 mA2.0 V--Single FrequencyPM, Butterfly
DBR1064PN1064 nm110 mW550 mA2.0 V--Single FrequencyPM, Butterfly
LPS-1060-FC1064 nm50 mW220 mA1.4 V--Single ModeØ9 mm, SM Pigtail
M9-A64-02001064 nm200 mW280 mA1.7 V28°Single ModeØ9 mm
M9-A64-03001064 nm300 mW390 mA1.7 V28°Single ModeØ9 mm
BAL1112CM1208 nm3000 mW5000 mA1.33 V20°26°MultimodeC-Mount
LP1310-SAD21310 nm2.0 mW40 mA1.1 V--Single FrequencyØ5.6 mm, SM Pigtail
LPS-1310-FC1310 nm2.5 mW20 mA1.1 V--Single ModeØ5.6 mm, SM Pigtail
LPS-PM1310-FC1310 nm2.5 mW20 mA1.1 V--Single ModeØ5.6 mm, PM Pigtail
L1310P5DFB1310 nm5 mW20 mA1.1 VSingle FrequencyØ5.6 mm
ML725B8F1310 nm5 mW20 mA1.1 V25°30°Single ModeØ5.6 mm
LPSC-1310-FC1310 nm50 mW350 mA2 V--Single ModeØ5.6 mm, SM Pigtail
FPL1053S1310 nm130 mW400 mA1.7 V--Single ModeSM Butterfly
FPL1053P1310 nm130 mW400 mA1.7 V--Single ModePM Butterfly
FPL1053T1310 nm300 mW (Pulsed)750 mA2 V15°28°Single ModeØ5.6 mm
FPL1053C1310 nm300 mW (Pulsed)750 mA2 V15°27°Single ModeChip on Submount
L1310G11310 nm2000 mW5 A1.5 V24°MultimodeØ9 mm
L1370G11370 nm2000 mW5 A1.4 V22°MultimodeØ9 mm
L1450G11450 nm2000 mW5 A1.4 V22°MultimodeØ9 mm
L1480G11480 nm2000 mW5 A1.6 V20°MultimodeØ9 mm
LPS-1550-FC1550 nm1.5 mW30 mA1.0 V--Single ModeØ5.6 mm, SM Pigtail
LPS-PM1550-FC1550 nm1.5 mW30 mA1.1 V--Single ModeØ5.6 mm, SM Pigtail
LP1550-SAD21550 nm2.0 mW40 mA1.0 V--Single FrequencyØ5.6 mm, SM Pigtail
L1550P5DFB1550 nm5 mW20 mA1.1 V10°Single FrequencyØ5.6 mm
ML925B45F1550 nm5 mW30 mA1.1 V25°30°Single ModeØ5.6 mm
SFL1550S1550 nm40 mW300 mA1.5 V--Single FrequencySM Butterfly
SFL1550P1550 nm40 mW300 mA1.5 V--Single FrequencyPM Butterfly
LPSC-1550-FC1550 nm50 mW250 mA2 V--Single ModeØ5.6 mm, SM Pigtail
FPL1009S1550 nm100 mW400 mA1.4 V--Single ModeSM Butterfly
FPL1009P1550 nm100 mW400 mA1.4 V--Single ModePM Butterfly
FPL1001C1550 nm150 mW400 mA1.4 V18°31°Single ModeChip on Submount
FPL1055T1550 nm300 mW (Pulsed)750 mA2 V15°28°Single ModeØ5.6 mm
FPL1055C1550 nm300 mW (Pulsed)750 mA2 V15°28°Single ModeChip on Submount
L1550G11550 nm1700 mW5 A1.5 V28°MultimodeØ9 mm
L1575G11575 nm1700 mW5 A1.5 V28°MultimodeØ9 mm
LPSC-1625-FC1625 nm50 mW350 mA1.5 V--Single ModeØ5.6 mm, SM Pigtail
FPL1054S1625 nm80 mW400 mA1.7 V--Single ModeSM Butterfly
FPL1054P1625 nm80 mW400 mA1.7 V--Single ModePM Butterfly
FPL1054C1625 nm250 mW (Pulsed)750 mA2 V15°28°Single ModeChip on Submount
FPL1054T1625 nm250 mW (Pulsed)750 mA2 V15°28°Single ModeØ5.6 mm
FPL1059S1650 nm80 mW400 mA1.7 V--Single ModeSM Butterfly
FPL1059P1650 nm80 mW400 mA1.7 V--Single ModePM Butterfly
FPL1059C1650 nm225 mW (Pulsed)750 mA2 V15°28°Single ModeChip on Submount
FPL1059T1650 nm225 mW (Pulsed)750 mA2 V15°28°Single ModeØ5.6 mm
FPL1940S1940 nm15 mW400 mA2 V--Single ModeSM Butterfly
FPL2000S2 µm15 mW400 mA2 V--Single ModeSM Butterfly
FPL2000C2 µm30 mW400 mA5.2 V19°Single ModeChip on Submount
FPL2000CM2 µm30 mW400 mA2 V--Single ModeC-Mount
IF3800CM23.80 µm (FP)30 mW550 mA2.5 V40°60°Single ModeTwo-Tab C-Mount
QD4500CM14.00 - 5.00 µm (DFB)40 mW<500 mA10.5 V30°40°Single FrequencyTwo-Tab C-Mount
QF4050CM14.05 µm (FP)150 mW1030 mA12.5 V28°47°Single ModeTwo-Tab C-Mount
QF4050D24.05 µm (FP)800 mW750 mA13 V30°40°Single ModeD-Mount
QF4050D34.05 µm (FP)1200 mW1000 mA13 V30°40°Single ModeD-Mount
QF4400CM14.40 µm (FP)500 mW1020 mA10.7 V26°53°Single ModeTwo-Tab C-Mount
QD4580CM14.54 - 4.62 µm (DFB)40 mW<600 mA10.5 V50°30°Single FrequencyTwo-Tab C-Mount
QF4550CM14.55 µm (FP)450 mW900 mA10.5 V30°55°Single ModeTwo-Tab C-Mount
QF4800CM14.80 µm (FP)500 mW850 mA15.5 V33°53°Single ModeTwo-Tab C-Mount
QD5500CM15.00 - 8.00 µm (DFB)40 mW<700 mA9.5 V30 °45 °Single FrequencyTwo-Tab C-Mount
QD5250CM15.20 - 5.30 µm (DFB)120 mW<660 mA10.2 V41°52°Single FrequencyTwo-Tab C-Mount
QF5300CM15.30 µm (FP)150 mW1200 mA9.0 V30°55°Single ModeTwo-Tab C-Mount
QD6500CM16.00 - 7.00 µm (DFB)40 mW<650 mA10 V35 °50 °Single FrequencyTwo-Tab C-Mount
QF7200CM17.20 µm (FP)250 mW1300 mA8.5 V35°65°Single ModeTwo-Tab C-Mount
QD7500CM17.00 - 8.00 µm (DFB)40 mW<600 mA10 V40°50°Single FrequencyTwo-Tab C-Mount
QD7500DM17.00 - 8.00 µm (DFB)100 mW<600 mA11.5 V40°55°Single FrequencyD-Mount
QF7700CM17.70 µm (FP)250 mW1100 mA7.8 V37°65°Single ModeTwo-Tab C-Mount
QD7950CM17.90 - 8.00 µm (DFB)100 mW<1000 mA9.5 V55°70°Single FrequencyTwo-Tab C-Mount
QD8050CM18.00 - 8.10 µm (DFB)100 mW<1000 mA9.5 V55°70°Single FrequencyTwo-Tab C-Mount
QD8500CM18.00 - 9.00 µm (DFB)100 mW<900 mA9.5 V40 °55 °Single FrequencyTwo-Tab C-Mount
QD8500HHLH8.00 - 9.00 µm (DFB)100 mW<600 mA10.2 V--Single FrequencyHorizontal HHL
QF8350CM18.55 µm (FP)300 mW1750 mA8.5 V55°70°Single ModeTwo-Tab C-Mount
QD8650CM18.60 - 8.70 µm (DFB)50 mW<900 mA9.5 V55°70°Single FrequencyTwo-Tab C-Mount
QD9500CM19.00 - 10.00 µm (DFB)60 mW<800 mA9.5 V40°55°Single FrequencyTwo-Tab C-Mount
QD9500HHLH9.00 - 10.00 µm (DFB)100 mW<600 mA10.2 V--Single FrequencyHorizontal HHL
QF9150CM19.15 µm (FP)180 mW1500 mA8.4 V40°65°Single ModeTwo-Tab C-Mount
QF9550CM19.55 µm (FP)80 mW1500 mA7.8 V35°60°Single ModeTwo-Tab C-Mount
QD10500CM110.00 - 11.00 µm (DFB)40 mW<600 mA10 V40°55°Single FrequencyTwo-Tab C-Mount

The rows shaded green above denote single-frequency lasers.

375 - 405 nm TO Can Laser Diodes

Item # Info Wavelength
(nm)
Power
(mW)a
Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Spatial Mode
L375P70MLDc info 375 70 110 mA / 140 mA Ø5.6 mm F Yes - No Single Mode
L404P400M info 404 400 370 mA / 410 mA Ø5.6 mm G No S7060R No Multimode
L405P20 info 405 20 38 mA / 55 mA Ø5.6 mm B Yes S7060R No Single Mode
DL5146-101S info 405 40 70 mA / 100 mA Ø5.6 mm B Yes S7060R No Single Mode
L405P150 info 405 150 138 mA / 170 mA Ø3.8 mm G No S038S No Single Mode
L405G1 info 405 1000 900 mA / 1200 mA Ø9 mm G No S8060 No Multimode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • A temperature-controlled mount such as our LDM56F(/M) is recommended for general use.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available / Ships
L375P70MLD Support Documentation
L375P70MLD375 nm, 70 mW, Ø5.6 mm, F Pin Code, Laser Diode
$4,484.94
Today
L404P400M Support Documentation
L404P400M404 nm, 400 mW, Ø5.6 mm Package, G Pin Code, MM Laser Diode
$646.68
Volume Pricing
Today
L405P20 Support Documentation
L405P20405 nm, 20 mW, Ø5.6 mm, B Pin Code, Laser Diode
$49.98
Volume Pricing
Today
DL5146-101S Support Documentation
DL5146-101S405 nm, 40 mW, Ø5.6 mm, B Pin Code Laser Diode
$82.37
Volume Pricing
Today
L405P150 Support Documentation
L405P150405 nm, 150 mW, Ø3.8 mm, G Pin Code, Laser Diode
$91.80
Volume Pricing
Today
L405G1 Support Documentation
L405G1405 nm, 1000 mW, Ø9 mm Package, G Pin Code, MM Laser Diode
$670.00
Today

450 - 520 nm TO Can Laser Diodes

Item # Info Wavelength
(nm)
Power
(mW)a
Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Spatial Mode
PL450B info 450 80 100 mA / 145 mA Ø3.8 mm G No S038S No Single Mode
L450P1600MM info 450 1600 1200 mA / 1500 mA Ø5.6 mm G No S7060R No Multimode
L473P100 info 473 100 120 mA / 150 mA Ø5.6 mm F+c Yes - No Single Mode
L488P60 info 488 60 75 mA / 110 mA Ø5.6 mm B Yes S7060R No Single Mode
PL520 info 520 50 150 mA / 160 mA Ø3.8 mm G No S038S No Single Mode
L520P50 info 520 50 150 mA / 160 mA Ø5.6 mm A Yes S7060R No Single Mode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • This laser diode has a built in Zener diode to help protect against damage from small levels of electrostatic discharge and reverse potential on the laser diode. A temperature-controlled mount such as our LDM56F(/M) is recommended for general use.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available / Ships
PL450B Support Documentation
PL450B450 nm, 80 mW, Ø3.8 mm, G Pin Code, Laser Diode
$70.89
Volume Pricing
Today
L450P1600MM Support Documentation
L450P1600MM450 nm, 1600 mW, Ø5.6 mm, G Pin Code, MM, Laser Diode
$81.35
Today
L473P100 Support Documentation
L473P100473 nm, 100 mW, Ø5.6 mm, F+ Pin Code, Laser Diode
$2,604.00
Today
L488P60 Support Documentation
L488P60488 nm, 60 mW, Ø5.6 mm, B Pin Code, Laser Diode
$2,399.04
Today
PL520 Support Documentation
PL520520 nm, 50 mW, Ø3.8 mm, G Pin Code Laser Diode
$77.01
Volume Pricing
Today
L520P50 Support Documentation
L520P50520 nm, 50 mW, Ø5.6 mm, A Pin Code, Laser Diode
$65.79
Volume Pricing
Today

532 nm TO Can DPSS Lasers

Item # Info Wavelength
(nm)
Power
(mW)a
Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiode
Compatible
Socket
Wavelength
Tested
Spatial Mode
DJ532-10b info 532 10 220 mA / 250 mA Ø9.5 mm (Non-Standard)c A Yesd - No Single Mode
DJ532-40b info 532 40 330 mA / 400 mA Ø9.5 mm (Non-Standard)c E No - No Single Mode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Click here for more information on our 532 nm Diode Pumped Solid State Lasers.
  • These lasers have the same pin spacing as our Ø5.6 mm laser diodes. They are compatible with the LDM56 Laser Diode Mount using the LDM56DJ DPSS Laser Mounting Flange.
  • The monitor photodiode of the DJ532-10 measures the power of the pump source, not the 532 nm output. Therefore, we recommend operating these diodes in constant current mode.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available / Ships
DJ532-10 Support Documentation
DJ532-10532 nm, 10 mW, A Pin Code, DPSS Laser
$150.96
Today
DJ532-40 Support Documentation
DJ532-40532 nm, 40 mW, E Pin Code, DPSS Laser
$182.58
Today

633 - 635 nm TO Can Laser Diodes

Item #InfoWavelength
(nm)
Power
(mW)a
Typical/Max
Drive Currenta
PackagePin CodeMonitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Spatial Mode
HL63163DG info 633 100 170 mA / 230 mA Ø5.6 mm G No S7060R No Single Mode
L635P5 info 635 5 30 mA / 45 mA Ø5.6 mm A Yes S7060R No Single Mode
HL6312G info 635 5 55 mA / 85 mA Ø9 mm A Yes S8060 or S8060-4 No Single Mode
HL6320G info 635 10 70 mA / 95 mA Ø9 mm A Yes S8060 or S8060-4 No Single Mode
HL6322G info 635 15  85 mA / 100 mA Ø9 mm A Yes S8060 or S8060-4 No Single Mode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available / Ships
HL63163DG Support Documentation
HL63163DG633 nm, 100 mW, Ø5.6 mm, G Pin Code, Laser Diode
$289.68
Volume Pricing
Today
L635P5 Support Documentation
L635P5635 nm, 5 mW, Ø5.6 mm, A Pin Code, Laser Diode
$23.77
Volume Pricing
Today
HL6312G Support Documentation
HL6312G635 nm, 5 mW, Ø9 mm, A Pin Code, Laser Diode
$21.42
Volume Pricing
Today
HL6320G Support Documentation
HL6320G635 nm, 10 mW, Ø9 mm, A Pin Code, Laser Diode
$40.55
Volume Pricing
Today
HL6322G Support Documentation
HL6322G635 nm, 15 mW, Ø9 mm, A Pin Code, Laser Diode
$67.83
Volume Pricing
Today

637 - 639 nm TO Can Laser Diodes

Item # Info Wavelength
(nm)
Power
(mW)a
Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Spatial Mode
L637P5 info 637 5 20 mA / 25 mA Ø5.6 mm C Yes S7060R No Single Mode
HL63142DG info 637 100 140 mA / 180 mA Ø5.6 mm A Yes S7060R No Single Mode
HL63133DG info 637 170 250 mA / 320 mA Ø5.6 mm G No S7060R No Single Mode
HL6388MG info 637 250 340 mA / 430 mA Ø5.6 mm H No S7060R No Multimode
L638P040 info 638 40 92 mA / 115 mA Ø5.6 mm A Yes S7060R No Single Mode
L638P150 info 638 150 230 mA / 300 mA Ø3.8 mm G No S038S No Single Mode
L638P200 info 638 200 280 mA / 330 mA Ø5.6 mm G No S7060R No Single Mode
L638P700M info 638 700 820 mA / 1000 mA Ø5.6 mm G No S7060R No Multimode
HL6358MG info 639 10 40 mA / 50 mA Ø5.6 mm A Yes S7060R No Single Mode
HL6323MG info 639 30 95 mA / 130 mA Ø5.6 mm A Yes S7060R No Single Mode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available / Ships
L637P5 Support Documentation
L637P5Customer Inspired! 637 nm, 5 mW, Ø5.6 mm, C Pin Code, Laser Diode
$13.46
Volume Pricing
Today
HL63142DG Support Documentation
HL63142DG637 nm, 100 mW, Ø5.6 mm, A Pin Code, Laser Diode
$276.42
Volume Pricing
Today
HL63133DG Support Documentation
HL63133DG637 nm, 170 mW, Ø5.6 mm, G Pin Code, Laser Diode
$163.20
Volume Pricing
Today
HL6388MG Support Documentation
HL6388MG637 nm, 250 mW, Ø5.6 mm, H Pin Code, MM, Laser Diode
$56.61
Volume Pricing
Today
L638P040 Support Documentation
L638P040638 nm, 40 mW, Ø5.6 mm, A Pin Code, Laser Diode
$96.90
Volume Pricing
Today
L638P150 Support Documentation
L638P150638 nm, 150 mW, Ø3.8 mm, G Pin Code, Laser Diode
$47.00
Today
L638P200 Support Documentation
L638P200638 nm, 200 mW, Ø5.6 mm, G Pin Code, Laser Diode
$132.00
Today
L638P700M Support Documentation
L638P700M638 nm, 700 mW, Ø5.6 mm, G Pin Code, MM, Laser Diode
$61.97
Volume Pricing
Today
HL6358MG Support Documentation
HL6358MG639 nm, 10 mW, Ø5.6 mm, A Pin Code, Laser Diode
$15.40
Volume Pricing
Today
HL6323MG Support Documentation
HL6323MG639 nm, 30 mW, Ø5.6 mm, A Pin Code, Laser Diode
$129.54
Volume Pricing
Today

640 nm - 660 nm TO Can Laser Diodes

Item # Info Wavelength
(nm)
Power
(mW)a
Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Spatial Mode
HL6362MG info 640 40 90 mA / 110 mA Ø5.6 mm A Yes S7060R No Single Mode
HL6364DG info 642 60 125 mA / 155 mA Ø5.6 mm A Yes S7060R No Single Mode
HL6366DG info 642 80 155 mA / 175 mA Ø5.6 mm A Yes S7060R No Single Mode
HL6385DG info 642 150 280 mA / 350 mA Ø5.6 mm H No S7060R No Single Mode
L650P007 info 650 7 28 mA / 35 mA Ø5.6 mm A Yes S7060R No Single Mode
HL6501MG info 658 30 65 mA / 95 mA Ø5.6 mm C Yes S7060R No Single Mode
L658P040 info 658 40 75 mA / 110 mA Ø5.6 mm A Yes S7060R No Single Mode
HL6544FM info 660 50 115 mA / 135 mA Ø5.6 mm G No S7060R No Single Mode
HL6545MG info 660 120 170 mA / 210 mA Ø5.6 mm H No S7060R No Single Mode
L660P120 info 660 120 175 mA / 210 mA Ø5.6 mm C Yes S7060R No Single Mode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available / Ships
HL6362MG Support Documentation
HL6362MG640 nm, 40 mW, Ø5.6 mm, A Pin Code, Laser Diode
$117.30
Volume Pricing
Today
HL6364DG Support Documentation
HL6364DG642 nm, 60 mW, Ø5.6 mm, A Pin Code, Laser Diode
$155.04
Volume Pricing
Today
HL6366DG Support Documentation
HL6366DG642 nm, 80 mW, Ø5.6 mm, A Pin Code, Laser Diode
$196.86
Volume Pricing
Today
HL6385DG Support Documentation
HL6385DG642 nm, 150 mW, Ø5.6 mm, H Pin Code, Laser Diode
$306.00
Volume Pricing
Today
L650P007 Support Documentation
L650P007650 nm, 7 mW, Ø5.6 mm, A Pin Code, Laser Diode
$12.95
Volume Pricing
Today
HL6501MG Support Documentation
HL6501MG658 nm, 30 mW, Ø5.6 mm, C Pin Code, Laser Diode
$24.58
Volume Pricing
Today
L658P040 Support Documentation
L658P040658 nm, 40 mW, Ø5.6 mm, A Pin Code, Laser Diode
$27.29
Volume Pricing
Today
HL6544FM Support Documentation
HL6544FM660 nm, 50 mW, Ø5.6 mm, G Pin Code, Laser Diode
$33.41
Volume Pricing
Today
HL6545MG Support Documentation
HL6545MG660 nm, 120 mW, Ø5.6 mm, H Pin Code, Laser Diode
$43.86
Volume Pricing
Today
L660P120 Support Documentation
L660P120660 nm, 120 mW, Ø5.6 mm, C Pin Code, Laser Diode
$100.22
Volume Pricing
Today

670 nm - 730 nm TO Can Laser Diodes

Item #InfoWavelength
(nm)
Power
(mW)a
Typical/Max
Drive Currenta
PackagePin CodeMonitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Spatial Mode
HL6748MG info 670 10 30 mA / 45 mA Ø5.6 mm A Yes S7060R No Single Mode
HL6714G info 670 10 55 mA / 90 mA Ø9 mm A Yes S8060 or S8060-4 No Single Mode
HL6756MG info 670 15 35 mA / 45 mA Ø5.6 mm A Yes S7060R No Single Mode
SLD1332V info 670 500 800 mA / 1200 mA Ø9 mm A Yes S8060 or S8060-4 No Multimode
HL6750MG info 685 50 75 mA / 120 mA Ø5.6 mm C Yes S7060R No Single Mode
HL6738MG info 690 30 90 mA / 115 mA Ø5.6 mm C Yes S7060R No Single Mode
HL7001MG info 705 40 75 mA / 100 mA Ø5.6 mm C Yes S7060R No Single Mode
HL7302MG info 730 40 75 mA / 100 mA Ø5.6 mm A Yes S7060R No Single Mode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available / Ships
HL6748MG Support Documentation
HL6748MG670 nm, 10 mW, Ø5.6 mm, A Pin Code, Laser Diode
$26.78
Volume Pricing
Today
HL6714G Support Documentation
HL6714G670 nm, 10 mW, Ø9 mm, A Pin Code, Laser Diode
$50.75
Volume Pricing
Today
HL6756MG Support Documentation
HL6756MG670 nm, 15 mW, Ø5.6 mm, A Pin Code, Laser Diode
$60.69
Volume Pricing
Today
SLD1332V Support Documentation
SLD1332V670 nm, 500 mW, Ø9 mm, A Pin Code, MM, Laser Diode
$716.04
Volume Pricing
Today
HL6750MG Support Documentation
HL6750MG685 nm, 50 mW, Ø5.6 mm, C Pin Code, Laser Diode
$80.07
Volume Pricing
Today
HL6738MG Support Documentation
HL6738MG690 nm, 30 mW, Ø5.6 mm, C Pin Code, Laser Diode
$48.45
Volume Pricing
Today
HL7001MG Support Documentation
HL7001MGCustomer Inspired! 705 nm, 40 mW, Ø5.6 mm, C Pin Code, Laser Diode
$361.08
Volume Pricing
Today
HL7302MG Support Documentation
HL7302MG730 nm, 40 mW, Ø5.6 mm, A Pin Code, Diode
$361.08
Volume Pricing
Today

780 nm - 785 nm TO Can Laser Diodes

Note: The rows shaded green below denote single-frequency laser diodes.
Item # Info Wavelength
(nm)
Power
(mW)a
Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Spatial Mode
L780P010 info 780 10 24 mA / 40 mA Ø5.6 mm A Yes S7060R No Single Mode
L785P5 info 785 5 28 mA / 40 mA Ø5.6 mm A Yes S7060R No Single Mode
L785P25 info 785 25 45 mA / 60 mA Ø5.6 mm B Yes S7060R No Single Mode
L785P090 info 785 90 120 mA / 160 mA Ø5.6 mm C Yes S7060R No Single Mode
LD785-SEV300c,f info 785 300 500 mA (Max)d Ø9 mme E No S8060 or S8060-4 Yes Single Frequencyf
LD785-SH300g info 785 300 400 mA / 450 mA Ø9 mm H No S8060 or S8060-4 Yes Single Mode
LD785-SE400g info 785 400 550 mA / 600 mA Ø9 mm E No S8060 or S8060-4 Yes Single Mode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • In order to achieve the specified performance, we recommend using the LDM90 Laser Diode Mount and, when collimated, an NIR Optical Isolator; single frequency performance when collimated is only guaranteed with >35 dB isolation of back reflections. This volume holographic grating (VHG) laser diode is also available in an SM pigtail package with internal isolator.
  • The power can be tuned across the operating current range, given in the serial-number-specific documentation, while maintaining wavelength-stabilized, single-frequency performance within a stabilized temperature range.
  • The Ø9 mm package for the LD785-SEV300 is 4.30 mm (0.17") thick, which is more than the standard Ø9 mm package thickness of 1.50 mm (0.06"). The diode will still be compatible with all Ø9 mm laser diode mounts; please see the Drawing tab in the blue info icon (info) above for full package specifications. Mounting this diode in the LDM90(/M) requires two 2-56 screws, included with this diode.
  • Single-Frequency Laser (Single Longitudinal Mode)
  • This diode is exceptionally sensitive to optical feedback. Any reflection with more than 2% of the incident power has the potential to permanently damage the diode.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available / Ships
L780P010 Support Documentation
L780P010780 nm, 10 mW, Ø5.6 mm, A Pin Code, Laser Diode
$23.56
Volume Pricing
3-5 Days
L785P5 Support Documentation
L785P5785 nm, 5 mW, Ø5.6 mm, A Pin Code, Laser Diode
$11.12
Volume Pricing
Today
L785P25 Support Documentation
L785P25785 nm, 25 mW, Ø5.6 mm, B Pin Code, Laser Diode
$37.23
Volume Pricing
Today
L785P090 Support Documentation
L785P090785 nm, 90 mW, Ø5.6 mm, C Pin Code, Laser Diode
$43.35
Today
Choose ItemLD785-SEV300 Support Documentation
LD785-SEV300Customer Inspired! 785 nm, 300 mW, Ø9 mm TO Can, E Pin Code, VHG Wavelength-Stabilized Single-Frequency Laser Diode
$1,408.62
Today
Choose ItemLD785-SH300 Support Documentation
LD785-SH300785 nm, 300 mW, Ø9 mm, H Pin Code, Laser Diode
$286.62
Volume Pricing
Today
Choose ItemLD785-SE400 Support Documentation
LD785-SE400785 nm, 400 mW, Ø9 mm, E Pin Code, Laser Diode
$364.14
Volume Pricing
Today

805 nm - 808 nm TO Can Laser Diodes

Note: The rows shaded green below denote single-frequency laser diodes.
Item # Info Wavelength
(nm)
Power
(mW)a
Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Spatial Mode
ML620G40 info 805 500 650 mA / 850 mA Ø5.6 mm G No S7060R No Multimode
L808P010 info 808 10 50 mA / 70 mA Ø5.6 mm A Yes S7060R No Single Mode
L808P030 info 808 30 65 mA / 95 mA Ø5.6 mm A Yes S7060R No Single Mode
M9-808-0150 info 808 150 180 mA / 220 mA Ø9 mm A Yes S8060 or S8060-4 No Single Mode
L808P200 info 808 200 260 mA / 300 mA Ø5.6 mm A Yes S7060R No Multimode
LD808-SEV500c,d info 808 500 800 mA (Max)e Ø9 mmf E No S8060 or S8060-4 Yes Single Frequencyd
LD808-SE500g info 808 500 750 mA / 800 mA Ø9 mmf E No S8060 or S8060-4 Yes Single Mode
L808P500MM info 808 500 650 mA / 700 mA Ø5.6 mm A Yes S7060R No Multimode
L808P1000MM info 808 1000 1100 mA / 1500 mA Ø9 mm E No S7060R No Multimode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • In order to achieve the specified performance, we recommend using the LDM90 Laser Diode Mount and, when collimated, an NIR Optical Isolator; single frequency performance when collimated is only guaranteed with >35 dB isolation of back reflections.
  • Single-Frequency Laser (Single Longitudinal Mode)
  • The power can be tuned across the operating current range, given in the serial-number-specific documentation, while maintaining wavelength-stabilized, single-frequency performance within a stabilized temperature range.
  • The Ø9 mm package for this diode is 4.30 mm (0.17") thick, which is more than the standard Ø9 mm package thickness of 1.50 mm (0.06"). The diode will still be compatible with all Ø9 mm laser diode mounts; please see the Drawing tab in the blue info icon (info) above for full package specifications. Mounting this diode in the LDM90(/M) requires two 2-56 screws, included with this diode.
  • This diode is exceptionally sensitive to optical feedback. Any reflection with more than 2% of the incident power has the potential to permanently damage the diode.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available / Ships
ML620G40 Support Documentation
ML620G40805 nm, 500 mW, Ø5.6 mm, G Pin Code, MM, Laser Diode
$385.56
Volume Pricing
Today
L808P010 Support Documentation
L808P010808 nm, 10 mW, Ø5.6 mm, A Pin Code, Laser Diode
$20.81
Volume Pricing
Today
L808P030 Support Documentation
L808P030808 nm, 30 mW, Ø5.6 mm, A Pin Code, Laser Diode
$79.31
Volume Pricing
Today
M9-808-0150 Support Documentation
M9-808-0150808 nm, 150 mW, Ø9 mm, A Pin Code, Laser Diode
$461.04
Volume Pricing
Lead Time
L808P200 Support Documentation
L808P200808 nm, 200 mW, Ø5.6 mm, A Pin Code, MM, Laser Diode
$65.28
Volume Pricing
Today
Choose ItemLD808-SEV500 Support Documentation
LD808-SEV500808 nm, 500 mW, Ø9 mm TO Can, E Pin Code, VHG Wavelength-Stabilized Single-Frequency Laser Diode
$1,512.66
Volume Pricing
Today
Choose ItemLD808-SE500 Support Documentation
LD808-SE500808 nm, 500 mW, Ø9 mm, E Pin Code, Laser Diode
$624.24
Today
L808P500MM Support Documentation
L808P500MM808 nm, 500 mW, Ø5.6 mm, A Pin Code, MM, Laser Diode
$38.51
Today
L808P1000MM Support Documentation
L808P1000MM808 nm, 1000 mW, Ø9 mm, E Pin Code, MM, Laser Diode
$75.99
Today

820 nm - 880 nm TO Can Laser Diodes

Note: The rows shaded green below denote single-frequency laser diodes.
Item # Info Wavelength
(nm)
Power
(mW)a
Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Spatial Mode
L820P100 info 820 100 145 mA / 210 mA Ø5.6 mm C Yes S7060R No Single Mode
L820P200 info 820 200 250 mA / 340 mA Ø5.6 mm C Yes S7060R No Single Mode
HL8338MG info 830 50 75 mA / 100 mA Ø5.6 mm C Yes S7060R No Single Mode
LD830-SE650c info 830 650 900 mA / 1050 mA Ø9 mmd E No S8060 or S8060-4 Yes Single Mode
LD830-MA1W info 830 1000 1330 mA / 1700 mA Ø9 mm A Yes S8060 or S8060-4 Yes Multimode
LD830-ME2W info 830 2000 3 A (Max) Ø9 mmd E No S8060 or S8060-4 Yes Multimode
L840P200 info 840 200 255 mA / 340 mA Ø5.6 mm C Yes S7060R No Single Mode
L850P010 info 850 10 50 mA / 70 mA Ø5.6 mm A Yes S7060R No Single Mode
L850P030 info 850 30 65 mA / 95 mA Ø5.6 mm A Yes S7060R No Single Mode
L850P200 info 850 200 255 mA / 340 mA Ø5.6 mm C Yes S7060R No Single Mode
L852P50 info 852 50 75 mA / 100 mA Ø5.6 mm A Yes S7060R No Single Mode
L852P100 info 852 100 120 mA / 170 mA Ø9 mm A Yes S8060 or S8060-4 No Single Mode
L852P150 info 852 150 170 mA / 220 mA Ø9 mm A Yes S8060 or S8060-4 No Single Mode
LD852-SE600c info 852 600 950 mA / 1050 mA Ø9 mmd E No S8060 or S8060-4 Yes Single Mode
LD852-SEV600e,f info 852 600 1050 mA (Max)g Ø9 mmd E No S8060 or S8060-4 Yes Single Frequencyf
L880P010 info 880 10 30 mA / 40 mA Ø5.6 mm A Yes S7060R No Single Mode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • This diode is exceptionally sensitive to optical feedback. Any reflection with more than 2% of the incident power has the potential to permanently damage the diode.
  • The Ø9 mm package for this diode is 4.30 mm (0.17") thick, which is more than the standard Ø9 mm package thickness of 1.50 mm (0.06"). The diode will still be compatible with all Ø9 mm laser diode mounts; please see the Drawing tab in the blue info icon (info) above for full package specifications. Mounting this diode in the LDM90(/M) requires two 2-56 screws, included with this diode.
  • In order to achieve the specified performance, we recommend using the LDM90 Laser Diode Mount and, when collimated, an NIR Optical Isolator; single frequency performance when collimated is only guaranteed with >35 dB isolation of back reflections.
  • Single-Frequency Laser (Single Longitudinal Mode)
  • The power can be tuned across the operating current range, given in the serial-number-specific documentation, while maintaining wavelength-stabilized, single-frequency performance within a stabilized temperature range.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available / Ships
L820P100 Support Documentation
L820P100820 nm, 100 mW, Ø5.6 mm, C Pin Code, Laser Diode
$42.84
Today
L820P200 Support Documentation
L820P200820 nm, 200 mW, Ø5.6 mm, C Pin Code, Laser Diode
$85.43
Today
HL8338MG Support Documentation
HL8338MG830 nm, 50 mW, Ø5.6 mm, C Pin Code, Laser Diode
$56.61
Volume Pricing
Today
Choose ItemLD830-SE650 Support Documentation
LD830-SE650830 nm, 650 mW, Ø9 mm, E Pin Code, Laser Diode
$364.14
Volume Pricing
Today
LD830-MA1W Support Documentation
LD830-MA1W830 nm, 1 W, Ø9 mm, A Pin Code, MM, Laser Diode
$260.10
Today
Choose ItemLD830-ME2W Support Documentation
LD830-ME2W830 nm, 2 W, Ø9 mm, E Pin Code, MM, Laser Diode
$520.20
Today
L840P200 Support Documentation
L840P200840 nm, 200 mW, Ø5.6 mm, C Pin Code, Laser Diode
$46.50
Today
L850P010 Support Documentation
L850P010850 nm, 10 mW, Ø5.6 mm, A Pin Code, Laser Diode
$23.56
Volume Pricing
Today
L850P030 Support Documentation
L850P030850 nm, 30 mW, Ø5.6 mm, A Pin Code, Laser Diode
$88.49
Volume Pricing
Today
L850P200 Support Documentation
L850P200850 nm, 200 mW, Ø5.6 mm, C Pin Code, Laser Diode
$57.30
Today
L852P50 Support Documentation
L852P50852 nm, 50 mW, Ø5.6 mm, A Pin Code, Laser Diode
$147.90
Volume Pricing
3-5 Days
L852P100 Support Documentation
L852P100852 nm, 100 mW, Ø9 mm, A Pin Code, Laser Diode
$195.84
Volume Pricing
Today
L852P150 Support Documentation
L852P150852 nm, 150 mW, Ø9 mm, A Pin Code, Laser Diode
$288.66
Volume Pricing
Today
Choose ItemLD852-SE600 Support Documentation
LD852-SE600852 nm, 600 mW, Ø9 mm, E Pin Code, Laser Diode
$624.24
Volume Pricing
Today
Choose ItemLD852-SEV600 Support Documentation
LD852-SEV600852 nm, 600 mW, Ø9 mm TO Can, E Pin Code, VHG Wavelength-Stabilized Single-Frequency Laser Diode
$1,512.66
Volume Pricing
Today
L880P010 Support Documentation
L880P010880 nm, 10 mW, Ø5.6 mm, A Pin Code, Laser Diode
$49.98
Volume Pricing
Today

904 nm - 940 nm TO Can Laser Diodes

Item # Info Wavelength
(nm)
Power
(mW)a
Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Spatial Mode
L904P010 info 904 10 50 mA / 70 mA Ø5.6 mm A Yes S7060R No Single Mode
M9-915-0300 info 915 300 370 mA / 420 mA Ø9 mm A Yes S8060 or S8060-4 No Single Mode
M9-940-0200 info 940 200 270 mA / 320 mA Ø9 mm A Yes S8060 or S8060-4 No Single Mode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available / Ships
L904P010 Support Documentation
L904P010904 nm, 10 mW, Ø5.6 mm, A Pin Code, Laser Diode
$26.01
Volume Pricing
Today
M9-915-0300 Support Documentation
M9-915-0300915 nm, 300 mW, Ø9 mm, A Pin Code, Laser Diode
$1,102.62
Volume Pricing
Today
M9-940-0200 Support Documentation
M9-940-0200940 nm, 200 mW, Ø9 mm, A Pin Code, Laser Diode
$590.58
Volume Pricing
Today

975 nm - 980 nm TO Can Laser Diodes

Item # Info Wavelength
(nm)
Power
(mW)a
Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Spatial Mode
L980P010 info 980 10 25 mA / 40 mA Ø5.6 mm A Yes S7060R No Single Mode
L980P030 info 980 30 100 mA / 150 mA Ø5.6 mm A Yes S7060R No Single Mode
L980P100A info 980 100 150 mA / 190 mA Ø5.6 mm A Yes S7060R No Multimode
L980P200 info 980 200 300 mA / 400 mA Ø5.6 mm A Yes S7060R No Multimode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available / Ships
L980P010 Support Documentation
L980P010980 nm, 10 mW, Ø5.6 mm, A Pin Code, Laser Diode
$27.29
Volume Pricing
Today
L980P030 Support Documentation
L980P030980 nm, 30 mW, Ø5.6 mm, A Pin Code, Laser Diode
$67.58
Volume Pricing
Today
L980P100A Support Documentation
L980P100A980 nm, 100 mW, Ø5.6 mm, A Pin Code, MM, Laser Diode
$107.10
Volume Pricing
Today
L980P200 Support Documentation
L980P200980 nm, 200 mW, Ø5.6 mm, A Pin Code, Laser Diode
$135.66
Volume Pricing
Today

1060 nm - 1064 nm TO Can Laser Diodes

Item # Info Wavelength
(nm)
Power
(mW)a
Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Spatial Mode
L1060P200J info 1060 200 280 mA / 320 mA Ø9 mm A Yes S8060 or S8060-4 No Single Mode
M9-A64-0200 info 1064 200 280 mA / 350 mA Ø9 mm A Yes S8060 or S8060-4 No Single Mode
M9-A64-0300 info 1064 300 390 mA / 480 mA Ø9 mm A Yes S8060 or S8060-4 No Single Mode
Limited Stock Icon

The L1060P200J will be retired without replacement when stock is depleted. If you require this part for line production, please contact our OEM Team.

  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available / Ships
L1060P200J Support Documentation
L1060P200J1060 nm, 200 mW, Ø9 mm, A Pin Code, Laser Diode
$696.66
Volume Pricing
Today
M9-A64-0200 Support Documentation
M9-A64-02001064 nm, 200 mW, Ø9 mm, A Pin Code, Laser Diode
$426.36
Volume Pricing
Today
M9-A64-0300 Support Documentation
M9-A64-03001064 nm, 300 mW, Ø9 mm, A Pin Code, Laser Diode
$620.16
Volume Pricing
Today

1310 nm - 1480 nm TO Can Laser Diodes

Note: The rows shaded green below denote single-frequency laser diodes.

Item # Info Wavelength
(nm)
Power
(mW)a
Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Spatial Mode
L1310P5DFBc info 1310 5 20 mA / 40 mA Ø5.6 mm D Yes - Yes Single Frequencyc
ML725B8F info 1310 5 20 mA / 35 mA Ø5.6 mm D Yes - Yes Single Mode
FPL1053Td info 1310 300 (Pulsed) 750 mA / 1000 mA Ø5.6 mm E No S7060R No Single Mode
L1310G1 info 1310 2000 5 A / 8 A Ø9 mm G No S8060 or S8060-4 No Multimode
L1370G1 info 1370 2000 5 A / 8 A Ø9 mm G No S8060 or S8060-4 No Multimode
L1450G1 info 1450 2000 5 A / 8 A Ø9 mm G No S8060 or S8060-4 No Multimode
L1480G1 info 1480 2000 5 A / 8 A Ø9 mm G No S8060 or S8060-4 No Multimode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • Single-Frequency Laser (Single Longitudinal Mode)
  • This diode is available from stock in an open header package. It can be converted to a sealed TO can package by customer request. Please contact Tech Support for details.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available / Ships
L1310P5DFB Support Documentation
L1310P5DFB1310 nm, 5 mW, Ø5.6 mm, D Pin Code, DFB Laser Diode with Aspheric Lens Cap
$79.31
Volume Pricing
Today
ML725B8F Support Documentation
ML725B8F1310 nm, 5 mW, Ø5.6 mm, D Pin Code, Laser Diode
$49.47
Volume Pricing
Today
FPL1053T Support Documentation
FPL1053T1310 nm, 300 mW Pulsed, Ø5.6 mm, E Pin Code
$364.14
Today
L1310G1 Support Documentation
L1310G11310 nm, 2.0 W, Ø9 mm, G Pin Code, MM Laser Diode
$301.00
Today
L1370G1 Support Documentation
L1370G11370 nm, 2.0 W, Ø9 mm, G Pin Code, MM Laser Diode
$325.00
Today
L1450G1 Support Documentation
L1450G11450 nm, 2.0 W, Ø9 mm, G Pin Code, MM Laser Diode
$302.00
Today
L1480G1 Support Documentation
L1480G11480 nm, 2.0 W, Ø9 mm, G Pin Code, MM Laser Diode
$304.00
Today

1550 nm - 1650 nm TO Can Laser Diodes

Note: The rows shaded green below denote single-frequency laser diodes.

Item # Info Wavelength
(nm)
Power
(mW)a
Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Spatial Mode
L1550P5DFBc info 1550 5 20 mA / 40 mA Ø5.6 mm D Yes - Yes Single Frequencyc
ML925B45F info 1550 5 30 mA / 50 mA Ø5.6 mm D Yes - No Single Mode
FPL1055Td info 1550 300 (Pulsed) 750 mA / 1000 mA Ø5.6 mm E No S7060R No Single Mode
L1550G1 info 1550 1700 5 A / 8 A Ø9 mm G No S8060 or S8060-4 No Multimode
L1575G1 info 1575 1700 5 A / 8 A Ø9 mm G No S8060 or S8060-4 No Multimode
FPL1054Td info 1625 250 (Pulsed) 750 mA / 1000 mA Ø5.6 mm E No S7060R No Single Mode
FPL1059Td info 1650 225 (Pulsed) 750 mA / 1000 mA Ø5.6 mm E No S7060R No Single Mode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • Single-Frequency Laser (Single Longitudinal Mode)
  • This diode is available from stock in an open header package. It can be converted to a sealed TO can package by customer request. Please contact Tech Support for details.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available / Ships
L1550P5DFB Support Documentation
L1550P5DFB1550 nm, 5 mW, Ø5.6 mm, D Pin Code, DFB Laser Diode with Aspheric Lens Cap
$79.31
Volume Pricing
Today
ML925B45F Support Documentation
ML925B45F1550 nm, 5 mW, Ø5.6 mm, D Pin Code, Laser Diode
$49.47
Volume Pricing
Today
FPL1055T Support Documentation
FPL1055T1550 nm, 300 mW Pulsed, Ø5.6 mm, E Pin Code
$364.14
Today
L1550G1 Support Documentation
L1550G11550 nm, 1.7 W, Ø9 mm, G Pin Code, MM Laser Diode
$305.00
Today
L1575G1 Support Documentation
L1575G11575 nm, 1.7 W, Ø9 mm, G Pin Code, MM Laser Diode
$306.00
Today
FPL1054T Support Documentation
FPL1054T1625 nm, 250 mW Pulsed, Ø5.6 mm, E Pin Code
$400.86
Today
FPL1059T Support Documentation
FPL1059T1650 nm, 225 mW Pulsed, Ø5.6 mm, E Pin Code
$437.58
Today
Log In  |   My Account  |   Contact Us  |   Careers  |   Privacy Policy  |   Home  |   FAQ  |   Site Index
Regional Websites: West Coast US | Europe | Asia | China | Japan
Copyright 1999-2018 Thorlabs, Inc.
Sales: 1-973-300-3000
Technical Support: 1-973-300-3000


High Quality Thorlabs Logo 1000px:Save this Image