"; _cf_contextpath=""; _cf_ajaxscriptsrc="/cfthorscripts/ajax"; _cf_jsonprefix='//'; _cf_websocket_port=8578; _cf_flash_policy_port=1244; _cf_clientid='24AA9424672A3ED667FA9134BD95E171';/* ]]> */
 
Mounted Optical Slits
S20RD 20 µm Slit Width S5RD 5 µm Slit Width This image of an S100RD optical slit was taken with a scanning electron microscope. S150RD 150 µm Slit Width Please Wait
Optical Slit Dimensions & Material
These optical slits are mounted in a Ø1" plate, perfect for mounting in our SM1series lens tubes (SM1L03). The slit in the foil is not necessarily aligned horizontally or vertically relative to the housing during the assembly process. If you do not see what you need in our stocked offerings below, it is possible to special order slits that are fabricated from different substrate materials, have different slit sizes, incorporate multiple slits in one foil, or provide different slit configurations. Customized housings are also available. Please contact Tech Support to discuss your specific needs. In order to illustrate the process of determining whether a given laser system will damage an optic, a number of example calculations of laser induced damage threshold are given below. For assistance with performing similar calculations, we provide a spreadsheet calculator that can be downloaded by clicking the button to the right. To use the calculator, enter the specified LIDT value of the optic under consideration and the relevant parameters of your laser system in the green boxes. The spreadsheet will then calculate a linear power density for CW and pulsed systems, as well as an energy density value for pulsed systems. These values are used to calculate adjusted, scaled LIDT values for the optics based on accepted scaling laws. This calculator assumes a Gaussian beam profile, so a correction factor must be introduced for other beam shapes (uniform, etc.). The LIDT scaling laws are determined from empirical relationships; their accuracy is not guaranteed. Remember that absorption by optics or coatings can significantly reduce LIDT in some spectral regions. These LIDT values are not valid for ultrashort pulses less than one nanosecond in duration. A Gaussian beam profile has about twice the maximum intensity of a uniform beam profile. CW Laser Example However, the maximum power density of a Gaussian beam is about twice the maximum power density of a uniform beam, as shown in the graph to the right. Therefore, a more accurate determination of the maximum linear power density of the system is 1 W/cm. An AC127030C achromatic doublet lens has a specified CW LIDT of 350 W/cm, as tested at 1550 nm. CW damage threshold values typically scale directly with the wavelength of the laser source, so this yields an adjusted LIDT value: The adjusted LIDT value of 350 W/cm x (1319 nm / 1550 nm) = 298 W/cm is significantly higher than the calculated maximum linear power density of the laser system, so it would be safe to use this doublet lens for this application. Pulsed Nanosecond Laser Example: Scaling for Different Pulse Durations As described above, the maximum energy density of a Gaussian beam is about twice the average energy density. So, the maximum energy density of this beam is ~0.7 J/cm^{2}. The energy density of the beam can be compared to the LIDT values of 1 J/cm^{2} and 3.5 J/cm^{2} for a BB1E01 broadband dielectric mirror and an NB1K08 Nd:YAG laser line mirror, respectively. Both of these LIDT values, while measured at 355 nm, were determined with a 10 ns pulsed laser at 10 Hz. Therefore, an adjustment must be applied for the shorter pulse duration of the system under consideration. As described on the previous tab, LIDT values in the nanosecond pulse regime scale with the square root of the laser pulse duration: This adjustment factor results in LIDT values of 0.45 J/cm^{2} for the BB1E01 broadband mirror and 1.6 J/cm^{2} for the Nd:YAG laser line mirror, which are to be compared with the 0.7 J/cm^{2} maximum energy density of the beam. While the broadband mirror would likely be damaged by the laser, the more specialized laser line mirror is appropriate for use with this system. Pulsed Nanosecond Laser Example: Scaling for Different Wavelengths This scaling gives adjusted LIDT values of 0.08 J/cm^{2} for the reflective filter and 14 J/cm^{2} for the absorptive filter. In this case, the absorptive filter is the best choice in order to avoid optical damage. Pulsed Microsecond Laser Example If this relatively longpulse laser emits a Gaussian 12.7 mm diameter beam (1/e^{2}) at 980 nm, then the resulting output has a linear power density of 5.9 W/cm and an energy density of 1.2 x 10^{4} J/cm^{2} per pulse. This can be compared to the LIDT values for a WPQ10E980 polymer zeroorder quarterwave plate, which are 5 W/cm for CW radiation at 810 nm and 5 J/cm^{2} for a 10 ns pulse at 810 nm. As before, the CW LIDT of the optic scales linearly with the laser wavelength, resulting in an adjusted CW value of 6 W/cm at 980 nm. On the other hand, the pulsed LIDT scales with the square root of the laser wavelength and the square root of the pulse duration, resulting in an adjusted value of 55 J/cm^{2} for a 1 µs pulse at 980 nm. The pulsed LIDT of the optic is significantly greater than the energy density of the laser pulse, so individual pulses will not damage the wave plate. However, the large average linear power density of the laser system may cause thermal damage to the optic, much like a highpower CW beam.
 
