Create an Account  |   Log In

View All »Matching Part Numbers


Your Shopping Cart is Empty
         

UV Fused Silica Plano-Convex Lenses, Uncoated


  • UV-Grade Fused Silica
  • Broadband AR Coating Available
  • Near Best Form for Infinite Conjugate Applications
  • Wavelength Range: 185 nm - 2.1 µm
  • Zemax Files Available

LA4372

(Ø75 mm)

LA4984

(Ø2")

LA4380

(Ø1")

LA4647

(Ø1/2")

LA4194

(Ø6 mm)

LA4249

(Ø5 mm)

LA4039

(Ø3 mm)

LA4024

(Ø2 mm)

Related Items


Please Wait
Key Specifications
Available Diameters 2 mm and 3 mm 5 mm, 6 mm, 1/2",
1", 2", and 3"
Lens Shape Plano-Convex
Substrate Material UV-Grade Fused Silicaa
Wavelength Range 185 nm - 2.1 μm
Design Wavelength 587.6 nm
Index of Refraction 1.460 @ 588 nm
Surface Flatness
(Plano Side)
λ/2
Spherical Surface Power
(Convex Side)
3λ/2b
Surface Irregularity
(Peak to Valley)
λ/4
Diameter Tolerance +0.00 / -0.02 mm +0.00 mm / -0.10 mm
Thickness Tolerance ±0.03 mm ±0.1 mm
Surface Quality 60-40 Scratch-Dig 40-20 Scratch-Dig
Centration ≤5 arcmin <3 arcmin
Abbe Number vd = 67.82
Clear Aperture >90% of Diameter
Focal Length Tolerance ±1%
  • Click Link for Detailed Specifications on the Substrate
  • Much like surface flatness for flat optics, spherical surface power is a measure of the deviation between the surface of the curved optic and a calibrated reference gauge, typically for a 633 nm source, unless otherwise stated. This specification is also commonly referred to as surface fit.
Zemax Files
Click on the red Document icon next to the item numbers below to access the Zemax file download. Our entire Zemax Catalog is also available.
Optic Cleaning Tutorial

Features

  • Material: UV-Grade Fused Silica
  • Wavelength Range 185 nm - 2.1 μm (Uncoated)
  • Focal Lengths Available from 4 - 1000 mm

These uncoated UV-Grade Fused Silica Plano-Convex lenses are available in sizes ranging from Ø2 mm to Ø75 mm. UV-grade fused silica offers high transmission in the deep UV and exhibits virtually no laser-induced fluorescence (as measured at 193 nm), making it an ideal choice for applications from the UV to the near IR. In addition, UV fused silica has better homogeneity and a lower coefficient of thermal expansion than N-BK7.

Plano-convex lenses can focus a collimated beam or collimate light from a point source. To minimize the introduction of spherical aberration, a collimated light source should be incident on the curved surface of the lens when being focused and a point light source should be incident on the planar surface when being collimated. When image quality is not critical, plano-convex lenses can also be used as a substitute for achromatic doublets.

The focal length of each lens can be calculated using a simplified thick lens equation:

f = R/(n-1),

where n is the index of refraction and R is the radius of curvature of the lens surface. These lenses are fabricated from UV-Grade Fused Silica, which has an Abbe Number of 67.82; this value is an indicator of the dispersion.

When deciding between a plano-convex lens and a bi-convex lens, both of which cause collimated incident light to converge, it is usually preferable to choose a plano-convex lens if the desired absolute magnification is either less than 0.2 or greater than 5. Between these two values, bi-convex lenses are generally preferred.

Thorlabs offers fixed lens mounts that can be used for mounting the lenses sold here. For mounting high-curvature lenses in select sizes, extra-thick retaining rings with SM05 (0.535"-40), SM1 (1.035"-40), or SM2 (2.035"-40) threading are available that provide extra clearance for spanner wrenches (see the Lens Mounting Guide tab for more information).

UV Fused Silica lens kits are also available. Please click here for information.

Optical Coatings and Substrates
Lens Tutorial
Quick Links to Other Spherical Singlets
Plano-Convex Bi-Convex Best Form Plano-Concave Bi-Concave Positive Meniscus Negative Meniscus

Below is the transmission curve for UV Fused Silica. Total transmission is shown for a 10 mm thick, uncoated sample and includes surface reflections. The uncoated UV Fused Silica plano-convex lenses sold on this page can also be ordered with one of the following AR coatings: YAG AR V-Coating (532/1064 nm)-UV (245 - 400 nm), -A (350 - 700 nm)-B (650 - 1050 nm), and -C (1050 -1700 nm).

Our high-performance multilayer AR coatings have an average reflectance of less than 0.5% (per surface) across the specified wavelength ranges. These coatings provide good performance for angles of incidence (AOI) between 0° and 30° (0.5 NA). The plot shown below indicates the performance of the standard coatings in this family as a function of wavelength. Broadband coatings have a typical absorption of 0.25%, which is not shown in the reflectance plots.

UVFS Transmission
Click to Enlarge
Click Here for Raw Data

Thorlabs' Standard Broadband Antireflection Coatings

CXY1 in 30 mm Cage System
Click to Enlarge

CXY1 Translation Mount and
SM1 Lens Tube Mounted in a
30 mm Cage System
Threaded Mounting Adapter
Click to Enlarge

Ø1" Optic Mounted in a
ST1XY-S XY Translator

Click to Enlarge

LMR1 Fixed Mount with Ø1" Lens

Click to Enlarge

LM2XY Translating Mount with Ø2" Lens
Recommended Mounting Options for Thorlabs Lenses
Item # Mounts for Ø2 mm to Ø10 mm Optics
Imperial Metric
(Various) Fixed Lens Mounts for Small Optics, Ø5 mm to Ø10 mm
(Various) Small Optic Adapters for Use with Standard Fixed Lens Mounts, Ø2 mm to Ø10 mm
Item # Mounts for Ø1/2" (Ø12.7 mm) Optics
Imperial Metric
LMR05 LMR05/M Fixed Lens Mount for Ø1/2" Optics
LM05XY LM05XY/M Translating Lens Mount for Ø1/2" Optics
SCP05 16 mm Cage System, XY Translation Mount for Ø1/2" Optics
(Various) Ø1/2" Lens Tubes,
Optional SM05RRC Retaining Ring for High-Curvature Lenses (See Below)
Item # Mounts for Ø1" (Ø25.4 mm) Optics
Imperial Metric
LMR1 LMR1/M Fixed Lens Mount for Ø1" Optics
LM1XY LM1XY/M Translating Lens Mount for Ø1" Optics
ST1XY-S ST1XY-S/M Translating Lens Mount with Micrometer Drives (Other Drives Available)
CXY1 30 mm Cage System, XY Translation Mount for Ø1" Optics
(Various) Ø1" Lens Tubes,
Optional SM1RRC Retaining Ring for High-Curvature Lenses (See Below)
Item # Mounts for Ø2" (Ø50.8 mm) Optics
Imperial Metric
LMR2 LMR2/M Fixed Lens Mount for Ø2" Optics
LM2XY LM2XY/M Translating Lens Mount for Ø2" Optics
CXY2 60 mm Cage System, XY Translation Mount for Ø2" Optics
(Various) Ø2" Lens Tubes,
Optional SM2RRC Retaining Ring for High-Curvature Lenses (See Below)
Item # Adjustable Optic Mounts
Imperial Metric
LH1 LH1/M Adjustable Mount for Ø0.28" (Ø7.1 mm) to Ø1.80" (Ø45.7 mm) Optics
LH2 LH2/M Adjustable Mount for Ø0.77" (Ø19.6 mm) to Ø2.28" (Ø57.9 mm) Optics
VG100 VG100/M Adjustable Clamp for Ø0.5" (Ø13 mm) to Ø3.5" (Ø89 mm) Optics
SCL03 SCL03/M Self-Centering Mount for Ø0.15" (Ø3.8 mm) to Ø1.77" (Ø45.0 mm) Optics
SCL04 SCL04/M Self-Centering Mount for Ø0.15" (Ø3.8 mm) to Ø3.00" (Ø76.2 mm) Optics
LH160C LH160C/M Adjustable Mount for 60 mm Cage Systems,
Ø0.50" (Ø13 mm) to Ø2.00" (Ø50.8 mm) Optics
SCL60C SCL60C/M Self-Centering Mount for 60 mm Cage Systems,
Ø0.15" (Ø3.8 mm) to Ø1.77" (Ø45.0 mm) Optics

Mounting High-Curvature Optics

Thorlabs' retaining rings are used to secure unmounted optics within lens tubes or optic mounts. These rings are secured in position using a compatible spanner wrench. For flat or low-curvature optics, standard retaining rings manufactured from anodized aluminum are available from Ø5 mm to Ø4". For high-curvature optics, extra-thick retaining rings are available in Ø1/2", Ø1", and Ø2" sizes.

Extra-thick retaining rings offer several features that aid in mounting high-curvature optics such as aspheric lenses, short-focal-length plano-convex lenses, and condenser lenses. As shown in the animation to the right, the guide flange of the spanner wrench will collide with the surface of high-curvature lenses when using a standard retaining ring, potentially scratching the optic. This contact also creates a gap between the spanner wrench and retaining ring, preventing the ring from tightening correctly. Extra-thick retaining rings provide the necessary clearance for the spanner wrench to secure the lens without coming into contact with the optic surface.


Posted Comments:
Thomas.Bluemchen  (posted 2018-12-14 10:12:23.86)
Hallo, warum unterscheiden sich die Daten in der Zeichnung und im zmx-File? Bitte senden Sie mir korrekte Designdaten, damit ich die Linse in einem Design verwenden kann. Bieten Sie auch AR-Coatings für 193nm an? Mit freundlichen Grueßen Th. Bluemchen
nbayconich  (posted 2018-12-17 03:25:17.0)
Thank you for contacting Thorabs. Would it be possible to mention the particular discrepancy you were referring to? Is there some specific information you were looking for like transmission, reflection etc? I will reach out to you directly to discuss our custom capabilities.
deepak.korhalkar  (posted 2017-02-19 22:01:00.287)
This lens is 1 inch dia. Can you offer a variation with only change being 30 mm dia. Remaining all stays same ( except edge thickness ). Also, can this be offered with 'D' coating - covering 2.1 micron wavelength ? Qty required will be 20. Thanks & regards.
tfrisch  (posted 2017-02-20 10:04:03.0)
Hello, thank you for contacting Thorlabs. I have forwarded your request to our Tech Support Team to assist with custom quoting. They will reach out to you directly.
mg9420  (posted 2016-08-02 13:07:45.863)
Hello,Thorlabs Would you customize some special specification of lens for us? The lenses are similar to LA4647 that diameter is half inch ,but they focal Length change to 15mm and 25mm. Quantity 1.f=25mm *2 2.f=15mm *2
euv.ilya  (posted 2016-02-09 17:15:45.857)
Hello, I'm trying to calculate the exact focal distance of these lenses using formula R/(n-1) for 355 nm (3rd harmonic of Nd:YAG). Would you please tell me the exact value of refractive index at this wavelength? Alternatively, you can send me .txt or .csv data with the whole range available. Thanks!
besembeson  (posted 2016-02-10 09:14:40.0)
Response from Bweh at Thorlabs USA: These are made from UV fused silica. It is 1.4761 at 355nm. We also have the dispersion plot at the following link: http://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6973&tabname=UV%20Fused%20Silica.
marina.servol  (posted 2013-10-17 11:46:17.017)
Hello, we use UV-fused silica lenses at 300 nm and we notice a blue light emitted by the lens. Is it normal? Could it create problems on the quality of the beam? Thanks in advances
jlow  (posted 2013-10-24 09:32:00.0)
Response from Jeremy at Thorlabs: The UVFS lens should have very low autofluorescence. I will contact you directly to discuss about this.
s.lazare  (posted 2013-09-05 10:35:23.88)
We are looking for lenses f=20 mm like LA4647, but do not want any silica fluorescence when using LED at 365 nm, 280 nm or Laser at 248 nm. Could you provide some data on Nikon NIFS-S series. Thanks Sylvain
tcohen  (posted 2013-09-06 12:05:00.0)
Response from Tim at Thorlabs: Thank you for contacting us. We don’t have this data on hand but will organize testing. I’ve contacted you via email with more details.
CobbJM  (posted 2013-07-18 14:02:54.04)
Can you tell me what homogeneity grade of fused silica these lenses are made from? Where is the material from, eg, Schott, Corning, Heraeus, etc.
jlow  (posted 2013-07-18 16:12:00.0)
Response from Jeremy at Thorlabs: The glass used is from Nikon NIFS-S series. The homogeneity of this glass is not specified by Nikon.
jlow  (posted 2012-08-29 12:19:00.0)
Response from Jeremy at Thorlabs: Thank you for your feedback on this. We can put different AR coatings on these lenses. I will contact you directly regarding a quote for this.
cherold  (posted 2012-08-28 15:57:03.0)
I would like to echo previous requests for other AR coatings on fused silica lenses. 532/1064 nm coatings would be particularly useful. Fused silica has a much lower thermal expansion coefficient (than other common glasses) making it a much better substrate for high power (10s of Watts, CW) optics.
tcohen  (posted 2012-06-26 10:19:00.0)
Response from Tim at Thorlabs: Thank you for your interest in our UVFS Lenses. Although we do not have tested LIDT data for our uncoated substrates, these have very high damage thresholds in comparison to coated or cemented substrates. There is a wealth of information online about LIDT on bulk substrate. As a reference, this paper http://www.precisionphotonics.com/vitem_axpd.asp?id=21&itemtype=Technicalpapers has useful information on damage thresholds. Damage thresholds depend on the optic (substrate, surface quality, any dust or dirt accumulation, coatings, cement) as well as the source (beam diameter, pulse duration, rep rate, intensity profile, wavelength). I will contact you to discuss your source and its suitability with our UVFS lenses.
sunil.phys  (posted 2012-06-26 09:02:52.0)
What is the damage threshold of UV fused silica used to make lenses in the family of LA4380 (uncoated)?
bdada  (posted 2011-07-27 19:19:00.0)
Response from Buki at Thorlabs: Thank you for your feedback Pablo. The performance of the lens is lower than it should be. We have contacted you to initiate the return and replacement of the lenses.
moreno  (posted 2011-07-26 07:47:50.0)
Dear Sir/Madam, I am Pablo Moreno, R&D Engineer at Synova S.A. Thorlabs is our first choice in a wide range of products. We recently acquired a couple of lenses, the LA4184 and the 100 mm focal version. I observe that the transmission of these lenses is very low (ca. 70%). Is this normal? The lenses are UV coated. To measure the transmission we use a 355nm UV laser, 700 mW, CW. It should be single mode, but I observe also a weak second mode. It might have happened that I did not order the right lenses. It might be that it is normal to find this low transmission. I thank you in advance for any information you could give me. With my best regards, Pablo
Mikhail.Levin  (posted 2011-05-17 12:19:35.0)
Do you have fused silica lenses with AR for 1064nm? I am interesting lenses with fl~50 and D~25mm thank you Mikhail Levin
Adam  (posted 2010-03-31 16:23:34.0)
A response from Adam at Thorlabs to gudipati: We have experimental data down to 183nm that we can provide. Extrapolating the experimental data we have, it looks as if you would see zero percent transmission at 160nm. If you are interested, we can provide a free sample for testing.
gudipati  (posted 2010-03-31 12:45:15.0)
Hello, could you send me spectral specification/graph of fused silica below 200 nm? Normally UV grade fused silica should transmit down to 160 nm. I would like to know whether your UV grade fused silica is has similar optical properties. Regards Murthy
Laurie  (posted 2008-10-13 14:55:11.0)
Response from Laurie at Thorlabs to krishe80: Thank you for your feedback. The surface flatness is ~lambda/2 on the spherical side and ~lambda/4 on the flat side. If you have further questions, please let us know.
krishe80  (posted 2008-10-12 12:19:55.0)
what is the surface accuracy on these lenses?

Ø2.0 mm UV Fused Silica Plano-Convex Lenses

Item #a Diameter
(mm)
Focal Length
(mm)
Diopterb Radius of Curvature
(mm)
Center Thickness
(mm)
Edge Thickness
(mm)
Back Focal Length
(mm)
Reference
Drawing
LA4024 2.0 4.0 +250.0 1.8 1.0 0.6 3.31 Plano-Convex Lens Drawing
LA4026 2.0 6.0 +166.7 2.8 1.0 0.7 5.31
  • Suggested Fixed Lens Mounts: LMR05(/M) Fixed Lens Mount or MLH05(/M) Mini-Series Fixed Lens Mount with an LMRA2 Glue-In Adapter for Ø2 mm Optics
  • Reciprocal of the Focal Length in Meters
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
LA4024 Support Documentation
LA4024NEW!f = 4.0 mm, Ø2 mm UV Fused Silica Plano-Convex Lens, Uncoated
$65.00
Today
LA4026 Support Documentation
LA4026NEW!f = 6.0 mm, Ø2 mm UV Fused Silica Plano-Convex Lens, Uncoated
$65.00
Today

Ø3.0 mm UV Fused Silica Plano-Convex Lenses

Item #a Diameter
(mm)
Focal Length
(mm)
Diopterb Radius of Curvature
(mm)
Center Thickness
(mm)
Edge Thickness
(mm)
Back Focal Length
(mm)
Reference
Drawing
LA4036 3.0 6.0 +166.7 2.8 1.5 1.0 4.97 Plano-Convex Lens Drawing
LA4039 3.0 9.0 +111.1 4.1 1.5 1.1 7.97
  • Suggested Fixed Lens Mounts: LMR05(/M) Fixed Lens Mount or MLH05(/M) Mini-Series Fixed Lens Mount with an LMRA3 Glue-In Adapter for Ø3 mm Optics
  • Reciprocal of the Focal Length in Meters
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
LA4036 Support Documentation
LA4036NEW!f = 6.0 mm, Ø3 mm UV Fused Silica Plano-Convex Lens, Uncoated
$65.00
Today
LA4039 Support Documentation
LA4039NEW!f = 9.0 mm, Ø3 mm UV Fused Silica Plano-Convex Lens, Uncoated
$65.00
Today

Ø5.0 mm UV Fused Silica Plano-Convex Lenses

Item #a Diameter
(mm)
Focal Length
(mm)
Diopterb Radius of Curvature
(mm)
Center Thickness
(mm)
Edge Thicknessc
(mm)
Back Focal Length
(mm)
Reference
Drawing
LA4249 5.0 10.0 mm +100.0 4.6 2.2 1.5 8.5 Plano-Convex Lens Drawing
  • Suggested Fixed Lens Mounts: LMR5(/M) Fixed Lens Mount
  • Reciprocal of the Focal Length in Meters
  • Edge Thickness Given Before 0.2 mm at 45° Typical Chamfer
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
LA4249 Support Documentation
LA4249f = 10.0 mm, Ø5 mm UV Fused Silica Plano-Convex Lens, Uncoated
$95.22
Today

Ø6.0 mm UV Fused Silica Plano-Convex Lenses

Item #a Diameter
(mm)
Focal Length
(mm)
Diopterb Radius of Curvature
(mm)
Center Thickness
(mm)
Edge Thicknessc
(mm)
Back Focal Length
(mm)
Reference
Drawing
LA4280 6.0 10.0 +100.0 4.6 2.6 1.5 8.2 Plano-Convex Lens Drawing
LA4917 6.0 15.1 +66.2 6.9 2.2 1.5 13.6
LA4194 6.0 20.1 +49.8 9.2 2.0 1.5 18.7
LA4966 6.0 30.1 +33.2 13.8 1.8 1.5 28.9
  • Suggested Fixed Lens Mounts: LMR6(/M) Fixed Lens Mount
  • Reciprocal of the Focal Length in Meters
  • Edge Thickness Given Before 0.2 mm at 45° Typical Chamfer
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
LA4280 Support Documentation
LA4280f = 10.0 mm, Ø6 mm UV Fused Silica Plano-Convex Lens, Uncoated
$90.90
Today
LA4917 Support Documentation
LA4917f = 15.1 mm, Ø6 mm UV Fused Silica Plano-Convex Lens, Uncoated
$90.63
5-8 Days
LA4194 Support Documentation
LA4194f = 20.1 mm, Ø6 mm UV Fused Silica Plano-Convex Lens, Uncoated
$88.47
Today
LA4966 Support Documentation
LA4966f = 30.1 mm, Ø6 mm UV Fused Silica Plano-Convex Lens, Uncoated
$88.47
Today

Ø1/2" UV Fused Silica Plano-Convex Lenses

Item #a Diameter Focal Length
(mm)
Diopterb Radius of Curvature
(mm)
Center Thickness
(mm)
Edge Thicknessc
(mm)
Back Focal Length
(mm)
Reference
Drawing
LA4647 1/2" 20.1 +49.8 9.2 4.3 1.8 17.1 Plano-Convex Lens Drawing
LA4936 1/2" 30.1 +33.2 13.8 3.3 1.8 27.8
LA4130 1/2" 40.1 +24.9 18.4 2.9 1.8 38.1
LA4765 1/2" 50.2 +19.9 23.0 2.7 1.8 48.3
LA4327 1/2" 75.3 +13.3 34.5 2.4 1.8 73.6
LA4600 1/2" 100.3 +10.0 46.0 2.2 1.8 98.8
  • Suggested Fixed Lens Mount: LMR05(/M) Fixed Lens Mount
  • Reciprocal of the Focal Length in Meters
  • Edge Thickness Given Before 0.2 mm at 45° Typical Chamfer
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
LA4647 Support Documentation
LA4647f = 20.1 mm, Ø1/2" UV Fused Silica Plano-Convex Lens, Uncoated
$93.61
Today
LA4936 Support Documentation
LA4936f = 30.1 mm, Ø1/2" UV Fused Silica Plano-Convex Lens, Uncoated
$87.39
Today
LA4130 Support Documentation
LA4130f = 40.1 mm, Ø1/2" UV Fused Silica Plano-Convex Lens, Uncoated
$82.25
Today
LA4765 Support Documentation
LA4765f = 50.2 mm, Ø1/2" UV Fused Silica Plano-Convex Lens, Uncoated
$74.13
Today
LA4327 Support Documentation
LA4327f = 75.3 mm, Ø1/2" UV Fused Silica Plano-Convex Lens, Uncoated
$74.13
Today
LA4600 Support Documentation
LA4600f = 100.3 mm, Ø1/2" UV Fused Silica Plano-Convex Lens, Uncoated
$66.01
Today

Ø1" UV Fused Silica Plano-Convex Lenses

Item #a Diameter Focal Length
(mm)
Diopterb Radius of Curvature
(mm)
Center Thickness
(mm)
Edge Thicknessc
(mm)
Back Focal Length
(mm)
Reference
Drawing
LA4052 1" 35.1 +28.5 16.1 8.2 2.0 29.5 Plano-Convex Lens Drawing
LA4306 1" 40.1 +24.9 18.4 7.1 2.0 35.3
LA4148 1" 50.2 +19.9 23.0 5.8 2.0 46.2
LA4725 1" 75.3 +13.3 34.5 4.4 2.0 72.2
LA4380 1" 100.3 +10.0 46.0 3.8 2.0 97.7
LA4236 1" 125.4 +8.0 57.5 3.4 2.0 123.1
LA4874 1" 150.5 +6.6 69.0 3.2 2.0 148.4
LA4924 1" 175.6 +6.0 80.5 3.0 2.0 173.6
LA4102 1" 200.7 +5.0 92.0 2.9 2.0 198.7
LA4158 1" 250.9 +4.0 115.0 2.7 2.0 249.0
LA4579 1" 301.1 +3.3 138.0 2.6 2.0 299.3
LA4184 1" 501.8 +2.0 230.0 2.4 2.0 500.2
LA4716 1" 752.6 +1.3 345.1 2.2 2.0 751.1
LA4663 1" 1003.5 +1.0 460.1 2.2 2.0 1002.0
  • Suggested Fixed Lens Mount: LMR1(/M) Fixed Lens Mount
  • Reciprocal of the Focal Length in Meters
  • Edge Thickness Given Before 0.2 mm at 45° Typical Chamfer
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
LA4052 Support Documentation
LA4052f = 35.1 mm, Ø1" UV Fused Silica Plano-Convex Lens, Uncoated
$106.86
Today
LA4306 Support Documentation
LA4306f = 40.1 mm, Ø1" UV Fused Silica Plano-Convex Lens, Uncoated
$107.41
Today
LA4148 Support Documentation
LA4148f = 50.2 mm, Ø1" UV Fused Silica Plano-Convex Lens, Uncoated
$109.29
Today
LA4725 Support Documentation
LA4725f = 75.3 mm, Ø1" UV Fused Silica Plano-Convex Lens, Uncoated
$98.75
Today
LA4380 Support Documentation
LA4380f = 100.3 mm, Ø1" UV Fused Silica Plano-Convex Lens, Uncoated
$96.58
Today
LA4236 Support Documentation
LA4236f = 125.4 mm, Ø1" UV Fused Silica Plano-Convex Lens, Uncoated
$93.61
Today
LA4874 Support Documentation
LA4874f = 150.5 mm, Ø1" UV Fused Silica Plano-Convex Lens, Uncoated
$91.18
Today
LA4924 Support Documentation
LA4924f = 175.6 mm, Ø1" UV Fused Silica Plano-Convex Lens, Uncoated
$89.27
Today
LA4102 Support Documentation
LA4102f = 200.7 mm, Ø1" UV Fused Silica Plano-Convex Lens, Uncoated
$92.79
Today
LA4158 Support Documentation
LA4158f = 250.9 mm, Ø1" UV Fused Silica Plano-Convex Lens, Uncoated
$87.11
Today
LA4579 Support Documentation
LA4579f = 301.1 mm, Ø1" UV Fused Silica Plano-Convex Lens, Uncoated
$91.18
Today
LA4184 Support Documentation
LA4184f = 501.8 mm, Ø1" UV Fused Silica Plano-Convex Lens, Uncoated
$85.77
Today
LA4716 Support Documentation
LA4716f = 752.6 mm, Ø1" UV Fused Silica Plano-Convex Lens, Uncoated
$84.94
Today
LA4663 Support Documentation
LA4663f = 1003.5 mm, Ø1" UV Fused Silica Plano-Convex Lens, Uncoated
$84.68
Today

Ø2" UV Fused Silica Plano-Convex Lenses

Item #a Diameter Focal Length
(mm)
Diopterb Radius of Curvature
(mm)
Center Thickness
(mm)
Edge Thicknessc
(mm)
Back Focal Length
(mm)
Reference
Drawing
LA4464 2" 60.2 +16.6 27.6 19.8 3.0 46.6 Plano-Convex Lens Drawing
LA4078 2" 75.3 +13.3 34.5 14.2 3.0 65.6
LA4545 2" 100.0 +10.0 46.0 10.7 3.0 93.0
LA4904 2" 150.5 +6.6 69.0 7.8 3.0 145.1
LA4984 2" 200.7 +5.0 92.0 6.6 3.0 196.2
LA4538 2" 250.9 +4.0 115.0 5.8 3.0 246.9
LA4855 2" 301.1 +3.3 138.0 5.4 3.0 297.4
LA4782 2" 501.8 +2.0 230.0 4.4 3.0 498.7
LA4745 2" 752.6 +1.3 345.1 3.9 3.0 750.0
LA4337 2" 1003.5 +1.0 460.1 3.7 3.0 1000.1
  • Suggested Fixed Lens Mount: LMR2(/M) Fixed Lens Mount
  • Reciprocal of the Focal Length in Meters
  • Edge Thickness Given Before 0.2 mm at 45° Typical Chamfer
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
LA4464 Support Documentation
LA4464f = 60.2 mm, Ø2" UV Fused Silica Plano-Convex Lens, Uncoated
$231.57
Today
LA4078 Support Documentation
LA4078f = 75.3 mm, Ø2" UV Fused Silica Plano-Convex Lens, Uncoated
$230.49
Today
LA4545 Support Documentation
LA4545f = 100.0 mm, Ø2" UV Fused Silica Plano-Convex Lens, Uncoated
$230.49
Today
LA4904 Support Documentation
LA4904f = 150.5 mm, Ø2" UV Fused Silica Plano-Convex Lens, Uncoated
$232.66
Today
LA4984 Support Documentation
LA4984f = 200.7 mm, Ø2" UV Fused Silica Plano-Convex Lens, Uncoated
$233.74
Today
LA4538 Support Documentation
LA4538f = 250.9 mm, Ø2" UV Fused Silica Plano-Convex Lens, Uncoated
$232.66
Today
LA4855 Support Documentation
LA4855f = 301.1 mm, Ø2" UV Fused Silica Plano-Convex Lens, Uncoated
$217.51
Today
LA4782 Support Documentation
LA4782f = 501.8 mm, Ø2" UV Fused Silica Plano-Convex Lens, Uncoated
$202.35
Today
LA4745 Support Documentation
LA4745f = 752.6 mm, Ø2" UV Fused Silica Plano-Convex Lens, Uncoated
$189.38
Today
LA4337 Support Documentation
LA4337f = 1003.5 mm, Ø2" UV Fused Silica Plano-Convex Lens, Uncoated
$189.38
Today

Ø75.0 mm UV Fused Silica Plano-Convex Lenses

Item #a Diameter
(mm)
Focal Length
(mm)
Diopterb Radius of Curvature
(mm)
Center Thickness
(mm)
Edge Thicknessc
(mm)
Back Focal Length
(mm)
Reference
Drawing
LA4384 75.0 90.3 +11.1 41.4 26.9 3.0 71.9 Plano-Convex Lens Drawing
LA4372 75.0 150.5 +6.6 69.0 14.1 3.0 140.9
LA4795 75.0 200.7 +5.0 92.0 11.0 3.0 193.2
LA4246 75.0 501.8 +2.0 230.0 6.1 3.0 497.6
  • Suggested Fixed Lens Mount: LMR75(/M) Fixed Lens Mount
  • Reciprocal of the Focal Length in Meters
  • Edge Thickness Given Before 0.2 at 45° Typical Chamfer
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
LA4384 Support Documentation
LA4384f = 90.3 mm, Ø75 mm UV Fused Silica Plano-Convex Lens, Uncoated
$514.01
Today
LA4372 Support Documentation
LA4372f = 150.5 mm, Ø75 mm UV Fused Silica Plano-Convex Lens, Uncoated
$452.32
Today
LA4795 Support Documentation
LA4795f = 200.7 mm, Ø75 mm UV Fused Silica Plano-Convex Lens, Uncoated
$420.94
Today
LA4246 Support Documentation
LA4246f = 501.8 mm, Ø75 mm UV Fused Silica Plano-Convex Lens, Uncoated
$326.80
Today
Log In  |   My Account  |   Contact Us  |   Careers  |   Privacy Policy  |   Home  |   FAQ  |   Site Index
Regional Websites: West Coast US | Europe | Asia | China | Japan
Copyright 1999-2019 Thorlabs, Inc.
Sales: 1-973-300-3000
Technical Support: 1-973-300-3000


High Quality Thorlabs Logo 1000px:Save this Image