Create an Account  |   Log In

View All »Matching Part Numbers


Your Shopping Cart is Empty
         

Multi-Position Sliders with Resonant Piezoelectric Motors


  • Mount up to Four SM1-Threaded Components
  • Open Frame Design for OEM Applications
  • Control via Interface Board, GUI, or ASCII Message Calls
  • Fully Integrated Drive Electronics

Application Idea

ELL6K Components Shown Assembled, with Two Colored Glass Filters, and Mounted Using the ELLA1

Four-Position Slider
(Also Available Individually)

Interface Board

ELL9K

Four-Position Slider Bundle

Related Items


Please Wait
Key Specsa
Item # ELL6K & ELL6 ELL9K & ELL9
Ports for Mounted Optics Two, SM1 Threaded Four, SM1 Threaded
Switching Time Range (No Load) 180 ms to 270 ms 450 ms to 500 ms
SM1-Threaded Port Separation, Max 31 mm (1.22") 93 mm (3.66")
Positioning Repeatability <100 µm (30 µm Typical)
Maximum Total Load 0.150 kg (0.331 lbs)
DC Voltage Input 4.5 to 5.5 V
Weight (Slider Only) 44 g (0.097 lbs) 70.0 g (0.154 lbs)
Minimum Lifetime 3.3 Million Operations or 100 km Total Travel
  • See the Specs tab for complete specifications.
Animation demonstrates mounting these sliders using 30 mm cage system components and operating the ELL6K via the interface board. The ELLA1 (available below) is another mounting option. For additional operating information for the ELL6(K) and ELL9(K), see the Operation tab. The animation shows the carriage moving in slow motion for clarity.
Elliptec OEM PageThorlabs' Elliptec Technology for OEM

Features

  • Ideal for OEMs and Applications Requiring Rapid Switching
  • Micro-B USB and Picoflex® Connectors for Control Signals
  • Multi-Drop Serial Communication Protocol Supported
  • SM1-Threaded (1.035"-40) Ports for Mounted Optics or Other Components
  • Photo-Interrupter Optical Sensor Technology for Precise Positioning
  • Compatible with 30 mm Cage System Components
  • Post Mount Adapter Available Below

Thorlabs offers multi-position sliders with millisecond switching times enabled by Thorlabs' Elliptec™ piezoelectric resonant motor technology. The ELL6 Dual-Position Slider and the ELL9 Four-Position Slider are both available as standalone units, as well as in complete packages that include an interface board (Item #s ELL6K and ELL9K, respectively.) Our compact and lightweight multi-position sliders all use the same custom-designed PCB, with the ELL6 featuring one motor and the ELL9 including two. The motors are highly dynamic and have no gearing. As the motor includes no magnets, it is compatible with EM-sensitive environments. Please see The Elliptec™ Motor tab for more information.

The open frame format, versatility, and simplicity of these sliders make them attractive for OEM applications, as they can be customized according to customer requirements and produced in high-volume quantities. Please see our OEM and Manufacturing Capabilities page for more information.

Control
There are multiple options for powering, driving, and controlling these multi-position sliders, which are detailed in the Operating the Dual-Position and Four-Position Slider section of the Operation tab. Each slider possesses a 3.3 V serial bus and is designed to be operated with or without the interface board; the Pin Diagram tab provides pin assignments. Thorlabs offers software for our Elliptec products capable of providing full and independent control of the slider. When the interface board is used as an accessory to change the position of the carriage on the slider, the carriage's status in the software is automatically updated. Please note that the dual-position and four-position sliders are not designed for continuous operation. We recommend operation with duty cycles of 40% or less.

The multi-drop communications bus offers the option of connecting the slider to a hybrid network of up to 16 Elliptec resonant motor products and controlling the connected units with a device such as a microprocessor. When multiple units are connected to the same interface board, all can be controlled simultaneously using either the software or the buttons on the interface board. 

Application Idea
The ELL6 dual-position and ELL9 four-position sliders are well suited as filter changers, and the ELL6 is also recommended as shutter. Their carriages feature SM1-threaded (1.035"-40) bores with 3.5 mm deep threads, and four 4-40 tapped holes in their structural PCBs allow the sliders to be mounted using the low-profie ELLA1 Post Mount Adapter, available below, and integrated into optical setups using Thorlabs' 30 mm Cage System components.

Specifications

Performance specifications are given for the case when the multi-position slider is mounted as recommended in the Operation tab.

Item # ELL6K & ELL6 ELL9K & ELL9
Performance
Switching Time between Adjacent Positions Unloaded Carriage on Slider 180 ms to 270 ms (Range) 450 ms to 500 ms (Range)
Loaded Carriage on Slider <600 ms (100 g Load) <700 ms (150 g Load)
Thread Type of Ports in Carriage Internal SM1 (1.035"-40)a Threads, 3.5 mm Deep
Number of SM1-Threaded Ports in Carriage Two Four
SM1-Threaded Port Separation, Max 31 mm (1.22") 93 mm (3.66")
Positioning Repeatabilityb <100 µm (30 µm Typical)
Maximum Total Load (Vertically Mounted)c 150 g (0.331 lbs)
Minimum Lifetimed 3.3 Million Switching Operations or 100 km Total Travel
Electrical
DC Voltage Input 4.5 to 5.5 V
Typical Current Consumption, During Movement <600 mA <1200 mA
Typical Current Consumption, During Standby 38 mA
Typical Current Consumption, During Search for Resonant Frequenciese 1.2 A
Communications
Busf Multi-Drop 3.3 V/5 V TTL RS232
Connector on Multi-Position Slider Board Picoflex®
Connectors on Interface Board Picoflex®
Micro-B USB
5 VDC Power:
[For Plug with Ø5.5 mm OD (Ground) and Ø2.1 mm ID (+5 V)]
Speed 9600 baud/s
Data Lengthg 8 bit
Protocol Data Format ASCII HEX
Module Address and Command Format Mnemonic Character
8-Conductor Ribbon Cable Length  Supplied 0.250 m
Maximum 3 m
Mechanical
Dimensions of the Slider ELL6 Carriage in Either Position;
ELL9 Carriage in Position 1 or 2h
79.0 mm x 77.7 mm x 14.0 mm
(3.11" x 3.06" x 0.55")
125.0 mm x 77.7 mm x 14.2 mm
(4.33" x 3.06" x 0.56")
ELL9 Carriage in Position 0 or 3h N/A 141.0 mm x 77.7 mm x 14.2 mm
(5.55" x 3.06" x 0.56")
Dimensions of the Interface Board 32.0 mm x 65.0 mm x 12.5 mm
(1.26" x 2.56" x 0.49")
Weight (Slider) 44 g (0.097 lbs) 70.0 g (0.154 lbs)
Weight (Interface Board) 10.3 g (0.023 lbs)
Environmental Operating Conditions
Temperature Range 15 to 40 °C
Maximum Relative Humidity (Non-Condensing) <80% at 31 °C
Maximum Altitude 2000 m
  • For more information, see the Threading Specs tab.
  • Low-power infrared photo-interrupter optical sensor technology aligns the carriage at each position.
  • The multi-position board is vertically mounted, with the motor beneath the optics, so that movement of the carriage is side-to-side and not up-and-down.
  • The ELL6 and ELL9 are not designed for continuous operation.
  • Additional Power Supply May Be Required (For Details: Operation tab: Supplying Power)
  • Use two 10 kΩ pull-up resistors in multi-drop mode for RX/TX.
  • 1 Stop Bit, No Parity
  • See the following mechanical drawings for the ELL9 for position definitions.

Mechanical Drawings

Mechanical Drawings of the Remote Handset
Click to Enlarge

Mechanical Drawings of the Interface Board
Mechanical Drawings of the Dual-Position Slider
Click to Enlarge

Mechanical Drawings of the ELL6 Dual-Position Slider
Mechanical Drawings of the Four-Position Slider
Click to Enlarge

Mechanical Drawings of the ELL9 Multi-Position Slider
ELL6 Connector J2 Pinouta,b
Pin Type Function
1 PWR Ground
2 OUT OTDX - Open Drain Transmit 3.3 V TTL RS232 
3 IN RX Receive - 3.3 V TTL RS232
4 OUT In Motion, Open Drain Active Low Max 5 mA
5 IN JOG/Mode = Normal/Test Demo, Active Low Max 5 V
6 IN BW Backward, Active Low Max 5 V
7 IN FW Forward, Active Low Max 5 V
8 PWR VCC +5 V ± 10%; 600 mA
  • Connector Model Number MOLEX 90814-0808;
    Mating Connector Model Number MOLEX 90327-0308
  • A polarity indicator is engraved onto each PCB next to the Picoflex connector, as shown in the drawing to the left, to assist with properly connecting the interface board to the main unit. The red wire in the ribbon cable should be adjacent to this indicator. Not doing so can harm the unit.
Pinout Diagram of the Picoflex Connector on the Dual-Position Slider PCB
Click to Enlarge

Pinout diagram of the Picoflex connector is shown referended to a cut-away diagram
of the ELL6 Dual-Position Slider Board. The polarity indicator on the connector
must be adjacent to the red wire on the supplied 8-connector cable.

ELL9 Connector J2 Pinouta,b
Pin Type Function
1 PWR Ground
2 OUT OTDX - Open Drain Transmit 3.3 V TTL RS232 
3 IN RX Receive - 3.3 V TTL RS232
4 OUT In Motion, Open Drain Active Low Max 5 mA
5 IN JOG/Mode, Active Low Max 5 V
6 IN BW Backward, Active Low Max 5 V
7 IN FW Forward, Active Low Max 5 V
8 PWR VCC +5 V ± 10%; 1200 mA
  • Connector Model Number MOLEX 90814-0808;
    Mating Connector Model Number MOLEX 90327-0308
  • A polarity indicator is engraved onto each PCB next to the Picoflex connector, as shown in the drawing to the left, to assist with properly connecting the interface board to the main unit. The red wire in the ribbon cable should be adjacent to this indicator. Not doing so can harm the unit.
Pinout Diagram of the Picoflex Connector on the Four-Position Slider PCB
Click to Enlarge

Pinout diagram of the Picoflex connector is shown referended to a cut-away diagram
of the ELL9 Four-Position Slider Board. The polarity indicator on the connector
must be adjacent to the red wire on the supplied 8-connector cable.

Operation Notes

This tab contains information on handling, mounting, and operating these Dual- and Four-Position Sliders.

Contents

 

Assembled and Labeled Components of the ELL9K Bundle
Click to Enlarge

Figure 1 Components of the ELL9K Bundle

The Interface Board
Click to Enlarge

Figure 2 The Interface Board
Application Idea Using RotationDual-Position Slider
Click to Enlarge
View Imperial Product List
Item #QtyDescription
ELL6K1Dual-Position Slider Bundle: Dual-Position Slider, Interface Board, Cables
FGL515M1Ø25 mm SM1-Mounted Colored Glass Filter, 515 nm Longpass
FGB37M1Ø25 mm BG40 Colored Glass Bandpass Filter, SM1-Threaded Mount
ER1-P41Cage Assembly Rod, 1" Long, Ø6 mm, 4 Pack
CP021SM1-Threaded 30 mm Cage Plate, 0.35" Thick, 2 Retaining Rings, 8-32 Tap
TR31Ø1/2" Optical Post, SS, 8-32 Setscrew, 1/4"-20 Tap, L = 3"
UPH21Ø1/2" Universal Post Holder, Spring Loaded Locking Thumbscrew, L = 2"
View Metric Product List
Item #QtyDescription
ELL6K1Dual-Position Slider Bundle: Dual-Position Slider, Interface Board, Cables
FGL515M1Ø25 mm SM1-Mounted Colored Glass Filter, 515 nm Longpass
FGB37M1Ø25 mm BG40 Colored Glass Bandpass Filter, SM1-Threaded Mount
ER1-P41Cage Assembly Rod, 1" Long, Ø6 mm, 4 Pack
CP02/M1SM1-Threaded 30 mm Cage Plate, 0.35" Thick, 2 Retaining Rings, M4 Tap
TR75/M1Ø12.7 mm Optical Post, SS, M4 Setscrew, M6 Tap, L = 75 mm
UPH50/M1Ø12.7 mm Universal Post Holder, Spring-Loaded Locking Thumbscrew, L = 50 mm
Figure 4 ELL6K with Glass Filters and Mounted using 30 mm Cage System Components 
Application Idea Using RotationDual-Position Slider
Click to Enlarge
View Imperial Product List
Item #QtyDescription
ELL6K1Dual-Position Slider Bundle: Dual-Position Slider, Interface Board, Cables
FGL515M1Ø25 mm SM1-Mounted Colored Glass Filter, 515 nm Longpass
FGB37M1Ø25 mm BG40 Colored Glass Bandpass Filter, SM1-Threaded Mount
ELLA11Post Mount Adapter for ELL6 and ELL9
TR31Ø1/2" Optical Post, SS, 8-32 Setscrew, 1/4"-20 Tap, L = 3"
UPH21Ø1/2" Universal Post Holder, Spring Loaded Locking Thumbscrew, L = 2"
View Metric Product List
Item #QtyDescription
ELL6K1Dual-Position Slider Bundle: Dual-Position Slider, Interface Board, Cables
FGL515M1Ø25 mm SM1-Mounted Colored Glass Filter, 515 nm Longpass
FGB37M1Ø25 mm BG40 Colored Glass Bandpass Filter, SM1-Threaded Mount
ELLA11Post Mount Adapter for ELL6 and ELL9
TR75/M1Ø12.7 mm Optical Post, SS, M4 Setscrew, M6 Tap, L = 75 mm
UPH50/M1Ø12.7 mm Universal Post Holder, Spring-Loaded Locking Thumbscrew, L = 50 mm
Figure 3 ELL6K with Glass Filters and Mounted using the ELLA1

Handling

Our sliders and interface boards are robust to general handling. An assembled ELL9K bundle with lables indicating key features is shown in Figure 1, and a picture of an interface board is in Figure 2. To ensure reliable operation, keep the surface contacted by the motor free of oils, dirt, and dust. It is not necessary to wear gloves while handling the dual-position or four-position slider, but avoid touching the surface contacted by the motor to avoid transferring contaminants to it. If it is necessary to clean the surface contacted by the motor, it can be wiped using KW32 or similar extra low lint sheets and isopropyl alcohol or mineral spirits (white spirit). Do not use acetone, as this solvent will damage the plastic edge of the slider's carriage.

The open frame format of the ELL6K and ELL9K can tolerate up to 8 kV of static discharge. ESD precautions should be taken, as an electrostatic discharge can produce an electrical signal that may cause an unintended movement of the carriage. Avoid subjecting the structural PCB to loads in excess of 500 g. If an excessive load is applied the PCB may bend, which will degrade the performance of the slider.

Mounting

The ELL6 and ELL9 may be operated with the slider mounted vertically (upright) or horizontally (laying down), assuming certain conditions are met. When the slider is oriented vertically, ensure that the carriage translates side-to-side, rather than up-and-down, as the effects of gravity substantially reduce the maximum load that may be translated. When it is mounted vertically, the slider may be oriented with the motor(s) above or below the carriage. The recommended orientation is with the motor(s) below the carriage, as is shown in Figures 3 - 7, which minimizes the chance of any dust or particulates displaced during operation settling on the surface of the optics mounted in the carriage. When mounting the slider horizontally, ensure that the installation does not bend the PCB. In all cases, do not allow anything to interfere with moving parts of the slider.

There are several options for mounting the sliders. The ELLA1 Post Mount Adapter, which is available below, fastens directly to the back of the slider's PCB. As shown in Figure 3, the adapter can then be used to mount the slider to a Ø1/2" post. The compact dimensions of the ELLA1 allows sliders to be placed one behind the other while minimizing the space separating them, as shown below. The adapter can also be integrated with Thorlabs' 30 mm Cage System components and/or SM1-threaded components, such as lens tubes. Alternately, 30 mm cage system components alone can be used to mount the sliders. An example of this is shown in Figure 4, in which a CP02 Cage Plate, four ER1 rods, a Ø1/2" post, and a post holder mount and support the assembled ELL6K. 

Loading

The maximum total load specification of 150 g refers to the weight of the load mounted to the carriage, and does not include the weight of the slider. For example, the weight of the unloaded ELL6 slider is approximately 22 g, and the maximum allowed weight of the mounted components is 150 g; the combined maximum permitted weight of the slider and mounted components is 172 g. Both sliders are designed to be compatible with 30 mm cage system components.

Supplying Power

Using the Interface Board
Even though ultrasonic voltage signals are required to operate the motors, the stage is powered by applying a DC voltage signal to the interface board. The electronics on the board, which convert the applied DC signal to a sinusoidal signal oscillating at the desired resonant frequency, make this possible.

The ELL6 includes one motor and the ELL9 includes two. Because of the lower power requirements of the ELL6's single motor, it is possible to supply power to the ELL6 through the Micro-B USB connector on the interface board. A 5 V power supply is not included in the ELL6K bundle; however, if it would be convenient to use a 5 V power supply, the TPS101 is compatible with the interface board. Operation of the ELL9's two motors requires a 5 V power supply, and one is included in the ELL9K bundle.

An advantage of powering the ELL6 using the Micro-B USB connector on the interface board is that a computer can be used to simultaneously control and power the slider. Laptops can supply the amperage necessary to enable switching between positions on the ELL6 dual-position slider; however, some laptops may not be able to supply the 1.2 A required to perform a search for optimal resonant frequencies, which is described in the following Resonant Frequencies section. When this is the case, and it is necessary to perform a search for optimal resonant frequencies, an alternate power source capable of delivering the needed amperage must be used to supplement the power provided by the laptop.

When the setup includes the ELL9 and an interface board, power is supplied through the 5 VDC power socket. As the Micro-B USB connector does not supply power sufficient to drive both motors, this connector is used only for computer control of the ELL9. 

Without the Interface Board
When either the ELL6 or ELL9 slider is incorporated into an application without the interface board, the connection with the power source is made using the pins on the Picoflex connector. A pinout diagram of this connector is included in the Pin Diagram tab, and information on powering and addressing the slider given in its manual and the communications protocol manual respectively.

Operational Principle of the Motor

The Elliptec motors move the carriages on the sliders between positions, and the direction of the translation is determined by the ultrasonic frequency driving motor's piezoelectric elements. For each motor, there is one ultrasonic resonant frequency that will push the carriage forward, and another that will pull the carriage backward. Operating a motor at one of its resonance frequencies causes the tip of the motor to continuously cycle in a tight clockwise elliptical path. When the motor is driven at its other resonance frequency, the tip of the motor cycles through that same path in a counterclockwise direction. Both resonance frequencies are around 100 kHz. The total displacement at the tip of motor is a function of the mechanical load it is driving and the voltage supplied to the piezo element. In the case of no loading and a 5 V maximum driving voltage at a resonant frequency, the tip of the motor expands and contracts no more than a few microns while tracing the elliptical path. Please see The Elliptec™ Motor tab for more information and an animation that illustrates the operational principle of the motor.

Resonance Frequencies

On power-up, the factory default setting instructs the slider to search for the resonance frequencies that will deliver the best performance. During this process, the slider will translate between the forward and backward positions. At the conclusion of this calibration process, the slider is in the backward position. If this movement on start-up is undesirable, it is possible to disable this calibration procedure by using the serial port to initialize the frequencies on power-up. A new search for optimal resonance frequencies may be performed at any time; to maintain optimal performance, it is recommended that new searches be performed after changes in loading and/or ambient temperature. Please see Section 3.3 of the ELL6(K) manual or Section 4.4 of the ELL9(K) manual for details.

Operating the Dual-Position and Four-Position Slider

Note that our sliders are not intended for continuous operation. We recommend operation with duty cycles of less than 40% during general use, while operation with duty cycles greater than 60% should be limited to a few seconds.

The movement of the slider's carriage may be controlled by pressing buttons on the interface board, through computer control via the Elliptec™ software package that may be downloaded, or by sending simple signals to digital lines on the slider board. The constant drive power results in a linear speed profile, which enables the motor to accelerate and decelerate in a few microseconds.

The interface board may be used as an accessory while interfacing with the ELL6 or ELL9 through the Elliptec software; all changes in the position of the carriage that occur as a result of pressing buttons on the interface board are registered by the software, and the software may independently control the carriage while the interface board is connected. The buttons on the interface board can be seen in Figure 2. It is also possible to effect the simultaneous movement of a mixed network of up to 16 Elliptec piezoelectric resonant motor products by connecting all using the communications bus. When this is done, the software can send separate commands to each device, while commands originating from buttons pressed on the inteface board will be sent to all connected devices. The communications protocol manual describes how to use the software to individually address each connected device. A link to download the software and accompanying documentation can be found in the Software tab.

Figures 5 - 7, as well as the animation included on the Overview tab, show the operation of the ELL6 dual-position slider using the interface board. By pressing the button on the interface board marked 'FW,' as is about to be done in Figure 6, the slider is sent to the forward position. The slider will return to the home position when the button on the interface board marked 'BW' is pressed.

When using the interface board to control the position of the carriage on the ELL9 four-position slider, the JOG button is also used. If the slider is facing forward and oriented vertically with motors beneath the translating mount, press and hold the JOG button then press the FW button to move the carriage one position to the observer's right. Press and hold the JOG button and press the BW button to move the carriage one position to the observer's left. Stated differently, and referencing the drawing at the bottom of the Specs tab, the former increments the position of the carriage and the latter decrements the position of the carriage.

Dual-Position Slider in Forward Position
Click to Enlarge

Figure 7 Dual-Position Slider with Carriage
in the Forward Position
Buttons to Control Dual-Position Slider Position
Click to Enlarge

Figure 6 The carriage will translate from the backward 
 position (Figure 5 and above) to the forward position
(Figure 7) in response to a press of the FW button.
Dual-Position Slider in Forward Position
Click to Enlarge

Figure 5 Dual-Position Slider with Carriage
in the Backward Position

ELL6K Dual-Position Slider Bundle

Components of the EL6K Bundle
Click to Enlarge

Components of the ELL6K Bundle

Each Bundle Includes the Following:

  • ELL6 Dual-Position Slider
  • Interface Board
  • Micro-B to A-Type USB Cable
  • 8-Conductor 28 AWG Ribbon Cable

PC-based software is also available for download, as are the manual, communications protocol manual, and other documentation.

ELL9K Four-Position Slider Bundle

Components of the EL6K Bundle
Click to Enlarge

Components of the ELL9K Bundle
One Region-Specific Power Adapter Included, All Region-Specific Plugs Shown for Reference 

Each Bundle Includes the Following:

  • ELL9 Four-Position Slider
  • Interface Board
  • Micro-B to A-Type USB Cable
  • 8-Conductor 28 AWG Ribbon Cable
  • 5 V Power Supply with Location-Specific Plug

PC-based software is also available for download, as are the manual, communications protocol manual, and other documentation.

The Components of the Elliptec Motor
Click to Enlarge

The Components of the Elliptec Motor
The Elliptec Piezoelectric Resonant Motor
Click to Enlarge

The Elliptec Piezoelectric Resonant Motor

The Elliptec™ Piezoelectric Resonant Motor

Thorlabs' Elliptec™ piezo resonant motor, shown at right, is lightweight, with a mass of 1.2 g, and compact: the dimensions of the resonator housing, excluding the spring, are 8 mm x 4 mm x 20 mm.

Components of the Motor

The components that compose the motor are shown at far-right. The piezoelectric element is press fit into the aluminum resonator, which has been precisely designed and machined to produce the desired elliptical motion at the tip and to interface optimally with the driven module. The free ends of the spring are integrated with the resonator housing. The wires, which are soldered to the top and bottom of the piezoelectric element, deliver the voltage signal that induces the piezoelectric element to vibrate at ultrasonic frequencies.

When the motor is built into a system, the open loop of the spring is bolted to a sturdy surface that is stationary with respect to the item to be driven, and the tip of the resonator is placed in contact with the item. The purpose of the spring is to maintain constant contact between the tip of the resonator and the driven item, and the direction of motion is determined by the resonance frequency at which the piezo element is driven.

Elliptical Motion and Comparison with Conventional Motors

Elliptec motors quickly and precisely position stages and mounts while never seeming to move. Their microscopic movements occur at ultrasonic frequencies and are invisible to the naked eye.

The motor is operated by driving it at one of its two resonance frequencies. A voltage signal oscillating at an ultrasonic frequency is applied to the piezoelectric chip, which responds by expanding less than a micron and then contracting back to its original dimensions at the frequency of the driving signal. This rapid-cycling change in the chip's dimensions causes a vibration in the aluminum resonator housing. When the vibration is at one of the housing's resonance frequencies, a pushing motion results at the tip of the motor. When the vibration is at the other resonance frequency a pulling motion results.

As illustrated in the video, the pulling and pushing motions result from the tip of the motor tracing an elliptical path in space when the motor operates at resonance. The selected resonance frequency controls the direction of the cyclical motion. The motor's tip traces one half of the ellipse as it expands and the other half as it contracts. When the motor pushes the driven item, the motor's tip is in contact with the item while the tip expands; the two are not in contact while the tip contracts. The converse is true when the motor pulls the driven item in the opposite direction. The total displacement at the tip of the motor is a function of both the mechanical load it is driving and the voltage supplied to the piezo element. The maximum displacement can be up to a few microns when the peak driving voltage is 5 V.

The motor behaves in many ways like a DC or electromagnetic stepper motor, but it does not suffer from many of the drawbacks of these conventional motors. Unlike conventional electromagnetic motors, which must overcome inertial delays to come to a stop, the highly dynamic Elliptec motor can stop within microseconds. As it has no gears, it does not exhibit backlash. Since it possesses no magnets, it is compatible with use in environments sensitive to electromagnetic interference. The motion of the driven element is continuous and smooth. As the tip of the motor must be in contact with the driven item to induce motion, the motor possesses the safety feature of an inherent friction brake. When in contact with a plastic surface, the motor operates virtually silently.

For OEM applications, the motor can be manufactured in volume at low cost, and it can be driven by inexpensive analog electronics. It does not require microprocessors or software; however it is compatible for use with them.

Screen Capture of the Elliptec Piezoelectric Resonant Motor Control Software GUI
Click to Enlarge

The Elliptec Piezoelectric Resonant Motor Control Software GUI

Software for Devices Driven by Elliptec™ Piezoelectric Resonant Motors

All devices based on the Elliptec™ resonant piezo motor may be controlled by the Elliptec system software, which features an intuitive graphical user interface (GUI). The source code, in C# format, is included in software bundle available for download, and custom applications can be created in any language. The image at right shows a screen capture of the GUI, and the button that follows links to the download page.

Commands are entered in the Sequencer command / wait order section located at the center-left of the GUI. An example of a sequence of commands that might be sent to the device is "Afw" to move the slider at address "A" to the forward position and then "Abw" to move the slider at address "A" to the backward position. The command "As1" is used to perform the frequency search that will identify the optimal resonant frequencies, for the current operating conditions, for the motor at adddress "A."

Software

Version 1.4.3

Includes the Elliptec System Software, with an easy-to-use GUI. Also available for download is the Communications Protocol manual, which details the communication commands for the Elliptec software package.

Software Download

Posted Comments:
keisuke.yoshioka  (posted 2018-11-04 21:21:15.983)
ELL9Kで穴位置を細かく動かしたいのですが、maコマンドが使えないようでした。 maコマンドを使用できるように、仕様を変更して欲しいです。
rmiron  (posted 2018-11-06 04:33:55.0)
Response from Radu and Fumi at Thorlabs: この度はお問合せいただきありがとうございました。大変恐れ入ります、ELL9Kにはエンコーダが搭載されていないため、現時点では 'ma'コマンドをELL9Kに送るようファームウェアを変更することができません。ご要望は次期ファームウエア開発チームに伝えました。所定の時間に対してスムースに移動するようなコマンドは追加可能ではないかと思います。 Translation: Feedback: I want to finely move the hole positions with ELL9K, but it seems that the 'ma' (move absolute) command can not be used. I'd like for the stage to change such that we can use the 'ma' command. Response: Thank you for your feedback. I have relayed it to the developers of Elliptec's firmware who will take it into account when planning for future releases. We can't change the firmware such that the 'ma' command can be sent to ELL9K, because ELL9 does not have an encoder. However, we could add a similar command that would allow one to translate the stage for a given period of time
lvjing  (posted 2018-04-19 14:52:34.907)
Usb plugged in the computer can not identify the device
bhallewell  (posted 2018-04-19 12:21:32.0)
Response from Ben at Thorlabs: Thank you for your email. I'll contact you to troubleshoot the problem.
massimo  (posted 2018-03-29 14:55:49.94)
Is it possible to turn off the LEDs in the interface board? I'm using this slider to move ND filters and my optical setup is enclosed in a light tight box, because I need to perform measurement at very low light. The flat cable between the interface board and the slider is too short so I have to keep the interface board inside the light controlled box, but the light intensity of the LED on the board is not at all negligible. At the moment I'm covering the LED with black tape, but it's definitely not enough and not very nice. I couldn't find anything about it in the documentation. It'd be great if didn't have to replace the flat cable with a longer one. Thanks
bhallewell  (posted 2018-04-05 07:19:20.0)
Response from Ben at Thorlabs: Thank you for your feedback. There isn't a programming solution to turn off the LED however you should have access to remove the LED or alternatively short the LED with a wire.
user  (posted 2018-03-27 17:29:38.03)
It would be awesome if this had drivers for micro manager.
rmiron  (posted 2018-04-11 05:16:53.0)
Response from Radu at Thorlabs: Thank you for your feedback. I have relayed it to our developers. I will contact you directly regarding our future plans on this front.
Roger.John  (posted 2018-02-15 22:01:57.177)
Can one mount a ME1-P01 in one position of the ELL6, as a flip mirror alternative? Thanks!
bhallewell  (posted 2018-02-23 10:55:22.0)
Response from Ben at Thorlabs: You will be able to mount this optic through use of our SM1L03 SM1 Lens tube, which includes an SM1RR retaining ring to secure the optic in the lens tube. The optic seated in the lens tube can then be threaded into the ELL6 mount. The total load that the slider can actuate is 0.150 kg.
user  (posted 2017-10-25 15:33:18.65)
Could the ELL6 be used in a medium vacuum (>10^-2mbar) environment? Thank you very much.
bwood  (posted 2017-10-30 05:06:50.0)
Response from Ben at Thorlabs: Thank you for your feedback. While in principle the Elliptec motor technology will work in a vacuum, the stock ELL6 slider contains several components which will outgas, so it may not be suitable for your application. If you would like to pursue this further, I would suggest contacting your local tech support office, to discuss your application in more detail.
nhuffman  (posted 2017-07-25 10:20:39.697)
Are there any 32bit libraries for the Eliptec software available for 64bit Windows like are available for the APT and Kinesis software? I need to interface with 32bit MATLAB on a 64bit machine.
bwood  (posted 2017-07-26 09:27:16.0)
Response from Ben at Thorlabs: Thank you for your question. Unlike Kinesis compatible devices, our Elliptec devices are controlled solely through serial commands (directly or through our Elliptec System Software). You should be able to configure MatLab to communicate through these serial commands however. You can find the serial communications protocol on the Elliptec software webpage.
bjorn.fjelddahl  (posted 2016-11-29 08:32:55.62)
Hi The ELL6 is made for 2 filters Is it possible to add two more filters to a total of 4? Best regards, Björn
bhallewell  (posted 2016-12-01 07:23:58.0)
Response from Ben at Thorlabs: Thank you for your enquiry. This would likely fall within our capabilities for customisation. I will contact you to discuss this opportunity further.
user  (posted 2016-11-04 16:04:37.99)
Do the top two threaded hole have clearance from the sliding portion to attach 30 cage posts on each side? i.e. can you stack multiples of these?
bhallewell  (posted 2016-11-09 09:39:00.0)
Response from Ben at Thorlabs: Thank you for your question here. Checking our web models, there is not enough clearance for an ER 30mm cage rod system to mate with the PCB from both sides, this is a 4-40 hole which can only be accessed from the rear side. This is one of our off-the-shelf solutions & is limited in customisation however for OEM opportunities we may be able to go beyond this. I will contact you directly to start a discussion.

Multi-Position Slider Bundles

The Tip of the Motor Contacting the Slider Surface
Click to Enlarge

Red and blue wires deliver power to the motor, whose aluminum tip contacts the edge of the carriage. During operation, the motor's tip cycles at ultrasonic speeds and on an microscopic sale. Its movement cannot be seen by the human eye.
  • Bundle is Ideal for OEM Evaluation Testing
  • Easy Integration into a Setup
  • Operate using Manual and/or Computer Control 

The ELL6K Dual-Position and ELL9K Four-Position Bundles are complete kits that include the slider, also available separately, and the other components listed in the following table. The ELL6, with its single motor, can be simultaneously controlled and powered via USB. The TPS101 5 V power supply is also compatible. As the two motors on the ELL9 require greater power, a 5 V power supply is included with the ELL9K.

These packages facilitate quick integration of the slider into laboratory setups and other experimental applications. They also provides a convenient means to evaluate integrated this technology into OEM applications.

Included in the Bundles
Item # ELL6K ELL9K
Included
Components
ELL6 Dual-Position Slider ELL9 Four-Position Slider
Interface Board Interface Board
USB Cable USB Cable
8-Conductor 28 AWG Ribbon Cable 8-Conductor 28 AWG Ribbon Cable
PC-Based Software for Download PC-Based Software for Download
- 5 V Power Supply with
Region-Specific Plug
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available / Ships
ELL6K Support Documentation
ELL6KDual-Position Slider Bundle: Dual-Position Slider, Interface Board, Cables
$279.48
Today
ELL9K Support Documentation
ELL9KCustomer Inspired! Four-Position Slider Bundle: Four-Position Slider, Interface Board, Cables
$344.00
Today

Multi-Position Sliders

  • Standalone Dual-Position and Four-Position Sliders
  • Command the Slider by Connecting through an Existing Interface Board or Directly via the Multidrop TTL RS-232 Interface
  • Serves Applications that do not Require an Interface Board or Cables
  • Can be Used to Expand an Existing Network of Elliptec Devices

The ELL6 Dual-Position and ELL9 Four-Position Sliders are offered as standalone products. These are frequently used to meet the needs of applications whose design requires multiple networked Elliptec resonant motor products, or applications that do not require the other components included in the ELL6K and ELL9K bundles, respectively. Each position on the carriage is an SM1-threaded (1.035"-40) bore with 3.5 mm deep threads. The four 4-40 tapped holes in the PCB, which are compatible with Thorlabs' 30 mm Cage System, can be used to mount the slider. 

The PCBs of both sliders incorporate a 8-pin male Picoflex connector (header). Each of these standalone sliders ships with the female 8-pin Picoflex connector (receptacle) that mates with the connector (header) on the board. Please see the Pin Diagram tab for details.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available / Ships
ELL6 Support Documentation
ELL6Dual-Position Slider: SM1 Threads, 30 mm Cage Compatible
$198.90
Today
ELL9 Support Documentation
ELL9Customer Inspired! Four-Position Slider: SM1 Threads, 30 mm Cage Compatible
$265.00
3-5 Days

Post Mount Adapter

Using ELLA1 post mount adapters allow sliders to be placed one behind the other while minimizing the space between them.

Back View Of ELL6 and Post Mount Adapter
Click to Enlarge

The ELLA1 mounts to the back of the slider's PCB using the four 4-40 threaded holes, also compatible with 30 mm cage system components.
  • Mounts Directly to PCB of ELL6 or ELL9
  • Front Clearance Slot Accommodates Protrusions on Back of PCB
  • Four Counterbores for Use with 4-40 Threaded Screws
  • One Counterbore for Use with 8-32 (M4) Threaded Screws
  • SM1 (Ø1.035-40) Internal Thread

The ELLA1 Post Mount Adapter securely fastens to the back of the ELL6 or ELL9 PCB using the four included 4-40 screws. The slider can then be mounted to a Ø1/2" post using the counterbore at the base of the adapter and an 8-32 (M4) screw (not included). A lens tube or other component can be mated to the adapter using the internally SM1-threaded (1.035"-40) bore. The four counterbores can also be used to connect the ELLA1 to a 30 mm cage system via Ø6 mm cage rods.

With overall dimensions of 40.0 mm x 44.0 mm x 14.0 mm and a design that positions the mounting post close to the back of the slider's PCB, the adapter is especially recommended for applications that require placing sliders one closely behind the other. The geometry of the adapter allows the optics mounted on one slider to be positioned above the post used to mount the slider directly in front. These adapters are also convenient single-component mounting solutions for general applications. 

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available / Ships
ELLA1 Support Documentation
ELLA1Customer Inspired! Post Mount Adapter for ELL6 and ELL9
$40.00
Today
Log In  |   My Account  |   Contact Us  |   Careers  |   Privacy Policy  |   Home  |   FAQ  |   Site Index
Regional Websites: West Coast US | Europe | Asia | China | Japan
Copyright 1999-2018 Thorlabs, Inc.
Sales: 1-973-300-3000
Technical Support: 1-973-300-3000


High Quality Thorlabs Logo 1000px:Save this Image