Create an Account  |   Log In

View All »Matching Part Numbers


Your Shopping Cart is Empty
         

Booster Optical Amplifiers (BOAs), 980 nm


  • Polarization-Dependent Booster Optical Amplifiers (BOAs)
  • SM or PM Fiber-Pigtailed Butterfly Package
  • 960 nm ASE Center Wavelength

BOA980P

BOA with PM Fiber and FC/APC Connectors, Close-up of Butterfly Package Shown

BOA980S

BOA with SM Fiber and FC/APC Connectors

FC/APC Connectors

Related Items


Please Wait

Applications

  • Boosting Laser Transmitters
  • Amplifying Widely Tunable Lasers
  • 980 nm Optical Preamplifier
  • Amplifying Polarized Signals
The center wavelength of a BOA can be readily tailored for specific applications. It is quite common to adjust the BOA wavelength spectrum to match the specific laser source. Please contact us if you have custom wavelength requirements for pilot-projects or OEM applications.
Internal Diagram
Click to Enlarge
When current is applied across the ridge waveguide, excited state electrons are stimulated by input light, leading to photon replication and signal gain.

Features

  • Polarization Dependent: Amplifies One Polarization State
  • 1.5 m Long, SM or PM Fiber Pigtails with FC/APC Connectors
  • Signal Gain: 27 dB (Typical)
  • Saturation Output Power: 19.5 dBm (Typical)
  • 3 dB Bandwidth: 72 nm (Typical)

Booster Optical Amplifiers (BOAs) are single-pass, traveling-wave amplifiers that perform well with both monochromatic and multi-wavelength signals. Since BOAs only amplify one state of polarization, they are best suited for applications where the input polarization of the light is known. Each BOA consists of a highly efficient GaAs Quantum Well (QW) layer structure, designed for amplifying polarized optical signals in the 980 nm band, and is also an ideal gain medium for implementing wide-bandwidth tunable lasers.

As seen in the schematic to the right, the input and output of the amplifier are coupled to the active layer of the ridge waveguide on the optical amplifier chip. The device is contained in a standard 14-pin butterfly package, with either single mode or polarization-maintaining fiber pigtails that are terminated with FC/APC connectors. The BOA980P uses polarization-maintaining PM980-XP fiber with the connector key aligned to the slow axis, while the BOA980S uses non-polarization-maintaining HI1060 fiber. An integrated thermoelectric cooler (TEC) and thermistor allows these BOAs to be temperature controlled, thus stabilizing the gain and the spectrum.

For additional details concerning the construction and operating parameters of our BOAs, please see the Optical Amplifiers tab.

Recommended Driver
The CLD1015 butterfly LD/TEC controller is recommended to control these amplifiers. This LD/TEC controller and mount combination offers full control via a touch screen. When operating these optical amplifiers with the CLD1015, the orientation for type 1 pin configurations should be used.

ASE Center Wavelength
The center wavelength (CWL) of the amplified spontaneous emission (ASE) spectrum in broadband semiconductor devices, such as optical amplifiers, may show variation between lots. Please refer to the blue icons (info) below for the CWL tolerances of each particular model. For applications in which a specific ASE center wavelength is a critical concern, please contact Tech Support for information on the CWL of currently available lots.

Item #a Info ASE Center
Wavelength
Operating Current
(Max)
3 dB Bandwidth Saturation Output
Power (@ -3 dB)b
Small Signal Gain
(@ Pin = -20 dBm)b
Noise Figureb Fiber Type
BOA980S info 960 nm 750 mA 72 nm 19.5 dBm 27 dB 6.0 dB HI1060
BOA980P info PM980-XP
  • All specifications are typical unless otherwise noted.
  • Measured at 976 nm and at the Operating Current

1050 nm BOA Pin Out

Mechanical Drawing and Pin Assignments for 980 nm BOAs

Comparison of a SOA to a standard Fabry-Perot Laser Diode

Semiconductor Optical Amplifiers (SOAs and BOAs) are similar in design to Fabry-Perot Laser Diodes. The difference being that Fabry-Perot laser diodes have reflective coatings on both end faces of the semiconductor chip. The optical feedback from the end faces establishes a cavity in which lasing can occur. SOAs and BOAs have an anti-reflection (AR) coating on both end faces of the semiconductor chip. The AR coatings limit the optical feedback into the chip so that lasing does not occur.

As is typical for all amplifiers, SOA/BOAs operate in two regimes: a linear, flat, constant gain regime and a non-linear, saturated output regime. When used to amplify a modulated signal, the linear regime is typically used to eliminate pattern-dependent distortion, multi-channel cross-talk and transient response issues common to EDFAs. The non-linear regime is used to take advantage of the highly non-linear attributes of the semiconductor gain medium (cross-gain modulation, cross phase modulation) to perform wavelength conversion, optical 3R regeneration, header recognition, and other high-speed optical signal processing functions.

For a CW input signal, the amount of power that can be produced by the amplifier is determined by the saturation output power (Psat) parameter. Psat is defined as the output power at which the small-signal gain has been compressed by 3 dB. The maximum amount of CW power that can be extracted is approximately 3 dB higher than the saturation power.

SOA Linear verse Non-linear Regimes


Posted Comments:
No Comments Posted

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
BOA980S Support Documentation
BOA980S980 nm Booster Optical Amplifier, 19.5 dBm, Butterfly Pkg., SM, FC/APC
$2,250.00
Today
BOA980P Support Documentation
BOA980P980 nm Booster Optical Amplifier, 19.5 dBm, Butterfly Pkg., PM, FC/APC
$2,450.00
Today
Log In  |   My Account  |   Contact Us  |   Privacy Policy  |   Home  |   FAQ  |   Site Index
Regional Websites: West Coast US | Europe | Asia | China | Japan
Copyright © 1999-2020 Thorlabs, Inc.
Sales: 1-973-300-3000
Technical Support: 1-973-300-3000


High Quality Thorlabs Logo 1000px:Save this Image