Create an Account  |   Log In

View All »Matching Part Numbers


Your Shopping Cart is Empty
         

Kinesis® K-Cube™ Piezo Inertia Actuator Controller


  • Four-Channel, Open-Loop Piezo Inertia Actuator Controller
  • Single- or Dual-Channel Operation for Multi-Axis Applications
  • Operation via Top Panel Controls or Remote PC via USB
  • Required Controller for Our Piezo Inertia Actuators

KIM101

K-Cube Inertial Motor Controller
(Power Supply Sold Separately)

Application Idea

The KIM101 Controller is designed to operate our Piezo Inertia Actuators. It contains four channels, making it ideal for use with mirror mounts and beam steering applications.

Related Items


Please Wait
Mounting Shim
Click to Enlarge

Back View of the KIM101 Controller (See the Pin Diagrams Tab for More Information)
Key Specificationsa
Piezoelectric Output (SMC Male, 4 Places) 85 to 125 VDC per Channel
External Input
(SMA Female)
0 - 10 V ± 2%
Input Power +15 VDC @ 2 A
Housing Dimensionsb
(W x D x H)
121.0 mm x 60.0 mm x 47.0 mm
(4.76" x 2.36" x 1.85")
  • For complete specifications, please see the manual.
  • Not Including the Mounting Plate

Features

  • Compact Footprint (121.0 mm x 60.0 mm x 47.0 mm)
  • Adjustable Voltage Output from 85 V to 125 V
  • Four Independent Output Channels (Capable of Single- or Dual-Channel Operation)
  • 0 - 10 V Analog Input (SMA Female, See Pin Diagrams Tab for Details)
  • Kinesis® Software Control Suite Included
  • Compatible with Legacy APT™ Software for Integrated Systems Development

Thorlabs' K-Cube™ Inertial Motor Controller is part of Thorlabs' Kinesis® line of high-end, compact motion controllers. It is designed to drive our piezo inertia actuators, PD1(/M) translation stage, and PIM series piezo inertia optic mounts with single- or dual-channel operation, making it ideal for applications such as beam steering and positioning. The controller uses a dual-axis joystick that allows for simple, intuitive control over each channel, independently or simultaneously. The controller can be configured to operate up to four PD1(/M) stages or up to four piezo inertia mounts or actuators. One controller cannot be used to concurrently drive stages as well as mounts or actuators.

The unit has a compact 121.0 mm x 60.0 mm x 47.0 mm (4.76" x 2.36" x 1.85") footprint that is only twice as long as a standard K-Cube, allowing it to be positioned close to the motorized system for added convenience when adjusting motor positions using the top panel controls. The included mounting plate can be secured to an optical table via two 1/4" (M6) counterbored slots. Alternatively, two magnets in the mounting plate can secure the assembly to the optical table for quick, drop-in operation.

A power switch on the front of the unit turns the controller on and off. The top panel display screen enables operation as soon as the unit is turned on, without the need for connection to a PC. When the switch is turned off, the KIM101 saves all user-adjustable settings for the next session. Please note that the power switch should always be in the "off" position when plugging in or unplugging the unit.

USB connectivity provides easy 'Plug-and-Play' PC-controlled operation with two available software platforms: our new Kinesis software package or our legacy APT (Advanced Positioning Technology) software package. The Kinesis Software features new .NET controls which can be used by 3rd party developers working in the latest C, C#, LabVIEW™ or any .NET compatible languages to create custom applications. Our legacy APT software allows the user to quickly set up complex move sequences with advanced controls made possible via the ActiveX® programming environment. For example, all relevant operating parameters are set automatically by the software for Thorlabs stage and actuator products. For more details on both software packages, please see the Motion Control Software, Kinesis Tutorials, and APT Tutorials tabs.

The KIM101 features two bidirectional trigger ports that can be used to read an external logic signal or output a logic level to control external equipment. When a port is used in the input mode, the logic levels are TTL compatible. When used in the output mode, the port provides a push-pull drive of 5 V, with the maximum current limited to approximately 8 mA. Please see the manual for more information.

Note: When used with the PD1(/M) stage, the KIM101 controller version must be 2019 or newer (per the S/N label) with a firmware revision of 010003 or higher (indicated when the controller is powered on). Earlier versions of the KIM101 controller or those with older firmware will not function properly with a PD1(/M) stage and may cause failure of the stage and/or the controller.

Power Supply Options
The preferred power supply (single channel, multi-channel, or hub-based) depends on the end user's application and whether you already own compatible power supplies. To that end and in keeping with Thorlabs' green initiative, we do not ship these units bundled with a power supply.

Multiple units can be connected to a single PC by using the KCH301 or KCH601 USB Controller Hubs, available below, for multi-axis motion control applications. The KIM101 occupies two mounting bays on the USB controller hubs. The KCH301 features three controller mounting bays while the KCH601 features six controller mounting bays.

All power supply options compatible with the KIM101 Motor Controller can be found below.

Specifications
Piezoelectric Output (SMC Male)
Voltage Output 85 to 125 VDC per Channel
External Input (SMA, CHA, CHB)
Input Type Single Ended, Analog
Input Voltage 0 to 10 V ± 2%a
Output Configuration Individual Channels: Ch 1, Ch 2, Ch 3, Ch 4
Paired Channels: Ch 1 & 2; Ch 3 & 4
Output Pulses Frequency: 1 Hz to 2 kHz
Voltage Peak Adjustable from 85 to 125 V
Input Power Requirements
Voltage 15 VDC
Current 2 A
General
Operating Display 128 x 128 TFT LCD Color
I/O 1 and I/O 2 Connectors TTL Input, TTL Output, 5 V Level
User I/O Connector 15 Pin DIN
5 V @ 150 mA User Supply with 0 V Return
Limit Switch Inputs (Qty. 8) - Multiplexed
Joystick 2 Axis, Spring Loaded, Center Return
Velocity Control of Selected Axis
Menu Control in Setup Mode
Housing Dimensionsb (W x D x H) 121.0 mm x 60.0 mm x 47.0 mm (4.76 x 2.36" x 1.85")
Weight 390 g
  • When Used with Thorlabs' Piezo Inertia Actuators: 0 V Results in Max Velocity Backwards, 10 V Results in Max Velocity Forwards, 5 V Results in Zero Movement
  • Not Including the Mounting Plate

MOT 1, MOT 2, MOT 3, MOT 4

SMC Male

SMC Male
85 to 125 V. Provides the drive signal to the piezo actuator. The maximum voltage is set via the included Kinesis Software.

Computer Connection

USB 3.0
The USB 3.0 port is compatible with a USB 2.0 Micro B connector if the Micro B connector is plugged into the shaded region in the photo above. A USB 3.0 type A to type Micro B cable is included with the KIM101.

User IO

15 Pin IO
Pin Description Pin Description
1 0 V 9 0 V
2 OW-Aa 10 +5 V
3 OW-Ba 11 Limit Switch 3A/Encoder 3Ab
4 Limit Switch 1A/Encoder 1Ab 12 Limit Switch 3B/Encoder 3Bb
5 Limit Switch 1B/Encoder 1Bb 13 Limit Switch 4A/Encoder 4Ab
6 Limit Switch 2A/Encoder 2Ab 14 Limit Switch 4B/Encoder 4Bb
7 Limit Switch 2B/Encoder 2Bb 15 OW-Da
8 OW-Ca - -
  • For Future Use
  • Limit Switch / Encoder pins are active in association with selected drive output channels.

CH-A, CH-B

SMA Female

SMA Female
0 V to 10 V Input
Used to connect an external analog signal source to control the position of the actuator. The input voltage range is 0 to +10 V, where 0 V provides max backwards velocity and +10 V provides max forward velocity. 5 V results in no movement. The input impedance is 100 kΩ.

I/O 1, I/O 2

SMA Female

SMA Female
+5 V TTL
These connectors provide a 5 V logic level input and output that can be configured to support triggering into and out of external devices. Each port can be independently configured to control the logic level or to set the trigger as an input or output.

K-Cube Mounting Options

Two options are available to securely mount our K-Cube controllers onto an optical table. An optical table mounting plate, provided with every K-Cube, allows for a single controller to be attached to an optical table. Alternatively, three- and six-port USB controller hubs are offered (sold separately) that can mount and power our K-Cube controllers. These options are described in further detail below.

Optical Table Mounting Plate
Each K-Cube unit comes with a mounting plate that clips onto the base of the controller, as shown in the animation below. The plate contains two magnets for temporary placement on an optical table and two counterbores for 1/4"-20 (M6) cap screws for a more permanent placement on the tabletop. Please see the Specs tab for a mechanical drawing of the table mounting plate.

Kinesis USB Controller Hubs
Multiple units can be mounted and connected to a single PC by using the KCH301 or KCH601 USB Controller Hubs. They each consist of two parts: the hub, which can support up to three (KCH301) or six (KCH601) K-Cubes or T-Cubes™, and a power supply that plugs into a standard wall outlet. K-Cubes simply clip into place using the provided on-unit clips, while current- and previous-generation T-Cubes require the KAP101 Adapter Plate, shown in the animation below. The hub vastly reduces the number of USB and power cables required when operating multiple controllers.

K-Cube Table Mounting Plate


Unlike T-Cubes, every K-Cube includes a mounting plate that clips onto the base of the controller. The plate contains two magnets for temporary placement on an optical table and two counterbores for 1/4"-20 (M6) cap screws for more permanent placement on the tabletop.

Kinesis USB Controller Hubs


3- and 6-Port USB Controller Hubs allow multiple controllers to be connected to one PC for multi-axis applications. K-Cubes can be directly attached to the hubs while T-Cubes require a KAP101 Adapter Plate.

Introducing Thorlabs' Kinesis® Motion Controllers

K-Cube™ vs. T-Cube™ Feature Comparison
Feature KIM101 K-Cube TIM101 T-Cube
Kinesis Software Compatibility YES! YES!
APT Software Compatibility YES! YES!
Kinesis USB Controller Hubs Compatibility YES! Requires KAP102 Adapter
Top Panel LCD Display YES! N/A
Power Switch YES! N/A
Dual-Channel Operation YES! N/A
Bidirectional SMA Trigger Porta 2 N/A
SMA External Analog Inputa YES! YES!
Computer Connectiona USB 3.0 Micro B
(USB 2.0 Compliant)
USB 2.0 Micro B
(USB 2.0 Compliant)
Included Mounting Plate YES! YES!
Size (W x D x H) 121.0 mm x 60.0 mm x 47.0 mm
(4.76" x 2.36" x 1.85")
121.0 mm x 60.0 mm x 47.0 mm
(4.76" x 2.36" x 1.85")
  • Please see the Pin Diagrams tab for details.

A major upgrade to the former-generation T-Cubes™, the growing K-Cube™ line of high-end controllers provides increased versatility not only through the new Kinesis software, but through an overhaul and updating of their physical design and firmware.

Every K-Cube controller includes a digital display. In addition to basic input and output readouts, the KIM101 features a joystick which is capable of controlling two output channels simultaneously. Each unit contains a front-located power switch that, when turned off, saves all user-adjustable settings, as well as two bidirectional SMA trigger ports that accept or output a 5 V TTL logic signal.

Please see the table to the right for a full comparison of the features offered by our new KIM101 K-Cube and previous-generation TIM101 T-Cube motion controllers.

Piezo Controller
Click to Enlarge

KIM101 K-Cube Kinesis Piezo Inertia Actuator Controller

Kinesis USB Controller Hubs
Complementing our K-Cubes are our Kinesis USB 2.0 controller hubs. With two versions available for three or six K- or T-Cubes, these USB hubs are designed specifically for communication between multiple controllers and the host control PC. These hubs are backward compatible with our T-Cubes.

K-Cubes simply clip into place using the provided on-unit clips, while current- and previous-generation T-Cubes require the KAP101 Adapter Plate, shown in the animation to the below right. The hub vastly reduces the number of USB and power cables required when operating multiple controllers. Note that the KIM101 is twice as long as a standard K-Cube and occupies two ports on the controller hub.

K-Cube Table Mounting Plate


Unlike T-Cubes, every K-Cube includes a mounting plate that clips onto the base of the controller. The plate contains two magnets for temporary placement on an optical table and two counterbores for 1/4"-20 (M6) cap screws for more permanent placement on the tabletop.

Kinesis USB Controller Hubs


3- and 6-Port USB Controller Hubs allow multiple controllers to be connected to one PC for multi-axis applications. K-Cubes can be directly attached to the hubs while T-Cubes require a KAP101 Adapter Plate.

Thorlabs offers two platforms to drive our wide range of motion controllers: our Kinesis® software package or the legacy APT™ (Advanced Positioning Technology) software package. Either package can be used to control devices in the Kinesis family, which covers a wide range of motion controllers ranging from small, low-powered, single-channel drivers (such as the K-Cubes™ and T-Cubes™) to high-power, multi-channel, modular 19" rack nanopositioning systems (the APT Rack System).

The Kinesis Software features .NET controls which can be used by 3rd party developers working in the latest C#, Visual Basic, LabVIEW™, or any .NET compatible languages to create custom applications. Low-level DLL libraries are included for applications not expected to use the .NET framework. A Central Sequence Manager supports integration and synchronization of all Thorlabs motion control hardware.

Kinesis Software
Kinesis GUI Screen
APT Software
APT GUI Screen

Our legacy APT System Software platform offers ActiveX-based controls which can be used by 3rd party developers working on C#, Visual Basic, LabVIEW™, or any Active-X compatible languages to create custom applications and includes a simulator mode to assist in developing custom applications without requiring hardware.

By providing these common software platforms, Thorlabs has ensured that users can easily mix and match any of the Kinesis and APT controllers in a single application, while only having to learn a single set of software tools. In this way, it is perfectly feasible to combine any of the controllers from single-axis to multi-axis systems and control all from a single, PC-based unified software interface.

The software packages allow two methods of usage: graphical user interface (GUI) utilities for direct interaction with and control of the controllers 'out of the box', and a set of programming interfaces that allow custom-integrated positioning and alignment solutions to be easily programmed in the development language of choice.

A range of video tutorials is available to help explain our APT system software. These tutorials provide an overview of the software and the APT Config utility. Additionally, a tutorial video is available to explain how to select simulator mode within the software, which allows the user to experiment with the software without a controller connected. Please select the APT Tutorials tab above to view these videos, which are also available on the software CD included with the controllers.

Software

Kinesis Version 1.14.18

The Kinesis Software Package, which includes a GUI for control of Thorlabs' Kinesis and APT™ system controllers.

Also Available:

  • Communications Protocol
Software Download

Software

APT Version 3.21.4

The APT Software Package, which includes a GUI for control of Thorlabs' APT™ and Kinesis system controllers.

Also Available:

  • Communications Protocol
Software Download

Thorlabs' Kinesis® software features new .NET controls which can be used by third-party developers working in the latest C#, Visual Basic, LabVIEW™, or any .NET compatible languages to create custom applications.

C#
This programming language is designed to allow multiple programming paradigms, or languages, to be used, thus allowing for complex problems to be solved in an easy or efficient manner. It encompasses typing, imperative, declarative, functional, generic, object-oriented, and component-oriented programming. By providing functionality with this common software platform, Thorlabs has ensured that users can easily mix and match any of the Kinesis controllers in a single application, while only having to learn a single set of software tools. In this way, it is perfectly feasible to combine any of the controllers from the low-powered, single-axis to the high-powered, multi-axis systems and control all from a single, PC-based unified software interface.

The Kinesis System Software allows two methods of usage: graphical user interface (GUI) utilities for direct interaction and control of the controllers 'out of the box', and a set of programming interfaces that allow custom-integrated positioning and alignment solutions to be easily programmed in the development language of choice.

For a collection of example projects that can be compiled and run to demonstrate the different ways in which developers can build on the Kinesis motion control libraries, click on the links below. Please note that a separate integrated development environment (IDE) (e.g., Microsoft Visual Studio) will be required to execute the Quick Start examples. The C# example projects can be executed using the included .NET controls in the Kinesis software package (see the Kinesis Software tab for details).

C Sharp Icon Click Here for the Kinesis with C# Quick Start Guide
Click Here for C# Example Projects
Click Here for Quick Start Device Control Examples
C Sharp Icon

LabVIEW
LabVIEW can be used to communicate with any Kinesis- or APT-based controller via .NET controls. In LabVIEW, you build a user interface, known as a front panel, with a set of tools and objects and then add code using graphical representations of functions to control the front panel objects. The LabVIEW tutorial, provided below, provides some information on using the .NET controls to create control GUIs for Kinesis- and APT-driven devices within LabVIEW. It includes an overview with basic information about using controllers in LabVIEW and explains the setup procedure that needs to be completed before using a LabVIEW GUI to operate a device.

Labview Icon Click Here to View the LabVIEW Guide
Click Here to View the Kinesis with LabVIEW Overview Page
Labview Icon

These videos illustrate some of the basics of using the APT System Software from both a non-programming and a programming point of view. There are videos that illustrate usage of the supplied APT utilities that allow immediate control of the APT controllers out of the box. There are also a number of videos that explain the basics of programming custom software applications using Visual Basic, LabView and Visual C++. Watch the videos now to see what we mean.

  Click here to view the video tutorial  

To further assist programmers, a guide to programming the APT software in LabView is also available.

Labview Icon Click here to view the LabView guide Labview Icon

Posted Comments:
Alan Blair  (posted 2019-05-22 12:19:27.563)
We would like to embed this in a device which will be remotely controlled. Can you tell me how the power switch is connected so we can make a remote circuit to emulate it? Alternatively, there is a connector on the bottom of the KIM101. Can this be used to control the on/off functionality?
AManickavasagam  (posted 2019-05-28 05:11:29.0)
Response from Arunthathi at Thorlabs: Thanks for your query. I have contacted you directly with the details of the power switch connection and feasibility of controlling the KIM101 remotely along with the circuit diagram for your reference.
e.lopez  (posted 2018-11-23 08:22:36.45)
Can this controller be controlled by Matlab? Thank you, Eneko
rmiron  (posted 2018-11-23 04:00:04.0)
Response from Radu at Thorlabs: There are multiple paths for controlling KIM101 from MATLAB. One would be to use the ActiveX controls that come with APT, our legacy software. We have a short guide on how to get started. You can download it via this link: https://www.thorlabs.com/tutorials/Thorlabs_APT_MATLAB.docx A second option would be to bypass our software and send serial commands directly from MATLAB to the device. You can find the documentation for our serial communications protocol here: https://www.thorlabs.com/Software/Motion%20Control/APT_Communications_Protocol.pdf Finally, our .NET API for Kinesis can be used from MATLAB, but we don't have any guides or examples that can help you get started. I should mention that the API is composed of .NET assemblies, as opposed to COM DLLs.
michael.nickerson  (posted 2017-10-18 11:10:29.133)
This TIM101 would be far more useful if it could be controlled by the KPA101 or other KCH-mountable controllers, instead of manual control only.
AManickavasagam  (posted 2017-10-27 11:36:06.0)
Response from Arunthathi at Thorlabs: Thank you for your query. Unfortunately, without external electronics there is no way to control TIM101 with KPA101 for beam stabilisation/tracking. We will note this requirement and notify our engineers.
user  (posted 2017-07-11 15:02:32.83)
Can this controller be controlled by a Python script ? I've found some modules online (thorlabs_apt and PyAPT), but they don't seem to be working with TIM101. I'm trying to send it instructions depending on some data returned by a Python program, in order to calibrate the position of a laser beam with two piezo inertia actuators mounted on a mirror.
bhallewell  (posted 2017-07-13 09:36:41.0)
Response from Ben at Thorlabs: Unfortunately we do not support use of APT through Python. What we do have available is a number of videos & guides found in the following webpage for Visual Studio (Basic & C++) & LabVIEW. We also hold examples for programming in our latest motion control software, Kinesis, through LabVIEW & Visual Studio (C# & C) environments. https://www.thorlabs.com/navigation.cfm?guide_id=2251
peebles  (posted 2016-07-19 12:54:47.94)
Does the controller allow you to set a specific distance of translation when coupled with a suitable piezo transducer and translation stage. If so what would be the accuracy of the final distance moved e.g. If asked to move the translation stage 1 cm, how accurate would be the final movement? Also is there any sort of readout of position ? Thanks, Tony Peebles Our application requires ~2cm movement of a plastic lens weighing about 2 pounds in both horizontal and vertical directions.
bwood  (posted 2016-07-20 03:54:37.0)
Response from Ben at Thorlabs: Thank you for your question. The TIM101 cannot provide the position of the actuator in meters, due to the varying step size it can only output the number of steps. Furthermore, the TIM101 cannot currently be coupled with an external feedback mechanism, to calculate the position within the controller and our motion control software hemselves. One potential solution would be to use an external feedback mechanism to measure the position, and to generate a control signal to the analogue input of the TIM101 to move the actuator to a given position. This would create a closed loop system, similar to a conventional closed loop piezo system.

K-Cube™ Piezo Inertia Actuator Controller

  • Four Piezoelectric Output Channels Capable of Single- or Dual-Channel Operation
  • Dual-Axis Joystick and Display Screen for Standalone Operation
  • USB Connectivity for PC Control with Included Kinesis® Software (or Legacy APT™ Software)
  • Adjustable Voltage Output from 85 V to 125 V
  • Power Supply Not Included (See Below)

This K-Cube Controller is a compact, four-channel controller for easy manual and PC control of our piezoelectric inertia actuators. The four piezoelectric outputs can be operated independently or in pairs for dual-axis applications. Each output has an adjustable voltage from 85 V to 125 V. The top panel display screen enables operation as soon as the unit is turned on, without the need for connection to a PC. Alternatively, USB connectivity provides easy 'Plug-and-Play' PC-controlled operation with two available software platforms: our new Kinesis® software package or our legacy APT™ (Advanced Positioning Technology) software package.

The unit has a very small 121.0 mm x 60.0 mm x 47.0 mm (4.76" x 2.36" x 1.85") footprint and may be mounted directly to the optical table using the 1/4" (M6) counterbored slots in the base plate. This compact size allows the controller to be positioned close to the motorized system for added convenience when manually adjusting motor positions using the top panel controls. Tabletop operation also allows minimal drive cable lengths for easier cable management.

Please note that this controller does not ship with a power supply. Compatible power supplies are listed below.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
KIM101 Support Documentation
KIM101K-Cube Inertial Motor Controller (Power Supply Sold Separately)
$1,027.94
Today

Compatible Power Supplies

photo of power supply adapters
Click for Details

A location-specific adapter is shipped with the power supply unit based on your location. The adapters for the KPS101 are shown here.
photo of power supply options
Click to Enlarge

The KPS101 Power Supply Unit
  • Individual Power Supply
    • KPS101: For K-Cubes™ or T-Cubes™ with 3.5 mm Jacks
  • USB Controller Hubs Provide Power and Communications
    • KCH301: For up to Three K-Cubes or T-Cubes
    • KCH601: For up to Six K-Cubes or T-Cubes

The KPS101 power supply outputs +15 VDC at up to 2.4 A and can power a single K-Cube or T-Cube with a 3.5 mm jack. It plugs into a standard wall outlet.

The KCH301 and KCH601 USB Controller Hubs each consist of two parts: the hub, which can support up to three (KCH301) or six (KCH601) K-Cubes or T-Cubes, and a power supply that plugs into a standard wall outlet. The hub draws a maximum current of 10 A; please verify that the cubes being used do not require a total current of more than 10 A. In addition, the hub provides USB connectivity to any docked K-Cube or T-Cube through a single USB connection.

For more information on the USB Controller Hubs, see the full web presentation.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
KPS101 Support Documentation
KPS10115 V, 2.4 A Power Supply Unit with 3.5 mm Jack Connector for One K- or T-Cube
$34.33
Today
KCH301 Support Documentation
KCH301USB Controller Hub and Power Supply for Three K-Cubes or T-Cubes
$509.54
Today
KCH601 Support Documentation
KCH601USB Controller Hub and Power Supply for Six K-Cubes or T-Cubes
$616.70
Today
Log In  |   My Account  |   Contact Us  |   Careers  |   Privacy Policy  |   Home  |   FAQ  |   Site Index
Regional Websites: West Coast US | Europe | Asia | China | Japan
Copyright 1999-2019 Thorlabs, Inc.
Sales: 1-973-300-3000
Technical Support: 1-973-300-3000


High Quality Thorlabs Logo 1000px:Save this Image