"; _cf_contextpath=""; _cf_ajaxscriptsrc="/cfthorscripts/ajax"; _cf_jsonprefix='//'; _cf_websocket_port=8578; _cf_flash_policy_port=1244; _cf_clientid='F48707EE821273FF4A9E12F6240D8787';/* ]]> */
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kinesis® K-Cube™ NanoTrak® Active Auto-Alignment Fiber Controllers![]()
KNA-VIS 320 nm - 1000 nm Table Mounting Plate (Included with K-Cube) Kinesis® Software GUI Screen ![]() Please Wait
Applications
![]() Click to Enlarge Back View of the K-Cube NanoTrak® Controller (See the Pin Diagrams Tab for More Information) ![]() Click to Enlarge Top View of the K-Cube NanoTrak® Controller Features
K-Cube™ NanoTrak® Active Auto-Alignment Controllers are a part of Thorlabs' new and growing Kinesis® line of high-end, compact motion controllers. The active auto-alignment controllers are designed to maximize the power throughput of an optical setup, including fiber-to-fiber and fiber-to-free-space systems. By driving a piezo-actuated stage to move the fiber tip in a circular scan pattern, the controller performs a power gradient search to determine the direction of peak power and positions the fiber for maximum throughput. Two high-voltage output channels provide the drive signal for the associated piezo actuators, eliminating the need for external piezo drivers. In combination with a multi-axis, piezo-driven stage, such as our 3-Axis NanoMax and 6-Axis NanoMax stages, a K-Cube active auto-alignment controller creates a complete, compact auto-alignment system (see the Application tab for more details). The small footprint of this unit (121 mm x 60 mm x 47 mm) and quickly detachable mounting plate allow the K-Cube to be securely mounted to an optical table in close proximity to the system it controls. Each controller comes with a preinstalled detector. The KNA-VIS has a Si detector optimized for the visible spectrum (320 nm to 1000 nm), while the KNA-IR has an InGaAs detector for the infrared (900 nm to 1700 nm). The front of each unit features a power switch that, when turned off, saves all user-adjustable settings. Top panel controls enable convenient standalone operation, and the easy-to-read digital display allows the user to monitor the alignment. USB connectivity provides easy 'Plug-and-Play' PC-controlled operation with the Kinesis software package, which features new .NET controls that can be used by third-party developers working in the latest C, C#, LabVIEW™ or any .NET compatible languages to create custom applications. A USB 3.0 type A to type Micro B cable is included with each K-Cube NanoTrak controller. For more details, please see the Kinesis Software and Kinesis Tutorials tabs. Optical Table Mounting Plate Power Supply Options
![]() Click to Enlarge Mechanical Drawing of K-Cube NanoTrak® Fiber Alignment Controller Computer Connection**The USB 3.0 port is compatible with a USB 2.0 Micro B connector if the Micro B connector is plugged into the shaded region in the photo above. A USB 3.0 type A to type Micro B cable is included with the K-Cube NanoTrak® Controller.
Power ConnectorMini-DIN Female
K-Cube Mounting OptionsTwo options are available to securely mount our K-Cube controllers onto an optical table. An optical table mounting plate, provided with every K-Cube, allows for a single controller to be attached to an optical table. Alternatively, three- and six-port USB controller hubs are offered (sold separately) that can mount and power our K-Cube controllers. These options are described in further detail below. Optical Table Mounting Plate Kinesis USB Controller Hubs K-Cube Table Mounting PlateUnlike T-Cubes, every K-Cube includes a mounting plate that clips onto the base of the controller. The plate contains two magnets for temporary placement on an optical table and two counterbores for 1/4"-20 (M6) cap screws for more permanent placement on the tabletop. Kinesis USB Controller Hubs3- and 6-Port USB Controller Hubs allow multiple controllers to be connected to one PC for multi-axis applications. K-Cubes can be directly attached to the hubs while T-Cubes require a KAP101 Adapter Plate. Thorlabs' Kinesis® software can be used to control devices in the Kinesis or APT family, which covers a wide range of devices ranging from small, low-powered, single-channel drivers (such as the K-Cubes and T-Cubes) to high-power, multi-channel, modular 19" rack nanopositioning systems (the APT Rack System). The Kinesis Software features new .NET controls which can be used by 3rd party developers working in the latest C#, Visual Basic, LabVIEW™ or any .NET compatible languages to create custom applications. Low level DLL libraries are included for applications not expected to use the .NET framework. A Central Sequence Manager supports integration and synchronization of all Thorlabs motion control hardware. The software packages allow two methods of usage: graphical user interface (GUI) utilities for direct interaction with and control of the controllers 'out of the box', and a set of programming interfaces that allow custom-integrated positioning and alignment solutions to be easily programmed in the development language of choice. SoftwareKinesis Version 1.14.25 The Kinesis Software Package, which includes a GUI for control of Thorlabs' Kinesis and APT™ system controllers. Also Available:
![]() Click to Enlarge Kinesis GUI Screen for K-Cube NanoTrak® Controllers Thorlabs' Kinesis® software features new .NET controls which can be used by third-party developers working in the latest C#, Visual Basic, LabVIEW™, or any .NET compatible languages to create custom applications. C# For a collection of example projects that can be compiled and run to demonstrate the different ways in which developers can build on the Kinesis motion control libraries, click on the links below. Please note that a separate integrated development environment (IDE) (e.g., Microsoft Visual Studio) will be required to execute the Quick Start examples. The C# example projects can be executed using the included .NET controls in the Kinesis software package (see the Kinesis Software tab for details).
LabVIEW
Introducing Thorlabs' Kinesis® Motion ControllersA major upgrade to the former-generation T-Cubes™, the growing K-Cube™ line of high-end controllers provides increased versatility not only through the new Kinesis software, but through an overhaul and updating of their physical design and firmware. Every K-Cube controller includes a digital display. In addition to basic input and output readouts, this display hosts a number of menu options that include go-to-position commands, homing, velocity control, and jogging. The on-unit velocity wheel and menu button are used to scroll through the available options. Each unit contains a front-located power switch that, when turned off, saves all user-adjustable settings as well as two bidirectional SMA trigger ports that accept or output a 5 V TTL logic signal. Please see the table to the right for a full comparison of the features offered by our new KNA-VIS and KNA-IR K-Cubes and previous-generation T-Cube fiber alignment controllers.
Kinesis USB Controller Hubs K-Cubes simply clip into place using the provided on-unit clips, while current- and previous-generation T-Cubes require the KAP101 Adapter Plate, shown in the animation to the below right. The hub vastly reduces the number of USB and power cables required when operating multiple controllers. K-Cube Table Mounting PlateUnlike T-Cubes, every K-Cube includes a mounting plate that clips onto the base of the controller. The plate contains two magnets for temporary placement on an optical table and two counterbores for 1/4"-20 (M6) cap screws for more permanent placement on the tabletop. Kinesis USB Controller Hubs3- and 6-Port USB Controller Hubs allow multiple controllers to be connected to one PC for multi-axis applications. K-Cubes can be directly attached to the hubs while T-Cubes require a KAP101 Adapter Plate. K-Cube™ NanoTrak® Active Auto-Alignment ApplicationA K-Cube™ NanoTrak® Active Auto-Alignment Controller can be used in conjunction with a NanoMax Flexure Stage to create a continuous active fiber alignment system. Light from a K-Cube laser source is transmitted through the input fiber to the fiber end attached to the moving world of the stage. An output fiber is fixed to the stationary portion of the stage, and the light transmitted through the second fiber is fed into the power sensor on the NanoTrak controller. The NanoTrak controller looks for the gradient in the power signal to determine the direction of peak power. This is achieved by scanning the stage in a circular path. As the input fiber is driven in a circle, the optical power coupling between the two fibers will fluctuate. The NanoTrak samples the power at multiple points around the test circle and then directs the piezos to move the stage in the direction of the highest signal. This process is continued until the highest power lies in the center of the circle and the power at every point on the circle is equal. Continuous active alignment (Tracking Mode) can be used to maintain alignment in a setup, or the gradient search can be halted (Latched Mode) for next step assembly or R&D operations. The setup below can be used for fiber characterization and testing. If the output fiber is replaced with one of our Fiber Optic Couplers, the same setup may be used to maintain high power throughput to an entire fiber-based setup. ![]() Click to Enlarge Fiber-to-Fiber Auto-Alignment Setup Using a K-Cube NanoTrak® to Control a NanoMax Stage
![]() The K-Cube™ NanoTrak® Active Auto-Alignment Controllers optimize the coupling power when aligning fiber and free-space devices. Two options are available: the KNA-VIS controller is shipped with a preinstalled Si detector for 320 nm to 1000 nm, while the KNA-IR controller is shipped with a preinstalled InGaAs detector for 900 nm to 1700 nm. Power supply options for the K-Cubes are sold separately below. ![]()
The TPS002 supplies power for up to two K-Cubes* or T-Cubes. The cubes still require individual computer connection via USB cable. The KCH301 and KCH601 USB Controller Hubs each consist of two parts: the hub, which can support up to three (KCH301) or six (KCH601) K-Cubes or T-Cubes, and a power supply that plugs into a standard wall outlet. The hub draws a maximum current of 10 A; please verify that the cubes being used do not require a total current of more than 10 A. In addition, the hub provides USB connectivity to any docked K-Cube or T-Cube through a single USB connection. For more information on the USB Controller Hubs, see the full web presentation. *The TPS002 can only support one KNA-VIS or KNA-IR controller or one KLD101 driver and should not be used to power any additional units as that may exceed current limitations. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|