"; _cf_contextpath=""; _cf_ajaxscriptsrc="/cfthorscripts/ajax"; _cf_jsonprefix='//'; _cf_websocket_port=8578; _cf_flash_policy_port=1244; _cf_clientid='B6FA55ECA6A34C142667665F2C89F90F';/* ]]> */
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1.6 MP CMOS Compact Scientific Cameras![]()
CS165MU1 Monochrome CMOS Camera with External Hardware Trigger CS165MU SM1A10Z MVL4WA Application Idea Use the SM1 Threads on the Camera Front with a C-Mount or CS-Mount Adapter C-Mount and CS-Mount Adapters are Sold Below Related Items ![]() Please Wait
![]() Click here to view the full-resolution TIFF image. Image of a printed circuit board acquired using an MVL50M23 Machine Vision Lens mounted to a CS165MU1 Camera using an SM1A10Z Adapter (sold below). Features
Software
Thorlabs' ultra-compact, lightweight Zelux™ Cameras with CMOS Sensors are designed to provide the imaging performance of a scientific camera at the price of a typical general-purpose camera. We have available cameras with either monochrome or color CMOS sensors and offer versions with or without MMCX connectors for external triggering to synchronize image capture with other devices. These cameras have a low <4.0 e- read noise and high sensitivity while maintaining a small footprint. The global shutter captures the entire field of view simultaneously, allowing for imaging of rapidly changing scenes. The monochrome cameras feature a clear AR-coated window, while the color cameras feature an IR blocking filter that cuts off transmission above 650 nm. The window and filter are held in place by an SM1RR Retaining Ring, which can be tightened using an SPW602 or SPW606 Spanner Wrench (sold separately); each optic can be removed and replaced with another Ø25 mm or Ø1" optic up to 1.27 mm thick. Both types of cameras feature a USB 3.0 interface and can be controlled through our ThorCam software; see the Software tab for more information. The most up-to-date firmware can be downloaded here. Every camera is shipped with an SM1EC2B snap-on lens cap to protect the sensor while cameras are not in use. The combination of flexible mounting options and compact size makes these cameras an ideal choice for integrating into lab-built imaging systems as well as those based on commercial microscopes. Two 1/4"-20 or M6 tapped holes on adjacent sides of each Zelux camera housing provide compatibility with Ø1" pedestal or pillar posts and many standard tripod mounts. Four 4-40 tapped holes on the front of the housing allow the camera to be mounted into our 30 mm cage system. The aperture of each camera has SM1 (1.035"-40) threading for compatibility with Ø1" Lens Tubes. CS- and C-Mount (1.000"-32) adapters are available below for compatibility with many microscopes, machine vision camera lenses, and C-mount extension tubes. See the Lens Compatibility tab for a selection of compatible machine vision camera lenses.
![]() Click to Enlarge Mechanical Drawing of the Zelux™ Camera Housing. MMCX connectors are only included in versions with an external hardware trigger. The dimensions of metric parts are indicated in parentheses.
![]() Click to Enlarge Click for Raw Data This curve shows the quantum efficiency for the monochrome camera sensor. ![]() Click to Enlarge Click for Raw Data These curves show the relative response for the color camera sensor's red, green, and blue pixels. This data does not take into account absorption from the installed IR blocking filter. The shaded blue region above 650 nm represents wavelengths blocked by the removable filter. ![]() Click to Enlarge Click for Raw Data The curve shows the typical transmission through the IR blocking filter. The filter can be removed and replaced with another Ø25 mm or Ø1" optic up to 1.27 mm thick. ![]() Click to Enlarge C- vs. CS-Mount Flange Focal Distances ![]() Click to Enlarge Spacer Length ![]() Click for Details Adapters for mounting C-mount and CS-mount lens onto our Zelux cameras. C-Mount and CS-Mount Lens CompatibilityOur Zelux™ cameras are compatible with C-mount lenses via the SM1A10Z adapter, as well as with CS-mount lenses via the SM1A10 adapter. As shown in the image to the near right, these adapters can be directly connected to the SM1 (1.035"-40)-threaded aperture of a Zelux camera. Both the SM1A10Z and SM1A10 adapters are sold below. The C- and CS-mount standards both use 1.00"-32 threads, but C-mount lenses have a flange focal distance that is 5 mm longer than CS-mount lenses, as illustrated in the diagram to the far right. Spacer length of an adapter is defined as the distance depicted by the diagram to the middle right. Choosing a Camera LensModern cameras that use CCD or CMOS sensors are specified for a camera sensor format, and similarly, lenses are designed to provide optimal imaging for a specific camera format. This format designation (e.g., 1/2", 2/3", 4/3") is a hold-over convention from when video was recorded using cathode-ray tubes and refers to the outer diameter of the video tube required for a given image size. Our Zelux cameras have a 1/2.9" (6.2 mm diagonal) optical format. In the ideal imaging system, a camera and lens would be designed for the same format, however, it is also possible to use camera/lens combinations with different formats. Doing this will have an effect, either vignetting or cropping, on the resulting image. Vignetting occurs when the lens format is smaller than the camera format, while cropping occurs when the lens format is larger than the camera format. For more details, please see our Camera Lens Tutorial. We offer a variety of C-mount camera lenses that are compatible with the Zelux CMOS cameras via the SM1A10Z adapter. Please see the Compatible C-Mount Camera Lenses table below for specifications on a selection of our camera lenses.
Triggered Camera OperationOur Zelux scientific cameras are available with or without MMCX connectors for external triggering to synchronize image capture with other devices. For Zelux cameras with MMCX connectors, there are three externally triggered operating modes: streaming overlapped exposure, asynchronous triggered acquisition, and bulb exposure driven by an externally generated trigger pulse. The trigger modes operate independently of the readout (e.g., binning) settings as well as gain and offset. Figures 1 through 3 show the timing diagrams for these trigger modes, assuming an active low external TTL trigger. ![]() Click to Enlarge Figure 1: Streaming overlapped exposure mode. When the external trigger goes low, the exposure begins and continues for the software-selected exposure time, followed by the readout. This sequence then repeats at the set time interval. Subsequent external triggers are ignored until the camera operation is halted. ![]() Click to Enlarge Figure 2: Asynchronous triggered acquisition mode. When the external trigger signal goes low, an exposure begins for the preset time, and then the exposure is read out of the camera. During the readout time, the external trigger is ignored. Once a single readout is complete, the camera will begin the next exposure only when the external trigger signal goes low. ![]() Click to Enlarge Figure 3: Bulb exposure mode. The exposure begins when the external trigger signal goes low and ends when the external trigger signal goes high. Trigger signals during camera readout are ignored. Camera Specific Timing ConsiderationsDue to the general operation of our Zelux CMOS cameras, as well as typical system propagation delays, the timing relationships shown above are subject to the following considerations:
It is important to note that the Strobe_Out signal includes the additional fixed exposure time period and therefore is a better representation of the actual exposure time. We suggest using the Strobe_Out signal to measure exposure time and adjust the bulb mode trigger pulse accordingly ThorCam™ThorCam is a powerful image acquisition software package that is designed for use with our cameras on 32- and 64-bit Windows® 7 or 10 systems. This intuitive, easy-to-use graphical interface provides camera control as well as the ability to acquire and play back images. Single image capture and image sequences are supported. Please refer to the screenshots below for an overview of the software's basic functionality. Application programming interfaces (APIs) and a software development kit (SDK) are included for the development of custom applications by OEMs and developers. The SDK provides easy integration with a wide variety of programming languages, such as C, C++, C#, Python, and Visual Basic .NET. Support for third-party software packages, such as LabVIEW and MATLAB, is available. For customers with loan units of our Zelux cameras, please contact sales.tsi@thorlabs.com for information on software functionality and downloads.
SoftwareVersion 3.5.1 Click the button below to visit the ThorCam software page. For the most up-to-date version of the firmware, please click here. Click the Highlighted Regions to Explore ThorCam Features![]() Camera Control and Image AcquisitionCamera Control and Image Acquisition functions are carried out through the icons along the top of the window, highlighted in orange in the image above. Camera parameters may be set in the popup window that appears upon clicking on the Tools icon. The Snapshot button allows a single image to be acquired using the current camera settings. The Start and Stop capture buttons begin image capture according to the camera settings, including triggered imaging. Timed Series and Review of Image SeriesThe Timed Series control, shown in Figure 1, allows time-lapse images to be recorded. Simply set the total number of images and the time delay in between captures. The output will be saved in a multi-page TIFF file in order to preserve the high-precision, unaltered image data. Controls within ThorCam allow the user to play the sequence of images or step through them frame by frame. Measurement and AnnotationAs shown in the yellow highlighted regions in the image above, ThorCam has a number of built-in annotation and measurement functions to help analyze images after they have been acquired. Lines, rectangles, circles, and freehand shapes can be drawn on the image. Text can be entered to annotate marked locations. A measurement mode allows the user to determine the distance between points of interest. The features in the red, green, and blue highlighted regions of the image above can be used to display information about both live and captured images. ThorCam also features a tally counter that allows the user to mark points of interest in the image and tally the number of points marked (see Figure 2). A crosshair target that is locked to the center of the image can be enabled to provide a point of reference. Third-Party Applications and SupportThorCam is bundled with support for third-party software packages such as LabVIEW, MATLAB, and .NET. Both 32- and 64-bit versions of LabVIEW and MATLAB are supported. A full-featured and well-documented API, included with our cameras, makes it convenient to develop fully customized applications in an efficient manner, while also providing the ability to migrate through our product line without having to rewrite an application. ![]() Click to Enlarge Figure 1: A timed series of 10 images taken at 1 second intervals is saved as a multipage TIFF. ![]() Click to Enlarge Figure 2: A screenshot of the ThorCam software showing some of the analysis and annotation features. The Tally function was used to mark four locations in the image. A blue crosshair target is enabled and locked to the center of the image to provide a point of reference.
Performance ConsiderationsPlease note that system performance limitations can lead to "dropped frames" when image sequences are saved to the disk. The ability of the host system to keep up with the camera's output data stream is dependent on multiple aspects of the host system. Note that the use of a USB hub may impact performance. A dedicated connection to the PC is preferred. USB 2.0 connections are not supported. First, it is important to distinguish between the frame rate of the camera and the ability of the host computer to keep up with the task of displaying images or streaming to the disk without dropping frames. The frame rate of the camera is a function of exposure and readout (e.g. clock, ROI) parameters. Based on the acquisition parameters chosen by the user, the camera timing emulates a digital counter that will generate a certain number of frames per second. When displaying images, this data is handled by the graphics system of the computer; when saving images and movies, this data is streamed to disk. If the hard drive is not fast enough, this will result in dropped frames. One solution to this problem is to ensure that a solid state drive (SSD) is used. This usually resolves the issue if the other specifications of the PC are sufficient. Note that the write speed of the SSD must be sufficient to handle the data throughput. Larger format images at higher frame rates sometimes require additional speed. In these cases users can consider implementing a RAID0 configuration using multiple SSDs or setting up a RAM drive. While the latter option limits the storage space to the RAM on the PC, this is the fastest option available. ImDisk is one example of a free RAM disk software package. It is important to note that RAM drives use volatile memory. Hence it is critical to ensure that the data is moved from the RAM drive to a physical hard drive before restarting or shutting down the computer to avoid data loss. Insights into Mounting Lenses to Thorlabs' Scientific CamerasScroll down to read about compatibility between lenses and cameras of different mount types, with a focus on Thorlabs' scientific cameras.
Click here for more insights into lab practices and equipment. Can C-mount and CS-mount cameras and lenses be used with each other?![]() Click to Enlarge Figure 1: C-mount lenses and cameras have the same flange focal distance (FFD), 17.526 mm. This ensures light through the lens focuses on the camera's sensor. Both components have 1.000"-32 threads, sometimes referred to as "C-mount threads". ![]() Click to Enlarge Figure 2: CS-mount lenses and cameras have the same flange focal distance (FFD), 12.526 mm. This ensures light through the lens focuses on the camera's sensor. Their 1.000"-32 threads are identical to threads on C-mount components, sometimes referred to as "C-mount threads." The C-mount and CS-mount camera system standards both include 1.000"-32 threads, but the two mount types have different flange focal distances (FFD, also known as flange focal depth, flange focal length, register, flange back distance, and flange-to-film distance). The FFD is 17.526 mm for the C-mount and 12.526 mm for the CS-mount (Figures 1 and 2, respectively). Since their flange focal distances are different, the C-mount and CS-mount components are not directly interchangeable. However, with an adapter, it is possible to use a C-mount lens with a CS-mount camera. Mixing and Matching With an adapter, a C-mount lens can be used with a CS-mount camera (Figures 3 and 4). The adapter increases the separation between the lens and the camera's sensor by 5.0 mm, to ensure the lens' focal plane aligns with the camera's sensor plane. In contrast, the shorter FFD of CS-mount lenses makes them incompatible for use with C-mount cameras (Figure 5). The lens and camera housings prevent the lens from mounting close enough to the camera sensor to provide an in-focus image, and no adapter can bring the lens closer. It is critical to check the lens and camera parameters to determine whether the components are compatible, an adapter is required, or the components cannot be made compatible. 1.000"-32 Threads Measuring Flange Focal Distance ![]() Click to Enlarge Figure 5: A CS-mount lens is not directly compatible with a C-mount camera, since the light focuses before the camera's sensor. Adapters are not useful, since the solution would require shrinking the flange focal distance of the camera (blue arrow). ![]() Click to Enlarge Figure 4: An adapter with the proper thickness moves the C-mount lens away from the CS-mount camera's sensor by an optimal amount, which is indicated by the length of the purple arrow. This allows the lens to focus light on the camera's sensor, despite the difference in FFD. ![]() Click to Enlarge Figure 3: A C-mount lens and a CS-mount camera are not directly compatible, since their flange focal distances, indicated by the blue and yellow arrows, respectively, are different. This arrangement will result in blurry images, since the light will not focus on the camera's sensor.
Date of Last Edit: July 21, 2020 Do Thorlabs' scientific cameras need an adapter?![]() Click to Enlarge Figure 6: An adapter can be used to optimally position a C-mount lens on a camera whose flange focal distance is less than 17.526 mm. This sketch is based on a Zelux camera and its SM1A10Z adapter. ![]() Click to Enlarge Figure 7: An adapter can be used to optimally position a CS-mount lens on a camera whose flange focal distance is less than 12.526 mm. This sketch is based on a Zelux camera and its SM1A10 adapter. All Kiralux™ and Quantalux® scientific cameras are factory set to accept C-mount lenses. When the attached C-mount adapters are removed from the passively cooled cameras, the The SM1 threads integrated into the camera housings are intended to facilitate the use of lens assemblies created from Thorlabs components. Adapters can also be used to convert from the camera's C-mount configurations. When designing an application-specific lens assembly or considering the use of an adapter not specifically designed for the camera, it is important to ensure that the flange focal distances (FFD) of the camera and lens match, as well as that the camera's sensor size accommodates the desired field of view (FOV). Made for Each Other: Cameras and Their Adapters While any adapter converting from SM1 to The position of the lens' focal plane is determined by a combination of the lens' FFD, which is measured in air, and any refractive elements between the lens and the camera's sensor. When light focused by the lens passes through a refractive element, instead of just travelling through air, the physical focal plane is shifted to longer distances by an amount that can be calculated. The adapter must add enough separation to compensate for both the camera's FFD, when it is too short, and the focal shift caused by any windows or filters inserted between the lens and sensor. Flexiblity and Quick Fixes: Adjustable C-Mount Adapter A benefit of the adjustable C-mount adapter is that it can tune the spacing between the lens and camera over a 1.8 mm range, when the window / filter and retaining ring are in place. Changing the spacing can compensate for different effects that otherwise misalign the camera's sensor plane and the lens' focal plane. These effects include material expansion and contraction due to temperature changes, positioning errors from tolerance stacking, and focal shifts caused by a substitute window or filter with a different thickness or refractive index. Adjusting the camera's adapter may be necessary to obtain sharp images of objects at infinity. When an object is at infinity, the incoming rays are parallel, and location of the focus defines the FFD of the lens. Since the actual FFDs of lenses and cameras may not match their intended FFDs, the focal plane for objects at infinity may be shifted from the sensor plane, resulting in a blurry image. If it is impossible to get a sharp image of objects at infinity, despite tuning the lens focus, try adjusting the camera's adapter. This can compensate for shifts due to tolerance and environmental effects and bring the image into focus. Date of Last Edit: Aug. 2, 2020 Why can the FFD be smaller than the distance separating the camera's flange and sensor?![]() Click to Enlarge Figure 9: Refraction causes the ray's angle with the optical axis to be shallower in the medium than in air (θm vs. θo ), due to the differences in refractive indices (nm vs. no ). After travelling a distance d in the medium, the ray is only hm closer to the axis. Due to this, the ray intersects the axis Δf beyond the f point.; ![]() Click to Enlarge Figure 8: A ray travelling through air intersects the optical axis at point f. The ray is ho closer to the axis after it travels across distance d. The refractive index of the air is no .
![]() Click to Enlarge Figure 11: Tolerance and / or temperature effects may result in the lens and camera having different FFDs. If the FFD of the lens is shorter, images of objects at infinity will be excluded from the focal range. Since the system cannot focus on them, they will be blurry. ![]() Click to Enlarge Figure 10: When their flange focal distances (FFD) are the same, the camera's sensor plane and the lens' focal plane are perfectly aligned. Images of objects at infinity coincide with one limit of the system's focal range. Flange focal distance (FFD) values for cameras and lenses assume only air fills the space between the lens and the camera's sensor plane. If windows and / or filters are inserted between the lens and camera sensor, it may be necessary to increase the distance separating the camera's flange and sensor planes to a value beyond the specified FFD. A span equal to the FFD may be too short, because refraction through windows and filters bends the light's path and shifts the focal plane farther away. If making changes to the optics between the lens and camera sensor, the resulting focal plane shift should be calculated to determine whether the separation between lens and camera should be adjusted to maintain good alignment. Note that good alignment is necessary for, but cannot guarantee, an in-focus image, since new optics may introduce aberrations and other effects resulting in unacceptable image quality. A Case of the Bends: Focal Shift Due to Refraction When an optic with plane-parallel sides and a higher refractive index While travelling through the optic, the ray approaches the optical axis at a slower rate than a ray travelling the same distance in air. After exiting the optic, the ray's angle with the axis is again θo , the same as a ray that did not pass through the optic. However, the ray exits the optic farther away from the axis than if it had never passed through it. Since the ray refracted by the optic is farther away, it crosses the axis at a point shifted Δf beyond the other ray's crossing. Increasing the optic's thickness widens the separation between the two rays, which increases Δf. To Infinity and Beyond Different effects, including temperature changes and tolerance stacking, can result in the lens and / or camera not exactly meeting the FFD specification. When the lens' actual FFD is shorter than the camera's, the camera system can no longer obtain sharp images of objects at infinity (Figure 11). This offset can also result if an optic is removed from between the lens and camera sensor. An approach some lenses use to compensate for this is to allow the user to vary the lens focus to points "beyond" infinity. This does not refer to a physical distance, it just allows the lens to push its focal plane farther away. Thorlabs' Kiralux™ and Quantalux® cameras include adjustable C-mount adapters to allow the spacing to be tuned as needed. If the lens' FFD is larger than the camera's, images of objects at infinity fall within the system's focal range, but some closer objects that should be within this range will be excluded. This situation can be caused by inserting optics between the lens and camera sensor. If objects at infinity can still be imaged, this can often be acceptable. Not Just Theory: Camera Design Example Date of Last Edit: July 31, 2020 ![]() About Thorlabs Scientific ImagingThorlabs Scientific Imaging (TSI) is a multi-disciplinary team dedicated to solving the most challenging imaging problems. We design and manufacture low-noise, high performance scientific cameras, interface devices, and software at our facility in Austin, Texas. A Message from TSI's General ManagerAs a researcher, you are accustomed to solving difficult problems but may be frustrated by the inadequacy of the available instrumentation and tools. The product development team at Thorlabs Scientific Imaging is continually looking for new challenges to push the boundaries of Scientific Cameras using various sensor technologies. We welcome your input in order to leverage our team of senior research and development engineers to help meet your advanced imaging needs. Thorlabs' purpose is to support advances in research through our product offerings. Your input will help us steer the direction of our scientific camera product line to support these advances. If you have a challenging application that requires a more advanced scientific camera than is currently available, I would be excited to hear from you. ![]() Sincerely,
Thorlabs offers four families of scientific cameras: Zelux™, Kiralux®, Quantalux®, and Scientific CCD. Zelux cameras are designed for general-purpose imaging and provide high imaging performance while maintaining a small footprint. Kiralux cameras have CMOS sensors in monochrome, color, NIR-enhanced, or polarization-sensitive versions and are available in compact, passively cooled housings; the CC505MU camera incorporates a hermetically sealed, TE-cooled housing. The polarization-sensitive Kiralux camera incorporates an integrated micropolarizer array that, when used with our ThorCam™ software package, captures images that illustrate degree of linear polarization, azimuth, and intensity at the pixel level. Our Quantalux monochrome sCMOS cameras feature high dynamic range combined with extremely low read noise for low-light applications. They are available in either a compact, passively cooled housing or a hermetically sealed, TE-cooled housing. We also offer scientific CCD cameras with a variety of features, including versions optimized for operation at UV, visible, or NIR wavelengths; fast-frame-rate cameras; TE-cooled or non-cooled housings; and versions with the sensor face plate removed. The tables below provide a summary of our camera offerings.
![]()
![]() Each Zelux™ camera is shipped with a USB3-MBA-118 USB 3.0 Cable and a SM1EC2B snap-on lens cap. The CS165MU1(/M) and CS165CU1(/M) Zelux cameras, which have external connections for triggering, are also shipped with two CA3339 MMCX-to-BNC cables. Additional accessories are available below. USB 3.0 Camera Accessories (USB3-MBA-118 and USB3-PCIE) All Zelux cameras may be connected directly to the USB 3.0 port on a laptop or desktop computer. Host-side USB 3.0 ports are often blue in color, although they may also be black in color, and are typically marked "SS" for SuperSpeed. A USB 3.0 PCIe card is sold separately for computers without an integrated Intel USB 3.0 controller. Note that the use of a USB hub may impact performance. A dedicated connection to the PC is preferred. Trigger and Strobe Cables (CA3339 and CA3439)
Adapters for C- and CS-Mount Lenses (SM1A10 and SM1A10Z) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|