Molded Glass Aspheric Lenses: Uncoated


  • High NA (0.2 to 0.7)
  • Diffraction-Limited Design
  • Collimate or Focus Light with a Single Element

354171

C171TMD

A240

A240TM

A220

Application Idea

Aspheric Lens in a Fiber Launch Application

Related Items


Please Wait
Webpage Features
info icon Click for complete specifications.
Performance Hyperlink Click to view item-specific focal length shift data and spot diagrams at various wavelengths.
Zemax Files
Click on the red Document icon next to the item numbers below to access the Zemax file download. Our entire Zemax Catalog is also available.

Molded Glass Aspheric Lenses: Uncoated

Aspheric lenses are designed to focus or collimate light without introducing spherical aberration into the transmitted wavefront. For monochromatic sources, spherical aberration is often what prevents a single spherical lens from achieving diffraction-limited performance when focusing or collimating light. Thus, an aspheric lens is often the best single element solution for many applications including collimating the output of a fiber or laser diode, coupling light into a fiber, spatial filtering, or imaging light onto a detector.

This page features our selection on uncoated molded glass aspheric lenses. Please note that Thorlabs offers a larger selection of aspheric lenses with one of our AR coatings deposited on both sides (see links in the selection table to the right).

All of these molded glass lenses are available premounted in nonmagnetic 303 stainless steel lens cells that are engraved with the part number for easy identification. These mounted versions have a metric thread that makes them easy to integrate into an optical setup or OEM application. Mounted aspheres are readily adapted to our SM1 series of lens tubes by using our Aspheric Lens Adapters. They can be used as a drop-in replacement for multi-element microscope objective by combining the lens with our Microscope Objective Adapter Extension Tube.

If an unmounted aspheric lens is being used to collimate the light from a point source or laser diode, the side with the greater radius of curvature (i.e., the flatter surface) should face the point source or laser diode. To collimate light using one of our mounted aspheric lenses, orient the housing so that the externally threaded end of the mount faces the source.

Molded glass aspheres are manufactured from a variety of optical glasses to yield the indicated performance. The molding process will cause the properties of the glass (e.g., Abbe number) to deviate slightly from those given by glass manufacturers. Specific material properties for each lens can be found by clicking on the Info icons () in the tables below.

Choosing a Lens

Aspheric lenses are commonly chosen to couple incident light with a diameter of 1 - 5 mm into a single mode fiber. A simple example will illustrate the key specifications to consider when trying to choose the correct lens.

Example:
Fiber: P1-630A-FC-2
Collimated Beam Diameter Prior to Lens: Ø3 mm

The specifications for the P1-630A-FC-2, 630 nm, FC/PC single mode patch cable indicate that the mode field diameter (MFD) is 4.3 μm. This specification should be matched to the diffraction-limited spot size given by the following equation:

Equation for Diffraction-Limited Spot

Here, f is the focal length of the lens, λ is the wavelength of the input light, and D is the diameter of collimated beam incident on the lens. Solving for the desired focal length of the collimating lens yields

focal length of collimating lens

Thorlabs offers a large selection of mounted and unmounted aspheric lenses to choose from. The aspheric lens with a focal length that is closest to 16 mm has a focal length of 15.29 mm (Item# 354260-B or A260-B). This lens also has a clear aperture that is larger than the collimated beam diameter. Therefore, this aspheric lens is the best option given the initial parameters (i.e., a P1-630A-FC-2 single mode fiber and a collimated beam diameter of 3 mm). Remember, for optimum coupling the spot size of the focused beam must be less than the MFD of the single mode fiber. As a result, if an aspheric lens is not available that provides an exact match, then choose the aspheric lens with a focal length that is shorter than the calculation above yields. Alternatively, if the clear aperture of the aspheric lens is large enough, the beam can be expanded before the aspheric lens, which has the result of reducing the spot size of the focus beam.

Lens Design Formula

  • Positive Radius Indicates that the Vertex is Located Left of the Center
  • Negative Radius Indicates that the Vertex is Located Right of the Center

1

Variable Definitions
z SAG as a Function of Y
R Radius of Curvature
k Conic Constant
A4 4th Order Aspheric Coefficient
A6 6th Order Aspheric Coefficient
A8 8th Order Aspheric Coefficient
A10 10th Order Aspheric Coefficient
A12 12th Order Aspheric Coefficient
A14 14th Order Aspheric Coefficient
A16 16th Order Aspheric Coefficient

Aspheric Lens Coefficients

The aspheric lens coefficients for each product can be found below by clicking either on the blue info icons in the tables below (info) or on the red docs icon (info).

Choosing a Collimation Lens for Your Laser Diode

Since the output of a laser diode is highly divergent, collimating optics are necessary. Aspheric lenses do not introduce spherical aberration and are therefore are commonly chosen when the collimated laser beam is to be between one and five millimeters. A simple example will illustrate the key specifications to consider when choosing the correct lens for a given application. The second example below is an extension of the procedure, which will show how to circularize an elliptical beam.

Example 1: Collimating a Diverging Beam

  • Laser Diode to be Used: L780P010
  • Desired Collimated Beam Diameter: Ø3 mm (Major Axis)

When choosing a collimation lens, it is essential to know the divergence angle of the source being used and the desired output diameter. The specifications for the L780P010 laser diode indicate that the typical parallel and perpendicular FWHM beam divergences are 8° and 30°, respectively. Therefore, as the light diverges, an elliptical beam will result. To collect as much light as possible during the collimation process, consider the larger of these two divergence angles in any calculations (i.e., in this case, use 30°). If you wish to convert your elliptical beam into a round one, we suggest using an anamorphic prism pair, which magnifies one axis of your beam; for details, see Example 2 below.

Assuming that the thickness of the lens is small compared to the radius of curvature, the thin lens approximation can be used to determine the appropriate focal length for the asphere. Assuming a divergence angle of 30° (FWHM) and desired beam diameter of 3 mm:

laser diode collimation drawing focal length calculation
Θ = Divergence Angle Ø = Beam Diameter f = Focal Length r = Collimated Beam Radius = Ø/2

Note that the focal length is generally not equal to the needed distance between the light source and the lens.

With this information known, it is now time to choose the appropriate collimating lens. Thorlabs offers a large selection of aspheric lenses. For this application, the ideal lens is a molded glass aspheric lens with focal length near 5.6 mm and our -B antireflection coating, which covers 780 nm. The C171TMD-B (mounted) or 354171-B (unmounted) aspheric lenses have a focal length of 6.20 mm, which will result in a collimated beam diameter (major axis) of 3.3 mm. Next, check to see if the numerical aperture (NA) of the diode is smaller than the NA of the lens:

0.30 = NALens > NADiode ≈ sin(15°) = 0.26

Up to this point, we have been using the full-width at half maximum (FWHM) beam diameter to characterize the beam. However, a better practice is to use the 1/e2 beam diameter. For a Gaussian beam profile, the 1/e2 diameter is almost equal to 1.7X the FWHM diameter. The 1/e2 beam diameter therefore captures more of the laser diode's output light (for greater power delivery) and minimizes far-field diffraction (by clipping less of the incident light).

A good rule of thumb is to pick a lens with an NA twice that of the laser diode NA. For example, either the A390-B or the A390TM-B could be used as these lenses each have an NA of 0.53, which is more than twice the approximate NA of our laser diode (0.26). These lenses each have a focal length of 4.6 mm, resulting in an approximate major beam diameter of 2.5 mm. In general, using a collimating lens with a short focal length will result in a small collimated beam diameter and a large beam divergence, while a lens with a large focal length will result in a large collimated beam diameter and a small divergence.

Example 2: Circularizing an Elliptical Beam

Using the laser diode and aspheric lens chosen above, we can use an anamorphic prism pair to convert our collimated, elliptical beam into a circular beam.

Prism Ray Diagram

Whereas earlier we considered only the larger divergence angle, we now look at the smaller beam divergence of 8°. From this, and using the effective focal length of the A390-B aspheric lens chosen in Example 1, we can determine the length of the semi-minor axis of the elliptical beam after collimation:

r' = f * tan(Θ'/2) = 4.6 mm * tan(4°) = 0.32 mm

The minor beam diameter is double the semi-minor axis, or 0.64 mm. In order to magnify the minor diameter to be equal to the major diameter of 2.5 mm, we will need an anamorphic prism pair that yields a magnification of 3.9. Thorlabs offers both mounted and unmounted prism pairs. Mounted prism pairs provide the benefit of a stable housing to preserve alignment, while unmounted prism pairs can be positioned at any angle to achieve the exact desired magnification. 

The PS883-B mounted prism pair provides a magnification of 4.0 for a 950 nm wavelength beam. Because shorter wavelengths undergo greater magnification when passing through the prism pair, we can expect our 780 nm beam to be magnified by slightly more than 4.0X. Thus, the beam will still maintain a small degree of ellipticity.

Alternatively, we can use the PS871-B unmounted prism pair to achieve the precise magnification of the minor diameter necessary to produce a circular beam. Using the data available here, we see that the PS871-B achieves a magnification of 4.0 when the prisms are positioned at the following angles for a 670 nm wavelength beam:

α1: +34.608° α2: -1.2455°

Refer to the diagram to the right for α1 and α2 definitions. Our 780 nm laser will experience slightly less magnification than a 670 nm beam passing through the prisms at these angles. Some trial and error may be required to achieve the exact desired magnification. In general: 

  • To increase magnification, rotate the first prism clockwise (increasing α1) and rotate the second prism counterclockwise (decreasing α2).
  • To reduce magnification, rotate the first prism counterclockwise (decreasing α1) and rotate the second prism clockwise (increasing α2).
Remember that the prism pair introduces a linear offset between the input and output beams which increases with greater magnification.

Posted Comments:
叶 先生  (posted 2022-07-05 12:13:08.163)
请问:354105-C的激光(能量密度)损伤阈值,最好@1064nm,10ns?
Lawrence Trask  (posted 2021-08-31 10:22:48.2)
Greetings, our group is interested in collimating supercontinuum light out of a fiber (1-2 um). I noticed that all of the aspheric lenses are designed for wavelengths shorter than 1 um. Would it be possible to get an aspheric lens that is designed for 1.55 um, this way the supercontinuum light is better collimated?
azandani  (posted 2021-09-09 04:18:09.0)
Hello Lawrence, thank you for contacting Thorlabs. Custom items can be requested by emailing TechSales@thorlabs.com. That being said, for your application, due to the broadband nature of your light source, an aspheric lens will introduce significant chromatic aberrations. We offer silver coated reflective collimators (https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=4093) that can collimate connectorized fiber-coupled broadband light sources without the effects of chromatic aberration. Another option is to use gold-coated Off-Axis Parabolic mirrors (https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=5447) which would provide the same benefit.
Paul Belden  (posted 2021-08-26 08:54:28.223)
How is the lens in the A240TM held in place? If epoxy is used, is outgassing a concern? Thanks.
YLohia  (posted 2021-08-27 03:10:45.0)
Hello, thank you for contacting Thorlabs. The lens in the A240TM is epoxied to its housing using the Norland 68 epoxy, which is not rated specifically for vacuum-use. Therefore, outgassing would be a concern.
Congli Wang  (posted 2020-10-03 05:02:59.823)
Same here, A6 coefficient is different on this page (-1.30539e-005) and in the Auto CAD PDF (1.3053900E-05). Which one to trust?
YLohia  (posted 2020-10-08 03:03:11.0)
Hello, thank you for contacting Thorlabs and bringing this to our attention. The A6 coefficient should have the negative sign. We will correct this information.
Congli Wang  (posted 2020-10-03 04:50:48.55)
The Aspheric coefficient A6 is not consistent in two different places: (1) On this page, it is mentioned A6 = -0.0001090000. (2) However in the AutoCAD PDF, A6 = 1.0900023E-04. (Notice the missing minus sign as well as the last digits) (2*) If you click on "INFO" on https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=3809, you found A6 = 1.0900023 x 10-4, which is consistent with (2). Which version is correct?
YLohia  (posted 2020-10-08 03:03:09.0)
Hello, thank you for contacting Thorlabs and bringing this to our attention. The A6 coefficient should have the negative sign. 1.0900023E-04 was rounded down to 0.0001090000. We will correct this information.
Chris Manning  (posted 2020-08-31 11:29:15.35)
I'm not sure that all the ones I asked for are here, but this is an impressive document that will benefit someone, if only as an example of the densest spreadsheet ever made: www.hoya-opticalworld.com/common/xls/HOYA20180717.xlsx
Chris Manning  (posted 2020-08-31 10:29:38.817)
I was wondering about the melting points of these (moldable) glasses and their transmission ranges. I am interested in UV cure. It would be a nice touch if the glass names in the product column were hot links to the glass properties that included transmission ranges, melting points, CTE's, etc.
zhuzhanda  (posted 2018-05-28 15:37:35.433)
光纤耦合选透镜焦距时,计算出的衍射极限光斑大小:4*波长*f/(D*Pi),书中衍射公式光斑半径大小为1.22*波长*f/D,二者有和区别和联系
YLohia  (posted 2018-05-29 09:12:36.0)
Hello, thank you for contacting Thorlabs. Our Tech Support China team will reach out to you directly to discuss your request.
AR Coating Abbreviations
Abbreviation Description
U Uncoated: Optics Do Not have an AR Coating
A Broadband AR Coating for the 350 - 700 nm or 400 - 600 nm Range
B Broadband AR Coating for the 600 - 1050 nm or 650 - 1050 nm Range
C Broadband AR Coating for the 1050 - 1620 nm or 1050 - 1700 nm Range
V Narrowband AR Coating Designed for the Wavelength Listed in the Table Below

The table below contains all molded visible and near-IR aspheric lenses offered by Thorlabs. For our selection of IR molded aspheres, click here. The Item # listed is that of the unmounted, uncoated lens. An "X" in any of the five AR Coating Columns indicates the lens is available with that coating (note that the V coating availability is indicated with the design wavelength). The table to the right defines each letter and lists the specified AR coating range. Clicking on the X takes you to the landing page where that lens (mounted or unmounted) can be purchased.

Base Item # AR Coating Options Effective
Focal Length
NA Outer Diameter of
Unmounted Lens
Working Distance Entrance
Clear Aperture of
Unmounted Lens
U A B C V Unmounted Mounteda
354710 X X X X   1.5 mm 0.5 2.650 mm 0.5 mmb 0.4 mmb S1: 1.15 mm
S2: 1.50 mmc
354140 X X X X   1.5 mm 0.6 2.400 mm 0.8 mm 0.8 mm S1: 1.14 mm
S2: 1.60 mmc
355151 X X X X   2.0 mm 0.5 3.000 mm 0.5 mmb 0.3 mmb S1: 1.09 mm
S2: 2.00 mmc
355440 X X X X   2.8 mm 0.3/0.5c 4.700 mm 2.0 mmb 1.8 mmb S1: 3.76 mm
S2: 4.12 mmc
355392 X X X X   2.8 mm 0.6 4.000 mm 1.5 mm 1.0 mm S1: 2.50 mm
S2: 3.60 mmc
355390 X X X X   2.8 mm 0.55 4.500 mm 2.2 mm 1.9 mm S1: 3.60 mm
S2: 3.60 mmc
355660 X X X X   3.0 mm 0.5 4.000 mm 1.6 mm 1.3 mm S1: 2.35 mm
S2: 3.60 mmc
354330 X X X X   3.1 mm 0.7 6.325 mm 1.8 mm 1.77 mm S1: 5.00 mm
S2: 3.84 mmc
N414   X X X   3.30 mm 0.47 4.50 mm 1.94 mm 1.83 mm 3.52 mm
354340 X X X     4.0 mm 0.6 6.325 mm 1.5 mmb 1.2 mmb S1: 3.77 mm
S2: 5.10 mmc
352610   X     4.00 mm 0.60 6.325 mm 1.52 mm 1.22 mm 4.80 mm
357610 X X 4.0 mm 0.6 6.325 mm 1.5 mmb 1.1 mmb S1: 3.39 mm
S2: 4.80 mmc
357775 X X X   405 4.0 mm 0.6 6.325 mm 1.9 mmb 1.5 mmb S1: 3.45 mm
S2: 4.80 mmc
354350 X   X X   4.5 mm 0.4 4.700 mm 2.2 mm 1.6 mm S1: 2.05 mm
S2: 3.70 mmc
355230 X X X X   4.5 mm 0.6 6.330 mm 2.8 mmb 2.4 mmb S1: 3.93 mm
S2: 5.07 mmc
A230 X X X X   4.51 mm 0.55 6.34 mm 2.91 mm 2.53 mm 4.95 mm
352230         1064 4.51 mm 0.551 6.325 mm 2.67 mm 2.43 mm 4.95 mm
354453 X X X X 4.6 mm 0.5 6.000 mm 2.0 mmb 0.9 mmb S1: 3.38 mm
S2: 4.80 mmc
A390   X X     4.60 mm 0.53 6.00 mm 2.70 mm 1.64 mm 4.89 mm
354430 X   X X   5.0 mm 0.2 2.000 mm 4.4 mm 4.0 mm S1: 1.40 mm
S2: 1.60 mmc
354105 X X X X 5.5 mm 0.6 7.200 mm 3.1 mmb 2.0 mmb S1: 4.96 mm
S2: 6.00 mmc
354171 X X X X   6.2 mm 0.3 4.700 mm 3.4 mmb 2.8 mmb S1: 2.72 mm
S2: 3.70 mmc
355110 X X X X   6.2 mm 0.4 7.200 mm 2.7 mmb 1.6 mmb S1: 2.93 mm
S2: 5.00 mmc
352110       1064 6.24 mm 0.40 7.20 mm 2.67 mm 1.70 mm 5.00 mm
A110 X X X X   6.24 mm 0.40 7.20 mm 3.39 mm 2.39 mm 5.00 mm
A375   X X X   7.50 mm 0.30 6.51 mm 5.90 mm 5.59 mm 4.50 mm
354240 X X X X 8.00 mm 0.5 9.950 mm 5.90 mmb 4.80 mmb S1: 8.00 mm
S2: 6.94 mmc
A240 X X X X   8.00 mm 0.50 9.94 mm 5.92 mm 4.79 mm 8.00 mm
352240   1064 8.0 mm 0.5 9.950 mm 4.9 mm 3.8 mm S1: 8.00 mm
S2: 6.94 mmc
354060 X X X X 9.6 mm 0.3 6.325 mm 7.5 mmb 7.1 mmb S1: 5.13 mm
S2: 5.20 mmc
354061 X X X X 11.0 mm 0.2 6.325 mm 8.9 mmb 8.5 mmb S1: 4.63 mm
S2: 5.20 mmc
352220         1064 11.00 mm 0.25 7.215 mm 6.97 mm 5.83 mm 5.50 mm
A220 X X X     11.00 mm 0.26 7.20 mm 7.97 mm 6.91 mm 5.50 mm
354220 X X X X 11.0 mm 0.3 7.200 mm 6.9 mmb 5.8 mm S1: 4.07 mm
S2: 5.50 mmc
355397 X X X X 11.0 mm 0.3 7.200 mm 9.3 mmb 8.2 mmb S1: 6.24 mm
S2: 6.68 mmc
A397   X X X   11.00 mm 0.30 7.20 mm 9.64 mm 8.44 mm 6.59 mm
354560 X X X X   13.86 mm 0.2 6.330 mm 12.1 mm 11.7 mm S1: 4.54 mm
S2: 5.10 mmc
A260   X X X   15.29 mm 0.16 6.50 mm 14.09 mm 13.84 mm 5.00 mm
354260 X X X X   15.3 mm 0.2 6.500 mm 12.7 mmb 12.4 mmb S1: 4.61 mm
S2: 5.00 mmc
352280       1064 18.40 mm 0.15 6.500 mm 15.88 mm 15.63 mm 5.50 mm
A280   X X X   18.40 mm 0.15 6.50 mm 17.13 mm 16.88 mm 5.50 mm
354280 X X X X   18.4 mm 0.2 6.500 mm 15.9 mmb 15.6 mmb S1: 5.15 mm
S2: 5.50 mmc
  • The mounted working distance is measured from the edge of the unthreaded portion of the housing.
  • This working distance is measured from the back surface of the lens (unmounted) or the back of the housing (mounted) to the front of the window of the laser diode being collimated.
  • The clear aperture of the unmounted lens is different on either side. Please visit the landing page for more details.

EFL = 1.5 mm

Item #
(Unmounted/
Mounted)
Info EFLa NA OD CA WDb DW M Glass Performance Thread Suggested
Spanner Wrench
354710 info 1.5 mm 0.5 2.650 mm S1: Ø1.15 mm
S2: Ø1.50 mm
0.5 mmc 1550 nm D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C710TMD 6.2 mm 0.4 mmc M6 x 0.5 SPW306
354140 info
1.5 mm  0.6 2.400 mm S1: Ø1.14 mm
S2: Ø1.60 mm
0.8 mmd 780 nm D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C140TMD 6.2 mm M6 x 0.5 SPW306

OD = Outer Diameter
M = Magnification

WD = Working Distance
DW = Design Wavelength

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • This working distance is measured from the back surface of the lens (unmounted) or the back of the housing (mounted) to the front of the window of the laser diode being collimated.
  • This working distance is measured from the back surface of the lens (unmounted) or the back of the housing (mounted) to the focal point.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
354710 Support Documentation
354710f = 1.5 mm, NA = 0.5, WD = 0.5 mm, DW = 1550 nm, Unmounted Aspheric Lens, Uncoated
$63.03
Today
C710TMD Support Documentation
C710TMDf = 1.5 mm, NA = 0.5, WD = 0.4 mm, DW = 1550 nm, Mounted Aspheric Lens, Uncoated
$79.39
Today
354140 Support Documentation
354140f = 1.5 mm, NA = 0.6, WD = 0.8 mm, DW = 780 nm, Unmounted Aspheric Lens, Uncoated
$59.34
Today
C140TMD Support Documentation
C140TMDf = 1.5 mm, NA = 0.6, WD = 0.8 mm, DW = 780 nm, Mounted Aspheric Lens, Uncoated
$75.69
Today

EFL = 2.x mm

Item #
(Unmounted/
Mounted)
Info EFLa NA OD CA WDb DW M Glass Performance Thread Suggested
Spanner Wrench
355151 info
2.0 mm 0.5 3.000 mm S1: Ø1.09 mm
S2: Ø2.00 mm 
0.5 mmc 780 nm D-ZLaF52LA Focal Shift /
Spot Size Cross Section
- -
C151TMD 6.2 mm 0.3 mmc M6 x 0.5 SPW306
355440 info 2.8 mm 0.3 / 0.5 4.700 mm S1: Ø3.76 mm
S2: Ø4.12 mm
2.0 mmc 980 nm 2 D-ZLaF52LA Focal Shift /
Spot Size Cross Section
- -
C440TMD 8.24 mm 1.8 mmc M8 x 0.5 SPW308
355392 info 2.8 mm 0.6 4.000 mm S1: Ø2.50 mm
S2: Ø3.60 mm
1.5 mmd 830 nm D-ZLaF52LA 392_Asph.pdf - -
C392TMD 6.2 mm 1.0 mmd M6 x 0.5 SPW306
355390 info 2.8 mm 0.55 4.500 mm S1: Ø3.60 mm
S2: Ø3.60 mm
2.2 mmd 830 nm D-ZLaF52LA 390_Asph.pdf - -
C390TMD 8.2 mm 1.9 mmd M8 x 0.5 SPW308
  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • This working distance is measured from the back surface of the lens (unmounted) or the back of the housing (mounted) to the front of the window of the laser diode being collimated.
  • This working distance is measured from the back surface of the lens (unmounted) or the back of the housing (mounted) to the focal point.

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

WD = Working Distance
DW = Design Wavelength

OD = Outer Diameter
M = Magnification

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
355151 Support Documentation
355151f= 2.0 mm, NA = 0.5, WD = 0.5 mm, DW = 780 nm, Unmounted Aspheric Lens, Uncoated
$59.34
Today
C151TMD Support Documentation
C151TMDf= 2.0 mm, NA = 0.5, WD = 0.3 mm, DW = 780 nm, Mounted Aspheric Lens, Uncoated
$75.69
Today
355440 Support Documentation
355440f= 2.8 mm, NA = 0.3/0.5, WD = 2.0 mm, DW = 980 nm, Unmounted Aspheric Lens, Uncoated
$63.03
Today
C440TMD Support Documentation
C440TMDf = 2.8 mm, NA = 0.3/0.5, WD = 1.8 mm, DW = 980 nm, Mounted Aspheric Lens, Uncoated
$79.39
Today
355392 Support Documentation
355392f= 2.8 mm, NA = 0.6, WD = 1.5 mm, DW = 830 nm, Unmounted Aspheric Lens, Uncoated
$59.34
Today
C392TMD Support Documentation
C392TMDf = 2.8 mm, NA = 0.6, WD = 1.0 mm, DW = 830 nm, Mounted Aspheric Lens, Uncoated
$75.69
Today
355390 Support Documentation
355390f= 2.8 mm, NA = 0.55, WD = 2.2 mm, DW = 830 nm, Unmounted Aspheric Lens, Uncoated
$59.34
Today
C390TMD Support Documentation
C390TMDf = 2.8 mm, NA = 0.55, WD = 1.9 mm, DW = 830 nm, Mounted Aspheric Lens, Uncoated
$75.69
Today

EFL = 3.x mm

Item #
(Unmounted/
Mounted)
Info EFLa NA OD CA WDb DW M Glass Performance Thread Suggested
Spanner Wrench
355660 info 3.0 mm 0.5 4.000 mm S1: Ø2.35 mm
S2: Ø3.60 mm
1.6 mmc 1550 nm D-ZLaF52LA 660_Asph.pdf - -
C660TMD 8.2 mm 1.3 mmc M8 x 0.5 SPW308
354330 info
3.1 mm 0.7 6.325 mm S1: Ø5.00 mm
S2: Ø3.84 mm
1.8 mmc 830 nm D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C330TMD 9.2 mm 1.77 mmc M9 x 0.5 SPW301
  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • This working distance is measured from the back surface of the lens (unmounted) or the back of the housing (mounted) to the focal point.

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

WD = Working Distance
DW = Design Wavelength

OD = Outer Diameter
M = Magnification

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
355660 Support Documentation
355660f= 3.0 mm, NA = 0.5, WD = 1.6 mm, DW = 1550 nm, Unmounted Aspheric Lens, Uncoated
$63.03
Today
C660TMD Support Documentation
C660TMDf = 3.0 mm, NA = 0.5, WD = 1.3 mm, DW = 1550 nm, Mounted Aspheric Lens, Uncoated
$79.39
Today
354330 Support Documentation
354330f= 3.1 mm, NA = 0.7, WD = 1.8 mm, DW = 830 nm, Unmounted Aspheric Lens, Uncoated
$63.03
Today
C330TMD Support Documentation
C330TMDf= 3.1 mm, NA = 0.7, WD = 1.77 mm, DW = 830 nm, Mounted Aspheric Lens, Uncoated
$79.39
Today

EFL = 4.xx mm

Item #
(Unmounted/
Mounted)
Info EFLa NA OD CA WDb DW M Glass Performance Thread Suggested
Spanner Wrench
354340 info 4.0 mm 0.6 6.325 mm S1: Ø3.77 mm
S2: Ø5.10 mm
1.5 mmc 685 nm D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C340TMD 9.2 mm 1.2 mmc M9 x 0.5 SPW301
357610 info 4.0 mm 0.6 6.325 mm S1: Ø3.39 mm
S2: Ø4.80 mm
1.5 mmc 410 nm D-LAK6 Focal Shift /
Spot Size Cross Section
- -
C610TMD 9.2 mm 1.1 mmc M9 x 0.5 SPW301
357775 info 4.0 mm 0.6 6.325 mm S1: Ø3.45 mm
S2: Ø4.80 mm
1.9 mmc 408 nm D-LAK6 Focal Shift
Spot Size Cross Section
- -
C775TMD 9.2 mm 1.5 mmc M9 x 0.5 SPW301
354350 info 4.5 mm 0.4 4.700 mm S1: Ø2.05 mm
S2: Ø3.70 mm
2.2 mmd 980 nm D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C350TMD 8.2 mm 1.6 mmd M8 x 0.5 SPW308
355230 info
4.5 mm 0.6 6.330 mm S1: Ø3.93 mm
S2: Ø5.07 mm
2.8 mmc 780 nm D-ZLaF52LA Focal Shift /
Spot Size Cross Section
- -
C230TMD 9.2 mm 2.4 mmc M9 x 0.5 SPW301
A230 info 4.51 mm 0.55 6.34 mm Ø4.95 mm 2.91 mmd 780 nm S-NPH1 A230_Asph.pdf - -
354453 info
4.6 mm 0.5 6.000 mm S1: Ø3.38 mm
S2: Ø4.80 mm
2.0 mmc 655 nm D-ZK3 Focal Shift /
 Spot Size Cross Section
- -
C453TMD 9.2 mm 0.9 mmc M9 x 0.5 SPW301
  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • This working distance is measured from the back surface of the lens (unmounted) or the back of the housing (mounted) to the front of the window of the laser diode being collimated.
  • This working distance is measured from the back surface of the lens (unmounted) or the back of the housing (mounted) to the focal point.

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

WD = Working Distance
DW = Design Wavelength

OD = Outer Diameter
M = Magnification

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
354340 Support Documentation
354340f= 4.0 mm, NA = 0.6, WD = 1.5 mm, DW = 685 nm, Unmounted Aspheric Lens, Uncoated
$63.03
Today
C340TMD Support Documentation
C340TMDf= 4.0 mm, NA = 0.6, WD = 1.2 mm, DW = 685 nm, Mounted Aspheric Lens, Uncoated
$79.39
Today
357610 Support Documentation
357610f = 4.0 mm, NA = 0.6, WD = 1.5 mm, DW = 410 nm, Unmounted Aspheric Lens, Uncoated
$80.88
Today
C610TMD Support Documentation
C610TMDf = 4.0 mm, NA = 0.6, WD = 1.1 mm, DW = 410 nm, Mounted Aspheric Lens, Uncoated
$98.39
Today
357775 Support Documentation
357775f = 4.0 mm, NA = 0.6, WD = 1.9 mm, DW = 408 nm, Unmounted Aspheric Lens, Uncoated
$80.88
Today
C775TMD Support Documentation
C775TMDf = 4.0 mm, NA = 0.6, WD = 1.5 mm, DW = 408 nm, Mounted Aspheric Lens, Uncoated
$98.39
Today
354350 Support Documentation
354350f= 4.5 mm, NA = 0.4, WD = 2.2 mm, DW = 980 nm, Unmounted Aspheric Lens, Uncoated
$59.34
Today
C350TMD Support Documentation
C350TMDf= 4.5 mm, NA = 0.4, WD = 1.6 mm, DW = 980 nm, Mounted Aspheric Lens, Uncoated
$75.69
Today
355230 Support Documentation
355230f= 4.5 mm, NA = 0.6, WD = 2.8 mm, DW = 780 nm, Unmounted Aspheric Lens, Uncoated
$63.03
Today
C230TMD Support Documentation
C230TMDf= 4.5 mm, NA = 0.6, WD = 2.4 mm, DW = 780 nm, Mounted Aspheric Lens, Uncoated
$79.39
Today
A230 Support Documentation
A230f = 4.51 mm, NA = 0.55, WD = 2.91 mm, DW = 780 nm, Unmounted Rochester Aspheric Lens, Uncoated
$84.74
Volume Pricing
Today
354453 Support Documentation
354453f= 4.6 mm, NA = 0.5, WD = 2.0 mm, DW = 655 nm, Unmounted Aspheric Lens, Uncoated
$59.34
Today
C453TMD Support Documentation
C453TMDf = 4.6 mm, NA = 0.5, WD = 0.9 mm, DW = 655 nm, Mounted Aspheric Lens, Uncoated
$75.69
Today

EFL = 5.x mm

Item #
(Unmounted/
Mounted)
Info EFLa NA OD CA WDb DW M Glass Performance Thread Suggested
Spanner Wrench
354430 info
5.0 mm 0.2 2.000 mm S1: Ø1.40 mm
S2: Ø1.60 mm
4.4 mmc 1550 nm D-ZK3 430_Asph.pdf - -
C430TMD 6.2 mm 4.0 mmc M6 x 0.5 SPW306
354105 info
5.5 mm 0.6 7.200 mm S1: Ø4.96 mm
S2: Ø6.00 mm
3.1 mmd 633 nm D-ZK3 Focal Shift /
 Spot Size Cross
Section
- -
C105TMD 9.2 mm 2.0 mmd M9 x 0.5 SPW301
  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • This working distance is measured from the back surface of the lens (unmounted) or the back of the housing (mounted) to the focal point.
  • This working distance is measured from the back surface of the lens (unmounted) or the back of the housing (mounted) to the front of the window of the laser diode being collimated.

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

WD = Working Distance
DW = Design Wavelength

OD = Outer Diameter
M = Magnification

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
354430 Support Documentation
354430f= 5.0 mm, NA = 0.2, WD = 4.4 mm, DW = 1550 nm, Unmounted Aspheric Lens, Uncoated
$63.03
Today
C430TMD Support Documentation
C430TMDf = 5.0 mm, NA = 0.2, WD = 4.0 mm, DW = 1550 nm, Mounted Aspheric Lens, Uncoated
$79.39
Today
354105 Support Documentation
354105f= 5.5 mm, NA = 0.6, WD = 3.1 mm, DW = 633 nm, Unmounted Aspheric Lens, Uncoated
$59.34
Today
C105TMD Support Documentation
C105TMDf= 5.5 mm, NA = 0.6, WD = 2.0 mm, DW = 633 nm, Mounted Aspheric Lens, Uncoated
$75.69
Today

EFL = 6.xx mm

Item #
(Unmounted/
Mounted)
Info EFLa NA OD CA WDb DW M Glass Performance Thread Suggested
Spanner Wrench
354171 info
6.2 mm 0.3 4.700 mm S1: Ø2.72 mm
S2: Ø3.70 mm
3.4 mmc 633 nm D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C171TMD 8.2 mm 2.8 mmc M8 x 0.5 SPW308
355110 info 6.2 mm 0.4 7.200 mm S1: Ø2.93 mm
S2: Ø5.00 mm
2.7 mmc 780 nm D-ZLaF52LA Focal Shift /
Spot Size Cross Section
- -
C110TMD 9.2 mm 1.6 mmc M9 x 0.5 SPW301
A110 info 6.24 mm 0.40 7.20 mm Ø5.00 mm 3.39 mmd 780 nm H-LAK54 A110_Asph.pdf - -
A110TM 9.24 mm 2.39 mmd M9 x 0.5 SPW301
  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • This working distance is measured from the back surface of the lens (unmounted) or the back of the housing (mounted) to the front of the window of the laser diode being collimated.
  • This working distance is measured from the back surface of the lens (unmounted) or the back of the housing (mounted) to the focal point.

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

WD = Working Distance
DW = Design Wavelength

OD = Outer Diameter
M = Magnification

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
354171 Support Documentation
354171f= 6.2 mm, NA = 0.3, WD = 3.4 mm, DW = 633 nm, Unmounted Aspheric Lens, Uncoated
$59.34
Today
C171TMD Support Documentation
C171TMDf= 6.2 mm, NA = 0.3, WD = 2.8 mm, DW = 633 nm, Mounted Aspheric Lens, Uncoated
$75.69
Today
355110 Support Documentation
355110f= 6.2 mm, NA = 0.4, WD = 2.7 mm, DW = 780 nm, Unmounted Aspheric Lens, Uncoated
$88.98
Today
C110TMD Support Documentation
C110TMDf= 6.2 mm, NA = 0.4, WD = 1.6 mm, DW = 780 nm, Mounted Aspheric Lens, Uncoated
$105.34
Today
A110 Support Documentation
A110f = 6.24 mm, NA = 0.40, WD = 3.39 mm, DW = 780 nm, Unmounted Rochester Aspheric Lens, Uncoated
$84.74
Volume Pricing
Today
A110TM Support Documentation
A110TMf = 6.24 mm, NA = 0.40, WD = 2.39 mm, DW = 780 nm, Mounted Rochester Aspheric Lens, Uncoated
$90.55
Volume Pricing
Today

EFL = 8.0x mm

Item #
(Unmounted/
Mounted)
Info EFLa NA OD CA WDb DW M Glass Performance Thread Suggested
Spanner Wrench
A240 info 8.00 mm 0.50 9.94 mm Ø8.00 mm 5.92 mmc 780 nm D-LAK6 A240_Asph.pdf - -
A240TM 12.24 mm 4.79 mmc M12 x 0.5 SPW302
354240 info
8.0 mm 0.5 9.950 mm S1: Ø8.00 mm
S2: Ø6.94 mm
4.9 mmd 780 nm D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C240TMD 12.2 mm 3.8 mmd M12 x 0.5 SPW302
  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • This working distance is measured from the back surface of the lens (unmounted) or the back of the housing (mounted) to the focal point.
  • This working distance is measured from the back surface of the lens (unmounted) or the back of the housing (mounted) to the front of the window of the laser diode being collimated.

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

WD = Working Distance
DW = Design Wavelength

OD = Outer Diameter
M = Magnification

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
A240 Support Documentation
A240f = 8.00 mm, NA = 0.50, WD = 5.92 mm, DW = 780 nm, Unmounted Rochester Aspheric Lens, Uncoated
$84.74
Volume Pricing
Today
A240TM Support Documentation
A240TMf = 8.00 mm, NA = 0.50, WD = 4.79 mm, DW = 780 nm, Mounted Rochester Aspheric Lens, Uncoated
$90.55
Volume Pricing
Today
354240 Support Documentation
354240f= 8.0 mm, NA = 0.5, WD = 4.9 mm, DW = 780 nm, Unmounted Aspheric Lens, Uncoated
$105.84
Today
C240TMD Support Documentation
C240TMDf= 8.0 mm, NA = 0.5, WD = 3.8 mm, DW = 780 nm, Mounted Aspheric Lens, Uncoated
$122.20
Today

EFL = 9.6 mm

Item #
(Unmounted/
Mounted)
Info EFLa NA OD CA WDb DW M Glass Performance Thread Suggested
Spanner Wrench
354060 info
9.6 mm 0.3 6.325 mm S1: Ø5.13 mm
S2: Ø5.20 mm
7.5 mmc 633 nm D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C060TMD 9.2 mm 7.1 mmc M9 x 0.5 SPW301
  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • This working distance is measured from the back surface of the lens (unmounted) or the back of the housing (mounted) to the front of the window of the laser diode being collimated.

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

WD = Working Distance
DW = Design Wavelength

OD = Outer Diameter
M = Magnification

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
354060 Support Documentation
354060f= 9.6 mm, NA = 0.3, WD = 7.5 mm, DW = 633 nm, Unmounted Aspheric Lens, Uncoated
$59.34
Today
C060TMD Support Documentation
C060TMDf= 9.6 mm, NA = 0.3, WD = 7.1 mm, DW = 633 nm, Mounted Aspheric Lens, Uncoated
$75.69
Today

EFL = 11.xx mm

Item #
(Unmounted/
Mounted)
Info EFLa NA OD CA WDb DW M Glass Performance Thread Suggested
Spanner Wrench
A220 info 11.00 mm 0.26 7.20 mm Ø5.50 mm 7.97 mmc 633 nm D-K59 A220_Asph.pdf - -
A220TM 9.24 mm 6.91 mmc M9 x 0.5 SPW301
354061 info
11.0 mm 0.2 6.325 mm S1: Ø4.63 mm
S2: Ø5.20 mm
8.9 mmd 633 nm D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C061TMD 9.2 mm 8.5 mmd M9 x 0.5 SPW301
354220 info 11.0 mm 0.3 7.200 mm S1: Ø4.07 mm
S2: Ø5.50 mm
6.9 mmd 633 nm D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C220TMD 9.2 mm 5.8 mmd M9 x 0.5 SPW301
355397 info 11.0 mm 0.3 7.200 mm S1: Ø6.24 mm
S2: Ø6.68 mm
9.3 mmd 670 nm D-ZLaF52LA Focal Shift / 
Spot Size Cross Section
- -
C397TMD 9.2 mm 8.2 mmd M9 x 0.5 SPW301
  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • This working distance is measured from the back surface of the lens (unmounted) or the back of the housing (mounted) to the focal point.
  • This working distance is measured from the back surface of the lens (unmounted) or the back of the housing (mounted) to the front of the window of the laser diode being collimated.

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

WD = Working Distance
DW = Design Wavelength

OD = Outer Diameter
M = Magnification

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
A220 Support Documentation
A220f = 11.0 mm, NA = 0.26, WD = 7.97 mm, DW = 633 nm, Unmounted Rochester Aspheric Lens, Uncoated
$84.74
Volume Pricing
Today
A220TM Support Documentation
A220TMf = 11.0 mm, NA = 0.26, WD = 6.91 mm, DW = 633 nm, Mounted Rochester Aspheric Lens, Uncoated
$90.55
Volume Pricing
Today
354061 Support Documentation
354061f= 11.0 mm, NA = 0.2, WD = 8.9 mm, DW = 633 nm, Unmounted Aspheric Lens, Uncoated
$88.98
Today
C061TMD Support Documentation
C061TMDf= 11.0 mm, NA = 0.2, WD = 8.5 mm, DW = 633 nm, Mounted Aspheric Lens, Uncoated
$105.34
Today
354220 Support Documentation
354220f= 11.0 mm, NA = 0.3, WD = 6.9 mm, DW = 633 nm, Unmounted Aspheric Lens, Uncoated
$63.03
Today
C220TMD Support Documentation
C220TMDf= 11.0 mm, NA = 0.3, WD = 5.8 mm, DW = 633 nm, Mounted Aspheric Lens, Uncoated
$79.39
Today
355397 Support Documentation
355397f= 11.0 mm, NA = 0.3, WD = 9.3 mm, DW = 670 nm, Unmounted Aspheric Lens, Uncoated
$59.34
Today
C397TMD Support Documentation
C397TMDf = 11.0 mm, NA = 0.3, WD = 8.2 mm, DW = 670 nm, Mounted Aspheric Lens, Uncoated
$75.69
Today

EFL = 13.86 mm

Item #
(Unmounted/
Mounted)
Info EFLa NA OD CA WDb DW M Glass Performance Thread Suggested
Spanner Wrench
354560 info
13.86 mm 0.2 6.330 mm S1: Ø4.54 mm
S2: Ø5.10 mm
12.1 mmc 650 nm D-ZK3 560_Asph.pdf - -
C560TMD 9.2 mm 11.7 mmc M9 x 0.5 SPW301
  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • This working distance is measured from the back surface of the lens (unmounted) or the back of the housing (mounted) to the focal point.

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

WD = Working Distance
DW = Design Wavelength

OD = Outer Diameter
M = Magnification

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
354560 Support Documentation
354560f= 13.86 mm, NA = 0.2, WD = 12.1 mm, DW = 650 nm, Unmounted Aspheric Lens, Uncoated
$63.03
7-10 Days
C560TMD Support Documentation
C560TMDf = 13.86 mm, NA = 0.2, WD = 11.7 mm, DW = 650 nm, Mounted Aspheric Lens, Uncoated
$79.39
Today

EFL = 15.3 mm

Item #
(Unmounted/
Mounted)
Info EFLa NA OD CA WDb DW M Glass Performance Thread Suggested
Spanner Wrench
354260 info
15.3 mm 0.2 6.500 mm S1: Ø4.61 mm
S2: Ø5.00 mm
12.7 mmc 780 nm D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C260TMD 9.2 mm 12.4 mmc M9 x 0.5 SPW301
  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • This working distance is measured from the back surface of the lens (unmounted) or the back of the housing (mounted) to the front of the window of the laser diode being collimated.

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

WD = Working Distance
DW = Design Wavelength

OD = Outer Diameter
M = Magnification

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
354260 Support Documentation
354260f= 15.3 mm, NA = 0.2, WD = 12.7 mm, Unmounted Aspheric Lens, DW = 780 nm, Uncoated
$63.03
Today
C260TMD Support Documentation
C260TMDf= 15.3 mm, NA = 0.2, WD = 12.4 mm, DW = 780 nm, Mounted Aspheric Lens, Uncoated
$79.39
Today

EFL = 18.4 mm

Item #
(Unmounted/
Mounted)
Info EFLa NA OD CA WDb DW M Glass Performance Thread Suggested
Spanner Wrench
354280 info
18.4 mm 0.2 6.500 mm S1: Ø5.15 mm
S2: Ø5.50 mm
15.9 mmc 780 nm D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C280TMD 9.2 mm 15.6 mmc M9 x 0.5 SPW301
  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • This working distance is measured from the back surface of the lens (unmounted) or the back of the housing (mounted) to the front of the window of the laser diode being collimated.

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

WD = Working Distance
DW = Design Wavelength

OD = Outer Diameter
M = Magnification

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
354280 Support Documentation
354280f= 18.4 mm, NA = 0.2, WD = 15.9 mm, DW = 780 nm, Unmounted Aspheric Lens, Uncoated
$63.03
Today
C280TMD Support Documentation
C280TMDf= 18.4 mm, NA = 0.2, WD = 15.6 mm, DW = 780 nm, Mounted Aspheric Lens, Uncoated
$79.39
Today