Molded Glass Aspheric Lenses: Finite Conjugate, Uncoated
- High NA (0.10 to 0.52)
- Diffraction-Limited Design
- Focus Light with a Single Element
- Finite Magnification for Focusing From a Point Source
C440TMD
(Not to Scale)
Application Idea
C440TMD Mounted Aspheric Lens in a Fiber Launch System
354450
355465
355915
Please Wait
Molded Glass Aspheric Lenses |
---|
Infinite Conjugate |
Uncoated |
350 - 700 nm (-A Coating) |
600 - 1050 nm (-B Coating) |
1050 - 1700 nm (-C Coating) |
1.8 - 3 µm (-D Coating) |
3 - 5 µm (-E Coating) |
8 - 12 µm (-F Coating) |
405 nm V-Coating |
1064 nm V-Coating |
Finite Conjugate |
Uncoated |
Webpage Features | |
---|---|
Click for complete specifications. | |
Performance Hyperlink | Click to view item-specific focal length shift data and spot diagrams at various wavelengths. |
Zemax Files |
---|
Click on the red Document icon next to the item numbers below to access the Zemax file download. Our entire Zemax Catalog is also available. |
Features
- Molded Glass Aspheric Lenses Designed for Finite Magnification
- Focus Light Without Introducing Spherical Aberration
- All Lenses Available Unmounted
- Available Pre-Mounted in a Nonmagnetic 303 Stainless Steel Lens Cell by Contacting Tech Sales
Aspheric lenses are designed to focus light without introducing spherical aberration into the transmitted wavefront. For monochromatic sources, spherical aberration is often what prevents a single spherical lens from achieving diffraction-limited performance when focusing light. Thus, an aspheric lens is often the best single element solution for many applications including coupling light into a fiber, spatial filtering, or imaging light onto a detector.
This page features our selection of uncoated, finite conjugate molded glass aspheric lenses. Please note that Thorlabs also offers a large selection of infinite molded aspheric lenses either uncoated or with one of our AR coatings deposited on both sides (see links in the Aspheric Lens Selection Guide table to the right).
The 355440 molded glass lens is available premounted in a nonmagnetic 303 stainless steel lens cell that is engraved with the mounted part number (Item # C440TMD) for easy identification. This mounted version has a metric thread that makes it easy to integrate into an optical setup or OEM application. Pre-mounted versions of our other aspheres are available as specials; for more information, please contact Tech Sales. Mounted aspheres are readily adapted to our SM1 series of lens tubes by using our Aspheric Lens Adapters. They can be used as a drop-in replacement for multi-element microscope objectives by combining the lens with our Microscope Objective Adapter Extension Tube.
Molded glass aspheres are manufactured from a variety of optical glasses to yield the indicated performance. The molding process will cause the properties of the glass (e.g., Abbe number) to deviate slightly from those given by glass manufacturers. Specific material properties for each lens can be found by clicking on the Info Icon () in the tables below and selecting the Glass tab.
Choosing a Lens
Aspheric lenses are commonly chosen to couple incident light with a diameter of 1 - 5 mm into a single mode fiber. A simple example will illustrate the key specifications to consider when trying to choose the correct lens.
Example:
Fiber: P1-630A-FC-2
Collimated Beam Diameter Prior to Lens: Ø3 mm
The specifications for the P1-630A-FC-2, 630 nm, FC/PC single mode patch cable indicate that the mode field diameter (MFD) is 4.3 μm. This specification should be matched to the diffraction-limited spot size given by the following equation:
Here, f is the focal length of the lens, λ is the wavelength of the input light, and D is the diameter of collimated beam incident on the lens. Solving for the desired focal length of the collimating lens yields
Thorlabs offers a large selection of mounted and unmounted aspheric lenses to choose from. The aspheric lens with a focal length that is closest to 16 mm has a focal length of 15.29 mm (Item# 354260-B or A260-B). This lens also has a clear aperture that is larger than the collimated beam diameter. Therefore, this aspheric lens is the best option given the initial parameters (i.e., a P1-630A-FC-2 single mode fiber and a collimated beam diameter of 3 mm). Remember, for optimum coupling the spot size of the focused beam must be less than the MFD of the single mode fiber. As a result, if an aspheric lens is not available that provides an exact match, then choose the aspheric lens with a focal length that is shorter than the calculation above yields. Alternatively, if the clear aperture of the aspheric lens is large enough, the beam can be expanded before the aspheric lens, which has the result of reducing the spot size of the focus beam.
Click to Enlarge
Reference Drawing
Aspheric Lens Design Formula
Definitions of Variables | |
---|---|
z | Sag (Surface Profile) as a Function of Y |
Y | Radial Distance from Optical Axis |
R | Radius of Curvature |
k | Conic Constant |
An | nth Order Aspheric Coefficient |
The aspheric surfaces of these lenses may be described using a polynomial expansion in Y, the radial distance from the optical axis. The surface profile or sagitta (often abbreviated as sag) is denoted by z, and is given by the following expression:
where R is the radius of curvature, k is the conic constant, and the An are the nth order aspheric coefficients. The sign of R is determined by whether the center of curvature for the lens surface is located to the right or left of the lens' vertex; a positive R indicates that the center of curvature is located to the right of the vertex, while a negative R indicates that the center of curvature is located to the left of the vertex. For example, the radius of curvature for the left surface of a biconvex lens would be specified as positive, while the radius of curvature for its right surface would be specified as negative.
Aspheric Lens Coefficients
Due to the rotational symmetry of the lens surface, only even powers of Y are contained in the polynomial expansion above. The target values of the aspheric coefficients for each product can be found by clicking either on the blue Info Icons in the tables below () or on the red documents icon () next to each lens sold below.
AR Coating Abbreviations | |
---|---|
Abbreviation | Description |
U | Uncoated: Optics Do Not have an AR Coating |
A | Broadband AR Coating for the 350 - 700 nm Range |
B | Broadband AR Coating for the 600 - 1050 nm or 650 - 1050 nm Range |
C | Broadband AR Coating for the 1050 - 1620 nm or 1050 - 1700 nm Range |
V | Narrowband AR Coating Designed for the Wavelength Listed in the Table Below |
The table below contains all molded visible and near-IR aspheric lenses offered by Thorlabs. For our selection of IR molded aspheres, click here. The Item # listed is that of the unmounted, uncoated lens. An "X" in any of the five AR Coating Columns indicates the lens is available with that coating (note that the V coating availability is indicated with the AR coating wavelength). The table to the right defines each letter and lists the specified AR coating range. Clicking on the X takes you to the landing page where that lens (mounted or unmounted) can be purchased.
Base Item # | AR Coating Options | Effective Focal Length |
NA | Outer Diameter of Unmounted Lens |
Working Distance | Clear Aperture of Unmounted Lens |
|||||
---|---|---|---|---|---|---|---|---|---|---|---|
U | A | B | C | V | Unmounted | Mounted | |||||
355465 | X | 0.5 mm | S1: 0.50 S2: 0.10 |
1.845 mm | S1: 0.3 mma S2: 2.9 mma |
- | S1: Ø0.40 mm S2: Ø0.70 mm |
||||
355915 | X | 0.8 mm | S1: 0.50 S2: 0.12 |
1.300 mm | S1: 0.7 mma S2: 3.9 mma |
- | S1: Ø0.77 mm S2: Ø1.00 mm |
||||
355200 | X | 1.1 mm | S1: 0.43 S2: 0.12 |
2.400 mm | S1: 0.5 mmb S2: 4.8 mma |
- | S1: Ø1.24 mm S2: Ø1.24 mm |
||||
355201 | X | 1.1 mm | S1: 0.12 S2: 0.43 |
4.929 mm | S1: 0.5 mmb S2: 4.8 mma |
- | S1: Ø1.24 mm S2: Ø1.24 mm |
||||
354450 | X | 1.2 mm | S1: 0.30 S2: 0.30 |
1.800 mm | S1: 1.7 mma S2: 1.7 mma |
- | S1: Ø1.14 mm S2: Ø1.14 mm |
||||
354710 | X | X | X | X | 1.5 mm | 0.5 | 2.650 mm | 0.5 mmb | 0.4 mmb,c | S1: Ø1.15 mm S2: Ø1.50 mm |
|
354140 | X | X | X | X | 1.5 mm | 0.6 | 2.400 mm | 0.8 mma | 0.8 mma | S1: Ø1.14 mm S2: Ø1.60 mm |
|
355755 | X | 1.9 mm | S1: 0.15 S2: 0.15 |
1.700 mm | S1: 3.6 mma S2: 3.6 mma |
- | S1: Ø1.10 mm S2: Ø1.10 mm |
||||
355151 | X | X | X | X | 2.0 mm | 0.5 | 3.000 mm | 0.5 mmb | 0.3 mmb,c | S1: Ø1.09 mm S2: Ø2.00 mm |
|
355440 | X | X | X | X | 2.8 mm | S1: 0.3 S2: 0.5 |
4.700 mm | S2: 7.1 mma |
S1: 1.8 mmb,c S2: 7.09 mma |
S1: Ø3.76 mm S2: Ø4.12 mm |
|
355392 | X | X | X | X | 2.8 mm | 0.6 | 4.000 mm | 1.5 mma | 1.0 mma,c | S1: Ø2.50 mm S2: Ø3.60 mm |
|
355390 | X | X | X | X | 2.8 mm | 0.6 | 4.500 mm | 2.2 mma | 2.0 mma,c | S1: Ø3.60 mm S2: Ø3.60 mm |
|
355660 | X | X | X | X | 3.0 mm | 0.5 | 4.000 mm | 1.6 mma | 1.3 mma,c | S1: Ø2.35 mm S2: Ø3.60 mm |
|
354330 | X | X | X | X | 3.1 mm | 0.7 | 6.325 mm | 1.8 mma | 1.8 mma,c | S1: Ø3.84 mm S2: Ø5.00 mm |
|
N414 | X | X | X | 3.30 mm | 0.47 | 4.50 mm | 1.94 mma | 1.83 mma,c | Ø3.52 mm | ||
354340 | X | X | X | 4.0 mm | 0.6 | 6.325 mm | 1.48 mmb | 1.2 mmb,c | S1: Ø3.77 mm S2: Ø5.10 mm |
||
357610 | X | X | X | 4.0 mm | 0.6 | 6.325 mm | 1.5 mmb | 1.1 mmb,c | S1: Ø3.39 mm S2: Ø4.80 mm |
||
357775 | X | X | X | 405 | 4.0 mm | 0.6 | 6.325 mm | 1.9 mmb | 1.5 mmb,c | S1: Ø3.45 mm S2: Ø4.80 mm |
|
354350 | X | X | X | 4.5 mm | 0.4 | 4.700 mm | 2.2 mma | 1.6 mma,c | S1: Ø2.05 mm S2: Ø3.70 mm |
||
355230 | X | X | X | X | 1064 | 4.5 mm | 0.6 | 6.325 mm | 2.8 mmb | 2.4 mmb,c | S1: Ø3.93 mm S2: Ø5.07 mm |
A230 | X | X | X | X | 4.51 mm | 0.55 | 6.34 mm | 2.91 mma | 2.53 mma,c | Ø4.95 mm | |
354453 | X | X | X | X | 4.6 mm | 0.5 | 6.000 mm | 2.0 mmb | 0.9 mmb,c | S1: Ø3.38 mm S2: Ø4.80 mm |
|
A390 | X | X | 4.60 mm | 0.53 | 6.00 mm | 2.70 mma | 1.64 mma,c | Ø4.89 mm | |||
354430 | X | X | X | 5.0 mm | 0.2 | 2.000 mm | 4.4 mma | 4.0 mma,c | S1: Ø1.40 mm S2: Ø1.60 mm |
||
354105 | X | X | X | X | 5.5 mm | 0.6 | 7.200 mm | 3.1 mmb | 2.0 mmb,c | S1: Ø4.96 mm S2: Ø6.00 mm |
|
354171 | X | X | X | X | 6.2 mm | 0.3 | 4.700 mm | 3.4 mmb | 2.8 mmb,c | S1: Ø2.72 mm S2: Ø3.70 mm |
|
355110 | X | X | X | X | 1064 | 6.2 mm | 0.4 | 7.200 mm | 2.7 mmb | 1.6 mmb,c | S1: Ø2.93 mm S2: Ø5.00 mm |
A110 | X | X | X | X | 6.24 mm | 0.40 | 7.20 mm | 3.39 mma | 2.39 mma,c | Ø5.00 mm | |
A375 | X | X | X | 7.50 mm | 0.30 | 6.51 mm | 5.90 mma | 5.59 mma,c | Ø4.50 mm | ||
354240 | X | X | X | X | 1064 | 8.0 mm | 0.5 | 9.950 mm | 4.9 mmb | 3.8 mmb,c | S1: Ø6.94 mm S2: Ø8.00 mm |
A240 | X | X | X | X | 8.00 mm | 0.50 | 9.94 mm | 5.92 mma | 4.79 mma,c | Ø8.00 mm | |
354060 | X | X | X | X | 9.6 mm | 0.3 | 6.325 mm | 7.5 mmb | 7.1 mmb,c | S1: Ø5.13 mm S2: Ø5.20 mm |
|
354061 | X | X | X | X | 11.0 mm | 0.2 | 6.325 mm | 8.9 mmb | 8.5 mmb,c | S1: Ø4.63 mm S2: Ø5.20 mm |
|
A220 | X | X | X | 11.00 mm | 0.26 | 7.20 mm | 7.97 mma | 6.91 mma,c | Ø5.50 mm | ||
354220 | X | X | X | X | 1064 | 11.0 mm | 0.3 | 7.200 mm | 6.9 mmb | 5.8 mmb,c | S1: Ø4.07 mm S2: Ø5.50 mm |
355397 | X | X | X | X | 11.0 mm | 0.3 | 7.200 mm | 9.3 mmb | 8.2 mmb,c | S1: Ø6.24 mm S2: Ø6.68 mm |
|
A397 | X | X | X | 11.00 mm | 0.30 | 7.20 mm | 9.64 mma | 8.44 mma,c | Ø6.59 mm | ||
354560 | X | X | X | X | 13.86 mm | 0.2 | 6.325 mm | 12.1 mma | 11.7 mma,c | S1: Ø4.54 mm S2: Ø5.10 mm |
|
A260 | X | X | X | 15.29 mm | 0.16 | 6.50 mm | 14.09 mma | 13.84 mma,c | Ø5.00 mm | ||
354260 | X | X | X | X | 15.3 mm | 0.2 | 6.500 mm | 12.7 mmb | 12.4 mmb,c | S1: Ø4.61 mm S2: Ø5.00 mm |
|
A280 | X | X | X | 18.40 mm | 0.15 | 6.50 mm | 17.13 mma | 16.88 mma,c | Ø5.50 mm | ||
354280 | X | X | X | X | 1064 | 18.4 mm | 0.15 | 6.500 mm | 15.9 mmb | 15.6 mmb,c | S1: Ø5.15 mm S2: Ø5.50 mm |
Posted Comments: | |
No Comments Posted |
Item # (Unmounted) |
Info | EFLa | NA | OD | WDb | CA | TC | DW | LWTc | Glass | Performance |
---|---|---|---|---|---|---|---|---|---|---|---|
355465 | 0.5 mm | S1: 0.50 S2: 0.10 |
1.845 mm | S1: 0.3 mmd S2: 2.9 mmd |
S1: Ø0.40 mm S2: Ø0.70 mm |
0.782 mm | 1310 nm | - | D-ZLaF52LA | Focal Shift / Spot Size Cross Section |
|
355915 | 0.8 mm | S1: 0.50 S2: 0.12 |
1.300 mm | S1: 0.7 mmd S2: 3.9 mmd |
S1: Ø0.77 mm S2: Ø1.00 mm |
0.600 mm | 1550 nm | - | D-ZLaF52LA | Focal Shift / Spot Size Cross Section |
Item # (Unmounted) |
Info | EFLa | NA | OD | WDb | CA | TC | DW | LWTc | Glass | Performance |
---|---|---|---|---|---|---|---|---|---|---|---|
355200 | 1.1 mm | S1: 0.43 S2: 0.12 |
2.400 mm | S1: 0.5 mmd S2: 4.8 mme |
S1: Ø1.24 mm S2: Ø1.24 mm |
1.239 mm | 1300 nm | 0.300 mm | D-ZLaF52LA | Focal Shift / Spot Size Cross Section |
|
355201 | 1.1 mm | S1: 0.12 S2: 0.43 |
4.929 mm | S1: 0.5 mmd S2: 4.8 mme |
S1: Ø1.24 mm S2: Ø1.24 mm |
1.239 mm | 1300 nm | 0.305 mm | D-ZLaF52LA | Focal Shift / Spot Size Cross Section |
|
354450 | 1.2 mm | S1: 0.30 S2: 0.30 |
1.800 mm | S1: 1.7 mme S2: 1.7 mme |
S1: Ø1.14 mm S2: Ø1.14 mm |
1.480 mm | 980 nm | - | D-ZK3 | Focal Shift / Spot Size Cross Section |
|
355755 | 1.9 mm | S1: 0.15 S2: 0.15 |
1.700 mm | S1: 3.6 mme S2: 3.6 mme |
S1: Ø1.10 mm S2: Ø1.10 mm |
1.000 mm | 1577 nm | - | D-ZLaF52LA | Focal Shift / Spot Size Cross Section |
Item # (Unmounted/ Mounted) |
Info | EFLa | NA | OD | WDb | CA | TC | DW | LWTc | Glass | Performance | Thread | Suggested Spanner Wrench |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
355440 | 2.8 mm | S1: 0.26 S2: 0.52 |
4.700 mm | S1: 2.0 mmd S2: 7.1 mmd |
S1: Ø3.76 mm S2: Ø4.12 mm |
3.827 mm | 980 nm | 0.250 mm | D-ZLaF52LA | Focal Shift / Spot Size Cross Section |
- | - | |
C440TMD | 8.2 mm | S1: 1.9 mmd,e | M6 x 0.5 | SPW306 |