InGaAs Free-Space Amplified Photodetectors, OEM Package


  • Wavelength Ranges From 800 - 1700 nm
  • Maximum Bandwidths up to 13 MHz
  • Detector on Printed Circuit Board for OEM Applications

PDAPC3

Switchable Gain
900 - 1700 nm
13 MHz Max Bandwidth

PDAPC4

Switchable Gain
800 - 1700 nm
11 MHz Max Bandwidth

Front

Back

Related Items


Please Wait
Item # Wavelength Range Bandwidth NEP
Switchable Gain
PDAPC4a 800 - 1700 nm DC - 11 MHz 1.95 - 61.0 pW/Hz1/2
PDAPC3a 900 - 1700 nm DC - 13 MHz 1.91 - 46.0 pW/Hz1/2
  • Switchable with eight user-selectable gain settings in 10 dB steps. Bandwidth varies inversely with gain.

Features

  • Two Models Available for NIR:
    • PDAPC4: 800 to 1700 nm
    • PDAPC3: 900 to 1700 nm
  • Low-Noise Amplification with Switchable Gain
  • 50 Ω Load Impedances
  • Free-Space Optical Coupling
  • Output Accessible via Jumper and MMCX Connector

We offer a selection of Indium Gallium Arsenide (InGaAs) Free-Space Amplified Photodetectors that are sensitive to near infrared light. These amplified photodetectors feature a built-in low-noise transimpedance amplifier (TIA) and switchable gain with eight gain settings. Gain can be adjusted via on-board header pins or manually through four DIP switches. These photodetectors are capable of driving loads from 50 Ω to Hi-Z with the output being accessible through a jumper or an MMCX connector on the rear of the printed circuit board (PCB). Each detector PCB has four Ø3.2 mm through holes on 30 mm spacings for compatibility with our 30 mm cage system or mounting in custom housings and devices.

Power Supply
A ±12 V linear power supply that supports input voltages of 100, 120, and 230 VAC is available for purchase separately below. Before connecting the power supply to mains voltage, ensure that the mains voltage switch on the power supply module is set to the proper voltage range. The power supplies should always be powered up using the power switch on the power supply itself. Hot plugging the unit is not recommended.

Performance Specifications
Item # Wavelength Bandwidth Rise Time Peak Responsivity Noise Equivalent Power (NEP)a Active Area Operating
Temperature
Range
PDAPC4b 800 - 1700 nm DC - 11 MHzc N/Ad 1.04 A/W @ 1590 nm 1.95 - 61.0 pW/Hz1/2 3.14 mm2 (Ø2.0 mm) 10 to 40 °C
PDAPC3b 900 - 1700 nm DC - 13 MHzc N/Ad 1.05 A/W @ 1550 nm 1.91 - 46.0 pW/Hz1/2 0.8 mm2 (Ø1.0 mm) 10 to 40 °C
  • NEP is specified at the peak responsivity wavelength. As NEP changes with the gain setting for the switchable-gain versions, an NEP range is given for these.
  • This detector has a 50 Ω terminator resistor that is in series with the amplifier output. This forms a voltage divider with any load impedance (e.g. 50 Ω load divides signal in half).
  • This is the maximum possible bandwidth for these amplified photodetectors. Bandwidth varies as a function of gain. For more information see the Switchable Gain table below.
  • Rise times depend on the chosen gain level and wavelength. As one increases the gain of a given optical amplifier, the bandwidth is reduced, and hence, the rise time increases. Please refer to the photodiode tutorial for information on calculating the rise time. Bandwidth specifications for each switchable photodetector may be found in the table below.
Gain Specifications
Item # Gain Step
(dB)
Gain
w/ Hi-Z Load
Gain
w/ 50 Ω Load
Bandwidth Noise
(RMS)
NEPa Offset (±) Output Voltage
w/ Hi-Z Load
Output Voltage
w/ 50 Ω Load
PDAPC4 0 1.51 kV/A ± 2% 0.75 kV/A ± 2% 11 MHz 286 µV 61 pW/Hz1/2 8 mV (12 mV Max) 0 - 10 V 0 - 5 V
10 4.75 kV/A ± 2% 2.38 kV/A ± 2% 1.5 MHz 201 µV 5.7 pW/Hz1/2
20 15 kV/A ± 2% 7.5 kV/A ± 2% 1 MHz 236 µV 2.93 pW/Hz1/2
30 47.5 kV/A ± 2% 23.8 kV/A ± 2% 260 kHz 234 µV 2.19 pW/Hz1/2
40 151 kV/A ± 2% 75 kV/A ± 2% 90 kHz 240 µV 1.95 pW/Hz1/2
50 475 kV/A ± 2% 238 kV/A ± 2% 28 kHz 260 µV 2.24 pW/Hz1/2
60 1.5 MV/A ± 5% 750 kV/A ± 5% 9 kHz 300 µV 2.25 pW/Hz1/2
70 4.75 MV/A ± 5% 2.38 MV/A ± 5% 3 kHz 396 µV 2.28 pW/Hz1/2
PDAPC3 0 1.51 kV/A ± 2% 0.75 kV/A ± 2% 13 MHz 264 µV 46 pW/Hz1/2 8 mV (12 mV Max) 0 - 10 V 0 - 5 V
10 4.75 kV/A ± 2% 2.38 kV/A ± 2% 1.7 MHz 190 µV 3.7 pW/Hz1/2
20 15 kV/A ± 2% 7.5 kV/A ± 2% 1.1 MHz 208 µV 2.15 pW/Hz1/2
30 47.5 kV/A ± 2% 23.8 kV/A ± 2% 300 kHz 212 µV 1.95 pW/Hz1/2
40 151 kV/A ± 2% 75 kV/A ± 2% 90 kHz 220 µV 1.91 pW/Hz1/2
50 475 kV/A ± 2% 238 kV/A ± 2% 28 kHz 235 µV 2.17 pW/Hz1/2
60 1.5 MV/A ± 5% 750 kV/A ± 5% 9 kHz 270 µV 2.3 pW/Hz1/2
70 4.75 MV/A ± 5% 2.38 MV/A ± 5% 3 kHz 361 µV 2.24 pW/Hz1/2
  • The Noise Equivalent Power is specified at the peak responsivity wavelength.

J2 Header Pins

J2 Header
Pin Description Pin Description
1 +12 VDC 2 GND
3 GND 4 Output
5 -12 VDC 6 No Connection
7 A2a 8 A1a
9 A0a 10 No Connection
  • Pins 7, 8, 9: A0-A2 refers to the three digital pins for the gain adjustment.

DIP Switches

Switch Function
1 Enable
2 A0
3 A1
4 A2

Gain Settings
(Controllable by J2 Pins or DIP Switches)

A2 A1 A0 Gain
0 0 0 0 dB
0 0 1 10 dB
0 1 0 20 dB
0 1 1 30 dB
1 0 0 40 dB
1 0 1 50 dB
1 1 0 60 dB
1 1 1 70 dB

MMCX Connector
Output

SMC Male
0 to 5 V (50 Ω)
0 to 10 V (Hi-Z)

Photodiode Tutorial

Theory of Operation

A junction photodiode is an intrinsic device that behaves similarly to an ordinary signal diode, but it generates a photocurrent when light is absorbed in the depleted region of the junction semiconductor. A photodiode is a fast, highly linear device that exhibits high quantum efficiency and may be used in a variety of different applications.

It is necessary to be able to correctly determine the level of the output current to expect and the responsivity based upon the incident light. Depicted in Figure 1 is a junction photodiode model with basic discrete components to help visualize the main characteristics and gain a better understanding of the operation of Thorlabs' photodiodes.

Equation 1
Photodiode Circuit Diagram
Figure 1: Photodiode Model

Photodiode Terminology

Responsivity
The responsivity of a photodiode can be defined as a ratio of generated photocurrent (IPD) to the incident light power (P) at a given wavelength:

Equation 2

Modes of Operation (Photoconductive vs. Photovoltaic)
A photodiode can be operated in one of two modes: photoconductive (reverse bias) or photovoltaic (zero-bias). Mode selection depends upon the application's speed requirements and the amount of tolerable dark current (leakage current).

Photoconductive
In photoconductive mode, an external reverse bias is applied, which is the basis for our DET series detectors. The current measured through the circuit indicates illumination of the device; the measured output current is linearly proportional to the input optical power. Applying a reverse bias increases the width of the depletion junction producing an increased responsivity with a decrease in junction capacitance and produces a very linear response. Operating under these conditions does tend to produce a larger dark current, but this can be limited based upon the photodiode material. (Note: Our DET detectors are reverse biased and cannot be operated under a forward bias.)

Photovoltaic
In photovoltaic mode the photodiode is zero biased. The flow of current out of the device is restricted and a voltage builds up. This mode of operation exploits the photovoltaic effect, which is the basis for solar cells. The amount of dark current is kept at a minimum when operating in photovoltaic mode.

Dark Current
Dark current is leakage current that flows when a bias voltage is applied to a photodiode. When operating in a photoconductive mode, there tends to be a higher dark current that varies directly with temperature. Dark current approximately doubles for every 10 °C increase in temperature, and shunt resistance tends to double for every 6 °C rise. Of course, applying a higher bias will decrease the junction capacitance but will increase the amount of dark current present.

The dark current present is also affected by the photodiode material and the size of the active area. Silicon devices generally produce low dark current compared to germanium devices which have high dark currents. The table below lists several photodiode materials and their relative dark currents, speeds, sensitivity, and costs.

Material Dark Current Speed Spectral Range Cost
Silicon (Si) Low High Speed Visible to NIR Low
Germanium (Ge) High Low Speed NIR Low
Gallium Phosphide (GaP) Low High Speed UV to Visible Moderate
Indium Gallium Arsenide (InGaAs) Low High Speed NIR Moderate
Indium Arsenide Antimonide (InAsSb) High Low Speed NIR to MIR High
Extended Range Indium Gallium Arsenide (InGaAs) High High Speed NIR High
Mercury Cadmium Telluride (MCT, HgCdTe) High Low Speed NIR to MIR High

Junction Capacitance
Junction capacitance (Cj) is an important property of a photodiode as this can have a profound impact on the photodiode's bandwidth and response. It should be noted that larger diode areas encompass a greater junction volume with increased charge capacity. In a reverse bias application, the depletion width of the junction is increased, thus effectively reducing the junction capacitance and increasing the response speed.

Bandwidth and Response
A load resistor will react with the photodetector junction capacitance to limit the bandwidth. For best frequency response, a 50 Ω terminator should be used in conjunction with a 50 Ω coaxial cable. The bandwidth (fBW) and the rise time response (tr) can be approximated using the junction capacitance (Cj) and the load resistance (RLOAD):

Equation 3

Noise Equivalent Power
The noise equivalent power (NEP) is the generated RMS signal voltage generated when the signal to noise ratio is equal to one. This is useful, as the NEP determines the ability of the detector to detect low level light. In general, the NEP increases with the active area of the detector and is given by the following equation:

Photoconductor NEP

Here, S/N is the Signal to Noise Ratio, Δf is the Noise Bandwidth, and Incident Energy has units of W/cm2. For more information on NEP, please see Thorlabs' Noise Equivalent Power White Paper.

Terminating Resistance
A load resistance is used to convert the generated photocurrent into a voltage (VOUT) for viewing on an oscilloscope:

Equation 4

Depending on the type of the photodiode, load resistance can affect the response speed. For maximum bandwidth, we recommend using a 50 Ω coaxial cable with a 50 Ω terminating resistor at the opposite end of the cable. This will minimize ringing by matching the cable with its characteristic impedance. If bandwidth is not important, you may increase the amount of voltage for a given light level by increasing RLOAD. In an unmatched termination, the length of the coaxial cable can have a profound impact on the response, so it is recommended to keep the cable as short as possible.

Shunt Resistance
Shunt resistance represents the resistance of the zero-biased photodiode junction. An ideal photodiode will have an infinite shunt resistance, but actual values may range from the order of ten Ω to thousands of MΩ and is dependent on the photodiode material. For example, and InGaAs detector has a shunt resistance on the order of 10 MΩ while a Ge detector is in the kΩ range. This can significantly impact the noise current on the photodiode. For most applications, however, the high resistance produces little effect and can be ignored.

Series Resistance
Series resistance is the resistance of the semiconductor material, and this low resistance can generally be ignored. The series resistance arises from the contacts and the wire bonds of the photodiode and is used to mainly determine the linearity of the photodiode under zero bias conditions.

Common Operating Circuits

Reverse Biased DET Circuit
Figure 2: Reverse-Biased Circuit (DET Series Detectors)

The DET series detectors are modeled with the circuit depicted above. The detector is reverse biased to produce a linear response to the applied input light. The amount of photocurrent generated is based upon the incident light and wavelength and can be viewed on an oscilloscope by attaching a load resistance on the output. The function of the RC filter is to filter any high-frequency noise from the input supply that may contribute to a noisy output.

Reverse Biased DET Circuit
Figure 3: Amplified Detector Circuit

One can also use a photodetector with an amplifier for the purpose of achieving high gain. The user can choose whether to operate in Photovoltaic of Photoconductive modes. There are a few benefits of choosing this active circuit:

  • Photovoltaic mode: The circuit is held at zero volts across the photodiode, since point A is held at the same potential as point B by the operational amplifier. This eliminates the possibility of dark current.
  • Photoconductive mode: The photodiode is reversed biased, thus improving the bandwidth while lowering the junction capacitance. The gain of the detector is dependent on the feedback element (Rf). The bandwidth of the detector can be calculated using the following:

Equation 5

where GBP is the amplifier gain bandwidth product and CD is the sum of the junction capacitance and amplifier capacitance.

Effects of Chopping Frequency

The photoconductor signal will remain constant up to the time constant response limit. Many detectors, including PbS, PbSe, HgCdTe (MCT), and InAsSb, have a typical 1/f noise spectrum (i.e., the noise decreases as chopping frequency increases), which has a profound impact on the time constant at lower frequencies.

The detector will exhibit lower responsivity at lower chopping frequencies. Frequency response and detectivity are maximized for

Photoconductor Chopper Equation

Pulsed Laser Emission: Power and Energy Calculations

Determining whether emission from a pulsed laser is compatible with a device or application can require referencing parameters that are not supplied by the laser's manufacturer. When this is the case, the necessary parameters can typically be calculated from the available information. Calculating peak pulse power, average power, pulse energy, and related parameters can be necessary to achieve desired outcomes including:

  • Protecting biological samples from harm.
  • Measuring the pulsed laser emission without damaging photodetectors and other sensors.
  • Exciting fluorescence and non-linear effects in materials.

Pulsed laser radiation parameters are illustrated in Figure 1 and described in the table. For quick reference, a list of equations are provided below. The document available for download provides this information, as well as an introduction to pulsed laser emission, an overview of relationships among the different parameters, and guidance for applying the calculations. 

 

Equations:

Period and repetition rate are reciprocal:    and 
Pulse energy calculated from average power:       
Average power calculated from pulse energy:        
Peak pulse power estimated from pulse energy:            

Peak power and average power calculated from each other:
  and
Peak power calculated from average power and duty cycle*:
*Duty cycle () is the fraction of time during which there is laser pulse emission.
Pulsed Laser Emission Parameters
Click to Enlarge

Figure 1: Parameters used to describe pulsed laser emission are indicated in the plot (above) and described in the table (below). Pulse energy (E) is the shaded area under the pulse curve. Pulse energy is, equivalently, the area of the diagonally hashed region. 

Parameter Symbol Units Description
Pulse Energy E Joules [J] A measure of one pulse's total emission, which is the only light emitted by the laser over the entire period. The pulse energy equals the shaded area, which is equivalent to the area covered by diagonal hash marks.
Period Δt  Seconds [s]  The amount of time between the start of one pulse and the start of the next.
Average Power Pavg Watts [W] The height on the optical power axis, if the energy emitted by the pulse were uniformly spread over the entire period.
Instantaneous Power P Watts [W] The optical power at a single, specific point in time.
Peak Power Ppeak Watts [W] The maximum instantaneous optical power output by the laser.
Pulse Width Seconds [s] A measure of the time between the beginning and end of the pulse, typically based on the full width half maximum (FWHM) of the pulse shape. Also called pulse duration.
Repetition Rate frep Hertz [Hz] The frequency with which pulses are emitted. Equal to the reciprocal of the period.

Example Calculation:

Is it safe to use a detector with a specified maximum peak optical input power of 75 mW to measure the following pulsed laser emission?

  • Average Power: 1 mW
  • Repetition Rate: 85 MHz
  • Pulse Width: 10 fs

The energy per pulse:

seems low, but the peak pulse power is:

It is not safe to use the detector to measure this pulsed laser emission, since the peak power of the pulses is >5 orders of magnitude higher than the detector's maximum peak optical input power.


Posted Comments:
guy carmeli  (posted 2023-02-01 23:11:14.61)
hi can you also share the electrical schematics of the design. ill be happy to examine it thank you Guy
ksosnowski  (posted 2023-02-01 05:04:45.0)
Hello Guy, thanks for reaching out to Thorlabs. Unfortunately, we cannot share the electrical schematic for the PDAPCx boards as this is proprietary to our design. The device manual describes the Amplified Detector Circuit, the pin-out, the equations to relate input optical power to output voltage, as well as what cables and accessories to use to connect the PDAPCx to your equipment. I've reached out directly to discuss your application further.
Nikita Kikilich  (posted 2022-12-08 12:16:19.707)
I am thinking about buying it, but in its basic form it does not suit me. I will need to change the photodetector to another one and change the band of the operational amplifier. Can you provide an electrical scheme of this board?
cdolbashian  (posted 2022-12-15 02:19:08.0)
Thank you for reaching out to us Nikita! Unfortunately we cannot share the electrical schematic for these components, though I have contacted you directly to discuss some other things we can try.

The following table lists Thorlabs' selection of photodiodes, photoconductive, and pyroelectric detectors. Item numbers in the same row contain the same detector element.

Photodetector Cross Reference
Wavelength Material Unmounted
Photodiode
Mounted
Photodiode
Biased
Detector
Amplified
Detector
Amplified Detector,
OEM Package
200 - 1100 nm Si FDS010 SM05PD2A
SM05PD2B
DET10A2 PDA10A2 -
Si - SM1PD2A - - -
240 - 1170 nm B-Si - - DET20X2 - -
320 - 1000 nm Si - - - PDA8A2 -
320 - 1100 nm Si FD11A SM05PD3A - PDF10A2 -
Si - a - DET100A2 a PDA100A2 a PDAPC2 a
340 - 1100 nm Si FDS10X10 - - - -
350 - 1100 nm Si FDS100
FDS100-CAL b
SM05PD1A
SM05PD1B
DET36A2 PDA36A2 PDAPC1
Si FDS1010
FDS1010-CAL b
SM1PD1A
SM1PD1B
- - -
400 - 1000 nm Si - - - PDA015A2
FPD310-FS-VIS
FPD310-FC-VIS
FPD510-FC-VIS
FPD510-FS-VIS
FPD610-FC-VIS
FPD610-FS-VIS
-
400 - 1100 nm Si FDS015 c - - - -
Si FDS025 c
FDS02 d
- DET02AFC(/M)
DET025AFC(/M)
DET025A(/M)
DET025AL(/M)
- -
400 - 1700 nm Si & InGaAs DSD2 - - - -
500 - 1700 nm InGaAs - - DET10N2 - -
0.6 - 16 µm LiTaO3 - - - PDA13L2e -
750 - 1650 nm InGaAs - - - PDA8GS -
800 - 1700 nm InGaAs FGA015 - - PDA015C2 -
InGaAs FGA21
FGA21-CAL b
SM05PD5A DET20C2 PDA20C2
PDA20CS2
-
InGaAs FGA01 c
FGA01FC d
- DET01CFC(/M) - -
InGaAs FDGA05 c - - PDA05CF2 -
InGaAs - - DET08CFC(/M)
DET08C(/M)
DET08CL(/M)
- -
InGaAs - - - PDF10C2 -
800 - 1800 nm Ge FDG03
FDG03-CAL b
SM05PD6A DET30B2 PDA30B2 -
Ge FDG50 - DET50B2 PDA50B2 -
Ge FDG05 - - - -
900 - 1700 nm InGaAs FGA10 SM05PD4A DET10C2 PDA10CS2 -
900 - 2600 nm InGaAs FD05D - DET05D2 - -
FD10D - DET10D2 PDA10D2 -
950 - 1650 nm InGaAs - - - FPD310-FC-NIR
FPD310-FS-NIR
FPD510-FC-NIR
FPD510-FS-NIR
FPD610-FC-NIR
FPD610-FS-NIR
-
1.0 - 5.8 µm InAsSb - - - PDA10PT(-EC) -
2.0 - 8.0 µm HgCdTe (MCT) VML8T0
VML8T4 f
- - PDAVJ8 -
2.0 - 10.6 µm HgCdTe (MCT) VML10T0
VML10T4 f
- - PDAVJ10 -
2.7 - 5.0 µm HgCdTe (MCT) VL5T0 - - PDAVJ5 -
2.7 - 5.3 µm InAsSb - - - PDA07P2 -
  • If you are interested in purchasing the bare photodiode incorporated in these detectors without the printed circuit board, please contact Tech Support.
  • Calibrated Unmounted Photodiode
  • Unmounted TO-46 Can Photodiode
  • Unmounted TO-46 Can Photodiode with FC/PC Bulkhead
  • Pyroelectric Detector
  • Photovoltaic Detector with Thermoelectric Cooler
Back to Top

InGaAs Free-Space Amplified Photodetectors, OEM Package

Item #a Package
Featuresb
Wavelength
Range
Bandwidth
Rangec
Gain NEPd Typical
Performance
Graphs
Active Area
(Click Link for Image)
Operating
Temperature
Range
Hi-Z Load 50 Ω Load
PDAPC4e 800 - 1700 nm DC - 11 MHz 1.51 kV/A - 4.75 MV/A 0.75 kV/A - 2.38 MV/A 1.95 - 61.0 pW/Hz1/2 info 3.14 mm2
(Ø2.0 mm)
10 to 40 °C
PDAPC3f 900 - 1700 nm DC - 13 MHz 1.51 kV/A - 4.75 MV/A 0.75 kV/A - 2.38 MV/A 1.91 - 46.0 pW/Hz1/2 info 0.8 mm2
(Ø1.0 mm)
10 to 40 °C
  • Click on the links to view photos of the items.
  • Click the icons for details.
  • Switchable with eight user-selectable gain settings in 10 dB steps. Bandwidth varies inversely with gain.
  • NEP is specified at the peak responsivity wavelength. As NEP changes with the gain setting for the switchable-gain versions, an NEP range is given for these.
  • Also available packaged in a housing with connectors as the PDA20CS2.
  • Also available packaged in a housing with connectors as the PDA10CS2.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
PDAPC4 Support Documentation
PDAPC4InGaAs Switchable Gain Detector on PCB, 800 - 1700 nm, 11 MHz, 3.14 mm²
$309.57
Today
PDAPC3 Support Documentation
PDAPC3InGaAs Switchable Gain Detector on PCB, 900 - 1700 nm, 13 MHz, 0.8 mm²
$203.64
Today
Back to Top

Power Supply with Cable for PDAPC Series Photodetectors

LD3000R SmartPack Packaging
Click to Enlarge

Pin Diagram for the Included Cable
Pin # Assignment
1 +12 V
2 GND
3 -12 V
  • Power Supply (Item # LDS12B) and Cable for Use with PDAPC Series Photodetectors
  • 3 Pin Cable Output Connects to J2 Jumper on Detector Board
  • ±12 VDC Output
  • Switchable Input Voltage: 100 V, 120 V, or 230 V

The LD1255-SUPPLY Bundle includes the LDS12B Power Supply and the appropriate cable to connect to PDAPC Series Photo detectors (available above). A switch on the power supply box enables the user to choose a 100 V, 120 V, or 230 V input voltage. The cable is able to transmit ±12 VDC from the power supply to the photodetector. The included cable can be ordered separately from the power supply by contacting Tech Support.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
LD1255-SUPPLY Support Documentation
LD1255-SUPPLYCable and LDS12B Power Supply Bundle for LD1255R Driver and PDAPC Series Photodetectors
$136.06
Today
Back to Top

Coaxial Cables with MMCX Connectors

  • Optional Cables for Output of PDAPC Series Photodetectors
  • MMCX Male Connector to BNC or SMA Male Connector
  • DC - 6 GHz Frequency Range
  • 50 Ω Normal Impedance
  • 170 V Max Operating Voltage

These cables convert the MMCX output of the photodetectors sold above to BNC or SMA male connectors. The CA3339 (1 m long) and CA3272 (1.8 m long) cables feature a male BNC termination while the CA3439 (1 m long) has a male SMA termination.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
CA3339 Support Documentation
CA3339Customer Inspired! RG-174 Coaxial Cable, MMCX Male to BNC Male, 1 m (39")
$26.90
Today
CA3272 Support Documentation
CA3272RG-174 Coaxial Cable, MMCX Male to BNC Male, 1.8 m (72")
$31.84
Today
CA3439 Support Documentation
CA3439Customer Inspired! RG-174 Coaxial Cable, MMCX Male to SMA Male, 1 m (39")
$30.74
Today