"; _cf_contextpath=""; _cf_ajaxscriptsrc="/cfthorscripts/ajax"; _cf_jsonprefix='//'; _cf_websocket_port=8578; _cf_flash_policy_port=1244; _cf_clientid='F24CF8AEB9B7CE17F363C244BDC66460';/* ]]> */
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vytran® Fiber Preparation and Splicing: SM and MM![]()
Base Unit and Components Sold Separately RM430 Recoat Mold Assembly FTV7 Tungsten Fusion Splicing Filament CST080180 Thermo-Mechanical Stripping Blade Insert Set FFS2000 Illustration Shown with Recoat Mold Assembly (Purchased Separately) ![]() Please Wait Building a Complete Fiber Processing System?To build a complete system, you will need to purchase a base unit plus additional components that are dependent upon the size of the fiber being processed. We recommend that you contact us prior to ordering for assistance with choosing a system and all the necessary components. This also allows us to install and factory-align all system components within the base unit prior to shipping, ensuring optimal performance out-of-the-box. To take advantage of this assistance, please e-mail us directly at techsupport@thorlabs.com and a representative will contact you shortly. The Process for Fusion Splicing The FFS2000 Incorporates All Components and Procedures to Prepare the Fiber for Splicing:
The video above shows the functionality of our FFS2000WS fiber workstation, which includes rotating fiber holding blocks to align PM fibers and a proof tester not found on the FFS2000 sold below.
Features
Thorlabs' Vytran® All-in-One Fiber Preparation and Fusion Splicing Workstation offers all fusion splicing and cleaving procedures integrated into a single system that can be used to produce consistent splices quickly and efficiently (US Patent: 9,977,189). This workstation uses our filament fusion technology to provide a convenient, reliable method of making high-strength, low-loss splices for both production and R&D applications. The splicer features True Core Imaging technology, which is a high-magnification, high-resolution optical imaging system capable of detecting and displaying the inner core structure of a fiber. This technology provides for fast, accurate core alignment and splice loss calculation. Also included is a Windows® 10 PC with a user interface that offers complete configuration and process control. The model offered here is for SM and MM fibers. The system is capable of processing fibers with Ø80 µm to Ø200 µm cladding. This includes standard Ø80 µm cladding / Ø180 µm coating and Ø125 µm cladding / Ø250 µm coating fibers. Automatic Alignment True Core Imaging can also provide a splice loss determination after the splicing is complete. From the image of the fiber cores, a proprietary algorithm is used to accurately calculate the loss for a splice of a variety of similar or dissimilar fiber types. Filament Fusion Fire Polishing Recoating
![]() Components Included
Must Be Purchased Separately
To begin the process of purchasing your complete fiber preparation and fusion splicing workstation, add the Item # FFS2000 to your cart. In the subsequent product groupings, you will select one or more required accessories; the number of items required from each group will be indicated in the red headings. The specific choice of components will depend upon your fiber size and type. Once we receive your order, we will review it and contact you if we have any additional questions or if a required component is missing. As the alignment of the components in the FFS2000 workstation is critical and must be performed in the factory, your complete system will ship with all of the components installed. Once you receive the system, most inserts (except the Graphite V-Groove Inserts) can be easily replaced by the user if needed. Nylon-tipped setscrews are used to secure the inserts in the fiber holding blocks; replacement 2-56, 1/8" long SS2SN013 setscrews are available in packs of 10. An external supply of argon and soaking and cleaning solvents must be provided by the user to operate the workstation. Please contact Tech Support if you have any questions or would like assistance in building a fiber processing solution to meet your needs. In addition, installation and training by one of our application engineers is recommended for this system; please contact tech support for more details. ![]()
These Bottom V-Groove Inserts are designed for the FHB1 Non-Rotating Fiber Holding Blocks that are included with the workstation base unit. A total of two items must be purchased, one insert for the left holding block and one insert for the right holding block. They are provided individually so as to allow for the construction of a system that can process two fibers with different coating diameters. Different V-groove sizes are provided to support a range of fiber cladding diameters; compatibility is listed in the table to the right. Two bottom inserts from the list below must be purchased in order to operate your workstation. When purchased with a workstation base unit, the bottom fiber holding block inserts can be installed at the factory upon request by contacting Tech Support. If necessary, these inserts can be replaced by the user. In addition, a top insert (sold in the next product grouping) is required. ![]()
In addition to the bottom V-groove inserts that must be installed in the FHB1 non-rotating fiber holding blocks, top inserts must be purchased as well. There are two choices of top inserts. The VHH000 is a flat insert that fits in the lid of one of the fiber holding blocks; it is compatible with all of our bottom V-Groove inserts except the VHH900S. If you are using the VHH900S as a bottom V-groove insert, you must select the VHH900 as the top insert to allow clearance for the lid of the holding block to close. When purchased with a workstation base unit, the top inserts can be installed at the factory upon request by contacting Tech Support. If necessary, the top inserts can be replaced by the user. ![]()
Thorlabs offers four sets of blades for stripping fiber. The maximum buffer diameter is limited by the size of the channel in the insert. Each blade set consists of two pieces: one top and one bottom insert that each have flat blades on the ends. Three of the blades sets are designed to strip the same size cladding on both the left and right ends. The CSTM080125 blade set is designed to strip Ø80 µm cladding fiber on one end and Ø125 µm cladding fiber on the other. When ordered with the workstation base unit, it will be installed by default with the blades for Ø80 µm claddings on the left and the blades for Ø125 µm cladding on the right. The blade orientation can be reversed by the user to strip Ø80 µm cladding on the right and Ø125 µm cladding on the left; however you must be certain to switch both the top and bottom inserts together. We offer four inserts from stock to accommodate standard fiber sizes. TMS blade insert sets are available for cladding diameters up to Ø200 µm upon request by contacting Tech Support. One TMS blade insert set must be purchased in order to operate your workstation; when purchased with a workstation base unit, the stripping blade insert set can be installed at the factory upon request by contacting Tech Support. If necessary, the stripping blade insert set can be replaced by the user. ![]()
These Bottom Cleaver Inserts secure the fiber inside the cleaving assembly of the workstation. They are sold individually to allow cleaving of differently sized fibers held within the left and right fiber holding blocks. Different inserts are available to support a variety of fiber sizes; compatibility is listed in the table to the right. Please note that the base unit is compatible with fiber cladding from Ø80 µm to 200 µm, even though the inserts can hold fiber cladding diameters outside of this range. Please contact Tech Support for more information. Two bottom cleaver inserts, one for both the left and right fibers, must be purchased in order to operate your workstation. These can be installed at the factory upon request by contacting Tech Support. If necessary, the cleaver inserts can be replaced by the user. When the cleaving assembly is closed, the top (sold in the next product grouping) and bottom inserts mate to secure the stripped fiber. ![]()
The SCV000 Top Cleaver Insert is a flat plate that helps secure the fiber inside the cleaving assembly of the workstation. It is sold individually, so two items must be purchased, one for the left and one for the right fiber cleaver. In addition to these top cleaver inserts, you must buy the bottom insert that matches your fiber size (see the previous product grouping). When purchased with a workstation base unit, the top cleaver inserts can be installed at the factory upon request by contacting Tech Support. If necessary, the cleaver inserts can be replaced by the user. When the cleaving assembly is closed, the top and bottom inserts mate to secure the fiber. ![]()
These Graphite V-Groove Inserts help to position the fiber in the fusion splicer. The fiber size is limited by the size of the channel in the insert; the compatible sizes are listed in the table to the right. These items are sold individually; two Graphite V-groove inserts, one for the left and one for the right side of the splicer assembly; two VHG125 inserts are included with the system. Due to the alignment precision required, these inserts must be installed and aligned at the factory and are not user replaceable. If you require a different insert size for an existing system, please contact tech support to arrange the reconfiguration. ![]()
There are two available fusion splicing filaments for the all-in-one workstation. The FTV7 tungsten filament is ideal for most splicing applications, while the ETV7 iridium filament is ideal for soft glass fibers. The omega-shaped filament is housed in an included mount and is easily replaced by the end user. The omega shape provides a uniform concentric heat source for fusing the fiber tips and for an optional post-fusion fire polishing step. Filament lifetimes will depend upon the particular splicing parameters used but are typically about 40 minutes. One FTV7 filament comes pre-installed in the workstation. Additional filaments may be purchased, but before a new filament can be used in a system, it must be burned in. During the burn-in process, the filament is cycled between its operating temperature and room temperature several times. This stabilizes the thermal properties of the filament so that it produces a more consistent power output and heating performance when current is passed through it. This procedure only needs to be performed once, after which the filament will only need regular normalization. If performance begins to degrade, filament refurbishments can be ordered by contacting Tech Support. ![]()
There are three available recoater mold assemblies for the all-in-one fiber processing workstation. They are available for 280 µm, 430 µm, or 600 µm coating diameters. Custom mold sizes up to Ø900 µm are available; please contact Tech Support for more information. The assembly is composed of split quartz mold plates, which, when closed, form the cylindrical mold cavity around the exposed section of the fiber being recoated. During operation, the recoat material (available in the next product grouping) is injected into the mold assembly with a manual injection system that is included in the workstation base unit. Then, UV light cures the recoat material. Cure times are dependent on the mold size and recoat material, but they range from approximately 12 - 15 seconds for the RM280 mold assembly with high-index AB950200 recoat material to 30 - 60 seconds with the low-index PC373 recoat material. The recoater mold assembly should be cleaned throughly with isopropyl alcohol or acetone between each recoating process; reliable and repeatable performance is highly dependent on the cleanliness of the mold. One recoater mold assembly must be purchased in order to operate your workstation. The mold can be factory installed prior to shipment upon request by contacting Tech Support. If necessary, the recoat mold assemblies are user replaceable. ![]()
Thorlabs offers UV-curable acrylic recoat materials for the fiber processing workstation. We offer both high-index and low-index materials. The recoat material is injected into the recoater mold assembly by a manual injection system included in the workstation base unit. Each bottle includes 1 oz (30 g) of recoat material. One bottle of recoat material must be purchased in order to operate your workstation. ![]() Compatible Systems
Fiber Holding Blocks secure the fiber and simplify moving the fibers between the different processing steps. The FHB1, which is sold as a pair of left and right fiber holding blocks, is the replacement set for the Vytran fiber processing systems listed to the right. In order to securely hold a fiber with a particular diameter, a set of bottom V-Groove inserts must be installed within the fiber holding block; these can be factory installed prior to shipment upon request by contacting Tech Support. V-groove inserts must be purchased separately above. For the FHB1 non-rotating fiber holding block, you must purchase both the bottom V-groove insert based upon your fiber size (any Item # ranging from VHH125 to VHH900S) as well as the corresponding top insert (either Item # VHH000 or VHH900). ![]() Compatible Systems
![]() Click to Enlarge The blade is shipped in a protective covering. The ACL83 Diamond Cleave Blade is a replacement blade for the Vytran fiber processing systems listed to the right. Each system is shipped with a blade included. When used with proper cleave parameters, a single location on the blade can provide up to 5,000 cleaves (dependent on the cladding properties of the fiber being cleaved). The blade can be positioned approximately 10 times before replacement (assuming proper cleave parameters and usage that does not cause unexpected damage to the blade). Blade replacement instructions for each system are provided in the user manuals. Note: Severe damage to the blade can occur if conditions cause high stress perpendicular to the edge of the blade or if incorrect parameters are used to cleave the fiber. ![]() Compatible Systems
The UVRB is a replacement bulb for the Vytran fiber recoaters listed to the right. Recoaters with a 50 mm recoat length are shipped with the four bulbs required for operation and recoaters with a 100 mm recoat length are shipped with eight bulbs. Based on a schedule of 2000 recoats per month with 15 seconds per recoat, we recommend replacing the bulbs monthly. Instructions for bulb replacement are provided in the manual for each recoater or workstation (available from our website by clicking the red Docs icon next to each base unit item #). Please note that any fingerprints on the surface of the bulb will shorten the bulb's life; avoid handling the glass envelope of the bulb. If the envelope is touched, clean with a soft lens tissue wetted with acetone or alcohol. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|