Direct Drive Rotation Stage


  • 180 rpm (3 Hz) Velocity
  • 5 kg Load Capacity
  • Max Axial Wobble 60 µrad

NR360SP4

Grooved Adapter Plate

NR360SP9

Threaded Adapter Plate

DDR100

SM1-Threaded Center Hole
Adapter Plate Included

Application Idea

The DDR100 Rotation Stage can be
combined with the M30XY XY Stage and
the KVS30 30 mm Vertical Servo Stage
for an XYZ-yaw configuration.

Related Items


Please Wait
Key DDR100 Specificationsa
Travel Range 360° Continuous
Velocity (Max) 180 rpm (3 Hz)
Max Wobble (Axial) 60 µrad
Bidirectional Repeatability 60 µrad
Horizontal Load Capacity (Max)b 5.0 kg
Vertical Load Capacity (Max)b 2.0 kg (Mounted Centrally)
Min Achievable Incremental Movement 70 µrad
Cable Length 3.0 m (9.8')
Recommended Controllera Benchtop: BBD30x;
Rackmount: RBD201, MBD602
Stage Dimensions (L x W x H) 115 mm x 115 mm x 40 mm
(4.53" x 4.53" x 1.58")
  • Sold separately below. More detailed specifications are included in the Specs tab.
  • The controller default PID parameters are set for a 2 kg load and may require adjustment for higher loads. At higher loads the acceleration should be decreased. The acceleration is limited by the motor force.
Vertical Translation Stage
Click to Enlarge

DDR100 Rotation Stage Shown
Mounted on Top of M30XY XY Stage

Features

  • 360° Continuous Rotation
  • High Speeds up to 180 rpm
  • Low Profile: 40 mm (1.57")
  • Integrated, Brushless DC Servo Motor Actuators
  • High-Quality, Precision-Engineered Bearings
  • Compatible with SM1 Lens Tubes and 30 mm Cage System Components
  • Compatible with NR360SP4 and NR360SP9 Adapter Plates

The Thorlabs' DDR100 low-profile, direct-drive rotary stage provides continuous rotation of a load up to 5 kg (11 lb) with 2 µrad resolution and a maximum rotation speed of 180 rpm. An SM1-threaded central aperture allows an optical path to pass directly through the body of the stage.

This stage has a 3-phase, brushless DC motor integrated directly into the frame of the stage. This eliminates all forms of mechanical transmission providing high repeatability, rigidity and reliability. The winding design eliminates torque ripple due to magnetic cogging, enabling good velocity stability even at low speeds. The high magnetic pole count produces a large amount of torque (0.7 N•m). The high-resolution encoder mounted directly on the moving world provides high accuracy and repeatability, while the precision-engineered bearings and tight manufacturing tolerances produce very low axial wobble (60 µrad) and radial eccentricity (6 µm). An engraved Vernier scale with 1° graduations allows for coarse positioning.

The stage can be mounted horizontally on the work surface, or vertically on a Ø1" post (see the diagram to the right) or by using our AP90RL or VB01 right-angle brackets. It can also be mounted directly to the DDS300 and DDS600 translation stages. The top plate features an SM1-threaded (1.035"-40) through hole to allow Ø1" optics and our SM1 product line to be mounted. The rotating and non-rotating top surfaces, and the rear face, all feature an array of 4-40 tapped holes to integrate 30 mm cage assemblies and components.

Controller Options
We recommend the BBD30x One-, Two-, or Three-Channel Benchtop Brushless DC Motor Controllers (sold separately below) for this stage. These controllers provide a user-configurable, trapezoidal or S-curve acceleration/deceleration profile that enables fast, smooth positioning without vibration or shock. They are ideal for motion control applications demanding operation at high speeds (hundreds of mm/s) and high encoder resolution (50 nm). The design incorporates the latest digital and analog techniques as well as high-bandwidth, high-power servo control circuitry. The controllers ship with our Kinesis or APT software for easy integration into an existing system. See below for a brief overview or click here to view the full presentation for these Brushless DC Motor Controllers.

We also offer the RBD201 Rackmount Controller for implementation into a 19" rack and the MBD602 Rackmount Controller Module designed for use with the MMR60x Motion Control 19" Modular Rack System. These controllers are compatible with the DDR100 direct-drive rotation stage and allow for customizing more complex systems with multiple motor controls.

Adapter Plates
Adapter plates are available that fix to the rotating platform of the stage. The NR360SP4 Grooved Adapter Plate allows the stage to be used with our fiber launch systems product line. The NR360SP9 Threaded Adapter Plate has 17 1/4"-20 or M6 mounting holes and four #8 or M4 counterbored fixing holes and provides numerous options for attaching devices. See below for more details.

Joystick Options
Two optional joysticks are also available for remote positioning applications, the MJC2 Two-Axis Joystick and the MJC3 Three-Axis Joystick. See the presentation below for more details. Please note that in order to control two stages simultaneously, a multi-channel controller is required.

Item # DDR100(/M)
Travel Range 360° Continuous
Velocity (Max) 180 rpm (3 Hz)
Acceleration (Max)a 7200°/s2 at 0.5 kg (1.1 lbs) Load
1800°/s2 at 2.0 kg (4.4 lbs) Load
Bidirectional Repeatability 60 µrad
Backlashb N/A
Encoder Resolution 2.0 µrad (0.0001°)
Min Achievable Incremental Movement 70 µrad
Recommended Loadc 2 kg (4.4 lbs)
Horizontal Load Capacity (Max)c 5.0 kg
Vertical Load Capacity (Max)c 2.0 kg (Mounted Centrally)
Absolute On-Axis Accuracy 250 µrad
Max Burst Torque
(1 Sec)
0.7 N•m
Continuous Torque 0.5 N•m
Settling Time 200 ms Typical
Velocity Stability 0.5%
Max Wobble (Axial) 60 µrad
Limit Switches None
Central Aperture SM1 Threaded (1.035"-40)
Adapter Plate Mounting Holes 4-40 (8 places)
Operating Temperature Ranged 5 to 40 °C (41 to 104 °F)
Motor Type Brushless DC Rotary Motor
Cable Length 3 m (9.8')
Dimensions 115 mm x 115 mm x 40 mm
(4.53" x 4.53" x 1.58")
Weight
(Excluding Cables)
2 kg (4.4 lbs)
  • The acceleration is limited by the peak torque of the stage (0.7 N•m). Lighter loads can accelerate faster while heavier loads accelerate slower. In test conditions, an acceleration of 7200°/s2 was achieved with a load of 0.5 kg (1.1 lb), while the typical acceleration for a 2 kg (4.4 lb) load is 1800°/s2.
  • The stage does not suffer from backlash because there is no leadscrew.
  • The controller default PID parameters are set for a 2 kg load and may require adjustment for higher loads. At higher loads the acceleration should be decreased. The acceleration is limited by the motor force.
  • For operation at temperatures outside normal room temerature, the PID parameters may require optimization.
Item # BBD301 BBD302 BBD303
Number of Channels 1 2 3
Drive Connector 8 Pin DIN, Round, Female
Feedback Connector 15-Pin D-Type, Female
Brushless Continuous Output 2.5 A per Channel, 5 A Max All-Channel Total Output
Brushless Peak Output 4.0 A per Channel, 5 A Max All-Channel Total Output
PWM Frequency 40 kHz
Operating Modes Position and Velocity
Control Algorithm 16-Bit Digital PID Servo Loop with Velocity and Acceleration Feed Forward
Velocity Profile Trapezoidal/S-Curve
Position Count 32 Bit
Position Feedback Incremental Encoder
Encoder Bandwidth 2.5 MHz (10 M Counts/sec)
Encoder Supply 5 V
AUX Control Connector 37-Pin D-Type Female (User Digital IO, 5 V O/P)
Front Panel Display 4.3" Full-Color LCD, 480 x 272 Pixels
Input Power
Requirements
250 VA
Voltage: 100 to 240 VAC
Frequency: 47 to 63 Hz
Fuse: 3.15 A
Dimensions
(W x D x H)
199.8 mm x 229.1 mm x 108.8 mm
(7.87" x 9.02" x 4.28")
250.0 mm x 279.1 mm x 108.8 mm
(9.84" x 10.99" x 4.28")
350 mm x 279.1 mm x 108.8 mm
(13.78" x 10.99" x 4.28")
Mass (Weight) 1.20 kg (2.65 lbs) 1.70 kg (3.75 lbs) 2.20 kg (4.85 lbs)

DDR100(/M) Stage Pin Out Descriptions

The flying leads are terminated in a male 15-pin D-Type and male 8-pin round DIN connector. Pin details are given below.

Feedback Connector

d-type_long

Motor Drive Connector

8PinDINRound

Pin Description Pin Description
1 Not Used 9 Ground
2 Ground 10 Limit Switch +
3 Not Used 11 Limit Switch -
4 Enconder Index - 12 Encoder Index +
5 Encoder Phase B - 13 Encoder Phase B +
6 Encoder Phase A - 14 Encoder Phase A +
7a 5 V 15 Not Used
8a 5 V
  • Pins 7 and 8 are shorted together internally
Pin Description
1 Motor Phase V
2 Ground
3 Thermistor (Not Used)
4 Motor Phase U
5 Stage ID
6 Ground
7 Motor Phase W
8 Enable

BBD301, BBD302, and BBD303 Controller Pin Out Descriptions

MOTOR DRIVE

Female DIN Connector

BBD MOTOR DRIVE

Pin Description Pin Description
1 Motor Phase V 5 Stage ID
2 GND 6 GND
3 Temp. Sensor (Not Used) 7 Motor Phase W
4 Motor Phase U 8 Enable

FEEDBACK

Female D-Type Connector

BBD FEEDBACK

Pin Description Pin Description
1 Not Connected 9 GND
2 GND 10 Limit Switch +
3 Not Connected 11 Limit Switch -
4 Index - 12 Index +
5 QB - 13 QB +
6 QA - 14 QA +
7a 5 V 15 Not Connected
8a 5 V
  • Pins 7 and 8 are short circuited internally.

HANDSET

Female Mini DIN Connector

Handset Connector

Pin Description Pin Description
1 RX
(Controller Input)
4 Supply Voltage
for Handset 5 V
2 Ground 5 TX (Controller Output)
3 Ground 6 Ground

AUX I/O

Female D-Type Connector

37-Pin DIN Male

Pin Description Pin Description Pin Description Pin Description
1 RS232 TX 11 User Digital O/P 11+ 21 +5 V 31 User Digital O/P 4+
2 RS232 RX 12 User Digital O/P 10- 22 User Digital I/P 3 32 User Digital O/P 4-
3 Ground 13 User Digital O/P 10+ 23 User Digital I/P 2 33 User Digital O/P 5+
4 Differential I/P 2+ 14 User Digital O/P 9- 24 User Digital I/P 1 34 User Digital O/P 5-
5 Differential I/P 2- 15 User Digital O/P 9+ 25 User Digital I/P 0 35 User Digital O/P 6+
6 Differential I/P 1- 16 User Digital O/P 8- 26 User Digital O/P 0 36 User Digital O/P 6-
7 Differential I/P 1+ 17 User Digital O/P 8+ 27 User Digital O/P 1 37 Ground
8 User Digital O/P 12- 18 User Digital O/P 7- 28 User Digital O/P 2 - -
9 User Digital O/P 12+ 19 User Digital O/P 7+ 29 User Digital O/P 3
10 User Digital O/P 11- 20 +5 V 30 Ground

USB

Type B USB Female

USB Connector

I/O

Female BNC Connector

I/O Connector

5 V TTL

Note that currently the APT software does not support synchronized moves and PID settings with our BBD300 series controllers.

Thorlabs offers two platforms to drive our wide range of motion controllers: our Kinesis® software package or the legacy APT™ (Advanced Positioning Technology) software package. Either package can be used to control devices in the Kinesis family, which covers a wide range of motion controllers ranging from small, low-powered, single-channel drivers (such as the K-Cubes™ and T-Cubes™) to high-power, multi-channel, modular 19" rack nanopositioning systems (the APT Rack System).

The Kinesis Software features .NET controls which can be used by 3rd party developers working in the latest C#, Visual Basic, LabVIEW™, or any .NET compatible languages to create custom applications. Low-level DLL libraries are included for applications not expected to use the .NET framework. A Central Sequence Manager supports integration and synchronization of all Thorlabs motion control hardware.

Kinesis Software
Kinesis GUI Screen
APT Software
APT GUI Screen

Our legacy APT System Software platform offers ActiveX-based controls which can be used by 3rd party developers working on C#, Visual Basic, LabVIEW™, or any Active-X compatible languages to create custom applications and includes a simulator mode to assist in developing custom applications without requiring hardware.

By providing these common software platforms, Thorlabs has ensured that users can easily mix and match any of the Kinesis and APT controllers in a single application, while only having to learn a single set of software tools. In this way, it is perfectly feasible to combine any of the controllers from single-axis to multi-axis systems and control all from a single, PC-based unified software interface.

The software packages allow two methods of usage: graphical user interface (GUI) utilities for direct interaction with and control of the controllers 'out of the box', and a set of programming interfaces that allow custom-integrated positioning and alignment solutions to be easily programmed in the development language of choice.

A range of video tutorials is available to help explain our APT system software. These tutorials provide an overview of the software and the APT Config utility. Additionally, a tutorial video is available to explain how to select simulator mode within the software, which allows the user to experiment with the software without a controller connected. Please select the APT Tutorials tab above to view these videos.

Software

Kinesis Version 1.14.47

The Kinesis Software Package, which includes a GUI for control of Thorlabs' Kinesis and APT™ system controllers.

Also Available:

  • Communications Protocol
Software Download

Software

APT Version 3.21.6

The APT Software Package, which includes a GUI for control of Thorlabs' APT™ and Kinesis system controllers.

Also Available:

  • Communications Protocol
Software Download

Thorlabs' Kinesis® software features new .NET controls which can be used by third-party developers working in the latest C#, Visual Basic, LabVIEW™, or any .NET compatible languages to create custom applications.

C#
This programming language is designed to allow multiple programming paradigms, or languages, to be used, thus allowing for complex problems to be solved in an easy or efficient manner. It encompasses typing, imperative, declarative, functional, generic, object-oriented, and component-oriented programming. By providing functionality with this common software platform, Thorlabs has ensured that users can easily mix and match any of the Kinesis controllers in a single application, while only having to learn a single set of software tools. In this way, it is perfectly feasible to combine any of the controllers from the low-powered, single-axis to the high-powered, multi-axis systems and control all from a single, PC-based unified software interface.

The Kinesis System Software allows two methods of usage: graphical user interface (GUI) utilities for direct interaction and control of the controllers 'out of the box', and a set of programming interfaces that allow custom-integrated positioning and alignment solutions to be easily programmed in the development language of choice.

For a collection of example projects that can be compiled and run to demonstrate the different ways in which developers can build on the Kinesis motion control libraries, click on the links below. Please note that a separate integrated development environment (IDE) (e.g., Microsoft Visual Studio) will be required to execute the Quick Start examples. The C# example projects can be executed using the included .NET controls in the Kinesis software package (see the Kinesis Software tab for details).

C Sharp Icon Click Here for the Kinesis with C# Quick Start Guide
Click Here for C# Example Projects
Click Here for Quick Start Device Control Examples
C Sharp Icon

LabVIEW
LabVIEW can be used to communicate with any Kinesis- or APT-based controller via .NET controls. In LabVIEW, you build a user interface, known as a front panel, with a set of tools and objects and then add code using graphical representations of functions to control the front panel objects. The LabVIEW tutorial, provided below, provides some information on using the .NET controls to create control GUIs for Kinesis- and APT-driven devices within LabVIEW. It includes an overview with basic information about using controllers in LabVIEW and explains the setup procedure that needs to be completed before using a LabVIEW GUI to operate a device.

Labview Icon Click Here to View the LabVIEW Guide
Click Here to View the Kinesis with LabVIEW Overview Page
Labview Icon

The APT video tutorials available here fall into two main groups - one group covers using the supplied APT utilities and the second group covers programming the APT System using a selection of different programming environments.

Disclaimer: The videos below were originally produced in Adobe Flash. Following the discontinuation of Flash after 2020, these tutorials were re-recorded for future use. The Flash Player controls still appear in the bottom of each video, but they are not functional.

Every APT controller is supplied with the utilities APTUser and APTConfig. APTUser provides a quick and easy way of interacting with the APT control hardware using intuitive graphical control panels. APTConfig is an 'off-line' utility that allows various system wide settings to be made such as pre-selecting mechanical stage types and associating them with specific motion controllers.

APT User Utility

The first video below gives an overview of using the APTUser Utility. The OptoDriver single channel controller products can be operated via their front panel controls in the absence of a control PC. The stored settings relating to the operation of these front panel controls can be changed using the APTUser utility. The second video illustrates this process.

APT User - Overview
APT User - OptoDriver Settings


APT Config Utility

There are various APT system-wide settings that can be made using the APT Config utility, including setting up a simulated hardware configuration and associating mechanical stages with specific motor drive channels. The first video presents a brief overview of the APT Config application. More details on creating a simulated hardware configuration and making stage associations are present in the next two videos.

APT Config - Overview
APT Config - Simulator Setup
APT Config - Stage Association


APT Programming

The APT Software System is implemented as a collection of ActiveX Controls. ActiveX Controls are language-independant software modules that provide both a graphical user interface and a programming interface. There is an ActiveX Control type for each type of hardware unit, e.g. a Motor ActiveX Control covers operation with any type of APT motor controller (DC or stepper). Many Windows software development environments and languages directly support ActiveX Controls, and, once such a Control is embedded into a custom application, all of the functionality it contains is immediately available to the application for automated operation. The videos below illustrate the basics of using the APT ActiveX Controls with LabVIEW, Visual Basic, and Visual C++. Note that many other languages support ActiveX including LabWindows CVI, C++ Builder, VB.NET, C#.NET, Office VBA, Matlab, HPVEE etc. Although these environments are not covered specifically by the tutorial videos, many of the ideas shown will still be relevant to using these other languages.

Visual Basic

Part 1 illustrates how to get an APT ActiveX Control running within Visual Basic, and Part 2 goes on to show how to program a custom positioning sequence.

APT Programming Using Visual Basic - Part 1
APT Programming Using Visual Basic - Part 2


LabVIEW

Full Active support is provided by LabVIEW and the series of tutorial videos below illustrate the basic building blocks in creating a custom APT motion control sequence. We start by showing how to call up the Thorlabs-supplied online help during software development. Part 2 illustrates how to create an APT ActiveX Control. ActiveX Controls provide both Methods (i.e. Functions) and Properties (i.e. Value Settings). Parts 3 and 4 show how to create and wire up both the methods and properties exposed by an ActiveX Control. Finally, in Part 5, we pull everything together and show a completed LabVIEW example program that demonstrates a custom move sequence.

APT Programming Using LabVIEW -
Part 1: Accessing Online Help
APT Programming Using LabVIEW -
Part 2: Creating an ActiveX Control
APT Programming Using LabVIEW -
Part 3: Create an ActiveX Method
APT Programming Using LabVIEW -
Part 4: Create an ActiveX Property
APT Programming Using LabVIEW -
Part 5: How to Start an ActiveX Control


The following tutorial videos illustrate alternative ways of creating Method and Property nodes:

APT Programming Using LabVIEW -
Create an ActiveX Method (Alternative)
APT Programming Using LabVIEW -
Create an ActiveX Property (Alternative)


Visual C++

Part 1 illustrates how to get an APT ActiveX Control running within Visual C++, and Part 2 goes on to show how to program a custom positioning sequence.

APT Programming with Visual C++ - Part 1
APT Programming with Visual C++ - Part 2


MATLAB

For assistance when using MATLAB and ActiveX controls with the Thorlabs APT positioners, click here.

To further assist programmers, a guide to programming the APT software in LabVIEW is also available here.


Posted Comments:
Klaus Bartl  (posted 2021-10-29 07:32:33.13)
Ist ist also possible to drive the DDR100 by the KBD101 Servo Controller? If yes, what's the max. burst torque when using the KBD101?
cwright  (posted 2021-11-04 11:09:04.0)
Response from Charles at Thorlabs: Thank you for your query. The only controllers capable of driving the DDR100 are the BBD series. The KBD101 will not recognise the unit.
Henrik Madsen  (posted 2020-04-03 06:21:55.75)
What is the max eccentricity of the stage in terms of µm?
DJayasuriya  (posted 2020-04-08 03:57:25.0)
Response from Charles at Thorlabs: Thank you for your inquiry. We don't have a published spec for max eccentricity but we will get in touch with you directly to help with your application.
user  (posted 2019-12-16 07:12:50.777)
Hi, I have a Thorlabs DDR100/M Direct Drive Rotation Stage and a BBD202 controller. It is used at an angular velocity of 8degrees/second and every 12 months I want to make sure the angular velicity remains at this speed. How do I best calibrate the system?
cwright  (posted 2019-12-17 09:49:39.0)
Response from Charles at Thorlabs: Hello Daniel, the stage includes a high resolution encoder and should not require calibration. The correct speed should be maintained unless there is a fault with the stage/controller. I will reach out to you directly to discuss your concerns.
benjamin.judkewitz  (posted 2017-12-30 20:53:31.697)
Can you please let me know what the maximum small-angle rotation frequency is? For example, we would like to rotate +/-5 deg at up to 100 Hz sinusoidal rotation angle.
rmiron  (posted 2018-01-04 09:15:08.0)
Response from Radu at Thorlabs: According to the specifications we posted on the website, the maximum frequency for sinusoidal rotation over that angular range is 6Hz for a 500g load and 3Hz for a 2kg load. A lesser weight would allow for a higher frequency, but without additional test data, it is difficult to say what the absolute maximum frequency would be. I will contact you directly in order to check whether we have any stage that can address your requirements.

Rotation Mount and Stage Selection Guide

Thorlabs offers a wide variety of manual and motorized rotation mounts and stages. Rotation mounts are designed with an inner bore to mount a Ø1/2", Ø1", or Ø2" optic, while rotation stages are designed with mounting taps to attach a variety of components or systems. Motorized options are powered by a DC Servo motor, 2 phase stepper motor, piezo inertia motor, or an Elliptec™ resonant piezo motor. Each offers 360° of continuous rotation.

Manual Rotation Mounts

Rotation Mounts for Ø1/2" Optics
Item # MRM05(/M) RSP05(/M) CRM05 PRM05(/M)a SRM05 KS05RS CT104
Click Photo
to Enlarge
Features Mini Series Standard External SM1
(1.035"-40) Threads
Micrometer 16 mm Cage-Compatible ±4° Kinematic Tip/Tilt Adjustment Plus Rotation Compatible with 30 mm Cage Translation Stages and 1/4" Translation Stagesb
Additional Details
  • This mount is available in the PRM05GL5 bundle, which includes the PRM05 rotation mount with the SM05PM5 polarizing prism mount.
  • The CT104 is complatible with the 1/4" translation stages using our MS103(/M) adapter plate.
  • The CT104 is compatible with the CT1A(/M) cage translation stage, which is designed for use with 30 mm cage systems.

Rotation Mounts for Ø1" Optics
Item # RSP1(/M) LRM1 RSP1D(/M) DLM1(/M) CLR1(/M) RSP1X15(/M) RSP1X225(/M) PRM1(/M)a
Click Photo
to Enlarge
LRM1
Features Standard External SM1
(1.035"-40) Threads
Adjustable Zero Two Independently Rotating Carriages Rotates Optic Within
Fixed Lens Tube System
Continuous 360° Rotation
or 15° Increments
Continuous 360° Rotation
or 22.5° Increments
Micrometer
Additional Details
  • This mount is available in the PRM1GL10 bundle, which includes the PRM1 rotation mount with the SM1PM10 polarizing prism mount.

Rotation Mounts for Ø1" Optics
Item # LM1-A &
LM1-B(/M)
CRM1T(/M) CRM1LT(/M) CRM1PT(/M) KS1RS K6XS
Click Photo
to Enlarge
Features Optic Carriage Rotates Within Mounting Ring 30 mm Cage-Compatiblea 30 mm Cage-Compatible
for Thick Opticsa
30 mm Cage-Compatible
with Micrometera
±4° Kinematic Tip/Tilt Adjustment Plus Rotation Six-Axis
Kinematic Mounta
Additional Details
  • This mount also features four 4-40 (M3) holes on the rotation dial for use with the K6A1(/M) prism platform.

Rotation Mounts for Ø2" Optics
Item # RSP2(/M) RSP2D(/M) PRM2(/M) LM2-A &
LM2-B(/M)
LCRM2(/M) KS2RS K6X2
Click Photo to Enlarge
Features Standard Adjustable
Zero
Micrometer Optic Carriage Rotates Within Mounting Ring 60 mm Cage-Compatible ±4° Kinematic Tip/Tilt Adjustment Plus Rotation Six-Axis Kinematic Mount
Additional Details

Manual Rotation Stages

Manual Rotation Stages
Item # RP005(/M) PR005(/M) MSRP01(/M) RP01(/M) RP03(/M) QRP02(/M)
Click Photo
to Enlarge
Continuous Rotation Mount
Features Standard Two Hard Stops
Additional Details

Manual Rotation Stages
Item # XRNR1(/M) XRR1(/M) PR01(/M) CR1(/M) XYR1(/M) OCT-XYR1(/M)
Click Photo
to Enlarge
Features Fine Rotation Adjuster and
2" Wide Dovetail Quick Connect
Fine Rotation Adjuster and
3" Wide Dovetail Quick Connect
Fine Rotation Adjuster and
SM1-Threaded Central Aperture
Fine Pitch Worm Gear Rotation and 1/2" Linear XY Translation
Additional Details
  • The stage profile is higher when it is mounted using the screw slots rather than stacked on another stage or accessory with mating dovetails.
  • The OCT-XYR1(/M) stage includes the XYR1A solid sample plate. This plate can be detached from the stage to reveal the same mounting features present on the XYR1(/M) stage.

Motorized Rotation Mounts and Stages

Motorized Rotation Mounts and Stages with Central Clear Apertures
Item # DDR25(/M) PDR1C(/M) PDR1(/M) PDR1V(/M) PDXR1(/M)
Click Photo
to Enlarge
DDR25 PDR1C PDR1 PDR1V PDXR1
Features Compatible with
SM05 Lens Tubes,
16 mm Cage System, &
30 mm Cage System
Compatible with
16 mm Cage System
Compatible with
SM05 Lens Tubes &
30 mm Cage System
Vacuum-Compatible;
Also Compatible with
SM05 Lens Tubes &
30 mm Cage System
Compatible with
SM05 Lens Tubes &
30 mm Cage System
Additional Details

Motorized Rotation Mounts and Stages with Central Clear Apertures
Item # K10CR1(/M) PRM1Z8(/M)a DDR100(/M) ELL14 HDR50(/M)
Click Photo
to Enlarge
ELL14
Features Compatible with SM1 Lens Tubes & 30 mm Cage System Compatible with
SM1 Lens Tubes,
16 mm Cage System,
30 mm Cage System
Compatible with
SM1 Lens Tubes,
Open Frame Design for
OEM Applications
Compatible with
SM2 Lens Tubes
Additional Details
  • This stage is available in the KPRMTE(/M), which includes the PRMTZ8(/M) Motorized Rotation Stage with the KDC101 K-Cube DC Servo Motor Controller.
Motorized Rotation Mounts and Stages with Tapped Platforms
Item # PRMTZ8(/M)a ELL18(/M)b
Click Photo
to Enlarge
Features Tapped Mounting Platform for Mounting Prisms or Other Optics Tapped Mounting Platform, Open Frame Design for OEM Applications
Additional Details
  • This stage is available in the KPRM1E(/M), which includes the PRMT1Z8(/M) Motorized Rotation Stage with the KDC101 K-Cube DC Servo Motor Controller.
  • This stage is available in the ELL18K(/M), which includes an interface board, mounting brackets, and connectors for PC control.
Back to Top

Direct Drive Continuous Rotation Stage

Characterized by high-speed rotation and high-positional accuracy, the DDR100 stage is well-suited for applications where there is a need to rotate components at high speed within a cage or other system such as scanning, surface mapping and laser welding. Very precise, fine positioning and control is easily achieved through a combination of the stable closed-loop control system and a BBD series controller with associated joystick option (available below).

The DDR100 arrives with a top plate. Once installed via the included 4-40 cap screws, the top plate will block the SM1-threaded hole in the rotation stage. However, the plate itself has eight 4-40 taps for securing optomechanical setups.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Imperial Price Available
DDR100 Support Documentation
DDR100Customer Inspired! Direct Drive Continuous Rotation Stage, SM1 Bore, 8-32 and 1/4"-20 Taps
$5,307.59
Today
+1 Qty Docs Part Number - Metric Price Available
DDR100/M Support Documentation
DDR100/MCustomer Inspired! Direct Drive Continuous Rotation Stage, SM1 Bore, M4 and M6 Taps
$5,307.59
Today
Back to Top

Adapter Plates

  • Adapter Plates for Mount Accessories
  • Options Available with Keyway or Taps
    • NR360SP9(/M): Seventeen 1/4"-20 (M6) Taps for Optomechanical Accessories
    • NR360SP4(/M): 3 mm Keyway for Flexure Stage Accessories
  • Includes 8-32 (M4) Cap Screws for Mounting onto the DDR100(/M) Stage

The NR360SP9(/M) Tapped Adapter Plate and NR360SP4(/M) Grooved Adapter Plate are designed to expand the functionality of the DDR100(/M) Rotation Stage. The NR360SP9 provides seventeen 1/4"-20 (M6) mounting holes for securing optomechanical setups. The NR360SP4 features a 3 mm wide keyway convenient for fiber launch applications and other Flexure Stage Accessories. Both adapters feature four #8 (M4) counterbores for attachment to the DDR100(/M) stage.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Imperial Price Available
NR360SP9 Support Documentation
NR360SP9Adapter Plate for HDR50 and DDR100 Stages, 1/4"-20 Taps
$109.88
Today
NR360SP4 Support Documentation
NR360SP4Adapter Plate for HDR50 and DDR100 Stages, 3 mm Alignment Groove, 6-32 Taps
$140.17
Today
+1 Qty Docs Part Number - Metric Price Available
NR360SP9/M Support Documentation
NR360SP9/MAdapter Plate for HDR50 and DDR100 Stages, M6 Taps
$109.88
Today
NR360SP4/M Support Documentation
NR360SP4/MAdapter Plate for HDR50 and DDR100 Stages, 3 mm Alignment Groove, M3 Taps
$140.17
Today
Back to Top

Benchtop Brushless DC Motor Controllers

We recommend using our BBD Series Brushless DC Servo Motor Controllers with the stages above, selecting the controller with the required number of channels. If using a standalone stage, the BBD301 can be used; if also using a MJC2 joystick, the BBD302 is recommended. The BBD303 3-Channel Controller can be used for applications requiring additional accessories; all three channels can be controlled via the MJC3 joystick.

With a user-configurable, S-curve acceleration/deceleration profile that enables fast, smooth positioning without vibration or shock, these controllers are ideal for motion control applications demanding operation at high speeds (hundreds of mm/s) and high encoder resolution. Incorporating the latest digital and analog techniques as well as high-bandwidth, high-power servo control circuitry, each BBD series controller is designed to drive brushless DC servo motor products with continuous output currents of up to 2.5 A (Item # BBD301) or 5 A (Item #s BBD302 and BBD303).

These DC servo controllers are supported by Thorlabs' Kinesis® and APT control and programming interfaces, enabling easy integration into automated motion control applications. For greater flexibility, both a USB and RS232 computer interface is provided, and automated PC control of the stage is supported with the supplied software development kit (SDK). The fully documented SDK supports all major development languages running on Windows and comes in the form of ActiveX libraries or a conventional dynamic link library (DLL).

USB connectivity provides easy plug-and-play PC operation. Multiple units can be connected to a single PC via standard USB hub technology for multi-axis motion control applications. Combining this feature with our user-friendly software allows the user to program and carry out complex move sequences in a short space of time. For more information, please see the full Brushless DC Servo Motor Controller presentation.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
BBD301 Support Documentation
BBD301Customer Inspired! 1-Channel Benchtop 3-Phase Brushless DC Servo Controller
$2,415.43
Today
BBD302 Support Documentation
BBD302Customer Inspired! 2-Channel Benchtop 3-Phase Brushless DC Servo Controller
$3,647.25
Today
BBD303 Support Documentation
BBD303Customer Inspired! 3-Channel Benchtop 3-Phase Brushless DC Servo Controller
$4,633.21
Today
Back to Top

2-Axis and 3-Axis Joysticks

  • High-Reliability Joysticks Utilizing USB HID Protocol
  • 2-Axis or 3-Axis Control Via a Joystick Knob
  • Two Different Modes for Fast or High Precision Moves
  • Speed Dial for Sensitivity Adjustment
  • Allows Remote Manual Control
  • Can be Reprogrammed using a PC
  • Ergonomic Design

The MJC2 and MJC3 Joysticks have been designed for microscope users and provide intuitive, tactile, manual positioning of a stage. The joysticks feature a two-axis joystick knob for XY control or a three-axis joystick knob for XYZ control, respectively. Both joystick knobs can be moved left or right and up or down, with the MJC3 joystick knob also twisting clockwise or counterclockwise for third axis control. A push button to switch between fast or high-precision movement and a speed dial to fine tune speed control are also integrated into the joysticks. In most applications, the default parameter settings saved within the controller allow the joystick to be used out-of-the-box with no need for further setup. This operation mode eliminates the need for connection to a host PC and allows for true remote operation. Parameter settings can also be reprogrammed and saved to a paired controller using a PC, allowing the controller to be disconnected from the computer and remote operation continued.

The MJC2 and MJC3 Joysticks are compatible with our Benchtop Brushless DC Servo Controllers, Rack-Mounted Brushless DC Servo Controller, Rack-Mounted Brushless DC Servo Controller Module, and Stepper Motor Controllers. The joysticks have both a Mini-DIN and a USB Type-C port and are each shipped complete with two cables, a 6-pin Mini-DIN plug to plug cable and a USB 3.1 Type-A to Type-C cable, for use with these controllers as well as setups utilizing the USB HID class. For more information about configuring and setting up the joystick over USB HID, please see the manual by clicking on the red Docs icon (Docs Icon) below.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
MJC2 Support Documentation
MJC22-Axis USB HID Joystick
$561.00
Today
MJC3 Support Documentation
MJC33-Axis USB HID Joystick
$596.70
Today