Create an Account  |   Log In

View All »Matching Part Numbers


Your Shopping Cart is Empty
         

Mid-Infrared Optical Fiber


  • Multimode MIR Fiber, Transmissive from the UV to 5.5 µm
  • Stable in Typical Lab Environments and Easy to Handle
  • Return Loss Less than 4% per Face

Multimode MIR Bare Fiber

Application Idea

A multimode ZrF4 patch cable can be used to propagate MIR light into a sample chamber for gas-phase spectroscopy. Our Optical Spectrum Analyzers provide detection over 350 nm to 12.0 µm (i.e., down to 833 cm-1).

Related Items


Please Wait

 Click below for our selection of in-stock MIR cables.

Single Mode Fluoride Patch Cables

Multimode Fluoride Patch Cables

Multimode Fluoride Bundles

MIR Reflection/Backscatter Bundles

Indium Fluoride and Zirconium Fluoride Fiber Comparison
Click to Enlarge

Click for Raw Data
ZrFfiber has flatter attenuation than InFfiber in the MIR, while the InF3 fiber is transparent to longer wavelengths. Silica fiber, typically used in patch cables, is not MIR-transparent. For information on run-to-run variations, please see the Graphs tab.

Capabilities

  • Zirconium Fluoride (ZrF4) and Indium Fluoride (InF3) Fibers
  • Bare Fiber with 50 to 600 µm Core Sizes
  • Numerical Apertures of 0.20 or 0.26
  • See Our Specialty Optical Fiber Manufacturing Page for More Details
  • Single Mode MIR Fiber Available in Patch Cables

Thorlabs is pleased to extend its family of fiber products into the mid-infrared spectral region. Our IRphotonics® fibers, based upon zirconium fluoride (ZrF4) and indium fluoride (InF3) glasses, feature excellent mechanical flexibility, good environmental stability, and high transmission over the 285 nm - 4.5 µm spectral range or 310 nm - 5.5 µm spectral range, respectively. Like the rest of our fiber selection, fluoride fibers can be provided in a range of core diameters, cutoff wavelengths, and numerical apertures, suiting a variety of applications.

These fibers offer a flat attenuation curve in the MIR wavelength range (see the Graphs tab), aided by an extremely low hydroxyl ion (OH) content. They are fabricated using a proprietary technique that provides world-class purity, dimensional control, and strength. This technique gives us excellent control over the fibers' optical and mechanical properties, allowing a wide range of configurations to be drawn. The fluoride fiber is stable under typical environmental conditions and humidity.

Custom IRphotonics® MIR Fiber and Patch Cables

Several types of single mode and multimode fluoride patch cables are available from stock. We also offer bifurcated fiber bundles and reflection/backscatter proble bundles. Optical fibers with many other core sizes and configurations are currently under development.

If our standard offerings do not meet your needs, please contact Tech Support to discuss customization and potential fiber draws. Some of the many customization options we provide for MIR fibers and patch cables include:

  • MIR Optical Fibers with Lower Loss 
  • MIR Optical Fibers with Increased Power Handling Abilities 
  • Custom Patch Cables: Choose Components from Our Wide Selection of Standard Optical Fibers, Packaging Options, Connectors, and AR Coatings
  • Ruggedized Cabling Compatible with Harsh-Environment Applications
MIR Fiber Manufacturing

 

Multimode MIR Bare Fiber
Fiber Type Operating Wavelengtha Core Diameter Attenuationb NA Bend Radius
(Short Term / Long Term)
Operating Temperature
ZrF4 285 nm - 4.5 µm 50 µm ≤0.2 dB/m
(for 2.0 - 3.6 µm)
0.20 ± 0.02 ≥20 mm / ≥40 mm -55 to 90 °C
100 µmc ≥25 mm / ≥155 mm
200 µmc,d ≥40 mm / ≥80 mm
450 µmc,e ≥30 mm / ≥125 mm
600 µmc,e ≤0.25 dB/m
(for 2.0 - 3.6 µm)
≥75 mm / ≥160 mm
InF3 310 nm - 5.5 µm 50 µm ≤0.45 dB/m
(for 2.0 - 4.6 µm)
0.20 ± 0.02 ≥20 mm / ≥40 mm -55 to 90 °C
100 µmc 0.26 ± 0.02 ≥15 mm / ≥155 mm
  • The fiber’s operating wavelength range is defined as the region where the attenuation is <3 dB/m (>50% transmission per meter).
  • See the graph in the Overview tab.
  • Patch cables using these fibers are available from stock.
  • Reflection probe bundles using these fibers are available from stock.
  • Bifurcated fiber bundles using these fibers are available from stock.
Additional Specifications
Fiber Type ZrF4 InF3
Core Diameter 50 ± 2 µm 100 ± 2 µm 200 ± 10 µm 450 ± 15 µm 600 ± 20 µm 50 ± 2 µm 100 ± 2 µm
Cladding Diameter 140 ± 2.5 µm 192 ± 2.5 µm 290 ± 10 µm 540 ± 15 µm 690 ± 20 µm 160 ± 2 µm 192 ± 2.5 µm
Coating Diameter 270 ± 15 µm 270 ± 15 µm 355 ± 15 µm 650 ± 25 µm 770 ± 30 µm 270 ± 15 µm 287 ± 15 µm
Please contact Tech Support with your bare fiber and custom cable requests.

Multimode Fluoride Patch Cables

Zirconium Fluoride Attenuation
Click to Enlarge

Click for Raw Data
This plot contains the measured attenuation from five independent draws of the Ø200 µm core ZrF4 fiber. This data is representative of our Ø100 µm, Ø200 µm, and Ø450 µm core fibers.
Zirconium Fluoride Attenuation
Click to Enlarge

Click for Raw Data
This plot contains the measured attenuation from five independent draws of the Ø600 µm core ZrF4 fiber.
Indium Fluoride Attenuation
Click to Enlarge

Click for Raw Data
This plot contains the measured attenuation from six independent draws of the Ø100 µm core InF3 fiber.

Please Give Us Your Feedback
 
Email Feedback On
(Optional)
Contact Me:
Your email address will NOT be displayed.
 
 
Please type the following key into the field to submit this form:
Click Here if you can not read the security code.
This code is to prevent automated spamming of our site
Thank you for your understanding.
  
 
Would this product be useful to you?   Little Use  1234Very Useful

Enter Comments Below:
 
Characters remaining  8000   
Posted Comments:
Poster:todd
Posted Date:2017-03-03 11:36:46.65
What is the fluoride fiber buffer material? Is the buffer strippable? Once I know this I will figure out how much fiber I will need a quote for.
Poster:tfrisch
Posted Date:2017-03-13 02:41:45.0
Hello, thank you for contacting Thorlabs. The buffer is acrylate, and I will contact you directly on how the recommended handling differs from silica fibers.
Poster:ilindsay
Posted Date:2015-08-27 15:41:39.307
Hi. Can you comment on the end preparation of your mid-IR (fluoride) fibers, e.g. differences from SiO2 fibers in terms of cleaving and polishing techniques in the case of applications where connectors are not appropriate?
Poster:besembeson
Posted Date:2015-09-29 08:59:55.0
Response from Bweh at Thorlabs USA: We recommend Thorlabs Vytran products, such as the LDC-400 (http://vytran.com/product/ldc-400) for cleaving bare fiber. Polishing is only relevant when terminating fiber with a connector and it is different with these mid-IR fibers. I will follow-up with you for further guidance with these if needed.
Log In  |   My Account  |   Contact Us  |   Careers  |   Privacy Policy  |   Home  |   FAQ  |   Site Index
Regional Websites: West Coast US | Europe | Asia | China | Japan
Copyright 1999-2017 Thorlabs, Inc.
Sales: 1-973-300-3000
Technical Support: 1-973-300-3000


High Quality Thorlabs Logo 1000px:Save this Image

Last Edited: Jun 23, 2014 Author: Dan Daranciang