"; _cf_contextpath=""; _cf_ajaxscriptsrc="/cfthorscripts/ajax"; _cf_jsonprefix='//'; _cf_websocket_port=8578; _cf_flash_policy_port=1244; _cf_clientid='201E04008BCFD6C473EF184ECB676AB2';/* ]]> */
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Noise Eaters / Laser Amplitude Stabilizers![]()
Front Back NEL02 Noise Eater with Application Idea NEL01 ![]() Please Wait ![]() Click to Enlarge Noise Attenuation Factor is the Ratio of Noise Amplitude Before and After the Noise Eater Features
Thorlabs' Liquid Crystal Noise Eaters / Laser Amplitude Stabilizers are precision instruments for stabilizing, modulating, and attenuating the power of linearly polarized light. These closed-loop systems are designed for use with light in the 425 - 650 nm (NEL01), 475 - 650 nm (NEL02), 650 - 1050 nm (NEL03), or 1050 - 1620 nm (NEL04) wavelength range. We offer noise eater models for low (<60 mW) or high (<1.65 W) power use, all with external modulation inputs. See the Specs tab for details. Noise Reduction ![]() Click for Details NEL02 Top View Showing Power Range Adjustment Switches and Modulation Input ![]() Click to Enlarge Noise Eater Block Diagram Power Attenuation and Modulation Thorlabs' Noise Eaters are post mountable in two orientations via 8-32 (M4) tapped holes. They also feature 4-40 tapped holes on the front and back for 30 mm Cage System compatibility and an SM1-threaded (1.035"-40) rear aperture for Ø1" Lens Tube compatibility.
Noise Eater Performance GraphsIn the graphs below, noise attenuation was measured as one of three parameters was varied: input power level, input signal modulation (noise) amplitude, and output signal attenuation. The graphs show that the noise eaters provide consistent performance regardless of changes in these parameters. Graph DefinitionsNoise Attenuation at Various Input Power Levels Noise Attenuation at Various Input Signal Modulations Noise Attenuation at Various Output Signal Power Levels Modulation Performance
|
NEL01 Max Power at Various Wavelengths | |||
---|---|---|---|
Switch Position |
Max Power at 450 nm |
Max Power at 550 nm |
Max Power at 635 nm |
1 | 2 mW | 1.5 mW | 1 mW |
2 | 6 mW | 4.5 mW | 3 mW |
3 | 20 mW | 15 mW | 10 mW |
4 | 60 mW | 45 mW | 30 mW |
NEL02 Max Power at Various Wavelengths | ||||
---|---|---|---|---|
Switch Position |
Max Power at 450 nm |
Max Power at 550 nm |
Max Power at 635 nm |
|
L | 1 | 2 mW | 1.5 mW | 1 mW |
L | 2 | 6 mW | 4.5 mW | 3 mW |
L | 3 | 20 mW | 15 mW | 10 mW |
L | 4 | 60 mW | 45 mW | 30 mW |
H | 1 | 200 mW | 150 mW | 100 mW |
H | 2 | 600 mWa | 450 mW | 300 mW |
H | 3 | 1000 mWa | 750 mWa | 500 mW |
H | 4 | N/Ab |
NEL03 Max Power at Various Wavelengths | |||||||
---|---|---|---|---|---|---|---|
Switch Position |
Max Power at 650 nm |
Max Power at 700 nm |
Max Power at 780 nm |
Max Power at 900 nm |
Max Power at 1000 nm |
Max Power at 1100 nm |
|
L | 1 | 1.2 mW | 1.1 mW | 1 mW | 0.9 mW | 0.9 mW | 3.3 mW |
L | 2 | 3.5 mW | 3.3 mW | 3 mW | 2.6 mW | 2.7 mW | 10.0 mW |
L | 3 | 11.8 mW | 11.1 mW | 10 mW | 8.8 mW | 8.9 mW | 33.3 mW |
L | 4 | 35.5 mW | 33.3 mW | 30 mW | 26.3 mW | 26.8 mW | 100 mW |
H | 1 | 120 mW | 111 mW | 100 mW | 86.0 mW | 89.3 mW | 333 mW |
H | 2 | 355.5 mW | 333 mW | 300 mW | 258.0 mW | 268 mW | 999 mWa |
H | 3 | 600 mWa | 500 mW | 500 mW | 430.0 mW | 446.6 mW | 1650 mWa |
H | 4 | N/Ab |
NEL04 Max Power at Various Wavelengths | ||||||||
---|---|---|---|---|---|---|---|---|
Switch Position |
Max Power at 1050 nm |
Max Power at 1150 nm |
Max Power at 1250 nm |
Max Power at 1350 nm |
Max Power at 1450 nm |
Max Power at 1550 nm |
Max Power at 1650 nm |
|
L | 1 | 1.9 mW | 1.6 mW | 1.5 mW | 1.2 mW | 1 mW | 1 mW | 1.6 mW |
L | 2 | 5.8 mW | 4.8 mW | 4.1 mW | 3.5 mW | 3.1 mW | 3 mW | 4.8 mW |
L | 3 | 19.2 mW | 16 mW | 13.7 mW | 11.7 mW | 10.4 mW | 10 mW | 16 mW |
L | 4 | 57.6 mW | 48 mW | 41.1 mW | 35.1 mW | 31.3 mW | 30 mW | 48 mW |
H | 1 | 190 mW | 160 mW | 137 mW | 117 mW | 104.7 mW | 100 mW | 160 mW |
H | 2 | 500 mW | 480 mW | 411 mW | 351 mW | 313.4 mW | 300 mW | 480 mW |
H | 3 | 835 mWa | 800 mWa | 685 mWa | 585 mWa | 520 mWa | 500 mW | 800 mWa |
H | 4 | N/Ab |
Posted Comments: | |
NS .
 (posted 2020-08-12 06:51:16.42) I have a 15 mW He-Ne laser (Thorlabs), and I want to reduce the inherent noise (RMS: 0.5%) of this laser. How much noise can you expect if you use the NEL01 or 02 model? YLohia
 (posted 2020-08-31 11:38:01.0) Hello, thank you for contacting Thorlabs. Your HeNe laser tubes is not stabilized and the noise at certain frequencies would shift with changes in temperature or other factors. The noise for this HeNe can extend into the MHz range but the NEL series is only intended to stabilize noise in the < 1 kHz range. Laerte Patera
 (posted 2019-10-11 11:09:54.81) Is it possible to couple the NEL02 stabilizer
with a NPL64C (640 nm) operated at 60 kHz (pulse of 100 ns, average power: 20 mW) to stabilize intensity fluctuation in the order of seconds/minutes? YLohia
 (posted 2019-10-15 08:23:16.0) Thank you for contacting Thorlabs. The NEL02 would provide optimal performance with a pulsed laser such as the NPL64C once the pulse repetition rate is significantly higher than the cut-off frequency of the NEL electronics. The NEL can therefore filter out the fluctuations from the carrier of the pulse laser. Typically, we recommend keeping a rep of rate > 1MHz, but we still expect 60kHz to be sufficient since the cut-off frequency is ~10kHz. cwong3
 (posted 2019-02-10 12:46:39.713) Will this stabilizer work with a 1 kHz rep rate pulses? nbayconich
 (posted 2019-03-01 11:30:18.0) Thank you for contacting Thorlabs. When the Repetition rate is less than 1MHz, the NELXX will misjudge the peak-power as noise signals and will attenuate them as well. We do not advise using a 1kHz rep rate source or a source with a repetition rate below 1Mhz as these noise eaters will not perform as expected. andrea.volpato
 (posted 2019-01-31 10:10:30.217) Is it possible to couple this stabilizer with an ultrafast NOPA output 520-740 nm (30 mW, 3 KHz, 100 fs). The bandwidth is in between LCC3111H and LCC3112H specification. Which model is recommended? nbayconich
 (posted 2019-02-28 09:43:44.0) Thank you for contacting Thorlabs. We have some concerns about using femto second lasers with our NEL noise eaters. There will always be broadening of the source caused by the substrate glass and LC material. The liquid crystal material has large dispersion near 520nm.
Another consideration is the laser linewidth, pico second pulses may be fine but femto second pulsed sources will likely be too wide for NEL to control. We currently don't have any performance about fs laser at the moment but we will definitely try to gather more data in the future. sdacha
 (posted 2019-01-25 14:32:46.663) Can the NEL04 be used with a YAG Microchip laser at 1064 nm that produces ~1 ns pulses with a max. average power of ~140 mW (max. peak power of ~100 kW)? Does the max power in the specs correspond to max. average power or max. peak power? YLohia
 (posted 2019-01-30 08:34:29.0) Hello, thank you for contacting Thorlabs. While we don't have a formal pulsed damage threshold for the NEL04, we do expect 100kW peak power to damage the device. The CW damage threshold is 8W/cm^2. gregory.hoth
 (posted 2018-10-23 15:38:40.257) Is it possible to use the modulation input of these noise eaters to control the DC power level?
It would be useful to have electronic control of the power transmitted by the noise eater. nbayconich
 (posted 2018-11-15 10:20:15.0) Thank you for contacting Thorlabs. Yes it is possible to modulate the input of the noise eaters in order to control the DC power level using the SMC interface, The noise eater can also be used as a variable attenuator, even without the presence of noise. A voltage ranging from 0 to 2.5 V can be input to modulate the output power as needed.
Please note that the output power cannot be modulated higher than the initial input power. The noise eater operates by varying how much of the signal is attenuated in order to reach the target output power and attenuate the noise. Since the noise eater can attenuate the signal but not amplify it, the clean output beam can only have a power as high as the minimum power level of the noisy signal. vytautas.purlys
 (posted 2015-10-05 06:39:56.403) 1. Is it possible to use the noise eater for 400kHz - 80Mhz repetition rates of fs lasers? I need to stabilize the laser power for long durations (up to a few days), I don't need to stabilize the pulse-to-pulse stability.
2. How does the EO version work? Is the active element an electrooptical crystal or is it still liquid crystal based? besembeson
 (posted 2015-10-13 08:33:51.0) Response from Bweh at Thorlabs USA: These are ideal for CW lasers so it should be suitable at the higher repetition rates (close to 80MHz) but may not be suitable at the lower repetition rates. Also ensure the peak powers are within the limits we specify. The EO version has the same configuration, using a liquid crystal retarder and polarizer. We use the term EO since these have a modulation input that allows system to act as an optical switch. max.ulbrich
 (posted 2015-08-29 15:13:13.107) I have a 80mW, 561nm laser which has quite some fluctuations in intensity that I want to reduce. The beam diameter is 0.7mm 1/e2. Which product should I use? Can I keep the beam diameter or do I need to expand it before it passes the device?
Thanks, Max mthrossell
 (posted 2015-09-10 06:04:01.0) Response from Matt at Thorlabs USA: We will contact you directly through our Germany office to discuss your application. forget
 (posted 2015-06-10 16:59:04.63) What is the time response of the photodiode + amplifier ? Would the LCC3112H/M be usable on a 100 kHz laser at 1030 nm ? Thanks in advance for your answer.
Nicolas besembeson
 (posted 2015-09-21 09:21:27.0) Response from Bweh at Thorlabs USA: The response time for the photodiode and amplifier is about 0.35us. The attenuation will be worse than specified so it may not be suitable. In certain cases such as lasers having spikes or step-like output power fluctuations the device may not be able to completely eliminate high frequency noise. pan
 (posted 2015-04-07 07:43:26.793) Used LCC3112H on a Ti:Sa laser with 80MHz repetition rate, 800nm. Added noise eater to a beam path with 155mW max power output after the unit, tune to have 145mW output. Tested with PM100 for 10+ hours. See worse power stability with the noise eater. 10 hour drift on the order of ~3%.
Would appreciate comments/suggestions. jlow
 (posted 2015-04-17 01:14:25.0) Response from Jeremy at Thorlabs: We will contact you directly to troubleshoot this. elharel
 (posted 2014-08-14 13:32:15.683) Can the noise eater handle femtosecond pulses? What is the thickness of the beam splitter? I am concerned about significant dispersion caused by the device.
thanks besembeson
 (posted 2014-08-21 02:54:28.0) Response from Bweh at Thorlabs USA: The damage threshold is 10MW/cm^2 peak power and 8W/cm^2 for CW. You can compare your power density to these values. Regarding the dispersion, I will followup with you by email to determine which unit you are interested in, so that I can provide you information about the thickness and dispersion. emeyersc
 (posted 2013-11-08 10:13:44.257) Can the IR noise eater handle picosecond pulses from an OPO and still stabilize? What would be the damage threshold in this case (specifically, 1620 nm, 80 MHz, 3 ps)? jlow
 (posted 2013-11-12 10:34:37.0) Response from Jeremy at Thorlabs: Since 80MHz is much higher than the bandwidth of the noise eater (2.5kHz), the LCC3113 should still stabilize. The damage threshold is around 10MW/cm^2 peak power and 8W/cm^2 for CW. tcohen
 (posted 2012-11-12 13:05:00.0) Response from Tim at Thorlabs to Gediminas: Thank you for contacting us! A 650-1100nm edition of our noise eater is currently in the works and will be released shortly. For your review, we will contact you with more information on this new product. gediminas.dauderis
 (posted 2012-11-12 02:01:19.23) Dear Sir/Madan,
Do you have some equipment like Liquid Crystal Noise Eater / Laser Stabilizer 1000 nm wavelength?
Yours Faithfully,
Gediminas Dauderis tcohen
 (posted 2012-11-07 21:29:00.0) Response from Tim at Thorlabs: This is correct. The noise attenuation falls off as frequency increases in the target bandwidth to 2.5kHz for this LC design. If you would be interested in a high bandwidth design we would love to discuss this with you as a possible future customer inspired product. mlau
 (posted 2012-10-31 21:15:06.233) If I'm reading the noise eater specs correctly, the attentuation falls with high frequency? Is that right? tcohen
 (posted 2012-07-09 13:06:00.0) Response from Tim at Thorlabs: The Noise Eater will be released soon. We should be able to assemble a 100mW version but the max beam diameter for this version is 4mm. john.burke
 (posted 2012-07-05 18:41:06.0) When will this be available? Is there any chance I could get a custom one with a larger aperature and power handling? I need about 100 mW so an aperature twice radius should be helpful. I could be willing to sacrifice bandwidth for long term stability and power handling.
Thanks! |
Log In | My Account | Contact Us | Careers | Privacy Policy | Home | FAQ | Site Index | ||
Regional Websites: West Coast US | Europe | Asia | China | Japan | ||
Copyright © 1999-2021 Thorlabs, Inc. | ||
Sales: 1-973-300-3000 Technical Support: 1-973-300-3000 |