NIR Laser Diodes: Center Wavelengths from 705 nm to 2000 nm


  • Output Powers up to 2 W
  • Multiple Package Styles
  • In-House Manufactured and Third-Party Options Available

Ø5.6 mm

Ø9 mm

Chip on Submount

TO Can with
Fiber Pigtail

Butterfly

Ø9 mm

(High Heat Load)

Extended
Butterfly

TO-46

(VCSEL Diode)

Related Items


Please Wait
Laser Diode Selection Guidea
Shop by Wavelength
UV (375 nm)
Visible (404 nm - 690 nm)
NIR (705 nm - 2000 nm)
MIR (4.05 µm - 11.00 µm)
Shop by Package / Type
  • Our complete selection of laser diodes is available on the LD Selection Guide tab above.

Webpage Features
info icon Clicking this icon opens a window that contains specifications and mechanical drawings.
info icon Clicking this icon allows you to download our standard support documentation.

Choose Item

Clicking the words "Choose Item" opens a drop-down list containing all of the in-stock lasers around the desired center wavelength. The red icon next to the serial number then allows you to download L-I-V and spectral measurements for that serial-numbered device.
Contact ThorlabsLaser Diode Tutorial
Volume Pricing Discount
Contact Thorlabs

OEM & Custom Laser Diodes

Thorlabs manufactures custom and high volume OEM laser diodes and other optical semiconductor devices with output wavelengths from 705 nm to 2 µm. To inquire about custom or OEM devices, please contact us. A semiconductor specialist will contact you within 24 hours or the next business day.

Features

  • Laser Diode Types Include:
    • Fabry-Perot (FP)
    • Distributed Feedback (DFB)
    • Volume Holographic Grating (VHG) Stabilized
    • Fiber Bragg Grating (FBG) Stabilized
    • Distributed Bragg Reflector (DBR)
    • Vertical Cavity Surface Emitting Laser (VCSEL)
    • Ultra-Low-Noise (ULN) Hybrid
  • Output Powers up to 2 W
  • Center Wavelengths Available from 705 nm to 2000 nm
  • Various Packages Available: TO Can, TO Pigtails, Butterfly, Extended Butterfly, C-Mount, and Chip on Submount
  • Easily Choose a Compatible Mount Using Our LD Pin Codes
  • Compatible with Thorlabs' Laser Diode and TEC Controllers
  • OEM Solutions Available

This web page contains Thorlabs' laser diodes with center wavelengths from 705 nm to 2000 nm. Diodes are arranged by wavelength and then power. The tables below list basic specifications to help you narrow down your search quickly. Lasers that are highlighted in light green in these tables below are single-frequency laser diodes. The blue button in the Info column within the tables opens a pop-up window that contains more detailed specifications for each item, as well as mechanical drawings.

Notes on Center Wavelength
While the center wavelength is listed for each laser diode, this is only a typical number. The center wavelength of a particular unit varies from production run to production run, so the diode you receive may not operate at the typical center wavelength. Diodes can be temperature tuned, which will alter the lasing wavelength. A number of items below are listed as Wavelength Tested, which means that the dominant wavelength of each unit has been measured and recorded. For many of these items, after clicking "Choose Item" below, a list will appear that contains the dominant wavelength, output power, and operating current of each in-stock unit. Clicking on the red Docs Icon next to the serial number provides access to a PDF with serial-number-specific L-I-V and spectral characteristics. For products listed as Wavelength Tested that do not have the "Choose Item" option, please contact Tech Support with inquires about specific wavelengths.

Packages and Mounts
We offer laser diodes in various packages including standard Ø5.6 mm and Ø9 mm TO packages, non-standard TO-46 packages, as well as fiber-pigtailed TO-packaged diodes, butterfly-packaged diodes, extended butterfly-packaged diodes, chip on submounts, and C-mounts. We have categorized the pin configuration of TO-packaged diodes into standard A, B, C, D, E, F, G, and H pin codes (see image below). This pin code allows the user to easily determine compatible mounts. TO-packed diodes are the most widely supported diodes by our product line, followed by butterfly-packaged lasers. Chip on submount and C-mount lasers are better suited for OEM applications. Our ultra-low-noise (ULN) lasers are housed in extended butterfly packages, which are incompatible with standard butterfly mounts and require custom mounting.

Some of our diodes are offered in header packages that can be converted to a sealed TO can package by request, as indicated in the tables below. Please contact Tech Support for details.

Laser Mode and Linewidth
We offer laser diodes with different output characteristics (power, wavelength, beam size, shape, etc.). Most lasers offered here are single transverse mode (single mode, or SM) and a few are designed for higher-power, multiple-transverse-mode (multimode, or MM) operation. Most of our wavelength-stabilized VHG laser diodes have excellent single mode performance. Some single mode laser diodes can be operated with limited single-longitudinal-mode characteristics (see tables below for additional information). For better side mode suppression ratio (SMSR) performance, consider devices such as DFB lasers, VHG-stabilized lasers, DBR lasers, or external cavity lasers. Thorlabs single-frequency lasers are highlighted in green in the tables below; in particular, our VHG-stabilized, DFB, DBR, and external cavity lasers have narrow linewidths (≤20 MHz for the VHG-stabilized and DFB lasers and <100 kHz for the DBR and ECL lasers). We manufacture ULN laser diodes which allow independent temperature control of the diode and a fiber Bragg grating achieve a typical relative intensity noise -165 dBc/Hz and instantaneous Lorentzian linewidths of less than 100 Hz. Please see the SFL Guide tab above and our Laser Diode Tutorial for more information on these topics and laser diodes in general.

Laser diodes are sensitive to electrostatic shock. Please take the proper precautions when handling the device (see our electrostatic shock accessories). Laser diodes are also sensitive to optical feedback, which can cause significant fluctuations in the output power of the laser diode depending on the application. See our optical isolators for potential solutions to this problem.

For all of the pigtailed laser diodes, the laser should be off when connecting or disconnecting the device from other fibers, particularly for lasers with power levels above 10 mW. We recommend cleaning the fiber connector before each use if there is any chance that dust or other contaminants may have deposited on the surface. The laser intensity at the center of the fiber tip can be very high and may burn the tip of the fiber if contaminants are present. While the connectors on the pigtailed laser diodes are cleaned and capped before shipping, we cannot guarantee that they will remain free of contamination after they are removed from the package.

Members of our Tech Support staff are available to help you select a laser diode and to discuss possible operation issues.

Pin Codes
Laser Diode Pin Codes
For warranty information, please refer to the LD Operation tab.
Pin Code Monitor Photodiode
A Yes
B Yes
C Yes
D Yes
E No
F Yes
G No
H No

Choosing a Collimation Lens for Your Laser Diode

Since the output of a laser diode is highly divergent, collimating optics are necessary. Aspheric lenses do not introduce spherical aberration and are therefore are commonly chosen when the collimated laser beam is to be between one and five millimeters. A simple example will illustrate the key specifications to consider when choosing the correct lens for a given application. The second example below is an extension of the procedure, which will show how to circularize an elliptical beam.

Example 1: Collimating a Diverging Beam

  • Laser Diode to be Used: L780P010
  • Desired Collimated Beam Diameter: Ø3 mm (Major Axis)

When choosing a collimation lens, it is essential to know the divergence angle of the source being used and the desired output diameter. The specifications for the L780P010 laser diode indicate that the typical parallel and perpendicular FWHM beam divergences are 8° and 30°, respectively. Therefore, as the light diverges, an elliptical beam will result. To collect as much light as possible during the collimation process, consider the larger of these two divergence angles in any calculations (i.e., in this case, use 30°). If you wish to convert your elliptical beam into a round one, we suggest using an anamorphic prism pair, which magnifies one axis of your beam; for details, see Example 2 below.

Assuming that the thickness of the lens is small compared to the radius of curvature, the thin lens approximation can be used to determine the appropriate focal length for the asphere. Assuming a divergence angle of 30° (FWHM) and desired beam diameter of 3 mm:

laser diode collimation drawing focal length calculation
Θ = Divergence Angle Ø = Beam Diameter f = Focal Length r = Collimated Beam Radius = Ø/2

Note that the focal length is generally not equal to the needed distance between the light source and the lens.

With this information known, it is now time to choose the appropriate collimating lens. Thorlabs offers a large selection of aspheric lenses. For this application, the ideal lens is a molded glass aspheric lens with focal length near 5.6 mm and our -B antireflection coating, which covers 780 nm. The C171TMD-B (mounted) or 354171-B (unmounted) aspheric lenses have a focal length of 6.20 mm, which will result in a collimated beam diameter (major axis) of 3.3 mm. Next, check to see if the numerical aperture (NA) of the diode is smaller than the NA of the lens:

0.30 = NALens > NADiode ≈ sin(15°) = 0.26

Up to this point, we have been using the full-width at half maximum (FWHM) beam diameter to characterize the beam. However, a better practice is to use the 1/e2 beam diameter. For a Gaussian beam profile, the 1/e2 diameter is almost equal to 1.7X the FWHM diameter. The 1/e2 beam diameter therefore captures more of the laser diode's output light (for greater power delivery) and minimizes far-field diffraction (by clipping less of the incident light).

A good rule of thumb is to pick a lens with an NA twice that of the laser diode NA. For example, either the A390-B or the A390TM-B could be used as these lenses each have an NA of 0.53, which is more than twice the approximate NA of our laser diode (0.26). These lenses each have a focal length of 4.6 mm, resulting in an approximate major beam diameter of 2.5 mm. In general, using a collimating lens with a short focal length will result in a small collimated beam diameter and a large beam divergence, while a lens with a large focal length will result in a large collimated beam diameter and a small divergence.

Example 2: Circularizing an Elliptical Beam

Using the laser diode and aspheric lens chosen above, we can use an anamorphic prism pair to convert our collimated, elliptical beam into a circular beam.

Prism Ray Diagram

Whereas earlier we considered only the larger divergence angle, we now look at the smaller beam divergence of 8°. From this, and using the effective focal length of the A390-B aspheric lens chosen in Example 1, we can determine the length of the semi-minor axis of the elliptical beam after collimation:

r' = f * tan(Θ'/2) = 4.6 mm * tan(4°) = 0.32 mm

The minor beam diameter is double the semi-minor axis, or 0.64 mm. In order to magnify the minor diameter to be equal to the major diameter of 2.5 mm, we will need an anamorphic prism pair that yields a magnification of 3.9. Thorlabs offers both mounted and unmounted prism pairs. Mounted prism pairs provide the benefit of a stable housing to preserve alignment, while unmounted prism pairs can be positioned at any angle to achieve the exact desired magnification. 

The PS883-B mounted prism pair provides a magnification of 4.0 for a 950 nm wavelength beam. Because shorter wavelengths undergo greater magnification when passing through the prism pair, we can expect our 780 nm beam to be magnified by slightly more than 4.0X. Thus, the beam will still maintain a small degree of ellipticity.

Alternatively, we can use the PS871-B unmounted prism pair to achieve the precise magnification of the minor diameter necessary to produce a circular beam. Using the data available here, we see that the PS871-B achieves a magnification of 4.0 when the prisms are positioned at the following angles for a 670 nm wavelength beam:

α1: +34.608° α2: -1.2455°

Refer to the diagram to the right for α1 and α2 definitions. Our 780 nm laser will experience slightly less magnification than a 670 nm beam passing through the prisms at these angles. Some trial and error may be required to achieve the exact desired magnification. In general: 

  • To increase magnification, rotate the first prism clockwise (increasing α1) and rotate the second prism counterclockwise (decreasing α2).
  • To reduce magnification, rotate the first prism counterclockwise (decreasing α1) and rotate the second prism clockwise (increasing α2).
Remember that the prism pair introduces a linear offset between the input and output beams which increases with greater magnification.

Video Insights: Setting Up a TO Can or Butterfly Laser Diode

Setting Up a Pigtailed Butterfly Laser Diode

A laser diode packaged in a butterfly housing can be precisely controlled, in a compact package, when the laser is installed in a mount that includes thermoelectric cooler (TEC) and current drivers. The mount can make it easier, and safer, to operate the laser, but the procedure for installing the laser in the mount and configuring the settings requires some care. This video provides a step-by-step guide, which begins with an introduction to the different components and concludes with the laser operating under TEC control and with the recommended maximum current limit enabled.

Setting Up a TO Can Laser Diode

Installing a TO can laser diode in a mount and setting it up to run under temperature and current control presents many opportunities to make a mistake that could damage or destroy the laser. This step-by-step guide includes tips for keeping humans and laser diodes safe from harm.

 

When operated within their specifications, laser diodes have extremely long lifetimes. Most failures occur from mishandling or operating the lasers beyond their maximum ratings. Laser diodes are among the most static-sensitive devices currently made and proper ESD protection should be worn whenever handling a laser diode. Due to their extreme electrostatic sensitivity, laser diodes cannot be returned after their sealed package has been opened. Laser diodes in their original sealed package can be returned for a full refund or credit.

Handling and Storage Precautions

Because of their extreme susceptibility to damage from electrostatic discharge (ESD), care should be taken whenever handling and operating laser diodes.

Wrist Straps
Use grounded anti-static wrist straps whenever handling diodes.

Anti-Static Mats
Always work on grounded anti-static mats.

Laser Diode Storage
When not in use, short the leads of the laser together to protect against ESD damage.

Operating and Safety Precautions

Use an Appropriate Driver
Laser diodes require precise control of operating current and voltage to avoid overdriving the laser. In addition, the laser driver should provide protection against power supply transients. Select a laser driver appropriate for your application. Do not use a voltage supply with a current-limiting resistor since it does not provide sufficient regulation to protect the laser diode.

Power Meters
When setting up and calibrating a laser diode with its driver, use a NIST-traceable power meter to precisely measure the laser output. It is usually safest to measure the laser diode output directly before placing the laser in an optical system. If this is not possible, be sure to take all optical losses (transmissive, aperture stopping, etc.) into consideration when determining the total output of the laser.

Reflections
Flat surfaces in the optical system in front of a laser diode can cause some of the laser energy to reflect back onto the laser’s monitor photodiode, giving an erroneously high photodiode current. If optical components are moved within the system and energy is no longer reflected onto the monitor photodiode, a constant-power feedback loop will sense the drop in photodiode current and try to compensate by increasing the laser drive current and possibly overdriving the laser. Back reflections can also cause other malfunctions or damage to laser diodes. To avoid this, be sure that all surfaces are angled 5-10°, and when necessary, use optical isolators to attenuate direct feedback into the laser.

Heat Sinks
Laser diode lifetime is inversely proportional to operating temperature. Always mount the laser diode in a suitable heat sink to remove excess heat from the laser package.

Voltage and Current Overdrive
Be careful not to exceed the maximum voltage and drive current listed on the specification sheet with each laser diode, even momentarily. Also, reverse voltages as little as 3 V can damage a laser diode.

ESD-Sensitive Device
Laser diodes are susceptible to ESD damage even during operation. This is particularly aggravated by using long interface cables between the laser diode and its driver due to the inductance that the cable presents. Avoid exposing the laser diode or its mounting apparatus to ESD at all times.

ON/OFF and Power-Supply-Coupled Transients
Due to their fast response times, laser diodes can be easily damaged by transients less than 1 µs. High-current devices such as soldering irons, vacuum pumps, and fluorescent lamps can cause large momentary transients, and thus surge-protected outlets should always be used when working with laser diodes.

If you have any questions regarding laser diodes, please contact Thorlabs Technical Support for assistance.

Laser Safety and Classification

Safe practices and proper usage of safety equipment should be taken into consideration when operating lasers. The eye is susceptible to injury, even from very low levels of laser light. Thorlabs offers a range of laser safety accessories that can be used to reduce the risk of accidents or injuries. Laser emission in the visible and near infrared spectral ranges has the greatest potential for retinal injury, as the cornea and lens are transparent to those wavelengths, and the lens can focus the laser energy onto the retina. 

Laser Glasses Laser Curtains Blackout Materials
Enclosure Systems Laser Viewing Cards Alignment Tools
Shutter and Controllers Laser Safety Signs

Safe Practices and Light Safety Accessories

  • Laser safety eyewear must be worn whenever working with Class 3 or 4 lasers.
  • Regardless of laser class, Thorlabs recommends the use of laser safety eyewear whenever working with laser beams with non-negligible powers, since metallic tools such as screwdrivers can accidentally redirect a beam.
  • Laser goggles designed for specific wavelengths should be clearly available near laser setups to protect the wearer from unintentional laser reflections.
  • Goggles are marked with the wavelength range over which protection is afforded and the minimum optical density within that range.
  • Laser Safety Curtains and Laser Safety Fabric shield other parts of the lab from high energy lasers.
  • Blackout Materials can prevent direct or reflected light from leaving the experimental setup area.
  • Thorlabs' Enclosure Systems can be used to contain optical setups to isolate or minimize laser hazards.
  • A fiber-pigtailed laser should always be turned off before connecting it to or disconnecting it from another fiber, especially when the laser is at power levels above 10 mW.
  • All beams should be terminated at the edge of the table, and laboratory doors should be closed whenever a laser is in use.
  • Do not place laser beams at eye level.
  • Carry out experiments on an optical table such that all laser beams travel horizontally.
  • Remove unnecessary reflective items such as reflective jewelry (e.g., rings, watches, etc.) while working near the beam path.
  • Be aware that lenses and other optical devices may reflect a portion of the incident beam from the front or rear surface.
  • Operate a laser at the minimum power necessary for any operation.
  • If possible, reduce the output power of a laser during alignment procedures.
  • Use beam shutters and filters to reduce the beam power.
  • Post appropriate warning signs or labels near laser setups or rooms.
  • Use a laser sign with a lightbox if operating Class 3R or 4 lasers (i.e., lasers requiring the use of a safety interlock).
  • Do not use Laser Viewing Cards in place of a proper Beam Trap.

 

Laser Classification

Lasers are categorized into different classes according to their ability to cause eye and other damage. The International Electrotechnical Commission (IEC) is a global organization that prepares and publishes international standards for all electrical, electronic, and related technologies. The IEC document 60825-1 outlines the safety of laser products. A description of each class of laser is given below:

Class Description Warning Label
1 This class of laser is safe under all conditions of normal use, including use with optical instruments for intrabeam viewing. Lasers in this class do not emit radiation at levels that may cause injury during normal operation, and therefore the maximum permissible exposure (MPE) cannot be exceeded. Class 1 lasers can also include enclosed, high-power lasers where exposure to the radiation is not possible without opening or shutting down the laser.  Class 1
1M Class 1M lasers are safe except when used in conjunction with optical components such as telescopes and microscopes. Lasers belonging to this class emit large-diameter or divergent beams, and the MPE cannot normally be exceeded unless focusing or imaging optics are used to narrow the beam. However, if the beam is refocused, the hazard may be increased and the class may be changed accordingly.  Class 1M
2 Class 2 lasers, which are limited to 1 mW of visible continuous-wave radiation, are safe because the blink reflex will limit the exposure in the eye to 0.25 seconds. This category only applies to visible radiation (400 - 700 nm).  Class 2
2M Because of the blink reflex, this class of laser is classified as safe as long as the beam is not viewed through optical instruments. This laser class also applies to larger-diameter or diverging laser beams.  Class 2M
3R Class 3R lasers produce visible and invisible light that is hazardous under direct and specular-reflection viewing conditions. Eye injuries may occur if you directly view the beam, especially when using optical instruments. Lasers in this class are considered safe as long as they are handled with restricted beam viewing. The MPE can be exceeded with this class of laser; however, this presents a low risk level to injury. Visible, continuous-wave lasers in this class are limited to 5 mW of output power.  Class 3R
3B Class 3B lasers are hazardous to the eye if exposed directly. Diffuse reflections are usually not harmful, but may be when using higher-power Class 3B lasers. Safe handling of devices in this class includes wearing protective eyewear where direct viewing of the laser beam may occur. Lasers of this class must be equipped with a key switch and a safety interlock; moreover, laser safety signs should be used, such that the laser cannot be used without the safety light turning on. Laser products with power output near the upper range of Class 3B may also cause skin burns.  Class 3B
4 This class of laser may cause damage to the skin, and also to the eye, even from the viewing of diffuse reflections. These hazards may also apply to indirect or non-specular reflections of the beam, even from apparently matte surfaces. Great care must be taken when handling these lasers. They also represent a fire risk, because they may ignite combustible material. Class 4 lasers must be equipped with a key switch and a safety interlock.  Class 4
All class 2 lasers (and higher) must display, in addition to the corresponding sign above, this triangular warning sign.  Warning Symbol

Insights into Polarization Conventions

Scroll down to read about:

  • Labels Used to Identify Perpendicular and Parallel Components

Click here for more insights into lab practices and equipment.

 

Labels Used to Identify Perpendicular and Parallel Components

Figure 1: Polarized light is often described as the vector sum of two components: one whose electric field oscillates in the plane of incidence (parallel), and one whose electric field oscillates perpendicular to the plane of incidence. Note that the oscillations of the electric field are also orthogonal to the beam's propagation direction.

When polarized light is incident on a surface, it is often described in terms of perpendicular and parallel components. These are orthogonal to each other and the direction in which the light is propagating (Figure 1).

Labels and symbols applied to the perpendicular and parallel components can make it difficult to determine which is which. The table identifies, for a variety of different sets, which label refers to the perpendicular component and which to the parallel.

Labels Notes

Perpendicular      Parallel     
s p Senkrecht (s) is 'perpendicular' in German. Parallel begins with 'p.'
TE TM TE: Transverse electric field.
TM: Transverse magnetic field.
The transverse field is perpendicular to the plane of incidence. Note that electric and magnetic fields are orthogonal.
// ⊥ and // are symbols for perpendicular and parallel, respectively.
σ π The Greek letters corresponding to s and p are σ and π, respectively.
Sagittal Tangential A sagittal plane is a longitudinal plane that divides a body.

The perpendicular and parallel directions are referenced to the plane of incidence, which is illustrated in Figure 1 for a beam reflecting from a surface. Together, the incident ray and the surface normal define the plane of incidence, and the incident and reflected rays are both contained in this plane. The perpendicular direction is normal to the plane of incidence, and the parallel direction is in the plane of incidence.

The electric fields of the perpendicular and parallel components oscillate in planes that are orthogonal to one another. The electric field of the perpendicular component oscillates in a plane perpendicular to the plane of incidence, while the electric field of the parallel component oscillated in the plane of incidence. The polarization of the light beam is the vector sum of the perpendicular and parallel components.

Normally Incident Light
Since a plane of incidence cannot be defined for normally incident light, this approach cannot be used to unambiguously define perpendicular and parallel components of light. There is limited need to make the distinction, since under conditions of normal incidence the reflectivity is the same for all components of light.

Date of Last Edit: Mar. 5, 2020

ECL, DFB, VHG-Stabilized, DBR, and Hybrid Single-Frequency Lasers

ECL Laser Diagram
Click to Enlarge

Figure 1: ECL Lasers have a Grating Outside of the Gain Chip

A wide variety of applications require tunable single-frequency operation of a laser system. In the world of diode lasers, there are currently four main configurations to obtain a single-frequency output: external cavity laser (ECL), distributed feedback (DFB), volume holographic grating (VHG), and distributed Bragg reflector (DBR). All four are capable of single-frequency output through the utilization of grating feedback. In addition, an ECL can be combined with a fiber Bragg grating (FBG) to create a hybrid design. However, each type of laser uses a different grating feedback configuration, which influences performance characteristics such as output power, tuning range, and side mode suppression ratio (SMSR). We discuss below some of the main differences between these types of single-frequency diode lasers.

External Cavity Laser
The External Cavity Laser (ECL) is a versatile configuration that is compatible with most standard free space diode lasers. This means that the ECL can be used at a variety of wavelengths, dependent upon the internal laser diode gain element. A lens collimates the output of the diode, which is then incident upon a grating (see Figure 1). The grating provides optical feedback and is used to select the stabilized output wavelength. With proper optical design, the external cavity allows only a single longitudinal mode to lase, providing single-frequency laser output with high side mode suppression ratio (SMSR > 45 dB).

One of the main advantages of the ECL is that the relatively long cavity provides extremely narrow linewidths (several hundred kHz). Additionally, since it can incorporate a variety of laser diodes, it remains one of the few configurations that can provide narrow linewidth emission at blue or red wavelengths. The ECL can have a large tuning range (>100 nm) but is often prone to mode hops, which are very dependent on the ECL's mechanical design as well as the quality of the antireflection (AR) coating on the laser diode.

DBR Laser Diagram
Click to Enlarge

Figure 2: DFB Lasers Have a Bragg Reflector Along the Length of the Active Gain Medium

Distributed Feedback Laser
The Distributed Feedback (DFB) Laser incorporates the grating within the laser diode structure itself (see Figure 2). This corrugated periodic structure coupled closely to the active region acts as a Bragg reflector, selecting a single longitudinal mode as the lasing mode. If the active region has enough gain at frequencies near the Bragg frequency, an end reflector is unnecessary, relying instead upon the Bragg reflector for all optical feedback and mode selection. Due to this “built-in” selection, a DFB can achieve single-frequency operation over broad temperature and current ranges. To aid in mode selection and improve manufacturing yield, DFB lasers often utilize a phase shift section within the diode structure as well.

The lasing wavelength for a DFB is approximately equal to the Bragg wavelength:

DBR Equation

where λ is the wavelength, neff is the effective refractive index, and Λ is the grating period. By changing the effective index, the lasing wavelength can be tuned. This is accomplished through temperature and current tuning of the DFB.

The DFB has a relatively narrow tuning range: about 2 nm at 850 nm, about 4 nm at 1550 nm, or at least 1 cm-1 in the mid-IR (4.00 - 11.00 µm). However, over this tuning range, the DFB can achieve single-frequency operation, which means that this is a continuous tuning range without mode hops. Because of this feature, DFBs have become a popular and majority choice for real-world applications such as telecom and sensors. Since the cavity length of a DFB is rather short, the linewidths are typically from several hundred kHz to 10 MHz. Additionally, the close coupling between the grating structure and the active region results in lower maximum output power compared to ECL and DBR lasers. Thorlabs catalog offering of DFB lasers includes TO can, pigtailed TO can, and butterfly packaged versions for NIR wavelengths, as well as two-tab C-mount, D-mount, and HHL packages for the MIR.

DBR Laser Diagram
Click to Enlarge

Figure 3: VHG Lasers have a Volume Holographic Grating Outside of the Active Gain Medium

Volume-Holographic-Grating-Stabilized Laser
A Volume-Holographic-Grating-(VHG)-Stabilized Laser also uses a Bragg reflector, but in this case a transmission grating is placed in front of the laser diode output (see Figure 3). Since the grating is not part of the laser diode structure, it can be thermally decoupled from the laser diode, improving the wavelength stability of the device. The grating typically consists of a piece of photorefractive material (typically glass) which has a periodic variation in the index of refraction. Only the wavelength of light that satisfies the Bragg condition for the grating is reflected back into the laser cavity, which results in a laser with extremely wavelength-stable emission. A VHG-Stabilized laser can produce output with a similar linewidth to a DFB laser at higher powers that is wavelength-locked over a wide range of currents and temperatures.

DBR Laser Diagram
Click to Enlarge

Figure 4: DBR Lasers have a Bragg Reflector Outside of the Active Gain Medium

Distributed Bragg Reflector Laser
Similar to DFBs, Distributed Bragg Reflector (DBR) lasers incorporate an internal grating structure. However, whereas DFB lasers incorporate the grating structure continuously along the active region (gain region), DBR lasers place the grating structure(s) outside this region (see Figure 4). In general a DBR can incorporate various regions not typically found in a DFB that yield greater control and tuning range. For instance, a multiple-electrode DBR laser can include a phase-controlled region that allows the user to independently tune the phase apart from the grating period and laser diode current. When utilized together, the DBR can provide single-frequency operation over a broad tuning range. For example, high end sample-grating DBR lasers can have a tuning range as large as 30 - 40 nm. Unlike the DFB, the output is not mode hop free; hence, careful control of all inputs and temperature must be maintained.

In contrast to the complicated control structure for the multiple-electrode DBR, a simplified version of the DBR is engineered with just one electrode. This single-electrode DBR eliminates the complications of grating and phase control at the cost of tuning range. For this architecture type, the tuning range is similar to a DFB laser but will mode hop as a function of the applied current and temperature. Despite the disadvantage of mode hops, the single-electrode DBR does provide some advantages over its DFB cousin, namely higher output power because the grating is not continuous along the length of the device. Both DBR and DFB lasers have similar laser linewidths. Currently, Thorlabs offers only single-electrode DBR lasers.

Ultra-Low-Noise Hybrid Laser
Thorlabs Ultra-Low-Noise (ULN) Hybrid Lasers each consist of a single angled facet (SAF) gain chip coupled to an exceptionally long fiber Bragg grating (FBG). They are designed to create a laser cavity, similar to an ECL, through the length of fiber. This cavity provides the ULN hybrid laser with a very narrow line width on the order of 100 Hz and low relative intensity noise of -165 dBc/Hz (typical). The FBG reflects a portion of the light emitted from the gain medium while remaining thermally isolated from it. The grating period can be changed by introducing thermal stress to the fiber, allowing users to temperature tune the laser output while being able to independently stabilize the gain medium's temperature. Because the laser's configuration provides excellent low-noise performance, it is likely the laser will not be the limiting factor at low-noise levels. It is critical to monitor the laser's environment to limit external noise contributions like acoustic and seismic vibrations, as well as driving the laser with a low-noise current source.

Hybrid Laser Diagram
Click to Enlarge

Figure 5: Thorlabs Hybrid Lasers have a Fiber Bragg Grating Coupled to the Active Gain Medium

Conclusion
ECL, DFB, VHG, DBR, and hybrid laser diodes provide single-frequency operation over their designed tuning range. The ECL can be designed for a larger selection of wavelengths than either the DFB or DBR. While prone to mode hops, it also provides the narrowest linewidth (several hundred kHz) of these three choices. In appropriately designed instruments, ECLs can also provide extremely broad tuning ranges (>100 nm).

The DFB laser is the most stable single-frequency, tunable laser configuration. It can provide mode-hop-free performance over its entire tuning range (<5 nm), making it one of the most popular forms of single-frequency laser for much of industry. It often has low output power due to inherent properties of the continuous grating feedback structure, but higher powers can be achieved with different packaging styles.

The VHG laser provides the most stable wavelength performance over a range of temperatures and currents and can provide higher powers than are typical in DFB lasers. This stability makes it excellent for use in OEM applications.

The single-electrode DBR laser provides similar linewidth and tuning range as the DFB (<5 nm). However, the single-electrode DBR will have periodic mode hops in its tuning curve.

Hybrid lasers can be used to achieve extremely low-noise signals. In order to take advantage of this characteristic, the laser must be isolated from unwanted noise sources, such as acoustic and seismic vibrations and drive current noise.


Posted Comments:
Sujeet Pani  (posted 2024-02-07 12:40:29.33)
Hi, We are interested in puchasing the M9-808-0150 laser diode. The description says that the peak wavelength is supposed to be centered at 808nm but from the plot in the spec sheet shows the peak wavelength to be at around 802nm. Could you please let me know the expected spectrum of this diode and also if this diode's wavelength is tunable with change in temperature ? if yes, could you inform me what is the expected temperature coefficient ? Best, Sujeet
jpolaris  (posted 2024-02-13 02:08:27.0)
Thank you for contacting Thorlabs. The CWL of M9-808-0150 can be anywhere within 803 nm - 813 nm, but it is typically 808 nm. It seems that the particular laser used when measuring the output spectrum shown in the spec sheet you are referring to happened to be on the shorter side of that range. Regarding the temperature coefficient, it will be ~0.3 nm/°C at 25 °C.
Ju Geunhui  (posted 2022-09-15 17:11:25.81)
Hello, I'm Geunhui Ju from KITECH Research Institute in Korea. I want to purchase the DFB Butterfly type laser among NIR Laser Diodes, but I have a question for you. I'm currently looking for a DFB laser module with a center wavelength of 1490.98nm, but the butterfly type is only available up to 1456nm on the website. Is it possible to customize a specific wavelength or do you have a 1491nm DFB Butterfly type laser?
jdelia  (posted 2022-09-15 02:13:25.0)
Thank you for contacting Thorlabs. We do have the capability of providing custom-wavelength versions of these diodes. I have reached out to you directly regarding the feasibility of this particular request.
Drew G  (posted 2021-02-27 11:23:17.797)
Hello, I am interested in the BL976-PAG900 laser. Do you have any information on how long this laser could be run for continuously? My application requires a CW beam upwards of 30 minutes, some of which will be run at a fraction of the max power. Thank you, Drew
YLohia  (posted 2021-03-05 10:00:38.0)
Hello Drew, thank you for contacting Thorlabs. This laser can be run indefinitely in CW mode with appropriate temperature control to prevent accelerated burn-out due to the high levels of heat generated.
Yannik Zobus  (posted 2020-09-24 16:09:50.503)
Dear Torlabs Team, can you tell me which PM-fibers are used in the pigtailed BL976-PAG series? Are they splice-compatible with PANDA PM980 from Corning? With best regards, Yannik
YLohia  (posted 2020-09-24 03:29:21.0)
Hello Yannik, thank you for contacting Thorlabs. The fiber specs are given in the blue "info" icon next to the part numbers. Yes, these can be spliced together.
Thanmay Menon  (posted 2019-09-03 09:30:35.837)
Hi, I had a few questions regarding the laser diodes (i) Are the laser diodes L785P090 and LD785-SH300 AR coated? (ii) Is the diode LD785-SH300 suitable for being used in a ECL laser in Littrow configuration? (iii) Is a 200mW 785nm laser diode in 9.0mm TO can with AR coating available? Thank you
YLohia  (posted 2019-09-03 03:24:56.0)
Hello, thank you for contacting Thorlabs. These diodes are not AR-coated -- they are both Fabry-Perot style laser diodes and an AR coating would prevent them from lasing. We do not recommend these for external cavity use as they already have a reflective coating on both facets. We will reach out to you directly to discuss the possibility of offering a custom solution.
alexeyzaytsev  (posted 2014-02-18 23:46:25.787)
I am interested to use LP852-SF30 for pulse applications. Can you provide the typical rise time for such kind laser diode? Thank you.
jlow  (posted 2014-02-27 02:20:17.0)
Response from Jeremy at Thorlabs: We do not have a specification of the rise time for this laser diode but it is estimated to be <1ns.
user  (posted 2013-07-18 11:16:20.02)
I would like to know, what beamquality is to be expected from LPS-1550-FC.
jlow  (posted 2013-07-18 11:02:00.0)
Response from Jeremy at Thorlabs: The laser diode inside the LPS-1550-FC is coupled to a single mode fiber so the beam quality will be very close to a Gaussian. Typically the M^2 value is <1.1.
jlow  (posted 2012-12-20 09:58:00.0)
Response from Jeremy at Thorlabs: The SFL1550S has a central wavelength of 1550nm (±0.5nm). The tuning range is only about 3GHz. Therefore the SFL1550S would not be able to be tuned to emit at the wavelength ranges you are interested in. You could possibly use our tunable laser kit (TLK-L1550M) to cover those two wavelength ranges. We will get in contact with you directly to discuss about your applications.
bslalit  (posted 2012-12-06 03:21:28.88)
Can SFL1550S diode laser be used to emit at wavelength between 1490 & 1530 and 1560 & 1580 ??
tcohen  (posted 2012-10-30 10:57:00.0)
Response from Tim at Thorlabs: From 25C to 60C a typical wavelength shift for L780P010 would be from ~780nm to ~788nm. The linewidth is 0.60nm. I will contact you with some representative data.
david.n.hutch  (posted 2012-10-26 18:53:00.313)
Hi, I am also interested in the things that fas2 asked for: What is the spectral width of this LD? Do you have a spectrum you can send me? And can I please get a graph with the temperature-wavelength dependence? Thanks.
bdada  (posted 2011-09-22 20:37:00.0)
Response from Buki at Thorlabs: Thank you for using our Feedback Tool. Our Tech Support team in China will contact you directly.
ddcheny  (posted 2011-09-14 10:28:55.0)
???1.83um?1.89um?1.94um?2.12um??????,????????????(?PbS????)?????????(????),?????????(?????),???????! ??:??? ??:???????????? ??:13898526034 ??:ddcheny@163.com ??:???????????????136?
Thorlabs  (posted 2010-06-30 18:20:08.0)
Response from Javier at Thorlabs to fas2: the spectral width of the L780P010 is 0.60 nm. I will send you a graph with the temperature coefficient.
fas2  (posted 2010-06-28 20:05:07.0)
What is the spectral width of this LD? Do you have a spectrum you can send me? Also, what is the temperature coefficient of the wavelength. Thanks, Fritz
Javier  (posted 2010-06-10 08:50:26.0)
Response from Javier at Thorlabs to farzanehm (update): We actually can provide some information regarding the structure of the VCSEL diodes we offer. There are 37 mirror pairs in the bottom DBR and 27 pairs in the top DBR. Thickness of top DBR is approximately 3.5µm. Thickness of bottom DBR is approximately 4.8µm. I hope this helps.
Javier  (posted 2010-06-09 10:40:13.0)
Response from Javier at Thorlabs to farzanehm: we cannot disclosed this information, as details about the design of this VCSEL are considered proprietary information. I will contact you directly in case you have any further questions.
farzanehm  (posted 2010-06-08 15:29:37.0)
I am using your VCSEL-850 in an experiment and am wondering if you can provide me with the structure of the VCSEL, e.g. the number of layers in the DBRs and their thicknesses. I need the information for modeling and simulation. Thank you.
Adam  (posted 2010-05-25 10:32:15.0)
A response from Adam at Thorlabs to Ayser: We can provide you with a quotation. Our UK department will contact you shortly.
ayser.hemed  (posted 2010-05-25 09:39:44.0)
I am a Ph.D student, working in optical feedback effect on DFB LD in 1310nm. I want to pay a 3 devices from your company, part no. is: ML725B8F. I HOPE TO RECEIVE AN OFFER WITH DELIVERY COST AND TIME REQUIRED TO RECEIVE IT FROM GLASGOW, UK. Thanks
Adam  (posted 2010-04-26 23:30:00.0)
A response from Adam at Thorlabs to Nizamov: I have not heard of this issue before, but it may not be related to the laser diode but to the laser driver and there is an inherent delay between the modulation input and the driving current from the LDC. One way that you can verify this is that you can monitor the LD current (there is a BNC on the back of the driver that should provide this signal) with respect to the modulation pulse. I will contact you directly with more information.
nizamov.shawkat  (posted 2010-04-26 10:46:16.0)
We have 3 LDC205C and TED200C pairs, combined with TCLDM9. One setup utilizes 650 nm LD and another one uses 980 nm LD. For 980 nm L980P010 and L9805E2P5 laser diodes I experience unusually high modulation latency - about 5-10us front delay plus slow rise during several milliseconds afterwards. The red ones are OK. Replacing items doesnt help - Thorlabs IR LD seem to be just very slow. But we obtained and set another 980nm LD from another supplier - still the same, even 1 kHz square modulation results in highly distorted non-square and delayed light intensity modulation. What may be wrong?

The rows shaded green below denote single-frequency lasers.

Item #WavelengthOutput PowerOperating
Current
Operating
Voltage
Beam DivergenceLaser ModePackage
ParallelPerpendicular
L375P70MLD375 nm70 mW110 mA5.4 V22.5°Single Transverse ModeØ5.6 mm
L404P400M404 nm400 mW370 mA4.9 V13° (1/e2)42° (1/e2)MultimodeØ5.6 mm
LP405-SF10405 nm10 mW50 mA5.0 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L405P20405 nm20 mW38 mA4.8 V8.5°19°Single Transverse ModeØ5.6 mm
LP405C1405 nm30 mW75 mA4.3 V1.4 mrad1.4 mradSingle Transverse ModeØ3.8 mm, SM Pigtail with Collimator
L405G2405 nm35 mW50 mA4.9 V10°21°Single Transverse ModeØ3.8 mm
DL5146-101S405 nm40 mW70 mA5.2 V19°Single Transverse ModeØ5.6 mm
L405A1405 nm175 mW (Min)150 mA5.0 V20°Single Transverse ModeØ5.6 mm
LP405-MF300405 nm300 mW350 mA4.5 V--MultimodeØ5.6 mm, MM Pigtail
L405G1405 nm1000 mW900 mA5.0 V13°45°MultimodeØ9 mm
LP450-SF25450 nm25 mW75 mA5.0 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L450G3450 nm100 mW (Min)80 mA5.2 V8.4°21.5°Single Transverse ModeØ3.8 mm
L450G2450 nm100 mW (Min)80 mA5.0 V8.4°21.5°Single Transverse ModeØ5.6 mm
L450P1600MM450 nm1600 mW1200 mA4.8 V19 - 27°MultimodeØ5.6 mm
L473P100473 nm100 mW120 mA5.7 V1024Single Transverse ModeØ5.6 mm
LP488-SF20488 nm20 mW70 mA6.0 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP488-SF20G488 nm20 mW80 mA5.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L488P60488 nm60 mW75 mA6.8 V23°Single Transverse ModeØ5.6 mm
LP515-SF3515 nm3 mW50 mA5.3 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L515A1515 nm10 mW50 mA5.4 V6.5°21°Single Transverse ModeØ5.6 mm
LP520-SF15A520 nm15 mW100 mA7.0 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP520-SF15520 nm15 mW140 mA6.5 V--Single Transverse ModeØ9 mm, SM Pigtail
L520A1520 nm30 mW (Min)80 mA5.5 V22°Single Transverse ModeØ5.6 mm
PL520520 nm50 mW250 mA7.0 V22°Single Transverse ModeØ3.8 mm
L520P50520 nm45 mW150 mA7.0 V22°Single Transverse ModeØ5.6 mm
L520A2520 nm110 mW (Min)225 mA5.9 V22°Single Transverse ModeØ5.6 mm
DJ532-10532 nm10 mW220 mA1.9 V0.69°0.69°Single Transverse ModeØ9.5 mm (non-standard)
DJ532-40532 nm40 mW330 mA1.9 V0.69°0.69°Single Transverse ModeØ9.5 mm (non-standard)
LP633-SF50633 nm50 mW170 mA2.6 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL63163DG633 nm100 mW170 mA2.6 V8.5°18°Single Transverse ModeØ5.6 mm
LPS-635-FC635 nm2.5 mW70 mA2.2 V--Single Transverse ModeØ9 mm, SM Pigtail
LPS-PM635-FC635 nm2.5 mW60 mA2.2 V--Single Transverse ModeØ9.0 mm, PM Pigtail
L635P5635 nm5 mW30 mA<2.7 V32°Single Transverse ModeØ5.6 mm
HL6312G635 nm5 mW50 mA<2.7 V31°Single Transverse ModeØ9 mm
LPM-635-SMA635 nm8 mW50 mA2.2 V--MultimodeØ9 mm, MM Pigtail
LP635-SF8635 nm8 mW60 mA2.3 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL6320G635 nm10 mW60 mA2.2 V31°Single Transverse ModeØ9 mm
HL6322G635 nm15 mW75 mA2.4 V30°Single Transverse ModeØ9 mm
L637P5637 nm5 mW20 mA<2.4 V34°Single Transverse ModeØ5.6 mm
LP637-SF50637 nm50 mW140 mA2.6 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP637-SF70637 nm70 mW220 mA2.7 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL63142DG637 nm100 mW140 mA2.7 V18°Single Transverse ModeØ5.6 mm
HL63133DG637 nm170 mW250 mA2.8 V17°Single Transverse ModeØ5.6 mm
HL6388MG637 nm250 mW340 mA2.3 V10°40°MultimodeØ5.6 mm
L637G1637 nm1200 mW1100 mA2.5 V10°32°MultimodeØ9 mm (non-standard)
L638P040638 nm40 mW92 mA2.4 V10°21°Single Transverse ModeØ5.6 mm
L638P150638 nm150 mW230 mA2.7 V918Single Transverse ModeØ3.8 mm
L638P200638 nm200 mW280 mA2.9 V814Single Transverse ModeØ5.6 mm
L638P700M638 nm700 mW820 mA2.2 V35°MultimodeØ5.6 mm
HL6358MG639 nm10 mW40 mA2.4 V21°Single Transverse ModeØ5.6 mm
HL6323MG639 nm30 mW100 mA2.5 V8.5°30°Single Transverse ModeØ5.6 mm
HL6362MG640 nm40 mW90 mA2.5 V10°21°Single Transverse ModeØ5.6 mm
LP642-SF20642 nm20 mW90 mA2.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP642-PF20642 nm20 mW90 mA2.5 V--Single Transverse ModeØ5.6 mm, PM Pigtail
HL6364DG642 nm60 mW120 mA2.5 V10°21°Single Transverse ModeØ5.6 mm
HL6366DG642 nm80 mW150 mA2.5 V10°21°Single Transverse ModeØ5.6 mm
HL6385DG642 nm150 mW250 mA2.6 V17°Single Transverse ModeØ5.6 mm
L650P007650 nm7 mW28 mA2.2 V28°Single Transverse ModeØ5.6 mm
LPS-660-FC658 nm7.5 mW65 mA2.6 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP660-SF20658 nm20 mW80 mA2.6 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LPM-660-SMA658 nm22.5 mW65 mA2.6 V--MultimodeØ5.6 mm, MM Pigtail
HL6501MG658 nm30 mW75 mA2.6 V8.5°22°Single Transverse ModeØ5.6 mm
L658P040658 nm40 mW75 mA2.2 V10°20°Single Transverse ModeØ5.6 mm
LP660-SF40658 nm40 mW135 mA2.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP660-SF60658 nm60 mW210 mA2.4 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL6544FM660 nm50 mW115 mA2.3 V10°17°Single Transverse ModeØ5.6 mm
LP660-SF50660 nm50 mW140 mA2.3 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL6545MG660 nm120 mW170 mA2.45 V10°17°Single Transverse ModeØ5.6 mm
L660P120660 nm120 mW175 mA2.5 V10°17°Single Transverse ModeØ5.6 mm
L670VH1670 nm1 mW2.5 mA2.6 V10°10°Single Transverse ModeTO-46
LPS-675-FC670 nm2.5 mW55 mA2.2 V--Single Transverse ModeØ9 mm, SM Pigtail
HL6748MG670 nm10 mW30 mA2.2 V25°Single Transverse ModeØ5.6 mm
HL6714G670 nm10 mW55 mA<2.7 V22°Single Transverse ModeØ9 mm
HL6756MG670 nm15 mW35 mA2.3 V24°Single Transverse ModeØ5.6 mm
LP685-SF15685 nm15 mW55 mA2.1 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL6750MG685 nm50 mW70 mA2.3 V21°Single Transverse ModeØ5.6 mm
HL6738MG690 nm30 mW85 mA2.5 V8.5°19°Single Transverse ModeØ5.6 mm
LP705-SF15705 nm15 mW55 mA2.3 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL7001MG705 nm40 mW75 mA2.5 V18°Single Transverse ModeØ5.6 mm
LP730-SF15730 nm15 mW70 mA2.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
HL7302MG730 nm40 mW75 mA2.5 V18°Single Transverse ModeØ5.6 mm
L760VH1760 nm0.5 mW3 mA (Max)2.2 V12°12°Single FrequencyTO-46
DBR760PN761 nm9 mW125 mA2.0 V--Single FrequencyButterfly, PM Pigtail
L763VH1763 nm0.5 mW3 mA (Max)2.0 V10°10°Single FrequencyTO-46
DBR767PN767 nm23 mW220 mA1.87 V--Single FrequencyButterfly, PM Pigtail
DBR770PN770 nm35 mW220 mA1.92 V--Single FrequencyButterfly, PM Pigtail
L780P010780 nm10 mW24 mA1.8 V30°Single Transverse ModeØ5.6 mm
LP780-SAD15780 nm15 mW180 mA2.2 V--Single FrequencyØ9 mm, SM Pigtail
DBR780PN780 nm45 mW250 mA1.9 V--Single FrequencyButterfly, PM Pigtail
L785P5785 nm5 mW28 mA1.9 V10°29°Single Transverse ModeØ5.6 mm
LPS-PM785-FC785 nm6.5 mW60 mA---Single Transverse ModeØ5.6 mm, PM Pigtail
LPS-785-FC785 nm10 mW65 mA1.85 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP785-SF20785 nm20 mW85 mA1.9 V--Single Transverse ModeØ5.6 mm, SM Pigtail
DBR785S785 nm25 mW230 mA2.0 V--Single FrequencyButterfly, SM Pigtail
DBR785P785 nm25 mW230 mA2.0 V--Single FrequencyButterfly, PM Pigtail
L785P25785 nm25 mW45 mA1.9 V30°Single Transverse ModeØ5.6 mm
FPV785S785 nm50 mW410 mA2.2 V--Single FrequencyButterfly, SM Pigtail
FPV785P785 nm50 mW410 mA2.1 V--Single FrequencyButterfly, PM Pigtail
LP785-SAV50785 nm50 mW500 mA2.2 V--Single FrequencyØ9 mm, SM Pigtail
L785P090785 nm90 mW125 mA2.0 V10°17°Single Transverse ModeØ5.6 mm
LP785-SF100785 nm100 mW300 mA2.0 V--Single Transverse ModeØ9 mm, SM Pigtail
FPL785P785 nm200 mW500 mA2.1 V--Single Transverse ModeButterfly, PM Pigtail
FPL785S-250785 nm250 mW (Min)500 mA2.0 V--Single Transverse ModeButterfly, SM Pigtail
LD785-SEV300785 nm300 mW500 mA (Max)2.0 V16°Single FrequencyØ9 mm
LD785-SH300785 nm300 mW400 mA2.0 V18°Single Transverse ModeØ9 mm
FPL785C785 nm300 mW400 mA2.0 V18°Single Transverse Mode3 mm x 5 mm Submount
LD785-SE400785 nm400 mW550 mA2.0 V16°Single Transverse ModeØ9 mm
FPV785M785 nm600 mW1100 mA1.9 V--MultimodeButterfly, MM Pigtail
L795VH1795 nm0.25 mW1.2 mA1.8 V20°12°Single FrequencyTO-46
DBR795PN795 nm40 mW230 mA2.0 V--Single FrequencyButterfly, PM Pigtail
DBR808PN808 nm42 mW250 mA2 V--Single FrequencyButterfly, PM Pigtail
LP808-SA60808 nm60 mW150 mA1.9 V--Single Transverse ModeØ9 mm, SM Pigtail
M9-808-0150808 nm150 mW180 mA1.9 V17°Single Transverse ModeØ9 mm
L808P200808 nm200 mW260 mA2 V10°30°MultimodeØ5.6 mm
FPL808P808 nm200 mW600 mA2.1 V--Single Transverse ModeButterfly, PM Pigtail
FPL808S808 nm200 mW750 mA2.3 V--Single Transverse ModeButterfly, SM Pigtail
L808H1808 nm300 mW400 mA2.1 V14°Single Transverse ModeØ9 mm
LD808-SE500808 nm500 mW750 mA2.2 V14°Single Transverse ModeØ9 mm
LD808-SEV500808 nm500 mW800 mA (Max)2.2 V14°Single FrequencyØ9 mm
L808P500MM808 nm500 mW650 mA1.8 V12°30°MultimodeØ5.6 mm
L808P1000MM808 nm1000 mW1100 mA2 V30°MultimodeØ9 mm
DBR816PN816 nm45 mW250 mA1.95 V--Single FrequencyButterfly, PM Pigtail
LP820-SF80820 nm80 mW230 mA2.3 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L820P100820 nm100 mW145 mA2.1 V17°Single Transverse ModeØ5.6 mm
L820P200820 nm200 mW250 mA2.4 V17°Single Transverse ModeØ5.6 mm
DBR828PN828 nm24 mW250 mA2.0 V--Single FrequencyButterfly, PM Pigtail
LPS-830-FC830 nm10 mW120 mA---Single Transverse ModeØ5.6 mm, SM Pigtail
LPS-PM830-FC830 nm10 mW120 mA---Single Transverse ModeØ5.6 mm, PM Pigtail
LP830-SF30830 nm30 mW115 mA1.9 V--Single Transverse ModeØ9 mm, SM Pigtail
HL8338MG830 nm50 mW75 mA1.9 V22°Single Transverse ModeØ5.6 mm
L830H1830 nm250 mW3 A (Max)2 V10°Single Transverse ModeØ9 mm
FPL830P830 nm300 mW900 mA2.22 V--Single Transverse ModeButterfly, PM Pigtail
FPL830S830 nm350 mW900 mA2.5 V--Single Transverse ModeButterfly, SM Pigtail
LD830-SE650830 nm650 mW900 mA2.3 V13°Single Transverse ModeØ9 mm
LD830-MA1W830 nm1 W2 A2.1 V24°MultimodeØ9 mm
LD830-ME2W830 nm2 W3 A (Max)2.0 V21°MultimodeØ9 mm
L840P200840 nm200 mW255 mA2.4 V917Single Transverse ModeØ5.6 mm
L850VH1850 nm1 mW6 mA (Max)2 V12°12°Single FrequencyTO-46
L850P010850 nm10 mW50 mA2 V10°30°Single Transverse ModeØ5.6 mm
L850P030850 nm30 mW65 mA2 V8.5°30°Single Transverse ModeØ5.6 mm
FPV852S852 nm20 mW400 mA2.2 V--Single FrequencyButterfly, SM Pigtail
FPV852P852 nm20 mW400 mA2.2 V--Single FrequencyButterfly, PM Pigtail
DBR852PN852 nm24 mW300 mA2.0 V--Single FrequencyButterfly, PM Pigtail
LP852-SF30852 nm30 mW115 mA1.9 V--Single Transverse ModeØ9 mm, SM Pigtail
L852P50852 nm50 mW75 mA1.9 V22°Single Transverse ModeØ5.6 mm
LP852-SF60852 nm60 mW150 mA2.0 V--Single Transverse ModeØ9 mm, SM Pigtail
L852P100852 nm100 mW120 mA1.9 V28°Single Transverse ModeØ9 mm
L852P150852 nm150 mW170 mA1.9 V18°Single Transverse ModeØ9 mm
L852SEV1852 nm270 mW400 mA (Max)2.0 V12°Single FrequencyØ9 mm
L852H1852 nm300 mW415 mA (Max)2 V15°Single Transverse ModeØ9 mm
FPL852P852 nm300 mW900 mA2.35 V--Single Transverse ModeButterfly, PM Pigtail
FPL852S852 nm350 mW900 mA2.5 V--Single Transverse ModeButterfly, SM Pigtail
LD852-SE600852 nm600 mW950 mA2.3 V7° (1/e2)13° (1/e2)Single Transverse ModeØ9 mm
LD852-SEV600852 nm600 mW1050 mA (Max)2.2 V13° (1/e2)Single FrequencyØ9 mm
LP880-SF3880 nm3 mW25 mA2.2 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L880P010880 nm10 mW30 mA2.0 V12°37°Single Transverse ModeØ5.6 mm
L895VH1895 nm0.2 mW1.4 mA1.6 V20°13°Single FrequencyTO-46
DBR895PN895 nm12 mW300 mA2 V--Single FrequencyButterfly, PM Pigtail
LP904-SF3904 nm3 mW30 mA1.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L904P010904 nm10 mW50 mA2.0 V10°30°Single Transverse ModeØ5.6 mm
LP915-SF40915 nm40 mW130 mA1.5 V--Single Transverse ModeØ9 mm, SM Pigtail
DBR935PN935 nm13 mW300 mA1.75 V--Single FrequencyButterfly, PM Pigtail
LP940-SF30940 nm30 mW90 mA1.5 V--Single Transverse ModeØ9 mm, SM Pigtail
M9-940-0200940 nm200 mW270 mA1.9 V28°Single Transverse ModeØ9 mm
L960H1960 nm250 mW400 mA2.1 V11°12°Single Transverse ModeØ9 mm
FPV976S976 nm30 mW400 mA (Max)2.2 V--Single FrequencyButterfly, SM Pigtail
FPV976P976 nm30 mW400 mA (Max)2.2 V--Single FrequencyButterfly, PM Pigtail
DBR976PN976 nm33 mW450 mA2.0 V--Single FrequencyButterfly, PM Pigtail
L976SEV1976 nm270 mW400 mA (Max)2.0 V12°Single FrequencyØ9 mm
BL976-SAG3976 nm300 mW470 mA2.0 V--Single Transverse ModeButterfly, SM Pigtail
BL976-PAG500976 nm500 mW830 mA2.0 V--Single Transverse ModeButterfly, PM Pigtail
BL976-PAG700976 nm700 mW1090 mA2.0 V--Single Transverse ModeButterfly, PM Pigtail
BL976-PAG900976 nm900 mW1480 mA2.5 V--Single Transverse ModeButterfly, PM Pigtail
L980P010980 nm10 mW25 mA2 V10°30°Single Transverse ModeØ5.6 mm
LP980-SF15980 nm15 mW70 mA1.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L980P030980 nm30 mW50 mA1.5 V10°35°Single Transverse ModeØ5.6 mm
L980P100A980 nm100 mW150 mA1.6 V32°MultimodeØ5.6 mm
LP980-SA60980 nm60 mW230 mA2.0 V--Single Transverse ModeØ9.0 mm, SM Pigtail
LP980-SA100980 nm100 mW180 mA1.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
L980H1980 nm200 mW300 mA (Max)2.0 V13°Single Transverse ModeØ9 mm
L980P200980 nm200 mW300 mA1.5 V30°MultimodeØ5.6 mm
DBR1060SN1060 nm130 mW650 mA2.0 V--Single FrequencyButterfly, SM Pigtail
DBR1060PN1060 nm130 mW650 mA1.8 V--Single FrequencyButterfly, PM Pigtail
DBR1064S1064 nm40 mW150 mA2.0 V--Single FrequencyButterfly, SM Pigtail
DBR1064P1064 nm40 mW150 mA2.0 V--Single FrequencyButterfly, PM Pigtail
DBR1064PN1064 nm110 mW550 mA2.0 V--Single FrequencyButterfly, PM Pigtail
LPS-1060-FC1064 nm50 mW220 mA1.4 V--Single Transverse ModeØ9 mm, SM Pigtail
M9-A64-02001064 nm200 mW280 mA1.7 V28°Single Transverse ModeØ9 mm
L1064H11064 nm300 mW700 mA1.92 V7.6°13.5°Single Transverse ModeØ9 mm
L1064H21064 nm450 mW1100 mA1.92 V7.6°13.5°Single Transverse ModeØ9 mm
DBR1083PN1083 nm100 mW500 mA1.75 V--Single FrequencyButterfly, PM Pigtail
L1270P5DFB1270 nm5 mW15 mA1.1 VSingle FrequencyØ5.6 mm
L1290P5DFB1290 nm5 mW16 mA1.0 VSingle FrequencyØ5.6 mm
LP1310-SAD21310 nm2.0 mW40 mA1.1 V--Single FrequencyØ5.6 mm, SM Pigtail
LP1310-PAD21310 nm2.0 mW40 mA1.0 V--Single FrequencyØ5.6 mm, PM Pigtail
LPS-1310-FC1310 nm2.5 mW20 mA1.1 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LPS-PM1310-FC1310 nm2.5 mW20 mA1.1 V--Single Transverse ModeØ5.6 mm, PM Pigtail
L1310P5DFB1310 nm5 mW16 mA1.0 VSingle FrequencyØ5.6 mm
ML725B8F1310 nm5 mW20 mA1.1 V25°30°Single Transverse ModeØ5.6 mm
LPSC-1310-FC1310 nm50 mW350 mA2 V--Single Transverse ModeØ5.6 mm, SM Pigtail
FPL1053S1310 nm130 mW400 mA1.7 V--Single Transverse ModeButterfly, SM Pigtail
FPL1053P1310 nm130 mW400 mA1.7 V--Single Transverse ModeButterfly, PM Pigtail
FPL1053T1310 nm300 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeØ5.6 mm
FPL1053C1310 nm300 mW (Pulsed)750 mA2 V15°27°Single Transverse ModeChip on Submount
L1310G11310 nm2000 mW5 A1.5 V24°MultimodeØ9 mm
L1330P5DFB1330 nm5 mW14 mA1.0 VSingle FrequencyØ5.6 mm
L1370G11370 nm2000 mW5 A1.4 V22°MultimodeØ9 mm
BL1425-PAG5001425 nm500 mW1600 mA2.0 V--Single Transverse ModeButterfly, PM Pigtail
BL1436-PAG5001436 nm500 mW1600 mA2.0 V--Single Transverse ModeButterfly, PM Pigtail
L1450G11450 nm2000 mW5 A1.4 V22°MultimodeØ9 mm
BL1456-PAG5001456 nm500 mW1600 mA2.0 V--Single Transverse ModeButterfly, PM Pigtail
L1470P5DFB1470 nm5 mW19 mA1.0 VSingle FrequencyØ5.6 mm
L1480G11480 nm2000 mW5 A1.6 V20°MultimodeØ9 mm
L1490P5DFB1490 nm5 mW24 mA1.0 VSingle FrequencyØ5.6 mm
L1510P5DFB1510 nm5 mW20 mA1.0 VSingle FrequencyØ5.6 mm
L1530P5DFB1530 nm5 mW21 mA1.0 VSingle FrequencyØ5.6 mm
LPS-1550-FC1550 nm1.5 mW30 mA1.0 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LPS-PM1550-FC1550 nm1.5 mW30 mA1.1 V--Single Transverse ModeØ5.6 mm, SM Pigtail
LP1550-SAD21550 nm2.0 mW40 mA1.0 V--Single FrequencyØ5.6 mm, SM Pigtail
LP1550-PAD21550 nm2.0 mW40 mA1.0 V--Single FrequencyØ5.6 mm, PM Pigtail
L1550P5DFB1550 nm5 mW20 mA1.0 V10°Single FrequencyØ5.6 mm
ML925B45F1550 nm5 mW30 mA1.1 V25°30°Single Transverse ModeØ5.6 mm
SFL1550S1550 nm40 mW300 mA1.5 V--Single FrequencyButterfly, SM Pigtail
SFL1550P1550 nm40 mW300 mA1.5 V--Single FrequencyButterfly, PM Pigtail
LPSC-1550-FC1550 nm50 mW250 mA2 V--Single Transverse ModeØ5.6 mm, SM Pigtail
FPL1009S1550 nm100 mW400 mA1.4 V--Single Transverse ModeButterfly, SM Pigtail
FPL1009P1550 nm100 mW400 mA1.4 V--Single Transverse ModeButterfly, PM Pigtail
ULN15PC1550 nm140 mW650 mA3.0 V--Single FrequencyExtended Butterfly, PM Pigtail
ULN15PT1550 nm140 mW650 mA3.0 V--Single FrequencyExtended Butterfly, PM Pigtail
FPL1001C1550 nm150 mW400 mA1.4 V18°31°Single Transverse ModeChip on Submount
FPL1055T1550 nm300 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeØ5.6 mm
FPL1055C1550 nm300 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeChip on Submount
L1550G11550 nm1700 mW5 A1.5 V28°MultimodeØ9 mm
DFB15501555 nm100 mW (Min)1000 mA (Max)3.0 V--Single FrequencyButterfly, SM Pigtail
DFB1550P1555 nm100 mW (Min)1000 mA (Max)3.0 V--Single FrequencyButterfly, PM Pigtail
L1570P5DFB1570 nm5 mW25 mA1.0 VSingle FrequencyØ5.6 mm
L1575G11575 nm1700 mW5 A1.5 V28°MultimodeØ9 mm
LPSC-1625-FC1625 nm50 mW350 mA1.5 V--Single Transverse ModeØ5.6 mm, SM Pigtail
FPL1054S1625 nm80 mW400 mA1.7 V--Single Transverse ModeButterfly, SM Pigtail
FPL1054P1625 nm80 mW400 mA1.7 V--Single Transverse ModeButterfly, PM Pigtail
FPL1054C1625 nm250 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeChip on Submount
FPL1054T1625 nm200 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeØ5.6 mm
FPL1059S1650 nm80 mW400 mA1.7 V--Single Transverse ModeButterfly, SM Pigtail
FPL1059P1650 nm80 mW400 mA1.7 V--Single Transverse ModeButterfly, PM Pigtail
FPL1059C1650 nm225 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeChip on Submount
FPL1059T1650 nm225 mW (Pulsed)750 mA2 V15°28°Single Transverse ModeØ5.6 mm
FPL1940S1940 nm15 mW400 mA2 V--Single Transverse ModeButterfly, SM Pigtail
FPL2000S2 µm15 mW400 mA2 V--Single Transverse ModeButterfly, SM Pigtail
FPL2000C2 µm30 mW400 mA5.2 V19°Single Transverse ModeChip on Submount
ID3250HHLH3.00 - 3.50 µm (DFB)5 mW400 mA (Max)5 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyTwo-Tab C-Mount
QF3850T13.85 µm (FP)200 mW600 mA (Max)13.5 V30°40°Single Transverse ModeØ9 mm
QF3850HHLH3.85 µm (FP)320 mW (Min)1100 mA (Max)13 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QF4040HHLH4.05 µm (FP)320 mW (Min)1100 mA (Max)13 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QD4500CM14.00 - 5.00 µm (DFB)40 mW500 mA (Max)10.5 V30°40°Single FrequencyTwo-Tab C-Mount
QF4050T24.05 µm (FP)70 mW250 mA12 V30°40°Single Transverse ModeØ9 mm
QF4050C24.05 µm (FP)300 mW400 mA12 V3042Single Transverse ModeTwo-Tab C-Mount
QF4050T14.05 µm (FP)300 mW600 mA (Max)12.0 V30°40°Single Transverse ModeØ9 mm
QF4050D24.05 µm (FP)800 mW750 mA13 V30°40°Single Transverse ModeD-Mount
QF4050D34.05 µm (FP)1200 mW1000 mA13 V30°40°Single Transverse ModeD-Mount
QD4472HH4.472 µm (DFB)85 mW500 mA (Max)11 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF4600T24.60 µm (FP)200 mW500 mA (Max)13.0 V30°40°Single Transverse ModeØ9 mm
QF4600T14.60 µm (FP)400 mW800 mA (Max)12.0 V30°40°Single Transverse ModeØ9 mm
QF4600C24.60 µm (FP)600 mW600 mA12 V30°42°Single Transverse ModeTwo-Tab C-Mount
QF4600T34.60 µm (FP)1000 mW800 mA (Max)13 V30°40°Single Transverse ModeØ9 mm
QF4600D44.60 µm (FP)2500 mW1800 mA12.5 V40°30°Single Transverse ModeD-Mount
QF4600D34.60 µm (FP)3000 mW1700 mA12.5 V30°40°Single Transverse ModeD-Mount
QD4602HH4.602 µm (DFB)150 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF4650HHLH4.65 µm (FP)1500 mW (Min)1100 mA12 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QD5500CM15.00 - 6.00 µm (DFB)40 mW700 mA (Max)9.5 V30°45°Single FrequencyTwo-Tab C-Mount
QD5250C25.20 - 5.30 µm (DFB)60 mW700 mA (Max)9.5 V30°45°Single FrequencyTwo-Tab C-Mount
QD5263HH5.263 µm (DFB)130 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD6500CM16.00 - 7.00 µm (DFB)40 mW650 mA (Max)10 V35°50°Single FrequencyTwo-Tab C-Mount
QD6134HH6.134 µm (DFB)50 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD7500CM17.00 - 8.00 µm (DFB)40 mW600 mA (Max)10 V40°50°Single FrequencyTwo-Tab C-Mount
QD7500HHLH7.00 - 8.00 µm (DFB)50 mW700 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD7500DM17.00 - 8.00 µm (DFB)100 mW600 mA (Max)11.5 V40°55°Single FrequencyD-Mount
QD7416HH7.416 µm (DFB)100 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD7716HH7.716 µm (DFB)30 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF7900HB7.9 µm (FP)700 mW1600 mA (Max)9 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QD7901HH7.901 µm (DFB)50 mW700 mA (Max)10 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD8050CM18.00 - 8.10 µm (DFB)100 mW1000 mA (Max)9.5 V55°70°Single FrequencyTwo-Tab C-Mount
QD8500CM18.00 - 9.00 µm (DFB)100 mW900 mA (Max)9.5 V40°55°Single FrequencyTwo-Tab C-Mount
QD8500HHLH8.00 - 9.00 µm (DFB)100 mW600 mA (Max)10.2 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF8450C28.45 µm (FP)300 mW750 mA9 V40°60°Single Transverse ModeTwo-Tab C-Mount
QF8500HB8.5 µm (FP)500 mW2000 mA (Max)9 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QD8650CM18.60 - 8.70 µm (DFB)50 mW900 mA (Max)9.5 V55°70°Single FrequencyTwo-Tab C-Mount
QD8912HH8.912 µm (DFB)150 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD9500CM19.00 - 10.00 µm (DFB)60 mW800 mA (Max)9.5 V40°55°Single FrequencyTwo-Tab C-Mount
QD9500HHLH9.00 - 10.00 µm (DFB)100 mW600 mA (Max)10.2 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD9062HH9.062 µm (DFB)130 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QF9150C29.15 µm (FP)200 mW850 mA11 V40°60°Single Transverse ModeTwo-Tab C-Mount
QF9200HB9.2 µm (FP)250 mW2000 mA (Max)9 V6 mrad (0.34°)6 mrad (0.34°)Single Transverse ModeHorizontal HHL
QF9500T19.5 µm (FP)300 mW550 mA12 V40°55°Single Transverse ModeØ9 mm
QD9550C29.50 - 9.60 µm (DFB)60 mW800 mA (Max)9.5 V40°55°Single FrequencyTwo-Tab C-Mount
QF9550CM19.55 µm (FP)80 mW1500 mA7.8 V35°60°Single Transverse ModeTwo-Tab C-Mount
QD9697HH9.697 µm (DFB)80 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD10500CM110.00 - 11.00 µm (DFB)40 mW600 mA (Max)10 V40°55°Single FrequencyTwo-Tab C-Mount
QD10500HHLH10.00 - 11.00 µm (DFB)50 mW700 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD10530HH10.530 µm (DFB)50 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD10549HH10.549 µm (DFB)60 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL
QD10622HH10.622 µm (DFB)60 mW1000 mA (Max)12 V6 mrad (0.34°)6 mrad (0.34°)Single FrequencyHorizontal HHL

The rows shaded green above denote single-frequency lasers.
Back to Top

705 nm - 770 nm

Note: The rows shaded green below denote single-frequency (single longitudinal mode) laser diodes.

Item # Info Wavelength Powera Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Laser Mode
LP705-SF15 info 705 nm 15 mW 55 mA / 80 mA Ø5.6 mm, SM Pigtail C Yes S7060Rc Yes Single Transverse Mode
HL7001MG info 705 nm 40 mW 75 mA / 100 mA Ø5.6 mm C Yes S7060R No Single Transverse Mode
LP730-SF15 info 730 nm 15 mW 70 mA / 100 mA Ø5.6 mm, SM Pigtail A Yes S7060Rc Yes Single Transverse Mode
HL7302MG info 730 nm 40 mW 75 mA / 100 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
L760VH1 info 760 nm 0.5 mW 3 mA (Max) TO-46 H No S8060 or S8060-4 No Single Frequencyd
DBR760PN info 761 nm 9 mW 125 mA (Typ.) Butterfly, PM Pigtaile 14-Pin Butterfly Yes - Yes Single Frequencyd
L763VH1 info 763 nm 0.5 mW 3 mA (Max) TO-46 H No S8060 or S8060-4 No Single Frequencyd
DBR767PN info 767 nm 23 mW 220 mA (Typ.) Butterfly, PM Pigtaile 14-Pin Butterfly Yes - Yes Single Frequencyd
DBR770PN info 770 nm 35 mW 220 mA (Typ.) Butterfly, PM Pigtaile 14-Pin Butterfly Yes - Yes Single Frequencyd
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • This socket is included with the purchase of the corresponding laser diode.
  • Single Longitudinal Mode and Single Transverse Mode
  • The slow axis of the polarization-maintaining fiber is aligned to the connector key.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemLP705-SF15 Support Documentation
LP705-SF15705 nm, 15 mW, C Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$957.45
Today
HL7001MG Support Documentation
HL7001MGCustomer Inspired! 705 nm, 40 mW, Ø5.6 mm, C Pin Code, Laser Diode
$420.53
Volume Pricing
Today
Choose ItemLP730-SF15 Support Documentation
LP730-SF15730 nm, 15 mW, A Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$873.48
Today
HL7302MG Support Documentation
HL7302MG730 nm, 40 mW, Ø5.6 mm, A Pin Code, Diode
$420.53
Volume Pricing
Today
L760VH1 Support Documentation
L760VH1760 nm, 0.5 mW, TO-46, H Pin Code, VCSEL Diode
$695.64
Today
Choose ItemDBR760PN Support Documentation
DBR760PNCustomer Inspired! 761 nm, 9 mW, Butterfly DBR Laser, PM Fiber, FC/APC, Internal Isolator
$6,231.60
Today
L763VH1 Support Documentation
L763VH1763 nm, 0.5 mW, TO-46, H Pin Code, VCSEL Diode
$695.64
Today
Choose ItemDBR767PN Support Documentation
DBR767PN767 nm, 23 mW, Butterfly DBR Laser, PM Fiber, FC/APC, Internal Isolator
$6,231.60
Today
Choose ItemDBR770PN Support Documentation
DBR770PN770 nm, 35 mW, Butterfly DBR Laser, PM Fiber, FC/APC, Internal Isolator
$6,231.60
Today
Back to Top

780 nm - 795 nm

Note: The rows shaded green below denote single-frequency (single longitudinal mode) laser diodes.

Item # Info Wavelength Powera Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Laser Mode
L780P010 info 780 nm 10 mW 24 mA / 40 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
LP780-SAD15 info 780 nm 15 mW 180 mA (Max) Ø9 mm, SM Pigtail B Yes S8060 or S8060-4 Yes Single Frequencyc
DBR780PN info 780 nm 45 mW 250 mA (Typ.) Butterfly, PM Pigtaild 14-Pin Butterfly Yes - Yes Single Frequencyc
L785P5 info 785 nm 5 mW 28 mA / 40 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
LPS-PM785-FC info 785 nm 6.5 mW 60 mA / 90 mA Ø5.6 mm, PM Pigtailc A Yes S7060Re Yes Single Transverse Mode
LPS-785-FC info 785 nm 10 mW 65 mA / 90 mA Ø5.6 mm, SM Pigtail A Yes S7060Re Yes Single Transverse Mode
LP785-SF20 info 785 nm 20 mW 85 mA / 120 mA Ø5.6 mm, SM Pigtail A Yes S7060Re Yes Single Transverse Mode
DBR785S info 785 nm 22 mW 230 mA / 250 mA Butterfly, SM Pigtail 14-Pin Butterfly Yes - Yes Single Frequencyc
DBR785P info 785 nm 22 mW 230 mA / 250 mA Butterfly, PM Pigtaild 14-Pin Butterfly Yes - Yes Single Frequencyc
L785P25 info 785 nm 25 mW 45 mA / 60 mA Ø5.6 mm B Yes S7060R No Single Transverse Mode
LP785-SAV50 info 785 nm 50 mW 500 mA (Max)f Ø9 mm, SM Pigtail E No S8060 or S8060-4 Yes Single Frequencyc
FPV785S info 785 nm 50 mW 410 mA (Max)f Butterfly, SM Pigtail 14-Pin Butterfly Yes - Yes Single Frequencyc
FPV785P info 785 nm 50 mW 410 mA (Max)f Butterfly, PM Pigtaild 14-Pin Butterfly Yes - Yes Single Frequencyc
L785P090 info 785 nm 90 mW 125 mA / 165 mA Ø5.6 mm C Yes S7060R No Single Transverse Mode
LP785-SF100 info 785 nm 100 mW 300 mA / 450 mA Ø9 mm, SM Pigtail H No S8060 or S8060-4 Yes Single Transverse Mode
FPL785P info 785 nm 200 mW 500 mA / 550 mA Butterfly, PM Pigtailc 14-Pin Butterfly Yes - Yes Single Transverse Mode
FPL785S-250 info 785 nm 250 mW
(Min)
500 mA / 550 mA Butterfly, SM Pigtail 14-Pin Butterfly Yes - Yes Single Transverse Mode
LD785-SEV300g info 785 nm 300 mW 500 mA (Max)f Ø9 mmh E No S8060 or S8060-4 Yes Single Frequencyc
LD785-SH030i info 785 nm 300 mW 400 mA / 450 mA Ø9 mm H Yes S8060 or S8060-4 No Single Transverse Mode
FPL785C info 785 nm 300 mW 400 mA / 450 mA 3 mm x 5 mm Submount See Spec Sheet No - No Single Transverse Mode
LD785-SE400i info 785 nm 400 mW 550 mA / 600 mA Ø9 mm E No S8060 or S8060-4 Yes Single Transverse Mode
FPV785M info 785 nm 600 mW 1100 mA / 1500 mA Butterfly, MM Pigtail 14-Pin Butterfly Yes - No Multimode
L795VH1 info 795 nm 0.25 mW 1.2 mA / 1.5 mA TO-46 H No S8060 or S8060-4 No Single Frequencyc
DBR795PN info 795 nm 40 mW 230 mA (Typ.) Butterfly, PM Pigtaild 14-Pin Butterfly Yes - Yes Single Frequencyc
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • Single Longitudinal Mode and Single Transverse Mode
  • The slow axis of the polarization-maintaining fiber is aligned to the connector key.
  • This socket is included with the purchase of the corresponding laser diode.
  • The power can be tuned across the operating current range, given in the serial-number-specific documentation, while maintaining wavelength-stabilized, single-frequency performance within a stabilized temperature range.
  • In order to achieve the specified performance, we recommend using the LDM90(/M) Laser Diode Mount and, when collimated, an NIR Optical Isolator; single frequency performance when collimated is only guaranteed with >35 dB isolation of back reflections. This volume holographic grating (VHG) laser diode is also available in an SM pigtail package.
  • The Ø9 mm package for the LD785-SEV300 is 4.30 mm (0.17") thick, which is more than the standard Ø9 mm package thickness of 1.50 mm (0.06"). The diode will still be compatible with all Ø9 mm laser diode mounts; please see the Drawing tab in the blue info icon (info) above for full package specifications. Mounting this diode in the LDM90(/M) mount requires two 2-56 screws, included with this diode.
  • This diode is exceptionally sensitive to optical feedback. Any reflection with more than 2% of the incident power has the potential to permanently damage the diode.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
L780P010 Support Documentation
L780P010780 nm, 10 mW, Ø5.6 mm, A Pin Code, Laser Diode
$27.45
Volume Pricing
Today
Choose ItemLP780-SAD15 Support Documentation
LP780-SAD15780 nm, 15 mW, TO Can DFB Laser, SM Fiber, Internal Isolator, FC/APC
$4,251.57
Today
Choose ItemDBR780PN Support Documentation
DBR780PN780 nm, 45 mW, Butterfly DBR Laser, PM Fiber, FC/APC, Internal Isolator
$6,231.60
Lead Time
This item is out of stock and currently has a  lead time
L785P5 Support Documentation
L785P5785 nm, 5 mW, Ø5.6 mm, A Pin Code, Laser Diode
$12.93
Volume Pricing
Today
Choose ItemLPS-PM785-FC Support Documentation
LPS-PM785-FC785 nm, 6.5 mW, A Pin Code, PM Fiber-Pigtailed Laser Diode, FC/PC
$997.86
Today
Choose ItemLPS-785-FC Support Documentation
LPS-785-FC785 nm, 10 mW, A Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$508.44
Today
Choose ItemLP785-SF20 Support Documentation
LP785-SF20785 nm, 20 mW, A Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$588.02
Today
Choose ItemDBR785S Support Documentation
DBR785S785 nm, 25 mW, Butterfly DBR Laser, SM Fiber, FC/APC, Internal Isolator
$6,140.13
Today
Choose ItemDBR785P Support Documentation
DBR785P785 nm, 25 mW, Butterfly DBR Laser, PM Fiber, FC/APC, Internal Isolator
$6,231.60
Today
L785P25 Support Documentation
L785P25785 nm, 25 mW, Ø5.6 mm, B Pin Code, Laser Diode
$43.36
Volume Pricing
Today
Choose ItemLP785-SAV50 Support Documentation
LP785-SAV50785 nm, 50 mW, E Pin Code, SM Fiber, FC/APC, VHG Wavelength-Stabilized SF Laser Diode, Internal Isolator
$1,810.39
Today
Choose ItemFPV785S Support Documentation
FPV785S785 nm, 50 mW, VHG Wavelength-Stabilized SF Laser Diode, Butterfly Package, SM Fiber, FC/APC, TEC and Thermistor, Internal Isolator
$2,736.88
Volume Pricing
Today
Choose ItemFPV785P Support Documentation
FPV785P785 nm, 50 mW, VHG Wavelength-Stabilized SF Laser Diode, Butterfly Package, PM Fiber, FC/APC, TEC and Thermistor, Internal Isolator
$2,906.49
Volume Pricing
Today
L785P090 Support Documentation
L785P090785 nm, 90 mW, Ø5.6 mm, C Pin Code, Laser Diode
$50.49
Today
Choose ItemLP785-SF100 Support Documentation
LP785-SF100785 nm, 100 mW, H Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$1,149.91
Today
Choose ItemFPL785P Support Documentation
FPL785P785 nm, 200 mW, Butterfly Laser Diode, PM Fiber, FC/APC
$2,175.08
7-10 Days
Choose ItemFPL785S-250 Support Documentation
FPL785S-250785 nm, 250 mW (Min), Butterfly Laser Diode, SM Fiber, FC/APC
$2,175.08
Today
Choose ItemLD785-SEV300 Support Documentation
LD785-SEV300Customer Inspired! 785 nm, 300 mW, Ø9 mm TO Can, E Pin Code, VHG Wavelength-Stabilized Single-Frequency Laser Diode
$1,640.53
Today
Choose ItemLD785-SH300 Support Documentation
LD785-SH300785 nm, 300 mW, Ø9 mm, H Pin Code, Laser Diode
$333.81
Volume Pricing
Today
FPL785C Support Documentation
FPL785C785 nm, 300 mW, Chip on Submount, Laser Diode
$545.27
Today
Choose ItemLD785-SE400 Support Documentation
LD785-SE400785 nm, 400 mW, Ø9 mm, E Pin Code, Laser Diode
$424.09
Volume Pricing
Today
FPV785M Support Documentation
FPV785MCustomer Inspired! 785 nm, 600 mW, VHG Wavelength-Stabilized Laser Diode, Butterfly Package, MM Fiber, FC/PC, TEC and Thermistor
$1,056.06
Today
L795VH1 Support Documentation
L795VH1795 nm, 0.25 mW, TO-46, H Pin Code, VCSEL Diode
$164.67
Today
Choose ItemDBR795PN Support Documentation
DBR795PNCustomer Inspired! 795 nm, 40 mW, Butterfly DBR Laser, PM Fiber, FC/APC, Internal Isolator
$6,231.60
Lead Time
This item is out of stock and currently has a  lead time
Back to Top

808 nm

Note: The rows shaded green below denote single-frequency (single longitudinal mode) laser diodes.

Item # Info Wavelength Powera Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Laser Mode
DBR808PN info 808 nm 42 mW 250 mA (Typ.) Butterfly, PM Pigtailc 14 Pin, Type 1 Yes - Yes Single Frequencyd
LP808-SA60 info 808 nm 60 mW 150 mA / 220 mA Ø9 mm, SM Pigtail B Yes S8060 or S8060-4 Yes Single Transverse Mode
M9-808-0150 info 808 nm 150 mW 180 mA / 220 mA Ø9 mm A Yes S8060 or S8060-4 No Single Transverse Mode
L808P200 info 808 nm 200 mW 260 mA / 300 mA Ø5.6 mm A Yes S7060R No Multimode
FPL808P info 808 nm 200 mW 600 mA / 650 mA Butterfly, PM Pigtailc 14 Pin, Type 1 Yes - Yes Single Transverse Mode
FPL808S info 808 nm 250 mW 700 mA / 750 mA Butterfly, SM Pigtail 14 Pin, Type 1 Yes - Yes Single Transverse Mode
L808H1 info 808 nm 300 mW 400 mA / 450 mA Ø9 mm H No S8060 or S8060-4 Yes Single Transverse Mode
L808P500MM info 808 nm 500 mW 650 mA / 700 mA Ø5.6 mm A Yes S7060R No Multimode
LD808-SE500e info 808 nm 500 mW 750 mA / 800 mA Ø9 mmf E No S8060 or S8060-4 Yes Single Transverse Mode
LD808-SEV500g info 808 nm 500 mW 800 mA (Max)h Ø9 mmf E No S8060 or S8060-4 Yes Single Frequencyd
L808P1000MM info 808 nm 1000 mW 1100 mA / 1500 mA Ø9 mm E No S7060R No Multimode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • The slow axis of the polarization-maintaining fiber is aligned to the connector key.
  • Single Longitudinal Mode and Single Transverse Mode
  • This diode is exceptionally sensitive to optical feedback. Any reflection with more than 2% of the incident power has the potential to permanently damage the diode.
  • The Ø9 mm package for this diode is 4.30 mm (0.17") thick, which is more than the standard Ø9 mm package thickness of 1.50 mm (0.06"). The diode will still be compatible with all Ø9 mm laser diode mounts; please see the Drawing tab in the blue info icon (info) above for full package specifications. Mounting this diode in the LDM90(/M) mount requires two 2-56 screws, included with this diode.
  • In order to achieve the specified performance, we recommend using the LDM90(/M) Laser Diode Mount and, when collimated, an NIR Optical Isolator; single frequency performance when collimated is only guaranteed with >35 dB isolation of back reflections.
  • The power can be tuned across the operating current range, given in the serial-number-specific documentation, while maintaining wavelength-stabilized, single-frequency performance within a stabilized temperature range.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemDBR808PN Support Documentation
DBR808PNCustomer Inspired! 808 nm, 42 mW, Butterfly DBR Laser, PM Fiber, FC/APC, Internal Isolator
$6,231.60
Today
Choose ItemLP808-SA60 Support Documentation
LP808-SA60Customer Inspired! 808 nm, 60 mW, B Pin Code, SM Fiber-Pigtailed Laser Diode, FC/APC
$908.41
Today
M9-808-0150 Support Documentation
M9-808-0150808 nm, 150 mW, Ø9 mm, A Pin Code, Laser Diode
$536.95
Volume Pricing
Today
L808P200 Support Documentation
L808P200808 nm, 200 mW, Ø5.6 mm, A Pin Code, MM, Laser Diode
$76.03
Volume Pricing
Today
Choose ItemFPL808P Support Documentation
FPL808P808 nm, 200 mW, Butterfly Laser Diode, PM Fiber, FC/APC
$2,197.66
Today
Choose ItemFPL808S Support Documentation
FPL808S808 nm, 250 mW, Butterfly Laser Diode, SM Fiber, FC/APC
$2,197.66
Volume Pricing
Today
L808H1 Support Documentation
L808H1808 nm, 300 mW, Ø9 mm, H Pin Code, Laser Diode
$329.34
Today
L808P500MM Support Documentation
L808P500MM808 nm, 500 mW, Ø5.6 mm, A Pin Code, MM, Laser Diode
$44.85
Today
Choose ItemLD808-SE500 Support Documentation
LD808-SE500808 nm, 500 mW, Ø9 mm, E Pin Code, Laser Diode
$727.02
Today
Choose ItemLD808-SEV500 Support Documentation
LD808-SEV500808 nm, 500 mW, Ø9 mm TO Can, E Pin Code, VHG Wavelength-Stabilized Single-Frequency Laser Diode
$1,761.69
Volume Pricing
Today
L808P1000MM Support Documentation
L808P1000MM808 nm, 1000 mW, Ø9 mm, E Pin Code, MM, Laser Diode
$88.51
Today
Back to Top

816 nm - 830 nm

Note: The row shaded green below denotes single-frequency (single longitudinal mode) laser diodes.

Item # Info Wavelength Powera Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Laser Mode
DBR816PN info 816 nm 45 mW 250 mA (Typ.) Butterfly, PM Pigtailc 14 Pin, Type 1 Yes - Yes Single Frequencyd
LP820-SF80 info 820 nm 80 mW 230 mA / 400 mA Ø5.6 mm, SM Pigtail C Yes S7060Rd Yes Single Transverse Mode
L820P100 info 820 nm 100 mW 145 mA / 210 mA Ø5.6 mm C Yes S7060R No Single Transverse Mode
L820P200 info 820 nm 200 mW 250 mA / 340 mA Ø5.6 mm C Yes S7060R No Single Transverse Mode
DBR828PN info 828 nm 24 mW 250 mA (Typ.) Butterfly, PM Pigtailc 14 Pin, Type 1 Yes - Yes Single Frequencyd
LPS-830-FC info 830 nm 10 mW 50 mA / 80 mA Ø5.6 mm, SM Pigtail C Yes S7060Re Yes Single Transverse Mode
LPS-PM830-FC info 830 nm 10 mW 120 mA (Typ.) Ø5.6 mm, PM Pigtailc C Yes S7060Re Yes Single Transverse Mode
LP830-SF30 info 830 nm 30 mW 115 mA / 160 mA Ø9 mm, SM Pigtail A Yes S8060 or S8060-4 Yes Single Transverse Mode
HL8338MG info 830 nm 50 mW 75 mA / 100 mA Ø5.6 mm C Yes S7060R No Single Transverse Mode
L830H1 info 830 nm 250 mW 400 mA (Max) Ø9 mm H No S8060 or S8060-4 Yes Single Transverse Mode
FPL830P info 830 nm 300 mW 900 mA / 1000 mA Butterfly, PM Pigtailc 14 Pin, Type 1 Yes - Yes Single Transverse Mode
FPL830S info 830 nm 350 mW 900 mA / 950 mA Butterfly, SM Pigtail 14 Pin, Type 1 Yes - Yes Single Transverse Mode
LD830-SE650f info 830 nm 650 mW 900 mA / 1050 mA Ø9 mmg E No S8060 or S8060-4 Yes Single Transverse Mode
LD830-MA1W info 830 nm 1000 mW 2000 mA (Max) Ø9 mm A Yes S8060 or S8060-4 Yes Multimode
LD830-ME2W info 830 nm 2000 mW 3000 mA (Max) Ø9 mmg E No S8060 or S8060-4 Yes Multimode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • The slow axis of the polarization-maintaining fiber is aligned to the connector key.
  • Single Longitudinal Mode and Single Transverse Mode
  • This socket is included with the purchase of the corresponding laser diode.
  • This diode is exceptionally sensitive to optical feedback. Any reflection with more than 2% of the incident power has the potential to permanently damage the diode.
  • The Ø9 mm package for this diode is 4.30 mm (0.17") thick, which is more than the standard Ø9 mm package thickness of 1.50 mm (0.06"). The diode will still be compatible with all Ø9 mm laser diode mounts; please see the Drawing tab in the blue info icon (info) above for full package specifications. Mounting this diode in the LDM90 requires two 2-56 screws, included with this diode.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemDBR816PN Support Documentation
DBR816PN816 nm, 45 mW, Butterfly DBR Laser, PM Fiber, FC/APC, Internal Isolator
$6,231.60
Today
Choose ItemLP820-SF80 Support Documentation
LP820-SF80820 nm, 80 mW, C Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$989.94
Today
L820P100 Support Documentation
L820P100820 nm, 100 mW, Ø5.6 mm, C Pin Code, Laser Diode
$49.90
Today
L820P200 Support Documentation
L820P200820 nm, 200 mW, Ø5.6 mm, C Pin Code, Laser Diode
$99.50
Today
Choose ItemDBR828PN Support Documentation
DBR828PNCustomer Inspired! 828 nm, 24 mW, Butterfly DBR Laser, PM Fiber, FC/APC, Internal Isolator
$6,231.60
Today
Choose ItemLPS-830-FC Support Documentation
LPS-830-FC830 nm, 10 mW, C Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$598.71
Today
Choose ItemLPS-PM830-FC Support Documentation
LPS-PM830-FC830 nm, 10 mW, C Pin Code, PM Fiber-Pigtailed Laser Diode, FC/PC
$1,035.86
Today
Choose ItemLP830-SF30 Support Documentation
LP830-SF30830 nm, 30 mW, A Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$836.30
Today
HL8338MG Support Documentation
HL8338MG830 nm, 50 mW, Ø5.6 mm, C Pin Code, Laser Diode
$65.93
Volume Pricing
Today
L830H1 Support Documentation
L830H1830 nm, 250 mW, Ø9 mm, H Pin Code, Laser Diode
$274.44
Today
Choose ItemFPL830P Support Documentation
FPL830P830 nm, 300 mW, Butterfly Laser Diode, PM Fiber, FC/APC
$2,197.66
Today
Choose ItemFPL830S Support Documentation
FPL830S830 nm, 350 mW, Butterfly Laser Diode, SM Fiber, FC/APC
$2,197.66
Volume Pricing
Today
Choose ItemLD830-SE650 Support Documentation
LD830-SE650830 nm, 650 mW, Ø9 mm, E Pin Code, Laser Diode
$424.09
Volume Pricing
Today
LD830-MA1W Support Documentation
LD830-MA1W830 nm, 1 W, Ø9 mm, A Pin Code, MM, Laser Diode
$302.92
Today
Choose ItemLD830-ME2W Support Documentation
LD830-ME2W830 nm, 2 W, Ø9 mm, E Pin Code, MM, Laser Diode
$605.84
Today
Back to Top

840 nm - 850 nm

Note: The rows shaded green below denote single-frequency (single longitudinal mode) laser diodes.

Item # Info Wavelength Powera Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Laser Mode
L840P200 info 840 nm 200 mW 255 mA / 340 mA Ø5.6 mm C Yes S7060R No Single Transverse Mode
L850VH1 info 850 nm 1 mW 6 mA (Max) TO-46 H No S8060 or S8060-4 No Single Frequencyc
L850P010 info 850 nm 10 mW 50 mA / 70 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
L850P030 info 850 nm 30 mW 65 mA / 95 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in photodiode can operate at constant power.
  • Single Longitudinal Mode and Single Transverse Mode
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
L840P200 Support Documentation
L840P200840 nm, 200 mW, Ø5.6 mm, C Pin Code, Laser Diode
$54.16
7-10 Days
L850VH1 Support Documentation
L850VH1850 nm, 1 mW, TO-46, H Pin Code, VCSEL Diode
$164.67
Today
L850P010 Support Documentation
L850P010850 nm, 10 mW, Ø5.6 mm, A Pin Code, Laser Diode
$27.45
Volume Pricing
Today
L850P030 Support Documentation
L850P030850 nm, 30 mW, Ø5.6 mm, A Pin Code, Laser Diode
$103.05
Volume Pricing
Today
Back to Top

852 nm

Note: The rows shaded green below denote single-frequency (single longitudinal mode) laser diodes.

Item # Info Wavelength Powera Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Laser Mode
FPV852S info 852 nm 20 mW 400 mA (Max)c Butterfly, SM Pigtail 14 Pin, Type 1 Yes - Yes Single Frequencyd
FPV852P info 852 nm 20 mW 400 mA (Max)c Butterfly, PM Pigtaile 14 Pin, Type 1 Yes - Yes Single Frequencyd
DBR852PN info 852 nm 24 mW 300 mA (Max)c Butterfly, PM Pigtaile 14 Pin, Type 1 Yes - Yes Single Frequencyd
LP852-SF30 info 852 nm 30 mW 115 mA / 160 mA Ø9 mm, SM Pigtail A Yes S8060 or S8060-4 Yes Single Transverse Mode
L852P50 info 852 nm 50 mW 75 mA / 100 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
LP852-SF60 info 852 nm 60 mW 150 mA / 220 mA Ø9 mm, SM Pigtail A Yes S8060 or S8060-4 Yes Single Transverse Mode
L852P100 info 852 nm 100 mW 120 mA / 170 mA Ø9 mm A Yes S8060 or S8060-4 No Single Transverse Mode
L852P150 info 852 nm 150 mW 170 mA / 220 mA Ø9 mm A Yes S8060 or S8060-4 No Single Transverse Mode
L852SEV1f info 852 nm 270 mW 350 mA / 400 mAc Ø9 mmg E No S8060 or S8060-4 Yes Single Frequencyd
L852H1 info 852 nm 300 mW 415 mA (Max) Ø9 mm H No S8060 or S8060-4 Yes Single Transverse Mode
FPL852P info 852 nm 300 mW 900 mA / 1000 mA Butterfly, PM Pigtail 14 Pin, Type 1 Yes - Yes Single Transverse Mode
FPL852S info 852 nm 350 mW 900 mA / 950 mA Butterfly, SM Pigtail 14 Pin, Type 1 Yes - Yes Single Transverse Mode
LD852-SE600h info 852 nm 600 mW 950 mA / 1050 mA Ø9 mmg E No S8060 or S8060-4 Yes Single Transverse Mode
LD852-SEV600f info 852 nm 600 mW 1050 mA (Max)c Ø9 mmg E No S8060 or S8060-4 Yes Single Frequencyd
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in photodiode can operate at constant power.
  • The power can be tuned across the operating current range, given in the serial-number-specific documentation, while maintaining wavelength-stabilized, single-frequency performance within a stabilized temperature range.
  • Single Longitudinal Mode and Single Transverse Mode
  • The slow axis of the polarization-maintaining fiber is aligned to the connector key.
  • In order to achieve the specified performance, we recommend using the LDM90(/M) Laser Diode Mount and, when collimated, an NIR Optical Isolator; single frequency performance when collimated is only guaranteed with >35 dB isolation of back reflections.
  • The Ø9 mm package for this diode is 4.30 mm (0.17") thick, which is more than the standard Ø9 mm package thickness of 1.50 mm (0.06"). The diode will still be compatible with all Ø9 mm laser diode mounts; please see the Drawing tab in the blue info icon (info) above for full package specifications. Mounting this diode in the LDM90(/M) mount requires two 2-56 screws, included with this diode.
  • This diode is exceptionally sensitive to optical feedback. Any reflection with more than 2% of the incident power has the potential to permanently damage the diode.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemFPV852S Support Documentation
FPV852S852 nm, 20 mW, VHG Wavelength-Stabilized SF Laser Diode, Butterfly Package, SM Fiber, FC/APC, TEC and Thermistor, Internal Isolator
$2,736.88
Volume Pricing
Today
Choose ItemFPV852P Support Documentation
FPV852P852 nm, 20 mW, VHG Wavelength-Stabilized SF Laser Diode, Butterfly Package, PM Fiber, FC/APC, TEC and Thermistor, Internal Isolator
$2,906.49
Volume Pricing
7-10 Days
Choose ItemDBR852PN Support Documentation
DBR852PNCustomer Inspired! 852 nm, 24 mW, Butterfly DBR Laser, PM Fiber, FC/APC, Internal Isolator
$6,231.60
Today
Choose ItemLP852-SF30 Support Documentation
LP852-SF30852 nm, 30 mW, A Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$836.30
Today
L852P50 Support Documentation
L852P50852 nm, 50 mW, Ø5.6 mm, A Pin Code, Laser Diode
$172.25
Volume Pricing
Today
Choose ItemLP852-SF60 Support Documentation
LP852-SF60852 nm, 60 mW, A Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$887.40
Today
L852P100 Support Documentation
L852P100852 nm, 100 mW, Ø9 mm, A Pin Code, Laser Diode
$228.08
Volume Pricing
Today
L852P150 Support Documentation
L852P150852 nm, 150 mW, Ø9 mm, A Pin Code, Laser Diode
$336.19
Volume Pricing
Today
Choose ItemL852SEV1 Support Documentation
L852SEV1NEW!852 nm, 270 mW, Ø9 mm TO Can, E Pin Code, VHG Wavelength-Stabilized Single-Frequency Laser Diode
$1,000.00
Today
L852H1 Support Documentation
L852H1852 nm, 300 mW, Ø9 mm, H Pin Code, Laser Diode
$384.22
Today
Choose ItemFPL852P Support Documentation
FPL852P852 nm, 300 mW, Butterfly Laser Diode, PM Fiber, FC/APC
$2,197.66
Today
Choose ItemFPL852S Support Documentation
FPL852S852 nm, 350 mW, Butterfly Laser Diode, SM Fiber, FC/APC
$2,197.66
Volume Pricing
Today
Choose ItemLD852-SE600 Support Documentation
LD852-SE600852 nm, 600 mW, Ø9 mm, E Pin Code, Laser Diode
$727.02
Volume Pricing
Today
Choose ItemLD852-SEV600 Support Documentation
LD852-SEV600852 nm, 600 mW, Ø9 mm TO Can, E Pin Code, VHG Wavelength-Stabilized Single-Frequency Laser Diode
$1,761.69
Volume Pricing
Today
Back to Top

880 nm - 895 nm

Note: The rows shaded green below denote single-frequency (single longitudinal mode) laser diodes.

Item # Info Wavelength Powera Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Laser Mode
LP880-SF3 info 880 nm 3 mW 25 mA / 40 mA Ø5.6 mm, SM Pigtail A Yes S7060Rc Yes Single Transverse Mode
L880P010 info 880 nm 10 mW 30 mA / 40 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
L895VH1 info 895 nm 0.2 mW 1.4 mA / 2.0 mA TO-46 H No S8060 or S8060-4 No Single Frequencyd
DBR895PN info 895 nm 12 mW 300 mA (Typ.) Butterfly, PM Pigtaile 14-Pin Type 1 Yes - Yes Single Frequencyd
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • This socket is included with the purchase of the corresponding laser diode.
  • Single Longitudinal Mode and Single Transverse Mode
  • The slow axis of the polarization-maintaining fiber is aligned to the connector key.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemLP880-SF3 Support Documentation
LP880-SF3880 nm, 3 mW, A Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$552.39
Today
L880P010 Support Documentation
L880P010880 nm, 10 mW, Ø5.6 mm, A Pin Code, Laser Diode
$58.21
Volume Pricing
Today
L895VH1 Support Documentation
L895VH1895 nm, 0.2 mW, H Pin Code, VCSEL Diode
$164.67
Today
Choose ItemDBR895PN Support Documentation
DBR895PNCustomer Inspired! 895 nm, 12 mW, Butterfly DBR Laser, PM Fiber, FC/APC, Internal Isolator
$6,231.60
7-10 Days
Back to Top

904 nm - 960 nm

Note: The rows shaded green below denote single-frequency (single longitudinal mode) laser diodes.
Item # Info Wavelength Powera Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Laser Mode
LP904-SF3 info 904 nm 3 mW 30 mA / 60 mA Ø5.6 mm, SM Pigtail A Yes S7060R Yes Single Transverse Mode
L904P010 info 904 nm 10 mW 50 mA / 70 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
LP915-SF40 info 915 nm 40 mW 130 mA / 200 mA Ø9 mm, SM Pigtail A Yes S8060 or S8060-4 Yes Single Transverse Mode
DBR935PN info 935 nm 13 mW 300 mA (Typical) Butterfly, PM Pigtailc 14-Pin Type 1 Yes - Yes Single Frequencyd
LP940-SF30 info 940 nm 30 mW 90 mA / 120 mA Ø9 mm, SM Pigtail A Yes S8060 or S8060-4 Yes Single Transverse Mode
M9-940-0200 info 940 nm 200 mW 270 mA / 320 mA Ø9 mm A Yes S8060 or S8060-4 No Single Transverse Mode
L960H1 info 960 nm 250 mW 400 mA / 430 mA Ø9 mm H No S8060 or S8060-4 Yes Single Transverse Mode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • The slow axis of the polarization-maintaining fiber is aligned to the connector key.
  • Single Longitudinal Mode and Single Transverse Mode
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemLP904-SF3 Support Documentation
LP904-SF3Customer Inspired! 904 nm, 3 mW, A Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$526.35
Today
L904P010 Support Documentation
L904P010904 nm, 10 mW, Ø5.6 mm, A Pin Code, Laser Diode
$30.28
Volume Pricing
Today
Choose ItemLP915-SF40 Support Documentation
LP915-SF40915 nm, 40 mW, A Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$873.12
Today
Choose ItemDBR935PN Support Documentation
DBR935PNCustomer Inspired! 935 nm, 13 mW, Butterfly DBR Laser, PM Fiber, FC/APC, Internal Isolator
$6,231.60
Lead Time
This item is out of stock and currently has a  lead time
Choose ItemLP940-SF30 Support Documentation
LP940-SF30940 nm, 30 mW, A Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$669.03
Today
M9-940-0200 Support Documentation
M9-940-0200940 nm, 200 mW, Ø9 mm, A Pin Code, Laser Diode
$687.81
Volume Pricing
Today
L960H1 Support Documentation
L960H1960 nm, 250 mW, Ø9 mm, H Pin Code, Laser Diode
$274.44
Volume Pricing
Today
Back to Top

976 nm

Note: The rows shaded green below denote single-frequency (single longitudinal mode) laser diodes.

Item # Info Wavelength Powera Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Laser Mode
FPV976S info 976 nm 30 mW 400 mA (Max) Butterfly, SM Pigtail 14-Pin Butterfly Yes - Yes Single Frequencyc
FPV976P info 976 nm 30 mW 400 mA (Max) Butterfly, PM Pigtaild 14-Pin Butterfly Yes - Yes Single Frequencyc
DBR976PN info 976 nm 33 mW 450 mA (Typ.) Butterfly, PM Pigtaild 14-Pin Butterfly Yes - Yes Single Frequencyc
L976SEV1e info 976 nm 270 mW 350 mA / 400 mAf Ø9 mmg E No S8060 or S8060-4 Yes Single Frequencyc
BL976-SAG3 info 976 nm 300 mW 470 mA / 520 mA Butterfly, SM Pigtail 14-Pin Butterfly Yes - Yes Single Transverse Mode
BL976-PAG500 info 976 nm 500 mW 830 mA / 920 mA Butterfly, PM Pigtaild 14-Pin Butterfly Yes - Yes Single Transverse Mode
BL976-PAG700 info 976 nm 700 mW 1090 mA / 1150 mA Butterfly, PM Pigtaild 14-Pin Butterfly Yes - Yes Single Transverse Mode
BL976-PAG900 info 976 nm 900 mW 1480 mA / 1630 mA Butterfly, PM Pigtaild 14-Pin Butterfly Yes - Yes Single Transverse Mode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • Single Longitudinal Mode and Single Transverse Mode
  • The slow axis of the polarization-maintaining fiber is aligned to the connector key.
  • In order to achieve the specified performance, we recommend using the LDM90(/M) Laser Diode Mount and, when collimated, an NIR Optical Isolator; single frequency performance when collimated is only guaranteed with >35 dB isolation of back reflections.
  • The power can be tuned across the operating current range, given in the serial-number-specific documentation, while maintaining wavelength-stabilized, single-frequency performance within a stabilized temperature range.
  • The Ø9 mm package for this diode is 4.30 mm (0.17") thick, which is more than the standard Ø9 mm package thickness of 1.50 mm (0.06"). The diode will still be compatible with all Ø9 mm laser diode mounts; please see the Drawing tab in the blue info icon (info) above for full package specifications. Mounting this diode in the LDM90(/M) mount requires two 2-56 screws, included with this diode.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemFPV976S Support Documentation
FPV976S976 nm, 30 mW, VHG Wavelength-Stabilized SF Laser Diode, Butterfly Package, SM Fiber, FC/APC, TEC and Thermistor, Internal Isolator
$2,736.88
Volume Pricing
Today
Choose ItemFPV976P Support Documentation
FPV976P976 nm, 30 mW, VHG Wavelength-Stabilized SF Laser Diode, Butterfly Package, PM Fiber, FC/APC, TEC and Thermistor, Internal Isolator
$2,906.49
Volume Pricing
Today
Choose ItemDBR976PN Support Documentation
DBR976PNCustomer Inspired! 976 nm, 33 mW, Butterfly DBR Laser, PM Fiber, FC/APC, Internal Isolator
$6,231.60
Today
Choose ItemL976SEV1 Support Documentation
L976SEV1976 nm, 270 mW, Ø9 mm TO Can, E Pin Code, VHG Wavelength-Stabilized Single-Frequency Laser Diode
$1,530.00
Today
BL976-SAG3 Support Documentation
BL976-SAG3976 nm, 300 mW, Butterfly FBG-Stabilized Laser, SM Fiber, FC/APC
$1,502.97
Today
BL976-PAG500 Support Documentation
BL976-PAG500976 nm, 500 mW, Butterfly FBG-Stabilized Laser, PM Fiber, FC/APC
$1,677.35
Today
BL976-PAG700 Support Documentation
BL976-PAG700976 nm, 700 mW, Butterfly FBG-Stabilized Laser, PM Fiber, FC/APC
$1,980.27
Today
BL976-PAG900 Support Documentation
BL976-PAG900976 nm, 900 mW, Butterfly FBG-Stabilized Laser, PM Fiber, FC/APC
$2,539.78
Today
Back to Top

980 nm

Item # Info Wavelength Powera Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Laser Mode
L980P010 info 980 nm 10 mW 25 mA / 40 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
LP980-SF15 info 980 nm 15 mW 70 mA / 90 mA Ø5.6 mm, SM Pigtail E No S7060Rc Yes Single Transverse Mode
L980P030 info 980 nm 30 mW 100 mA / 150 mA Ø5.6 mm A Yes S7060R No Single Transverse Mode
L980P100A info 980 nm 100 mW 150 mA / 190 mA Ø5.6 mm A Yes S7060R No Multimode
LP980-SA60 info 980 nm 60 mW 230 mA / 400 mA Ø9.0 mm H No S8060 or S8060-4 Yes Single Transverse Mode
LP980-SA100 info 980 nm 100 mW 180 mA / 240 mA Ø5.6 mm Gd Yes S7060R Yes Single Transverse Mode
L980H1 info 980 nm 200 mW 300 mA (Max) Ø9 mm H No S8060 or S8060-4 Yes Single Transverse Modee
L980P200 info 980 nm 200 mW 300 mA / 400 mA Ø5.6 mm A Yes S7060R No Multimode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • This socket is included with the purchase of the corresponding laser diode.
  • The LP980-SA100 has a Reverse G pin code. Please see Spec Sheet for details.
  • At least 90% of the output power is within a single transverse mode.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
L980P010 Support Documentation
L980P010980 nm, 10 mW, Ø5.6 mm, A Pin Code, Laser Diode
$31.77
Volume Pricing
Today
Choose ItemLP980-SF15 Support Documentation
LP980-SF15980 nm, 15 mW, E Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$539.31
Today
L980P030 Support Documentation
L980P030980 nm, 30 mW, Ø5.6 mm, A Pin Code, Laser Diode
$78.70
Volume Pricing
Today
L980P100A Support Documentation
L980P100A980 nm, 100 mW, Ø5.6 mm, A Pin Code, MM, Laser Diode
$124.73
Volume Pricing
Today
Choose ItemLP980-SA60 Support Documentation
LP980-SA60980 nm, 60 mW, H Pin Code, SM Fiber-Pigtailed Laser Diode, FC/APC
$650.76
Today
Choose ItemLP980-SA100 Support Documentation
LP980-SA100Customer Inspired! 980 nm, 100 mW, Reverse G Pin Code, SM Fiber-Pigtailed Laser Diode, FC/APC
$757.01
Today
L980H1 Support Documentation
L980H1980 nm, 200 mW, Ø9 mm, H Pin Code, Laser Diode
$274.44
Today
L980P200 Support Documentation
L980P200980 nm, 200 mW, Ø5.6 mm, A Pin Code, Laser Diode
$158.00
Volume Pricing
Today
Back to Top

1060 nm - 1083 nm

Note: The rows shaded green below denote single-frequency (single longitudinal mode) laser diodes.

Item # Info Wavelength Powera Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Laser Mode
DBR1060SN info 1060 nm 130 mW 650 mA (Typ.) Butterfly, SM Pigtail 14-Pin Butterfly Yes - Yes Single Frequencyc
DBR1060PN info 1060 nm 130 mW 650 mA (Typ.) Butterfly, PM Pigtaild 14-Pin Butterfly Yes - Yes Single Frequencyc
DBR1064S info 1064 nm 40 mW 150 mA / 200 mA Butterfly, SM Pigtail 14-Pin Butterfly Yes - Yes Single Frequencyc
DBR1064P info 1064 nm 40 mW 150 mA / 200 mA Butterfly, PM Pigtaild 14-Pin Butterfly Yes - Yes Single Frequencyc
LPS-1060-FC info 1064 nm 50 mW 220 mA / 300 mA Ø9 mm, SM Pigtail A Yes S8060 or S8060-4 Yes Single Transverse Mode
DBR1064PN info 1064 nm 110 mW 550 mA (Typ.) Butterfly, PM Pigtaild 14-Pin Butterfly Yes - Yes Single Frequencyc
M9-A64-0200 info 1064 nm 200 mW 280 mA / 350 mA Ø9 mm A Yes S8060 or S8060-4 No Single Transverse Mode
L1064H1 info 1064 nm 300 mW 700 mA / 900 mA Ø9 mm H No S8060 or S8060-4 Yes Single Transverse Mode
L1064H2 info 1064 nm 450 mW 1100 mA / 1200 mA Ø9 mm E No S8060 or S8060-4 No Single Transverse Mode
DBR1083PN info 1083 nm 100 mW 500 mA (Typ.) Butterfly, PM Pigtaild 14-Pin Butterfly Yes - Yes Single Frequencyc
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • Single Longitudinal Mode and Single Transverse Mode
  • The slow axis of the polarization-maintaining fiber is aligned to the connector key.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemDBR1060SN Support Documentation
DBR1060SN1060 nm, 130 mW, Butterfly DBR Laser, SM Fiber, FC/APC, Internal Isolator
$4,939.99
Today
Choose ItemDBR1060PN Support Documentation
DBR1060PN1060 nm, 130 mW, Butterfly DBR Laser, PM Fiber, FC/APC, Internal Isolator
$5,214.43
Today
Choose ItemDBR1064S Support Documentation
DBR1064S1064 nm, 40 mW, Butterfly DBR Laser, SM Fiber, FC/APC, Internal Isolator
$5,755.60
Today
Choose ItemDBR1064P Support Documentation
DBR1064P1064 nm, 40 mW, Butterfly DBR Laser, PM Fiber, FC/APC, Internal Isolator
$5,847.10
Today
Choose ItemLPS-1060-FC Support Documentation
LPS-1060-FC1064 nm, 50 mW, A Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$1,115.46
Today
Choose ItemDBR1064PN Support Documentation
DBR1064PN1064 nm, 110 mW, Butterfly DBR Laser, PM Fiber, FC/APC, Internal Isolator
$6,231.60
Lead Time
This item is out of stock and currently has a  lead time
M9-A64-0200 Support Documentation
M9-A64-02001064 nm, 200 mW, Ø9 mm, A Pin Code, Laser Diode
$496.55
Volume Pricing
Today
L1064H1 Support Documentation
L1064H11064 nm, 300 mW, Ø9 mm, H Pin Code, Laser Diode
$274.44
Today
L1064H2 Support Documentation
L1064H21064 nm, 450 mW, Ø9 mm, E Pin Code, Laser Diode
$494.00
Today
Choose ItemDBR1083PN Support Documentation
DBR1083PN1083 nm, 100 mW, Butterfly DBR Laser, PM Fiber, FC/APC, Internal Isolator
$6,231.60
Today
Back to Top

1270 nm - 1370 nm

Note: The rows shaded green below denote single-frequency (single longitudinal mode) laser diodes.

Item # Info Wavelength Powera Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Laser Mode
L1270P5DFBc info 1270 nm 5 mW 15 mA / 40 mA Ø5.6 mm D Yes - Yes Single Frequencyd
L1290P5DFBc info 1290 nm 5 mW 16 mA / 40 mA Ø5.6 mm D Yes - Yes Single Frequencyd
LP1310-SAD2 info 1310 nm 2 mW 13 mA / 40 mA Ø5.6 mm, SM Pigtail D Yes - Yes Single Frequencyd
LP1310-PAD2 info 1310 nm 2 mW 20 mA / 40 mA Ø5.6 mm, PM Pigtail D Yes - Yes Single Frequencyd
LPS-1310-FC info 1310 nm 2.5 mW 20 mA / 35 mA Ø5.6 mm, SM Pigtail D Yes - Yes Single Transverse Mode
LPS-PM1310-FC info 1310 nm 2.5 mW 20 mA / 35 mA Ø5.6 mm, PM Pigtaile D Yes - Yes Single Transverse Mode
L1310P5DFBc info 1310 nm 5 mW 16 mA / 40 mA Ø5.6 mm D Yes - Yes Single Frequencyd
ML725B8F info 1310 nm 5 mW 20 mA / 35 mA Ø5.6 mm D Yes - Yes Single Transverse Mode
LPSC-1310-FC info 1310 nm 50 mW 350 mA / 500 mA Ø5.6 mm, SM Pigtail E No S7060R Yes Single Transverse Mode
FPL1053S info 1310 nm 130 mW 400 mA / 500 mA Butterfly, SM Pigtail 14-Pin Butterfly No - Yes Single Transverse Mode
FPL1053P info 1310 nm 130 mW 400 mA / 500 mA Butterfly, PM Pigtaile 14-Pin Butterfly No - Yes Single Transverse Mode
FPL1053Tf info 1310 nm 300 mW
(Pulsed)
750 mA / 1000 mA Ø5.6 mm E No S7060R No Single Transverse Mode
FPL1053C info 1310 nm 300 mW
(Pulsed)
750 mA / 1000 mA Chip on Submount See Spec Sheet No - No Single Transverse Mode
L1310G1 info 1310 nm 2000 mW 5 A / 8 A Ø9 mm G No S8060 or S8060-4 No Multimode
L1330P5DFBc info 1330 nm 5 mW 14 mA / 40 mA Ø5.6 mm D Yes - Yes Single Frequencyd
L1370G1 info 1370 nm 2000 mW 5 A / 8 A Ø9 mm G No S8060 or S8060-4 No Multimode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • This diode includes an integrated aspheric focusing lens in the cap, allowing for the focus spot and numerical aperture to be matched to SMF-28e+ fiber.
  • Single Longitudinal Mode and Single Transverse Mode
  • The slow axis of the polarization-maintaining fiber is aligned to the connector key.
  • This diode is available from stock in an open header package. It can be converted to a sealed TO can package by customer request. Please contact Tech Support for details.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
L1310P5DFB Support Documentation
L1310P5DFB1310 nm, 5 mW, Ø5.6 mm, D Pin Code, DFB Laser Diode with Aspheric Lens Cap
$92.36
Volume Pricing
Today
+1 Qty Docs Part Number - Universal Price Available
L1270P5DFB Support Documentation
L1270P5DFBCustomer Inspired! 1270 nm, 5 mW, Ø5.6 mm, D Pin Code, DFB Laser Diode with Aspheric Lens Cap
$92.36
Volume Pricing
Today
L1290P5DFB Support Documentation
L1290P5DFB1290 nm, 5 mW, Ø5.6 mm, D Pin Code, DFB Laser Diode with Aspheric Lens Cap
$92.36
Volume Pricing
Today
Choose ItemLP1310-SAD2 Support Documentation
LP1310-SAD21310 nm, 2 mW, TO Can DFB Laser, SM Fiber, Internal Isolator, FC/APC
$617.72
Today
Choose ItemLP1310-PAD2 Support Documentation
LP1310-PAD21310 nm, 2 mW, TO Can DFB Laser, PM Fiber, Internal Isolator, FC/APC
$744.60
Today
Choose ItemLPS-1310-FC Support Documentation
LPS-1310-FC1310 nm, 2.5 mW, D Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$540.50
Today
Choose ItemLPS-PM1310-FC Support Documentation
LPS-PM1310-FC1310 nm, 2.5 mW, D Pin Code, PM Fiber-Pigtailed Laser Diode, FC/PC
$975.28
Today
ML725B8F Support Documentation
ML725B8F1310 nm, 5 mW, Ø5.6 mm, D Pin Code, Laser Diode
$57.61
Volume Pricing
Today
Choose ItemLPSC-1310-FC Support Documentation
LPSC-1310-FC1310 nm, 50 mW, E Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$753.14
Today
FPL1053S Support Documentation
FPL1053S1310 nm, 130 mW, Butterfly Laser Diode, SM Fiber, FC/APC
$1,543.11
Lead Time
FPL1053P Support Documentation
FPL1053P1310 nm, 130 mW, Butterfly Laser Diode, PM Fiber, FC/APC
$1,704.66
7-10 Days
FPL1053T Support Documentation
FPL1053T1310 nm, 300 mW Pulsed, Ø5.6 mm, E Pin Code
$424.09
Today
FPL1053C Support Documentation
FPL1053C1310 nm, 300 mW Pulsed, Chip on Submount, Laser Diode
$302.92
Today
L1310G1 Support Documentation
L1310G11310 nm, 2.0 W, Ø9 mm, G Pin Code, MM Laser Diode
$350.55
Today
L1330P5DFB Support Documentation
L1330P5DFB1330 nm, 5 mW, Ø5.6 mm, D Pin Code, DFB Laser Diode With Aspheric Lens Cap
$92.36
Volume Pricing
Today
L1370G1 Support Documentation
L1370G11370 nm, 2.0 W, Ø9 mm, G Pin Code, MM Laser Diode
$378.50
Today
Back to Top

1425 nm - 1530 nm

Item # Info Wavelength Powera Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Laser Mode
BL1425-PAG500 info 1425 nm 500 mW 1.6 A / 2.1 A Butterfly, PM Pigtailc 14-Pin Butterfly No - Yes Single Transverse Mode
BL1436-PAG500 info 1436 nm 500 mW 1.6 A / 2.1 A Butterfly, PM Pigtailc 14-Pin Butterfly No - Yes Single Transverse Mode
L1450G1 info 1450 nm 2000 mW 5 A / 8 A Ø9 mm G No S8060 or S8060-4 No Multimode
BL1456-PAG500 info 1456 nm 500 mW 1.6 A / 2.1 A Butterfly, PM Pigtailc 14-Pin Butterfly No - Yes Single Transverse Mode
L1470P5DFBe info 1470 nm 5 mW 19 mA / 40 mA Ø5.6 mm D Yes - Yes Single Frequencyd
L1480G1 info 1480 nm 2000 mW 5 A / 8 A Ø9 mm G No S8060 or S8060-4 No Multimode
L1490P5DFBe info 1490 nm 5 mW 24 mA / 40 mA Ø5.6 mm D Yes - Yes Single Frequencyd
L1510P5DFBe info 1510 nm 5 mW 20 mA / 40 mA Ø5.6 mm D Yes - Yes Single Frequencyd
L1530P5DFBe info 1530 nm 5 mW 21 mA / 40 mA Ø5.6 mm D Yes - Yes Single Frequencyd
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • The slow axis of the polarization-maintaining fiber is aligned to the connector key.
  • Single Longitudinal Mode and Single Transverse Mode
  • This diode includes an integrated aspheric focusing lens in the cap, allowing for the focus spot and numerical aperture to be matched to SMF-28e+ fiber.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
BL1425-PAG500 Support Documentation
BL1425-PAG5001425 nm, 500 mW, Butterfly FBG-Stabilized Laser, PM Fiber, FC/APC
$2,034.83
Today
BL1436-PAG500 Support Documentation
BL1436-PAG5001436 nm, 500 mW, Butterfly FBG-Stabilized Laser, PM Fiber, FC/APC
$2,034.83
Today
L1450G1 Support Documentation
L1450G11450 nm, 2.0 W, Ø9 mm, G Pin Code, MM Laser Diode
$351.72
Today
BL1456-PAG500 Support Documentation
BL1456-PAG5001456 nm, 500 mW, Butterfly FBG-Stabilized Laser, PM Fiber, FC/APC
$2,034.83
Today
L1470P5DFB Support Documentation
L1470P5DFB1470 nm, 5 mW, Ø5.6 mm, D Pin Code, DFB Laser Diode with Aspheric Lens Cap
$92.36
Volume Pricing
Today
L1480G1 Support Documentation
L1480G11480 nm, 2.0 W, Ø9 mm, G Pin Code, MM Laser Diode
$354.04
Today
L1490P5DFB Support Documentation
L1490P5DFB1490 nm, 5 mW, Ø5.6 mm, D Pin Code, DFB Laser Diode with Aspheric Lens Cap
$92.36
Volume Pricing
Today
L1510P5DFB Support Documentation
L1510P5DFB1510 nm, 5 mW, Ø5.6 mm, D Pin Code, DFB Laser Diode with Aspheric Lens Cap
$92.36
Volume Pricing
Today
L1530P5DFB Support Documentation
L1530P5DFB1530 nm, 5 mW, Ø5.6 mm, D Pin Code, DFB Laser Diode with Aspheric Lens Cap
$92.36
Volume Pricing
Today
Back to Top

1550 nm - 1575 nm

Note: The rows shaded green below denote single-frequency (single longitudinal mode) laser diodes.

Item # Info Wavelength Powera Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Laser Mode
LPS-1550-FC info 1550 nm 1.5 mW 30 mA / 50 mA Ø5.6 mm, SM Pigtail D Yes - Yes Single Transverse Mode
LPS-PM1550-FC info 1550 nm 1.5 mW 30 mA / 50 mA Ø5.6 mm, PM Pigtailc D Yes - Yes Single Transverse Mode
LP1550-SAD2 info 1550 nm 2 mW 20 mA / 40 mA Ø5.6 mm, SM Pigtail D Yes - Yes Single Frequencyd
LP1550-PAD2 info 1550 nm 2 mW 20 mA / 40 mA Ø5.6 mm, PM Pigtailc D Yes - Yes Single Frequencyd
L1550P5DFBe info 1550 nm 5 mW 20 mA / 40 mA Ø5.6 mm D Yes - Yes Single Frequencyd
ML925B45F info 1550 nm 5 mW 30 mA / 50 mA Ø5.6 mm D Yes - No Single Transverse Mode
SFL1550S info 1550 nm 40 mW 300 mA (Typ.) Butterfly, SM Pigtail 14-Pin Butterfly No - Yes Single Frequencyd
SFL1550P info 1550 nm 40 mW 300 mA (Typ.) Butterfly, PM Pigtailc 14-Pin Butterfly No - Yes Single Frequencyd
LPSC-1550-FC info 1550 nm 50 mW 250 mA / 500 mA Ø5.6 mm, SM Pigtail E No S7060R Yes Single Transverse Mode
FPL1009S info 1550 nm 100 mW
(Typ.)
400 mA / 500 mA Butterfly, SM Pigtail 14-Pin Butterfly No - Yes Single Transverse Mode
FPL1009P info 1550 nm 100 mW
(Typ.)
400 mA / 500 mA Butterfly, PM Pigtailc 14-Pin Butterfly No - Yes Single Transverse Mode
ULN15PCf info 1550 nm 140 mW 650 mA / 800 mA Extended Butterfly,
PM Pigtail
See Spec
Sheet
Yes - Yes Single Frequencyd
ULN15PTf info 1550 nm 140 mW 650 mA / 800 mA Extended Butterfly,
PM Pigtail
See Spec
Sheet
Yes - Yes Single Frequencyd
FPL1001C info 1550 nm 150 mW 400 mA / 500 mA Chip on Submount See Spec Sheet No - No Single Transverse Mode
FPL1055Tg info 1550 nm 300 mW (Pulsed) 750 mA / 1000 mA Ø5.6 mm E No S7060R No Single Transverse Mode
FPL1055C info 1550 nm 300 mW (Pulsed) 750 mA / 1000 mA Chip on Submount See Spec Sheet No - No Single Transverse Mode
L1550G1 info 1550 nm 1700 mW 5 A / 8 A Ø9 mm G No S8060 or S8060-4 No Multimode
DFB1550 info 1555 nm 100 mW (Min) 1000 mA (Max) Butterfly, SM Pigtail 14-Pin Butterfly Yes - Yes Single Frequencyd
DFB1550P info 1555 nm 100 mW (Min) 1000 mA (Max) Butterfly, PM Pigtailc 14-Pin Butterfly Yes - Yes Single Frequencyd
L1570P5DFBe info 1570 nm 5 mW 25 mA / 40 mA Ø5.6 mm D Yes - Yes Single Frequencyd
L1575G1 info 1575 nm 1700 mW 5 A / 8 A Ø9 mm G No S8060 or S8060-4 No Multimode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • The slow axis of the polarization-maintaining fiber is aligned to the connector key.
  • Single Longitudinal Mode and Single Transverse Mode
  • This diode includes an integrated aspheric focusing lens in the cap, allowing for the focus spot and numerical aperture to be matched to SMF-28e+ fiber.
  • ULN lasers exhibit typical relative intensity noise of -165 dBc/Hz and typical Lorentzian linewidths of 100 Hz; click here to see the main product presentation and learn more.
  • This diode is available from stock in an open header package. It can be converted to a sealed TO can package by customer request. Please contact Tech Support for details.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
L1550P5DFB Support Documentation
L1550P5DFB1550 nm, 5 mW, Ø5.6 mm, D Pin Code, DFB Laser Diode with Aspheric Lens Cap
$92.36
Volume Pricing
Today
+1 Qty Docs Part Number - Universal Price Available
Choose ItemLPS-1550-FC Support Documentation
LPS-1550-FC1550 nm, 1.5 mW, D Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$647.42
Today
Choose ItemLPS-PM1550-FC Support Documentation
LPS-PM1550-FC1550 nm, 1.5 mW, D Pin Code, PM Fiber-Pigtailed Laser Diode, FC/PC
$1,038.24
Today
Choose ItemLP1550-SAD2 Support Documentation
LP1550-SAD21550 nm, 2 mW, TO Can DFB Laser, SM Fiber, Internal Isolator, FC/APC
$772.15
Today
Choose ItemLP1550-PAD2 Support Documentation
LP1550-PAD21550 nm, 2 mW, TO Can DFB Laser, PM Fiber, Internal Isolator, FC/APC
$795.90
7-10 Days
ML925B45F Support Documentation
ML925B45F1550 nm, 5 mW, Ø5.6 mm, D Pin Code, Laser Diode
$57.61
Volume Pricing
Today
SFL1550S Support Documentation
SFL1550S1550 nm, 40 mW, Butterfly External Cavity Laser, SM Fiber, FC/APC
$3,049.40
Today
SFL1550P Support Documentation
SFL1550P1550 nm, 40 mW, Butterfly External Cavity Laser, PM Fiber, FC/APC
$3,231.15
Today
Choose ItemLPSC-1550-FC Support Documentation
LPSC-1550-FC1550 nm, 50 mW, E Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$830.36
Today
FPL1009S Support Documentation
FPL1009S1550 nm, 100 mW, Butterfly Laser Diode, SM Fiber, FC/APC
$1,543.11
7-10 Days
FPL1009P Support Documentation
FPL1009P1550 nm, 100 mW, Butterfly Laser Diode, PM Fiber, FC/APC
$1,704.66
7-10 Days
Choose ItemULN15PC Support Documentation
ULN15PC1550 nm, 140 mW, Ultra-Low-Noise Laser, Current Tuning, Extended Butterfly Package, PM Fiber, FC/APC
$6,915.99
Today
Choose ItemULN15PT Support Documentation
ULN15PT1550 nm, 140 mW, Ultra-Low-Noise Laser, Temperature Tuning, Extended Butterfly Package, PM Fiber, FC/APC
$6,915.99
Today
FPL1001C Support Documentation
FPL1001C1550 nm, 150 mW Typical, Chip on Submount, Laser Diode
$302.92
Today
FPL1055T Support Documentation
FPL1055T1550 nm, 300 mW Pulsed, Ø5.6 mm, E Pin Code
$424.09
Today
FPL1055C Support Documentation
FPL1055C1550 nm, 300 mW Pulsed, Chip on Submount, Laser Diode
$302.92
Today
L1550G1 Support Documentation
L1550G11550 nm, 1.7 W, Ø9 mm, G Pin Code, MM Laser Diode
$355.20
Today
Choose ItemDFB1550 Support Documentation
DFB15501555 nm, 100 mW, Butterfly DFB Laser, SM Fiber, FC/APC, Internal Isolator
$3,213.00
Today
Choose ItemDFB1550P Support Documentation
DFB1550P1555 nm, 100 mW, Butterfly DFB Laser, PM Fiber, FC/APC, Internal Isolator
$3,376.20
Today
L1570P5DFB Support Documentation
L1570P5DFB1570 nm, 5 mW, Ø5.6 mm, D Pin Code, DFB Laser Diode with Aspheric Lens Cap
$92.36
Volume Pricing
Today
L1575G1 Support Documentation
L1575G11575 nm, 1.7 W, Ø9 mm, G Pin Code, MM Laser Diode
$356.39
Today
Back to Top

1625 nm - 1650 nm

Item # Info Wavelength Powera Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Laser Mode
LPSC-1625-FC info 1625 nm 50 mW 350 mA / 500 mA Ø5.6 mm, SM Pigtail E No S7060R Yes Single
Transverse
Mode
FPL1054S info 1625 nm 80 mW 400 mA / 500 mA Butterfly, SM Pigtail 14-Pin Butterfly No - Yes
FPL1054P info 1625 nm 80 mW 400 mA / 500 mA Butterfly, PM Pigtailc 14-Pin Butterfly No - Yes
FPL1054C info 1625 nm 250 mW (Pulsed) 750 mA / 1000 mA Chip on Submount See Spec Sheet No - No
FPL1054Td info 1625 nm 200 mW (Pulsed) 750 mA / 1000 mA Ø5.6 mm E No S7060R No
FPL1059S info 1650 nm 80 mW 400 mA / 500 mA Butterfly, SM Pigtail 14-Pin Butterfly No - Yes
FPL1059P info 1650 nm 80 mW 400 mA / 500 mA Butterfly, PM Pigtailc 14-Pin Butterfly No - Yes
FPL1059C info 1650 nm 225 mW (Pulsed) 750 mA / 1000 mA Chip on Submount See Spec Sheet No - No
FPL1059Td info 1650 nm 225 mW (Pulsed) 750 mA / 1000 mA Ø5.6 mm E No S7060R No
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • The slow axis of the polarization-maintaining fiber is aligned to the connector key.
  • This diode is available from stock in an open header package. It can be converted to a sealed TO can package by customer request. Please contact Tech Support for details.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemLPSC-1625-FC Support Documentation
LPSC-1625-FC1625 nm, 50 mW, E Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$830.36
Today
FPL1054S Support Documentation
FPL1054S1625 nm, 80 mW, Butterfly Laser Diode, SM Fiber, FC/APC
$1,603.70
Today
FPL1054P Support Documentation
FPL1054P1625 nm, 80 mW, Butterfly Laser Diode, PM Fiber, FC/APC
$1,761.69
Today
FPL1054C Support Documentation
FPL1054C1625 nm, 250 mW Pulsed, Chip on Submount, Laser Diode
$333.81
Today
FPL1054T Support Documentation
FPL1054T1625 nm, 200 mW Pulsed, Ø5.6 mm, E Pin Code
$466.86
Today
FPL1059S Support Documentation
FPL1059S1650 nm, 80 mW, Butterfly Laser Diode, SM Fiber, FC/APC
$1,640.53
Today
FPL1059P Support Documentation
FPL1059P1650 nm, 80 mW, Butterfly Laser Diode, PM Fiber, FC/APC
$1,792.58
Today
FPL1059C Support Documentation
FPL1059C1650 nm, 225 mW Pulsed, Chip on Submount, Laser Diode
$363.50
Today
FPL1059T Support Documentation
FPL1059T1650 nm, 225 mW Pulsed, Ø5.6 mm, E Pin Code
$509.62
Today
Back to Top

1940 nm - 2000 nm

Item # Info Wavelength Powera Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Laser Mode
FPL1940S info 1940 nm 15 mW 400 mA / 500 mA Butterfly, SM Pigtail 14-Pin Butterfly No - Yes Single Transverse
Mode
FPL2000S info 2000 nm 15 mW 400 mA / 500 mA Butterfly, SM Pigtail 14-Pin Butterfly No - No
FPL2000C info 2000 nm 30 mW 400 mA / 500 mA Chip on Submount See Spec Sheet No - No
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
FPL1940S Support Documentation
FPL1940S1940 nm, 15 mW, Butterfly Laser Diode, SM Fiber, FC/APC
$3,644.55
Today
FPL2000S Support Documentation
FPL2000S2000 nm, 15 mW, Butterfly Laser Diode, SM Fiber, FC/APC
$4,251.57
Today
FPL2000C Support Documentation
FPL2000C2000 nm, 30 mW Typical, Chip on Submount, Laser Diode
$1,822.27
Today