Molded Glass Aspheric Lenses: 600 - 1050 or 650 - 1050 nm AR Coating


  • High NA (0.15 to 0.7)
  • Diffraction-Limited Design
  • Broadband AR-Coated Optics in Stock
  • Collimate or Focus Light with a Single Element

A375TM-B

A375-B

C140TMD-B

354140-B

C710TMD-B

354710-B

Application Idea

Aspheric Lens in a Fiber Launch Application

Related Items


Please Wait
Webpage Features
 info icon Click for complete specifications.
Performance Hyperlink Click to view item-specific focal length shift data and spot diagrams at various wavelengths.
Zemax Files
Click on the red Document icon next to the item numbers below to access the Zemax file download. Our entire Zemax Catalog is also available.

Click to Enlarge

Click Here to Download Raw Data

Features

  • Molded Glass Aspheric Lenses Designed for Infinite Magnification
  • Focus or Collimate Light Without Introducing Spherical Aberration
  • Available Unmounted or Pre-Mounted in Nonmagnetic 303 Stainless Steel Lens Cells Engraved with the Item #
  • Broadband AR Coating for Either 600 - 1050 nm or 650 - 1050 nm

Aspheric lenses focus or collimate light without introducing spherical aberration into the transmitted wavefront. For monochromatic sources, spherical aberration often prevents a single spherical lens from achieving diffraction-limited performance when focusing or collimating light. Aspheric lenses are designed to mitigate the impacts of spherical aberration and are often the best single element solution for many applications including collimating the output of a fiber or laser diode, coupling light into a fiber, spatial filtering, or imaging light onto a detector.

All of the molded glass lenses featured on this page are available with an antireflection coating for either the 600 - 1050 nm or 650 - 1050 nm range deposited on both sides. Other AR coating options are listed in the Aspheric Lens Selection Guide table at right.

These lenses can be purchased unmounted or premounted in nonmagnetic 303 stainless steel lens cells that are engraved with the Item # for easy identification. All mounted aspheres have a metric thread that make them easy to integrate into an optical setup or OEM application; they can also be readily used with our SM1-threaded (1.035"-40) lens tubes by using our aspheric lens adapters. When combined with our microscope objective adapter extension tube, mounted aspheres can be used as a drop-in replacement for multi-element microscope objectives.

A selection of the lenses sold on this page are designed for collimating laser diodes. As seen in the tables below, a compatible laser window thickness is listed for these lenses. In these instances, the numerical aperture (NA), working distance (WD), and wavefront error of these lenses are defined based on the presence of a laser window of the indicated thickness (not included).

If an unmounted aspheric lens is being used to collimate the light from a point source or laser diode, the side with the greater radius of curvature (i.e., the flatter surface) should face the point source or laser diode. To collimate light using one of our mounted aspheric lenses, orient the housing so that the externally threaded end of the mount faces the source.

Molded glass aspheres are manufactured from a variety of optical glasses to yield the indicated performance. The molding process will cause the properties of the glass (e.g., Abbe number) to deviate slightly from those given by glass manufacturers. Specific material properties for each lens can be found by clicking on the Info Icon  in the tables below and selecting the Glass tab.

Choosing a Lens

Aspheric lenses are commonly chosen to couple incident light with a diameter of 1 - 5 mm into a single mode fiber. A simple example will illustrate the key specifications to consider when trying to choose the correct lens.

Example:
Fiber: P1-630A-FC-2
Collimated Beam Diameter Prior to Lens: Ø3 mm

The specifications for the P1-630A-FC-2, 630 nm, FC/PC single mode patch cable indicate that the mode field diameter (MFD) is 4.3 μm. This specification should be matched to the diffraction-limited spot size given by the following equation:

Equation for Diffraction-Limited Spot

Here, f is the focal length of the lens, λ is the wavelength of the input light, and D is the diameter of collimated beam incident on the lens. Solving for the desired focal length of the collimating lens yields

focal length of collimating lens

Thorlabs offers a large selection of mounted and unmounted aspheric lenses to choose from. The aspheric lens with a focal length that is closest to 16 mm has a focal length of 15.29 mm (Item # 354260-B or A260-B). This lens also has a clear aperture that is larger than the collimated beam diameter. Therefore, this option is the best choice given the initial parameters (i.e., a P1-630A-FC-2 single mode fiber and a collimated beam diameter of 3 mm). Remember, for optimal coupling, the spot size of the focused beam must be less than the MFD of the single mode fiber. As a result, if an aspheric lens is not available that provides an exact match, then choose one with a focal length that is shorter than the calculation above yields. Alternatively, if the clear aperture of the aspheric lens is large enough, the beam can be expanded before the aspheric lens, which has the result of reducing the spot size of the focus beam.

Aspheric Lens Design Variables
Click to Enlarge

Reference Drawing

Aspheric Lens Design Formula

Definitions of Variables
z Sag (Surface Profile) as a Function of Y
Y Radial Distance from Optical Axis
R Radius of Curvature
k Conic Constant
An nth Order Aspheric Coefficient

The aspheric surfaces of these lenses may be described using a polynomial expansion in Y, the radial distance from the optical axis. The surface profile or sagitta (often abbreviated as sag) is denoted by z, and is given by the following expression:

where R is the radius of curvature, k is the conic constant, and the An are the nth order aspheric coefficients. The sign of R is determined by whether the center of curvature for the lens surface is located to the right or left of the lens' vertex; a positive R indicates that the center of curvature is located to the right of the vertex, while a negative R indicates that the center of curvature is located to the left of the vertex. For example, the radius of curvature for the left surface of a biconvex lens would be specified as positive, while the radius of curvature for its right surface would be specified as negative.

Aspheric Lens Coefficients

Due to the rotational symmetry of the lens surface, only even powers of Y are contained in the polynomial expansion above. The target values of the aspheric coefficients for each product can be found by clicking either on the blue Info Icons in the tables below (info) or on the red documents icon (docs) next to each lens sold below.

Choosing a Collimation Lens for Your Laser Diode

Since the output of a laser diode is highly divergent, collimating optics are necessary. Aspheric lenses do not introduce spherical aberration and therefore are commonly chosen when the collimated laser beam is to be between one and five millimeters. A simple example will illustrate the key specifications to consider when choosing the correct lens for a given application. The second example below is an extension of the procedure, which will show how to circularize an elliptical beam.

Example 1: Collimating a Diverging Beam

  • Laser Diode to be Used: L780P010
  • Desired Collimated Beam Diameter: Ø3 mm (Major Axis)

When choosing a collimation lens, it is essential to know the divergence angle of the source being used and the desired output diameter. The specifications for the L780P010 laser diode indicate that the typical parallel and perpendicular FWHM beam divergences are 8° and 30°, respectively. Therefore, as the light diverges, an elliptical beam will result. To collect as much light as possible during the collimation process, consider the larger of these two divergence angles in any calculations (i.e., in this case, use 30°). If you wish to convert your elliptical beam into a round one, we suggest using an anamorphic prism pair, which magnifies one axis of your beam; for details, see Example 2 below.

Assuming that the thickness of the lens is small compared to the radius of curvature, the thin lens approximation can be used to determine the appropriate focal length for the asphere. Assuming a divergence angle of 30° (FWHM) and desired beam diameter of 3 mm:

laser diode collimation drawing focal length calculation
Θ = Divergence Angle Ø = Beam Diameter f = Focal Length r = Collimated Beam Radius = Ø/2

Note that the focal length is generally not equal to the needed distance between the light source and the lens.

With this information known, it is now time to choose the appropriate collimating lens. Thorlabs offers a large selection of aspheric lenses. For this application, the ideal lens is a molded glass aspheric lens with focal length near 5.6 mm and our -B antireflection coating, which covers 780 nm. The C171TMD-B (mounted) or 354171-B (unmounted) aspheric lenses have a focal length of 6.20 mm, which will result in a collimated beam diameter (major axis) of 3.3 mm. Next, check to see if the numerical aperture (NA) of the diode is smaller than the NA of the lens:

0.30 = NALens > NADiode ≈ sin(15°) = 0.26

Up to this point, we have been using the full-width at half maximum (FWHM) beam diameter to characterize the beam. However, a better practice is to use the 1/e2 beam diameter. For a Gaussian beam profile, the 1/e2 diameter is almost equal to 1.7X the FWHM diameter. The 1/e2 beam diameter therefore captures more of the laser diode's output light (for greater power delivery) and minimizes far-field diffraction (by clipping less of the incident light).

A good rule of thumb is to pick a lens with an NA twice that of the laser diode NA. For example, either the A390-B or the A390TM-B could be used as these lenses each have an NA of 0.53, which is more than twice the approximate NA of our laser diode (0.26). These lenses each have a focal length of 4.6 mm, resulting in an approximate major beam diameter of 2.5 mm. In general, using a collimating lens with a short focal length will result in a small collimated beam diameter and a large beam divergence, while a lens with a large focal length will result in a large collimated beam diameter and a small divergence.

Example 2: Circularizing an Elliptical Beam

Using the laser diode and aspheric lens chosen above, we can use an anamorphic prism pair to convert our collimated, elliptical beam into a circular beam.

Prism Ray Diagram

Whereas earlier we considered only the larger divergence angle, we now look at the smaller beam divergence of 8°. From this, and using the effective focal length of the A390-B aspheric lens chosen in Example 1, we can determine the length of the semi-minor axis of the elliptical beam after collimation:

r' = f * tan(Θ'/2) = 4.6 mm * tan(4°) = 0.32 mm

The minor beam diameter is double the semi-minor axis, or 0.64 mm. In order to magnify the minor diameter to be equal to the major diameter of 2.5 mm, we will need an anamorphic prism pair that yields a magnification of 3.9. Thorlabs offers both mounted and unmounted prism pairs. Mounted prism pairs provide the benefit of a stable housing to preserve alignment, while unmounted prism pairs can be positioned at any angle to achieve the exact desired magnification. 

The PS883-B mounted prism pair provides a magnification of 4.0 for a 950 nm wavelength beam. Because shorter wavelengths undergo greater magnification when passing through the prism pair, we can expect our 780 nm beam to be magnified by slightly more than 4.0X. Thus, the beam will still maintain a small degree of ellipticity.

Alternatively, we can use the PS871-B unmounted prism pair to achieve the precise magnification of the minor diameter necessary to produce a circular beam. Using the data available here, we see that the PS871-B achieves a magnification of 4.0 when the prisms are positioned at the following angles for a 670 nm wavelength beam:

α1: +34.608° α2: -1.2455°

Refer to the diagram to the right for α1 and α2 definitions. Our 780 nm laser will experience slightly less magnification than a 670 nm beam passing through the prisms at these angles. Some trial and error may be required to achieve the exact desired magnification. In general: 

  • To increase magnification, rotate the first prism clockwise (increasing α1) and rotate the second prism counterclockwise (decreasing α2).
  • To reduce magnification, rotate the first prism counterclockwise (decreasing α1) and rotate the second prism clockwise (increasing α2).
Remember that the prism pair introduces a linear offset between the input and output beams which increases with greater magnification.

Posted Comments:
Yuqing ZHAO  (posted 2024-09-24 14:08:34.23)
Hi, I would like to buy a lens of 350280-B - f=18.40mm 0.15NA Unmounted Geltech Aspheric Lens, ARC: 600-1050 nm, but on your site I find it's obsolete. So do you have lens which are similar to this one? Thank you and wait for your reponse. Best wishes, Yuqing
Mikhail Grishin  (posted 2024-07-30 09:53:11.217)
Is it possible to use A240TM-B assembly in the following conditions: Operation temperature range from +20 deg. C to +45 deg. C; Storage temperature range from minus 20 deg. C to +80 deg C. Humidity is low for all the cases. Please advise. Best Regards, Mikhail
cdolbashian  (posted 2024-08-14 11:38:26.0)
Thank you for reaching out to us with this inquiry. Based on the conditions you have described within our direct communication, it does not seem like the performance will be directly affected. That being said, we have not tested your exact operating conditions, and thus cannot make any guarantees for these elements to maintain a specific performance.
Jose Mejia  (posted 2024-05-07 14:35:54.33)
We have a C220TMD-B and the lens deattached from the mount. How can we put it back together? Thanks in advance
cdolbashian  (posted 2024-05-10 04:14:59.0)
Thank you for reaching out to us with this inquiry. I would recommend carefully cleaning away the old adhesive with some solvent, such as acetone, and then finding some optical adhesive, such as the products found here: https://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id=4973
user  (posted 2023-03-13 16:51:51.1)
The maximum power density that can be tolerated
ksosnowski  (posted 2023-03-17 04:01:09.0)
Thanks for reaching out to Thorlabs. At the moment we have not tested these optics for pulsed or CW damage threshold limitations. I have reached out directly to discuss your application in more detail.
Thomas Marty  (posted 2022-06-01 16:23:16.21)
Hello I would appreciate a TO5 adapter to the package LTN330-B-AutoCADPDF.pdf. This would allow to use the lens adapter directly on the DFB Laserdiode. Kind Regards Thomas Marty
cdolbashian  (posted 2022-06-17 04:41:47.0)
Thank you for the request Thomas! I have reached out to you directly to discuss this application.
user  (posted 2019-09-24 17:28:49.043)
Are the mounted aspheric lenses vacuum compatible and work at 60K?
YLohia  (posted 2019-09-30 12:02:57.0)
Hello, thank you for contacting Thorlabs. In general, these mounted aspheres are not designed for vacuum compatibility and cryogenic use. We typically use NOA68 epoxy to mount the lenses to their mounts, which is not a vacuum-rated epoxy.
giorgos.georgiou  (posted 2018-01-03 10:31:25.793)
Can you provide the Zemax files for the 354430-B lens?
tfrisch  (posted 2018-01-03 02:32:49.0)
Hello, thank you for contacting Thorlabs. I can work on getting the file for you, but until then, the aspheric coefficients are as follows. R=2.838589, K=-0.576643. The center thickness is 0.99mm. The diameter is 2.00mm. I will reach out to you directly as well.
gerald.auboeck  (posted 2016-03-16 14:40:55.23)
Does the -B coating (600 - 1050 nm) stand a temperature of about 250 °C ? If not, can you provide alternative AR coatings which stand this temperature?
besembeson  (posted 2016-03-16 10:21:54.0)
Response from Bweh at Thorlabs USA: The typical operating temperatures should be under 200 deg C. We don't have any alternatives at this time for higher temperatures.
r.a.mccracken  (posted 2015-05-08 17:28:21.327)
Hi! Is it possible to get the Sellmeier formula and coefficients for this lens? Thanks! Richard
jlow  (posted 2015-05-13 10:47:48.0)
Response from Jeremy at Thorlabs: The lens is made from ECO-550 glass. We can provide the refractive indices for the material at different wavelengths. I will contact you directly to provide this.
user  (posted 2014-07-05 04:47:52.283)
A280-B Zemax file?
myanakas  (posted 2014-07-11 03:27:08.0)
Response from Mike at Thorlabs: Based on this feedback, we are currently working to have Zemax files added to our website for all of our molded glass aspheres. In the meantime, since no contact information was provided, please contact techsupport@thorlabs.com for the A280-B Zemax file.
mchen  (posted 2013-06-07 11:27:41.273)
Hi, I want to mount an A230TM-B lens to 0.5" lens tube, but can not find an adapter. Can you please give a suggestion? Thanks, Mike
jlow  (posted 2013-06-07 12:23:00.0)
Response from Jeremy at Thorlabs: The A230TM-B has M9x0.5 thread. The adapter to convert that to SM05 is the S05TM09, found at https://www.thorlabs.com/NewGroupPage9.cfm?ObjectGroup_ID=1749&pn=S05TM09.
dgardner  (posted 2012-10-01 15:34:00.0)
A response from Dave at Thorlabs: Thank you for your feedback. The lenses sold on this page are coated for either 600 - 1050 nm or 650 - 1050 nm. We have updated the specs tables to include the correct AR coating range for each individual lens.
user  (posted 2012-10-01 15:40:57.0)
Confusion! 600nm- or 650nm- starting wavelength of AR coating????
jlow  (posted 2012-07-31 14:03:00.0)
A response from Jeremy at Thorlabs: Thank you for your feedback. The reason the M12 threading is used is because of the size of the unmounted lens, which is about 9.94mm in diameter. With regard to adapters, we only have adapters to SM1 or RMS threading. The reason we do not have an M12 adapter for SM05 is because the wall of the adapter would then be too thin. I will contact you directly with regard to other alternative.
paul.lauria  (posted 2012-07-30 19:32:07.0)
I should say, your *half-inch* lens tubes don't have an adapter for the M12x0.5. Why...? We're kind of tight on space is why I ask.
paul.lauria  (posted 2012-07-30 19:23:22.0)
Your lens tubes don't have adapters for M12 x 0.5 threads, so why bother using this thread for your EFL=8mm lens'? is there some alternative? I'd like to use one of the M8 and M12 lens on this page in a tube. (specifically, C240TME-B and C390TME-B)
jlow  (posted 2012-07-30 13:20:00.0)
Response from Jeremy at Thorlabs. The drop in refractive index is a result of the molding process used in making these molded aspheres. The aspheres are molded above the glass transition temperature and cooled rapidly. This results in a small amount of residual stress, which translates into a small index drop. This data can be found in the Zemax catalogs.
clarafly  (posted 2012-07-28 03:21:47.0)
The index of H-LAK54 at 655 nm is 1.724 in the autocad pdf of A390-B, but http://refractiveindex.info/?group=CDGM&material=H-LAK54 and CDGM's database both give 1.72975 at 655 nm, why the difference? Can you provide your version of dispersion formula?
bdada  (posted 2012-02-24 15:07:00.0)
Response from Buki at Thorlabs to acable: Thank you for your feedback. The variable holds the units but the coefficients are unitless. We are currently looking into how best to unify the information in one document.
bdada  (posted 2012-01-23 08:50:00.0)
Response from Buki at Thorlabs: Thank you for your feedback. The housings of our mounted aspheric lenses are made from 303 stainless steel, which should be non magnetic. We can provide custom aluminum housings and have contacted you to get more information.
p.nowik  (posted 2012-01-19 11:06:41.0)
Is there a possibility to get the lenses mounted in non magnetic materials, for example aluminium?
acable  (posted 2012-01-13 18:47:21.0)
Do the aspheric coeficients have units, seem to be missing from your drawings. It would be nice if the pdf "Spot Diagrams for Laser Quality Molded Glass Aspheric Lens 352230" had the drawing embedded in it so we don't have to open multiple documents.
AR Coating Abbreviations
Abbreviation Description
U Uncoated: Optics Do Not have an AR Coating
A Broadband AR Coating for the 350 - 700 nm Range
B Broadband AR Coating for the 600 - 1050 nm or 650 - 1050 nm Range
C Broadband AR Coating for the 1050 - 1620 nm or 1050 - 1700 nm Range
V Narrowband AR Coating Designed for the Wavelength Listed in the Table Below

The table below contains all molded visible and near-IR aspheric lenses offered by Thorlabs. For our selection of IR molded aspheres, click here. The Item # listed is that of the unmounted, uncoated lens. An "X" in any of the five AR Coating Columns indicates the lens is available with that coating (note that the V coating availability is indicated with the AR coating wavelength). The table to the right defines each letter and lists the specified AR coating range. Clicking on the X takes you to the landing page where that lens (mounted or unmounted) can be purchased.

Base Item # AR Coating Options Effective
Focal Length
NA Outer Diameter of
Unmounted Lens
Working Distance Clear Aperture of
Unmounted Lens
U A B C V Unmounted Mounted
355465 X   0.5 mm S1: 0.50
S2: 0.10
1.845 mm S1: 0.3 mma
S2: 2.9 mma
- S1: Ø0.40 mm
S2: Ø0.70 mm
355915 X   0.8 mm S1: 0.50
S2: 0.12
1.300 mm S1: 0.7 mma
S2: 3.9 mma
- S1: Ø0.77 mm
S2: Ø1.00 mm
355200 X   1.1 mm S1: 0.43
S2: 0.12
2.400 mm S1: 0.5 mmb
S2: 4.8 mma
- S1: Ø1.24 mm
S2: Ø1.24 mm
355201 X   1.1 mm S1: 0.12
S2: 0.43
4.929 mm S1: 0.5 mmb
S2: 4.8 mma
- S1: Ø1.24 mm
S2: Ø1.24 mm
354450 X   1.2 mm S1: 0.30
S2: 0.30
1.800 mm S1: 1.7 mma
S2: 1.7 mma
- S1: Ø1.14 mm
S2: Ø1.14 mm
354710 X X X X   1.5 mm 0.5 2.650 mm 0.5 mmb 0.4 mmb,c S1: Ø1.15 mm
S2: Ø1.50 mm
354140 X X X X   1.5 mm 0.6 2.400 mm 0.8 mma 0.8 mma S1: Ø1.14 mm
S2: Ø1.60 mm
355755 X   1.9 mm S1: 0.15
S2: 0.15
1.700 mm S1: 3.6 mma
S2: 3.6 mma
- S1: Ø1.10 mm
S2: Ø1.10 mm
355151 X X X X   2.0 mm 0.5 3.000 mm 0.5 mmb 0.3 mmb,c S1: Ø1.09 mm
S2: Ø2.00 mm
355440 X X X X   2.8 mm S1: 0.3
S2: 0.5
4.700 mm S1: 2.0 mmb
S2: 7.1 mma
S1: 1.8 mmb,c
S2: 7.09 mma
S1: Ø3.76 mm
S2: Ø4.12 mm
355392 X X X X   2.8 mm 0.6 4.000 mm 1.5 mma 1.0 mma,c S1: Ø2.50 mm
S2: Ø3.60 mm
355390 X X X X   2.8 mm 0.6 4.500 mm 2.2 mma 2.0 mma,c S1: Ø3.60 mm
S2: Ø3.60 mm
355660 X X X X   3.0 mm 0.5 4.000 mm 1.6 mma 1.3 mma,c S1: Ø2.35 mm
S2: Ø3.60 mm
354330 X X X X   3.1 mm 0.7 6.325 mm 1.8 mma 1.8 mma,c S1: Ø3.84 mm
S2: Ø5.00 mm
N414   X X X   3.30 mm 0.47 4.50 mm 1.94 mma 1.83 mma,c Ø3.52 mm
354340 X X X     4.0 mm 0.6 6.325 mm 1.48 mmb 1.2 mmb,c S1: Ø3.77 mm
S2: Ø5.10 mm
357610 X X X 4.0 mm 0.6 6.325 mm 1.5 mmb 1.1 mmb,c S1: Ø3.39 mm
S2: Ø4.80 mm
357775 X X X   405 4.0 mm 0.6 6.325 mm 1.9 mmb 1.5 mmb,c S1: Ø3.45 mm
S2: Ø4.80 mm
354350 X   X X   4.5 mm 0.4 4.700 mm 2.2 mma 1.6 mma,c S1: Ø2.05 mm
S2: Ø3.70 mm
355230 X X X X 1064 4.5 mm 0.6 6.325 mm 2.8 mmb 2.4 mmb,c S1: Ø3.93 mm
S2: Ø5.07 mm
A230 X X X X   4.51 mm 0.55 6.34 mm 2.91 mma 2.53 mma,c Ø4.95 mm
354453 X X X X 4.6 mm 0.5 6.000 mm 2.0 mmb 0.9 mmb,c S1: Ø3.38 mm
S2: Ø4.80 mm
A390   X X     4.60 mm 0.53 6.00 mm 2.70 mma 1.64 mma,c Ø4.89 mm
354430 X   X X   5.0 mm 0.2 2.000 mm 4.4 mma 4.0 mma,c S1: Ø1.40 mm
S2: Ø1.60 mm
354105 X X X X 5.5 mm 0.6 7.200 mm 3.1 mmb 2.0 mmb,c S1: Ø4.96 mm
S2: Ø6.00 mm
354171 X X X X   6.2 mm 0.3 4.700 mm 3.4 mmb 2.8 mmb,c S1: Ø2.72 mm
S2: Ø3.70 mm
355110 X X X X 1064 6.2 mm 0.4 7.200 mm 2.7 mmb 1.6 mmb,c S1: Ø2.93 mm
S2: Ø5.00 mm
A110 X X X X   6.24 mm 0.40 7.20 mm 3.39 mma 2.39 mma,c Ø5.00 mm
A375   X X X   7.50 mm 0.30 6.51 mm 5.90 mma 5.59 mma,c Ø4.50 mm
354240 X X X X 1064 8.0 mm 0.5 9.950 mm 4.9 mmb 3.8 mmb,c S1: Ø6.94 mm
S2: Ø8.00 mm
A240 X X X X   8.00 mm 0.50 9.94 mm 5.92 mma 4.79 mma,c Ø8.00 mm
354060 X X X X 9.6 mm 0.3 6.325 mm 7.5 mmb 7.1 mmb,c S1: Ø5.13 mm
S2: Ø5.20 mm
354061 X X X X 11.0 mm 0.2 6.325 mm 8.9 mmb 8.5 mmb,c S1: Ø4.63 mm
S2: Ø5.20 mm
A220 X X X     11.00 mm 0.26 7.20 mm 7.97 mma 6.91 mma,c Ø5.50 mm
354220 X X X X 1064 11.0 mm 0.3 7.200 mm 6.9 mmb 5.8 mmb,c S1: Ø4.07 mm
S2: Ø5.50 mm
355397 X X X X 11.0 mm 0.3 7.200 mm 9.3 mmb 8.2 mmb,c S1: Ø6.24 mm
S2: Ø6.68 mm
A397   X X X   11.00 mm 0.30 7.20 mm 9.64 mma 8.44 mma,c Ø6.59 mm
354560 X X X X   13.86 mm 0.2 6.325 mm 12.1 mma 11.7 mma,c S1: Ø4.54 mm
S2: Ø5.10 mm
A260   X X X   15.29 mm 0.16 6.50 mm 14.09 mma 13.84 mma,c Ø5.00 mm
354260 X X X X   15.3 mm 0.2 6.500 mm 12.7 mmb 12.4 mmb,c S1: Ø4.61 mm
S2: Ø5.00 mm
A280   X X X   18.40 mm 0.15 6.50 mm 17.13 mma 16.88 mma,c Ø5.50 mm
354280 X X X X 1064 18.4 mm 0.15 6.500 mm 15.9 mmb 15.6 mmb,c S1: Ø5.15 mm
S2: Ø5.50 mm
  • This working distance is measured to the focal point.
  • This working distance is measured to the front of the window of the laser diode being collimated.
  • Measured from the Mount
Back to Top

EFL = 1.5 mm

Item #
(Unmounted /
Mounted)
Info EFLa NA OD WDb CA TC DW AR Range LWTc Glass Performance Thread Suggested
Spanner
Wrench
354140-B info 1.5 mm 0.58 2.400 mm 0.8 mmd S1: Ø1.14 mm
S2: Ø1.60 mm
1.020 mm 780 nm 600 - 1050 nm - D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C140TMD-B 6.2 mm M6 x 0.5 SPW306
354710-B info 1.5 mm 0.53 2.650 mm 0.5 mme S1: Ø1.15 mm
S2: Ø1.50 mm
0.863 mm 1550 nm 600 - 1050 nm 0.250 mm D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C710TMD-B 6.2 mm 0.4 mme,f M6 x 0.5 SPW306
  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • Lenses with an LWT specification are designed for laser diode collimation; in these cases, the NA, WD, and wavefront are defined based on the presence of a laser window (not included) of the indicated thickness.
  • This working distance is measured to the focal point.
  • This working distance is measured to the front of the window of the laser diode being collimated.
  • Measured from the Mount

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

WD = Working Distance
DW = Design Wavelength
TC = Center Thickness

OD = Outer Diameter
LWT = Laser Window Thickness

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
354140-B Support Documentation
354140-Bf = 1.5 mm, NA = 0.58, WD = 0.8 mm, Unmounted Aspheric Lens, ARC: 600 - 1050 nm
$62.79
Volume Pricing
Today
C140TMD-B Support Documentation
C140TMD-Bf = 1.5 mm, NA = 0.58, WD = 0.8 mm, Mounted Aspheric Lens, ARC: 600 - 1050 nm
$97.22
Volume Pricing
Today
354710-B Support Documentation
354710-Bf = 1.5 mm, NA = 0.53, WD = 0.5 mm, Unmounted Aspheric Lens, ARC: 600 - 1050 nm
$78.41
Volume Pricing
Today
C710TMD-B Support Documentation
C710TMD-Bf = 1.5 mm, NA = 0.53, WD = 0.4 mm, Mounted Aspheric Lens, ARC: 600 - 1050 nm
$103.90
Volume Pricing
Today
Back to Top

EFL = 2.xx mm

Item #
(Unmounted / Mounted)
Info EFLa NA OD WDb CA TC DW AR Range LWTc Glass Performance Thread Suggested
Spanner
Wrench
355151-B info 2.0 mm 0.50 3.000 mm 0.5 mmd S1: Ø1.09 mm
S2: Ø2.00 mm
1.892 mm 780 nm 600 - 1050 nm 0.250 mm D-ZLaF52LA Focal Shift /
Spot Size Cross Section
- -
C151TMD-B 2.00 mm 6.2 mm 0.3 mmd,f M6 x 0.5 SPW306
355390-B info 2.8 mm 0.55 4.500 mm 2.2 mme S1: Ø3.60 mm
S2: Ø3.60 mm
1.900 mm 830 nm 600 - 1050 nm - D-ZLaF52LA 390_Asph.pdf - -
C390TME-B 8.2 mm 2.0 mme,f M8 x 0.5 SPW308
355392-B info 2.8 mm 0.60 4.000 mm 1.5 mme S1: Ø2.50 mm
S2: Ø3.60 mm
2.240 mm 830 nm 600 - 1050 nm - D-ZLaF52LA 392_Asph.pdf - -
C392TME-B 6.2 mm 1.0 mme,f M6 x 0.5 SPW306
355440-B info
2.8 mm S1: 0.26
S2: 0.52
4.700 mm S1: 2.0 mmd
S2: 7.1 mme
S1: Ø3.76 mm
S2: Ø4.12 mm
3.827 mm 980 nm 600 - 1050 nm 0.250 mm D-ZLaF52LA Focal Shift /
Spot Size Cross Section
- -
C440TMD-B 8.2 mm S1: 1.9 mmd,f
S2: 7.1 mme
M8 x 0.5 SPW308
  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • Lenses with an LWT specification are designed for laser diode collimation; in these cases, the NA, WD, and wavefront are defined based on the presence of a laser window (not included) of the indicated thickness.
  • This working distance is measured to the front of the window of the laser diode being collimated.
  • This working distance is measured to the focal point.
  • Measured from the Mount

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

WD = Working Distance
DW = Design Wavelength
TC = Center Thickness

OD = Outer Diameter
LWT = Laser Window Thickness

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
355151-B Support Documentation
355151-Bf = 2.0 mm, NA = 0.50, WD = 0.5 mm, Unmounted Aspheric Lens, ARC: 600 - 1050 nm
$71.38
Volume Pricing
Today
C151TMD-B Support Documentation
C151TMD-Bf = 2.00 mm, NA = 0.50, WD = 0.3 mm, Mounted Aspheric Lens, ARC: 600 - 1050 nm
$106.14
Volume Pricing
Today
355390-B Support Documentation
355390-Bf = 2.8 mm, NA = 0.55, WD = 2.2 mm, Unmounted Aspheric Lens, ARC: 600 - 1050 nm
$92.76
Volume Pricing
Today
C390TME-B Support Documentation
C390TME-Bf = 2.8 mm, NA = 0.55, WD = 2.0 mm, Mounted Aspheric Lens, ARC: 600 - 1050 nm
$99.13
Volume Pricing
Today
355392-B Support Documentation
355392-BCustomer Inspired! f = 2.8 mm, NA = 0.60, WD = 1.5 mm, Unmounted Aspheric Lens, ARC: 600 - 1050 nm
$92.76
Volume Pricing
Today
C392TME-B Support Documentation
C392TME-BCustomer Inspired! f = 2.8 mm, NA = 0.60, WD = 1.0 mm, Mounted Aspheric Lens, ARC: 600 - 1050 nm
$99.13
Volume Pricing
Today
355440-B Support Documentation
355440-Bf = 2.8 mm, NA = 0.26/0.52, WD = 2.0/7.1 mm, Unmounted Aspheric Lens, ARC: 600 - 1050 nm
$67.25
Volume Pricing
Today
C440TMD-B Support Documentation
C440TMD-Bf = 2.8 mm, NA = 0.26/0.52, WD = 1.9/7.1 mm, Mounted Aspheric Lens, ARC: 600 - 1050 nm
$89.57
Volume Pricing
Today
Back to Top

EFL = 3.xx mm

Item #
(Unmounted / Mounted)
Info EFLa NA OD WDb CA TC DW AR Range LWTc Glass Performance Thread Suggested
Spanner
Wrench
355660-B info 3.0 mm 0.52 4.000 mm 1.6 mmd S1: Ø2.35 mm
S2: Ø3.60 mm
2.500 mm 1550 nm 600 - 1050 nm - D-ZLaF52LA 660_Asph.pdf - -
C660TME-B 8.2 mm 1.3 mmd,e M8 x 0.5 SPW308
354330-B info 3.1 mm 0.70 6.325 mm 1.800 mmd S1: Ø3.84 mm
S2: Ø5.00 mm
3.214 mm 830 nm 600 - 1050 nm - D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C330TMD-B 9.2 mm 1.8 mmd M9 x 0.5 SPW301
N414-B info 3.30 mm 0.47 4.50 mm 1.94 mmf S2: Ø3.52 mm 3.87 mm 670 nm 600 - 1050 nm 0.25 mm H-ZLaF52 N414_Asph.pdf - -
N414TM-B 6.2 mm 1.8 mme,f 0.3 mm M6 x 0.5 SPW306
  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • Lenses with an LWT specification are designed for laser diode collimation; in these cases, the NA, WD, and wavefront are defined based on the presence of a laser window (not included) of the indicated thickness.
  • This working distance is measured to the focal point.
  • Measured from the Mount
  • This working distance is measured to the front of the window of the laser diode being collimated.

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

WD = Working Distance
DW = Design Wavelength
TC = Center Thickness

OD = Outer Diameter
LWT = Laser Window Thickness

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
355660-B Support Documentation
355660-Bf = 3.0 mm, NA = 0.52, WD = 1.6 mm, Unmounted Aspheric Lens, ARC: 600 - 1050 nm
$109.97
Volume Pricing
Today
C660TME-B Support Documentation
C660TME-Bf = 3.0 mm, NA = 0.52, WD = 1.3 mm, Mounted Aspheric Lens, ARC: 600 - 1050 nm
$116.66
Volume Pricing
Today
354330-B Support Documentation
354330-Bf = 3.1 mm, NA = 0.70, WD = 1.800 mm, Unmounted Aspheric Lens, ARC: 600 - 1050 nm
$78.41
Volume Pricing
Today
C330TMD-B Support Documentation
C330TMD-Bf = 3.1 mm, NA = 0.70, WD = 1.8 mm, Mounted Aspheric Lens, ARC: 600 - 1050 nm
$97.22
Volume Pricing
Today
N414-B Support Documentation
N414-Bf = 3.30 mm, NA = 0.47, WD = 1.94 mm, Unmounted Aspheric Lens, ARC: 600 - 1050 nm
$101.87
Volume Pricing
Today
N414TM-B Support Documentation
N414TM-Bf = 3.30 mm, NA = 0.47, WD = 1.8 mm, Mounted Aspheric Lens, ARC: 600 - 1050 nm
$108.10
Volume Pricing
Today
Back to Top

EFL = 4.xx mm

Item #
(Unmounted / Mounted)
Info EFLa NA OD WDb CA TC DW AR Range LWTc Glass Performance Thread Suggested
Spanner
Wrench
357610-B info 4.0 mm 0.62 6.325 mm 1.5 mmd S1: Ø3.39 mm
S2: Ø4.80 mm
2.953 mm 410 nm 600 - 1050 nm 1.200 mm D-LAK6 Focal Shift /
Spot Size Cross Section
- -
C610TMD-B 9.2 mm 1.1 mmd,e M9 x 0.5 SPW301
357775-B info 4.0 mm 0.60 6.325 mm 1.9 mmd S1: Ø3.45 mm
S2: Ø4.80 mm
2.898 mm 408 nm 600 - 1050 nm 0.250 mm D-LAK6 Focal Shift /
Spot Size Cross Section
- -
C775TMD-B 9.2 mm 1.5 mmd,e M9 x 0.5 SPW301
354340-B info 4.0 mm 0.64 6.325 mm 1.5 mmd S1: Ø3.77 mm
S2: Ø5.10 mm
3.097 mm 685 nm 600 - 1050 nm 1.200 mm D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C340TMD-B 9.2 mm 1.2 mmd,e 1.2 mm M9 x 0.5 SPW301
354350-B info 4.5 mm 0.40 4.700 mm 2.2 mmf S1: Ø2.05 mm
S2: Ø3.70 mm
3.649 mm 980 nm 600 - 1050 nm - D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C350TMD-B 8.2 mm 1.6 mme,f M8 x 0.5 SPW308
355230-B info 4.5 mm 0.55 6.325 mm 2.8 mmd S1: Ø3.93 mm
S2: Ø5.07 mm
2.708 mm 780 nm 600 - 1050 nm 0.250 mm D-ZLaF52LA Focal Shift /
Spot Size Cross Section
- -
C230TMD-B 9.2 mm 2.4 mmd,e M9 x 0.5 SPW301
A230-B info 4.51 mm 0.55 6.34 mm 2.91 mmf Ø4.95 mm 2.94 mm 780 nm 650 - 1050 nm 0.25 mm S-NPH1 A230_Asph.pdf - -
A230TM-B 9.24 mm 2.53 mme,f M9 x 0.5 SPW301
354453-B info 4.6 mm 0.50 6.000 mm 2.0 mmd S1: Ø3.38 mm
S2: Ø4.80 mm
3.135 mm 655 nm 600 - 1050 nm 0.275 mm D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C453TMD-B 9.2 mm 0.9 mmd,e M9 x 0.5 SPW301
A390-B info 4.60 mm 0.53 6.00 mm 2.70 mmf Ø4.89 mm 3.10 mm 655 nm 650 - 1050 nm 0.275 mm H-LaK54 A390_Asph.pdf - -
A390TM-B 9.24 mm 1.64 mme,f M9 x 0.5 SPW301
  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • Lenses with an LWT specification are designed for laser diode collimation; in these cases, the NA, WD, and wavefront are defined based on the presence of a laser window (not included) of the indicated thickness.
  • This working distance is measured to the front of the window of the laser diode being collimated.
  • Measured from the Mount
  • This working distance is measured to the focal point.

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

WD = Working Distance
DW = Design Wavelength
TC = Center Thickness

OD = Outer Diameter
LWT = Laser Window Thickness

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
357610-B Support Documentation
357610-Bf = 4.0 mm, NA = 0.62, WD = 1.5 mm, Unmounted Aspheric Lens, ARC: 600 - 1050 nm
$127.20
Today
C610TMD-B Support Documentation
C610TMD-Bf = 4.0 mm, NA = 0.62, WD = 1.1 mm, Mounted Aspheric Lens, ARC: 600 - 1050 nm
$145.04
Today
357775-B Support Documentation
357775-Bf = 4.0 mm, NA = 0.60, WD = 1.9 mm, Unmounted Aspheric Lens, ARC: 600 - 1050 nm
$127.20
Today
C775TMD-B Support Documentation
C775TMD-Bf = 4.0 mm, NA = 0.60, WD = 1.5 mm, Mounted Aspheric Lens, ARC: 600 - 1050 nm
$145.04
Today
354340-B Support Documentation
354340-Bf = 4.0 mm, NA = 0.64, WD = 1.5 mm, Unmounted Aspheric Lens, ARC: 600 - 1050 nm
$78.41
Volume Pricing
Today
C340TMD-B Support Documentation
C340TMD-Bf = 4.0 mm, NA = 0.64, WD = 1.2 mm, Mounted Aspheric Lens, ARC: 600 - 1050 nm
$97.22
Volume Pricing
Today
354350-B Support Documentation
354350-Bf = 4.5 mm, NA = 0.40, WD = 2.2 mm, Unmounted Aspheric Lens, ARC: 600 - 1050 nm
$67.90
Volume Pricing
Today
C350TMD-B Support Documentation
C350TMD-Bf = 4.5 mm, NA = 0.40, WD = 1.6 mm, Mounted Aspheric Lens, ARC: 600 - 1050 nm
$90.53
Volume Pricing
Today
355230-B Support Documentation
355230-Bf = 4.5 mm, NA = 0.55, WD = 2.8 mm, Unmounted Aspheric Lens, ARC: 600 - 1050 nm
$67.25
Volume Pricing
Today
C230TMD-B Support Documentation
C230TMD-Bf = 4.5 mm, NA = 0.55, WD = 2.4 mm, Mounted Aspheric Lens, ARC: 600 - 1050 nm
$86.07
Volume Pricing
Today
A230-B Support Documentation
A230-Bf = 4.51 mm, NA = 0.55, WD = 2.91 mm, Unmounted Aspheric Lens, ARC: 650 - 1050 nm
$92.36
Volume Pricing
Today
A230TM-B Support Documentation
A230TM-Bf = 4.51 mm, NA = 0.55, WD = 2.53 mm, Mounted Aspheric Lens, ARC: 650 - 1050 nm
$98.90
Volume Pricing
Today
354453-B Support Documentation
354453-Bf = 4.6 mm, NA = 0.50, WD = 2.0 mm, Unmounted Aspehric Lens, ARC: 600 - 1050 nm
$71.87
Volume Pricing
Today
C453TMD-B Support Documentation
C453TMD-Bf = 4.6 mm, NA = 0.50, WD = 0.9 mm, Mounted Aspheric Lens, ARC: 600 - 1050 nm
$89.04
Volume Pricing
Today
A390-B Support Documentation
A390-Bf = 4.60 mm, NA = 0.53, WD = 2.70 mm, Unmounted Aspheric Lens, ARC: 650 - 1050 nm
$101.87
Volume Pricing
Today
A390TM-B Support Documentation
A390TM-Bf = 4.60 mm, NA = 0.53, WD = 1.64 mm, Mounted Aspheric Lens, ARC: 650 - 1050 nm
$108.10
Volume Pricing
3 weeks
Back to Top

EFL = 5.x mm

Item #
(Unmounted /
Mounted)
Info EFLa NA OD WDb CA TC DW AR Range LWTc Glass Performance Thread Suggested
Spanner
Wrench
354430-B info 5.0 mm 0.15 2.000 mm 4.4 mmd S1: Ø1.40 mm
S2: Ø1.60 mm
0.991 mm 1550 nm 600 - 1050 nm - D-ZK3 430_Asph.pdf - -
C430TME-B 6.2 mm 4.2 mmd,e M6 x 0.5 SPW306
354105-B info 5.5 mm 0.60 7.200 mm 3.1 mmf S1: Ø4.96 mm
S2: Ø6.00 mm
2.937 mm 633 nm 600 - 1050 nm 0.250 mm D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C105TMD-B 9.2 mm 2.0 mme,f M9 x 0.5 SPW301
  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • Lenses with an LWT specification are designed for laser diode collimation; in these cases, the NA, WD, and wavefront are defined based on the presence of a laser window (not included) of the indicated thickness.
  • This working distance is measured to the focal point.
  • Measured from the Mount
  • This working distance is measured to the front of the window of the laser diode being collimated.

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

WD = Working Distance
DW = Design Wavelength
TC = Center Thickness

OD = Outer Diameter
LWT = Laser Window Thickness

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
354430-B Support Documentation
354430-Bf = 5.0 mm, NA = 0.15, WD = 4.4 mm, Unmounted Aspheric Lens, ARC: 600 - 1050 nm
$92.76
Volume Pricing
Today
C430TME-B Support Documentation
C430TME-Bf = 5.0 mm, NA = 0.15, WD = 4.2 mm, Mounted Aspheric Lens, ARC: 600 - 1050 nm
$99.13
Volume Pricing
Today
354105-B Support Documentation
354105-Bf = 5.5 mm, NA = 0.60, WD = 3.1 mm, Unmounted Aspheric Lens, ARC: 600 - 1050 nm
$139.92
Volume Pricing
Today
C105TMD-B Support Documentation
C105TMD-Bf = 5.5 mm, NA = 0.60, WD = 2.0 mm, Mounted Aspheric Lens, ARC: 600 - 1050 nm
$156.61
Volume Pricing
Today
Back to Top

EFL = 6.xx mm

Item #
(Unmounted / Mounted)
Info EFLa NA OD WDb CA TC DW AR Range LWTc Glass Performance Thread Suggested
Spanner
Wrench
354171-B info 6.2 mm 0.30 4.700 mm 3.4 mmd S1: Ø2.72 mm
S2: Ø3.70 mm
3.484 mm 633 nm 600 - 1050 nm 0.275 mm D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C171TMD-B 8.2 mm 2.8 mmd,e M8 x 0.5 SPW308
355110-B info 6.2 mm 0.40 7.200 mm 2.7 mmd S1: Ø2.93 mm
S2: Ø5.00 mm
5.158 mm 780 nm 600 - 1050 nm 0.275 mm D-ZLaF52LA Focal Shift /
Spot Size Cross Section
- -
C110TMD-B 9.2 mm 1.6 mmd,e M9 x 0.5 SPW301
A110-B info 6.24 mm 0.40 7.20 mm 3.39 mmf Ø5.00 mm 5.36 mm 780 nm 650 - 1050 nm 0.275 mm H-LaK54 A110_Asph.pdf - -
A110TM-B 9.24 mm 2.39 mme,f M9 x 0.5 SPW301
  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • Lenses with an LWT specification are designed for laser diode collimation; in these cases, the NA, WD, and wavefront are defined based on the presence of a laser window (not included) of the indicated thickness.
  • This working distance is measured to the front of the window of the laser diode being collimated.
  • Measured from the Mount
  • This working distance is measured to the focal point.

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

WD = Working Distance
DW = Design Wavelength
TC = Center Thickness

OD = Outer Diameter
LWT = Laser Window Thickness

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
354171-B Support Documentation
354171-Bf = 6.2 mm, NA = 0.30, WD = 3.4 mm, Unmounted Aspheric Lens, ARC: 600 - 1050 nm
$67.90
Volume Pricing
Today
C171TMD-B Support Documentation
C171TMD-Bf = 6.2 mm, NA = 0.30, WD = 2.8 mm, Mounted Aspheric Lens, ARC: 600 - 1050 nm
$90.53
Volume Pricing
Today
355110-B Support Documentation
355110-Bf = 6.2 mm, NA = 0.40, WD = 2.7 mm, Unmounted Aspheric Lens, ARC: 600 - 1050 nm
$89.57
Volume Pricing
Today
C110TMD-B Support Documentation
C110TMD-Bf = 6.2 mm, NA = 0.40, WD = 1.6 mm, Mounted Aspheric Lens, ARC: 600 - 1050 nm
$108.36
Volume Pricing
Today
A110-B Support Documentation
A110-Bf = 6.24 mm, NA = 0.40, WD = 3.39 mm, Unmounted Aspheric Lens, ARC: 650 - 1050 nm
$92.36
Volume Pricing
Today
A110TM-B Support Documentation
A110TM-Bf = 6.24 mm, NA = 0.40, WD = 2.39 mm, Mounted Aspheric Lens, ARC: 650 - 1050 nm
$98.90
Volume Pricing
Today
Back to Top

EFL = 7.50 mm

Item #
(Unmounted /
Mounted)
Info EFLa NA OD WDb CA TC DW AR Range LWTc Glass Performance Thread Suggested
Spanner
Wrench
A375-B info 7.50 mm 0.30 6.51 mm 5.90 mmd Ø4.50 mm 2.75 mm 810 nm 650 - 1050 nm 0.275 mm H-LaK54 A375_Asph.pdf - -
A375TM-B 9.24 mm 5.59 mmd,e M9 x 0.5 SPW301
  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the deisgn wavelength.
  • Lenses with an LWT specification are designed for laser diode collimation; in these cases, the NA, WD, and wavefront are defined based on the presence of a laser window (not included) of the indicated thickness.
  • This working distance is measured to the focal point.
  • Measured from the Mount

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

WD = Working Distance
DW = Design Wavelength
TC = Center Thickness

OD = Outer Diameter
LWT = Laser Window Thickness

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
A375-B Support Documentation
A375-Bf = 7.50 mm, NA = 0.30, WD = 5.90 mm, Unmounted Aspheric Lens, ARC: 650 - 1050 nm
$101.87
Volume Pricing
Today
A375TM-B Support Documentation
A375TM-Bf = 7.50 mm, NA = 0.30, WD = 5.59 mm, Mounted Aspheric Lens, ARC: 650 - 1050 nm
$108.10
Volume Pricing
Today
Back to Top

EFL = 8.0 mm

Item #
(Unmounted / Mounted)
Info EFLa NA OD WDb CA TC DW AR Range LWTc Glass Performance Thread Suggested
Spanner
Wrench
354240-B info 8.0 mm 0.50 9.936 mm 4.9 mmd S1: Ø6.94 mm
S2: Ø8.00 mm
3.434 mm 780 nm 600 - 1050 nm 0.250 mm D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C240TMD-B 12.2 mm 3.8 mmd,f M12 x 0.5 SPW302
A240-B info 8.00 mm 0.50 9.94 mm 5.92 mme Ø8.00 mm 3.69 mm 780 nm 650 - 1050 nm 0.25 mm D-LaK6 A240_Asph.pdf - -
A240TM-B 12.24 mm 4.79 mme,f M12 x 0.5 SPW302
  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • Lenses with an LWT specification are designed for laser diode collimation; in these cases, the NA, WD, and wavefront are defined based on the presence of a laser window (not included) of the indicated thickness.
  • This working distance is measured to the front of the window of the laser diode being collimated.
  • This working distance is measured to the focal point.
  • Measured from the Mount

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

WD = Working Distance
DW = Design Wavelength
TC = Center Thickness

OD = Outer Diameter
LWT = Laser Window Thickness

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
354240-B Support Documentation
354240-Bf = 8.0 mm, NA = 0.50, WD = 4.9 mm, Unmounted Aspheric Lens, ARC: 600 - 1050 nm
$74.99
Volume Pricing
Today
C240TMD-B Support Documentation
C240TMD-Bf = 8.0 mm, NA = 0.50, WD = 3.8 mm, Mounted Aspheric Lens, ARC: 600 - 1050 nm
$97.49
Volume Pricing
Today
A240-B Support Documentation
A240-Bf = 8.00 mm, NA = 0.50, WD = 5.92 mm, Unmounted Aspheric Lens, ARC: 650 - 1050 nm
$92.36
Volume Pricing
Today
A240TM-B Support Documentation
A240TM-Bf = 8.00 mm, NA = 0.50, WD = 4.79 mm, Mounted Aspheric Lens, ARC: 650 - 1050 nm
$98.90
Volume Pricing
Today
Back to Top

EFL = 9.6 mm

Item #
(Unmounted /
Mounted)
Info EFLa NA OD WDb CA TC DW AR Range LWTc Glass Performance Thread Suggested
Spanner
Wrench
354060-B info
9.6 mm 0.27 6.325 mm 7.5 mmd S1: Ø5.13 mm
S2: Ø5.20 mm
2.493 mm 633 nm 600 - 1050 nm 0.250 mm D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C060TMD-B 9.2 mm 7.1 mmd,e M9 x 0.5 SPW301
  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • Lenses with an LWT specification are designed for laser diode collimation; in these cases, the NA, WD, and wavefront are defined based on the presence of a laser window (not included) of the indicated thickness.
  • This working distance is measured to the front of the window of the laser diode being collimated.
  • Measured from the Mount

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

WD = Working Distance
DW = Design Wavelength
TC = Center Thickness

OD = Outer Diameter
LWT = Laser Window THickness

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
354060-B Support Documentation
354060-Bf = 9.6 mm, NA = 0.27, WD = 7.5 mm, Unmounted Aspheric Lens, ARC: 600 - 1050 nm
$71.87
Volume Pricing
Today
C060TMD-B Support Documentation
C060TMD-Bf = 9.6 mm, NA = 0.27, WD = 7.1 mm, Mounted Aspheric Lens, ARC: 600 - 1050 nm
$88.56
Volume Pricing
Today
Back to Top

EFL = 11.0 mm

Item #
(Unmounted / Mounted)
Info EFLa NA OD WDb CA TC DW AR Range LWTc Glass Performance Thread Suggested
Spanner
Wrench
354061-B info 11.0 mm 0.24 6.330 mm 8.9 mmd S1: Ø4.63 mm
S2: Ø5.20 mm
2.434 mm 633 nm 600 - 1050 nm 0.250 mm D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C061TMD-B 9.2 mm 8.5 mmd,e M9 x 0.5 SPW301
354220-B info 11.0 mm 0.25 7.200 mm 6.909 mmd S1: Ø4.07 mm
S2: Ø5.50 mm
5.032 mm 633 nm 600 - 1050 nm 0.250 mm D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C220TMD-B 9.2 mm 5.8 mmd,e M9 x 0.5 SPW301
A220-B info 11.00 mm 0.26 7.20 mm 7.97 mmf Ø5.50 mm 5.00 mm 633 nm 650 - 1050 nm 0.25 mm D-K59 A220_Asph.pdf - -
A220TM-B 9.24 mm 6.91 mme,f 0.275 mm M9 x 0.5 SPW301
355397-B info 11.0 mm 0.30 7.200 mm 9.3 mmd S1: Ø6.24 mm
S2: Ø6.68 mm
1.947 mm 670 nm 600 - 1050 nm 0.275 mm D-ZLaF52LA Focal Shift /
Spot Size Cross Section
- -
C397TMD-B 9.2 mm 8.2 mmd,e M9 x 0.5 SPW301
A397-B info 11.00 mm 0.30 7.20 mm 9.64 mmf Ø6.59 mm 2.20 mm 670 nm 650 - 1050 nm 0.275 mm H-LaK54 A397_Asph.pdf - -
A397TM-B 9.24 mm 8.44 mme,f M9 x 0.5 SPW301
  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • Lenses with an LWT specification are designed for laser diode collimation; in these cases, the NA, WD, and wavefront are defined based on the presence of a laser window (not included) of the indicated thickness.
  • This working distance is measured to the front of the window of the laser diode being collimated.
  • Measured from the Mount
  • This working distance is measured to the focal point.

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

WD = Working Distance
DW = Design Wavelength
TC = Center Thickness

OD = Outer Diameter
LWT = Laser Window Thickness

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
354061-B Support Documentation
354061-Bf = 11.0 mm, NA = 0.24, WD = 8.9 mm, Unmounted Aspheric Lens, ARC: 600 - 1050 nm
$71.87
Volume Pricing
Today
C061TMD-B Support Documentation
C061TMD-Bf = 11.0 mm, NA = 0.24, WD = 8.5 mm, Mounted Aspheric Lens, ARC: 600 - 1050 nm
$88.56
Volume Pricing
Today
354220-B Support Documentation
354220-Bf = 11.0 mm, NA = 0.25, WD = 6.909 mm, Unmounted Aspheric Lens, ARC: 600 - 1050 nm
$71.38
Volume Pricing
Today
C220TMD-B Support Documentation
C220TMD-Bf = 11.0 mm, NA = 0.25, WD = 5.8 mm, Mounted Aspheric Lens, ARC: 600 - 1050 nm
$90.53
Volume Pricing
Today
A220-B Support Documentation
A220-Bf = 11.00 mm, NA = 0.26, WD = 7.97 mm, Unmounted Aspheric Lens, ARC: 650 - 1050 nm
$92.36
Volume Pricing
Today
A220TM-B Support Documentation
A220TM-Bf = 11.00 mm, NA = 0.26, WD = 6.91 mm, Mounted Aspheric Lens, ARC: 650 - 1050 nm
$98.90
Volume Pricing
Today
355397-B Support Documentation
355397-Bf = 11.0 mm, NA = 0.30, WD = 9.3 mm, Unmounted Aspheric Lens, ARC: 600 - 1050 nm
$71.87
Volume Pricing
Today
C397TMD-B Support Documentation
C397TMD-Bf = 11.0 mm, NA = 0.30, WD = 8.2 mm, Mounted Aspheric Lens, ARC: 600 - 1050 nm
$88.56
Volume Pricing
Today
A397-B Support Documentation
A397-Bf = 11.00 mm, NA = 0.30, WD = 9.64 mm, Unmounted Aspheric Lens, ARC: 650 - 1050 nm
$101.87
Volume Pricing
Today
A397TM-B Support Documentation
A397TM-Bf = 11.00 mm, NA = 0.30, WD = 8.44 mm, Mounted Aspheric Lens, ARC: 650 - 1050 nm
$108.10
Volume Pricing
Today
Back to Top

EFL = 13.9 mm

Item #
(Unmounted /
Mounted)
Info EFLa NA OD WDb CA TC DW AR Range LWTc Glass Performance Thread Suggested
Spanner
Wrench
354560-B info 13.9 mm 0.18 6.325 mm 12.1 mmd S1: Ø4.54 mm
S2: Ø5.10 mm
2.773 mm 650 nm 600 - 1050 nm - D-ZK3 560_Asph.pdf - -
C560TME-B 9.2 mm 11.7 mmd,e M9 x 0.5 SPW301
  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • Lenses with an LWT specification are designed for laser diode collimation; in these cases, the NA, WD, and wavefront are defined based on the presence of a laser window (not included) of the indicated thickness.
  • This working distance is measured to the focal point.
  • Measured from the Mount

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

WD = Working Distance
DW = Design Wavelength
TC = Center Thickness

OD = Outer Diameter
LWT = Laser Window Thickness

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
354560-B Support Documentation
354560-Bf = 13.9 mm, NA = 0.18, WD = 12.1 mm, Unmounted Aspheric Lens, ARC: 600 - 1050 nm
$99.13
Volume Pricing
Today
C560TME-B Support Documentation
C560TME-Bf = 13.9 mm, NA = 0.18, WD = 11.7 mm, Mounted Aspheric Lens, ARC: 600 - 1050 nm
$106.14
Volume Pricing
Today
Back to Top

EFL = 15.xx mm

Item #
(Unmounted/
Mounted)
Info EFLa NA OD WDb CA TC DW AR Range LWTc Glass Performance Thread Suggested
Spanner
Wrench
354260-B info 15.3 mm 0.16 6.500 mm 12.7 mmd S1: Ø4.61 mm
S2: Ø5.00 mm
2.209 mm 780 nm 600 - 1050 nm 0.250 mm D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C260TMD-B 9.2 mm 12.4 mmd,e M9 x 0.5 SPW301
A260-B info 15.29 mm 0.16 6.50 mm 14.09 mmf Ø5.00 mm 2.20 mm 780 nm 650 - 1050 nm 0.25 mm H-LaK54 A260_Asph.pdf - -
A260TM-B 9.24 mm 13.84 mme,f - M9 x 0.5 SPW301
  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • Lenses with an LWT specification are designed for laser diode collimation; in these cases, the NA, WD, and wavefront are defined based on the presence of a laser window (not included) of the indicated thickness.
  • This working distance is measured from to the front of the window of the laser diode being collimated.
  • Measured from the Mount
  • This working distance is measured to the focal point.

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

WD = Working Distance
DW = Design Wavelength
TC = Center Thickness

OD = Outer Diameter
LWT = Laser Window Thickness

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
354260-B Support Documentation
354260-Bf = 15.3 mm, NA = 0.16, WD = 12.7 mm, Unmounted Aspheric Lens, ARC: 600 - 1050 nm
$78.41
Volume Pricing
Today
C260TMD-B Support Documentation
C260TMD-Bf = 15.3 mm, NA = 0.16, WD = 12.4 mm, Mounted Aspheric Lens, ARC: 600 - 1050 nm
$100.71
Volume Pricing
Today
A260-B Support Documentation
A260-Bf = 15.29 mm, NA = 0.16, WD = 14.09 mm, Unmounted Aspheric Lens, ARC: 650 - 1050 nm
$92.36
Volume Pricing
Today
A260TM-B Support Documentation
A260TM-Bf = 15.29 mm, NA = 0.16, WD = 13.84 mm, Mounted Aspheric Lens, ARC: 650 - 1050 nm
$98.90
Volume Pricing
Lead Time
Back to Top

EFL = 18.4 mm

Item #
(Unmounted/
Mounted)
Info EFLa NA OD WDb CA TC DW AR Range LWTc Glass Performance Thread Suggested
Spanner
Wrench
354280-B info 18.4 mm 0.15 6.500 mm 15.9 mmd S1: Ø5.15 mm
S2: Ø5.50 mm
2.178 mm 780 nm 600 - 1050 nm 0.250 mm D-ZK3 Focal Shift /
Spot Size Cross Section
- -
C280TMD-B 9.2 mm 15.6 mmd,f M9 x 0.5 SPW301
A280-B info 18.40 mm 0.15 6.50 mm 17.13 mme Ø5.50 mm 2.17 mm 780 nm 650 - 1050 nm 0.25 mm H-LaK54 A280_Asph.pdf - -
A280TM-B 9.24 mm 16.88 mme,f - M9 x 0.5 SPW301
  • EFL is specified at the design wavelength for the unmounted lens.
  • WD is specified at the design wavelength.
  • Lenses with an LWT specification are designed for laser diode collimation; in these cases, the NA, WD, and wavefront are defined based on the presence of a laser window (not included) of the indicated thickness.
  • This working distance is measured to the front of the window of the laser diode being collimated.
  • This working distance is measured to the focal point.
  • Measured from the Mount

EFL = Effective Focal Length
NA = Numerical Aperture
CA = Clear Aperture

WD = Working Distance
DW = Design Wavelength
TC = Center Thickness

OD = Outer Diameter
LWT = Laser Window Thickness

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
354280-B Support Documentation
354280-Bf = 18.4 mm, NA = 0.15, WD = 15.9 mm, Unmounted Aspheric Lens, ARC: 600 - 1050 nm
$78.41
Volume Pricing
Today
C280TMD-B Support Documentation
C280TMD-Bf = 18.4 mm, NA = 0.15, WD = 15.6 mm, Mounted Aspheric Lens, ARC: 600 - 1050 nm
$100.71
Volume Pricing
Today
A280-B Support Documentation
A280-Bf = 18.40 mm, NA = 0.15, WD = 17.13 mm, Unmounted Aspheric Lens, ARC: 650 - 1050 nm
$92.36
Volume Pricing
Today
A280TM-B Support Documentation
A280TM-Bf = 18.40 mm, NA = 0.15, WD = 16.88 mm, Mounted Aspheric Lens, ARC: 650 - 1050 nm
$98.90
Volume Pricing
Today