"; _cf_contextpath=""; _cf_ajaxscriptsrc="/cfthorscripts/ajax"; _cf_jsonprefix='//'; _cf_websocket_port=8578; _cf_flash_policy_port=1244; _cf_clientid='393C52544E9B2A4DA42424BF5BD0A6E6';/* ]]> */
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kinesis® K-Cube™ Laser Sources![]()
KLS1550 K-Cube™ 1550 nm Laser Source Kinesis Software Included Related Items
![]() Please Wait ![]() Click to Enlarge A KCH301 USB Controller Hub with Installed KLS1550 and KPZ101 K-Cube Modules
![]() Click to Enlarge Top and Back Views of KLS635 Laser Source (See the Pin Diagrams Tab for More Information) Features
Thorlabs' K-Cube Laser Sources are fully functional, highly compact, fiber-coupled laser sources with a center wavelength of either 635 nm or 1550 nm. Each unit incorporates driver electronics and an FC/PC (2.1 mm wide key) fiber interface. The internally pigtailed Fabry-Perot laser diode is connected to the rear panel FC/PC output via a single mode fiber. With this fiber-to-fiber connection at the output, these devices deliver optical power more efficiently than air-to-fiber systems that use a receptacle with embedded optics. The laser can be operated independently via the top panel controls and display screen or remotely by PC via a USB connection. The output power is monitored continuously and a feedback circuit adjusts the laser power to achieve a constant output power. The unit has a highly compact 121.0 mm x 60.0 mm x 47.0 mm footprint, allowing it to be positioned close to the rest of the system for added convenience when manually adjusting the laser output using the top panel controls. Tabletop operation also allows minimal cable lengths for easier cable management. A power switch on the front of the unit turns the K-Cube on and off. The top panel display screen enables operation as soon as the unit is turned on, without the need for connection to a PC. When the switch is turned off, the K-Cube saves all user-adjustable settings for the next session. Please note that the power switch should always be in the "off" position when plugging in or unplugging the unit. The laser must be turned off when connecting or disconnecting a fiber from the input. Please ensure the fiber tip and connector bulkhead are clean prior to use; the FBC250 Bulkhead and Connector Cleaner can be used to clean the bulkhead and connecting fiber. USB connectivity provides easy 'Plug-and-Play' PC-controlled operation with the Kinesis software package, which features new .NET controls that can be used by third-party developers working in the latest C, C#, LabVIEW™ or any .NET compatible languages to create custom applications. A USB 3.0 type A to type Micro B cable is included with each K-Cube laser source. For more details, please see the Kinesis Software and Kinesis Tutorials tabs. Optical Table Mounting Plate Power Supply Options Multiple units can be connected to a single PC by using the KCH301 or KCH601 USB Controller Hubs, available below, for applications involving multiple K-Cubes and/or T-Cubes. The KCH301 features three controller mounting bays while the KCH601 features six controller mounting bays. Note that these K-Cube laser sources occupy two mounting bays on the USB controller hubs. All power supply options compatible with the K-Cube laser sources can be found below.
Computer Connection![]() The USB 3.0 port is compatible with a USB 2.0 Micro B connector if the Micro B connector is plugged into the shaded region in the photo above. A USB 3.0 type A to type Micro B cable is included with the K-Cube Laser Sources. I/O 1 & 2SMA Female![]() These connectors provide a 5 V logic level input and output that can be configured to support triggering into and out of external devices. Each port can be independently configured to control the logic level or to set the trigger as an input or output. Ext InSMA Female![]() Used to control the intensity of the laser output from an external source. This input can be driven from a 0 to 10 V voltage source. The input impedence is 16 kΩ. Interlock2.5 mm Pin![]() Interlock Jack must be shorted with included 2.5 mm pin or external user gate before laser may be enabled.
Introducing Thorlabs' Kinesis® Laser SourcesA major upgrade to the former-generation T-Cubes, the growing K-Cube line of high-end modules provides increased versatility not only through the new Kinesis software, but through an overhaul and updating of their physical design and firmware. Every K-Cube includes a digital display. In addition to basic input and output readouts, the K-Cube laser sources feature a scroll wheel for adjusting the output power and other settings. Each unit contains a front-located power switch that, when turned off, saves all user-adjustable settings, as well as two bidirectional SMA trigger ports that accept or output a 5 V TTL logic signal. Please see the table to the right for a full comparison of the features offered by our new ![]() Click for Details KLS635 K-Cube Kinesis 635 nm Laser Source Kinesis USB Controller Hubs K-Cubes simply clip into place using the provided on-unit clips, while current- and previous-generation T-Cubes require the KAP101 Adapter Plate, shown in the animation below on the right. The hub vastly reduces the number of USB and power cables required when operating multiple modules. Note that the KLS635 and KLS1550 are twice as long as a standard K-Cube and occupy two ports on the controller hub. K-Cube Table Mounting PlateUnlike T-Cubes, every K-Cube includes a mounting plate that clips onto the base of the controller. The plate contains two magnets for temporary placement on an optical table and two counterbores for 1/4"-20 (M6) cap screws for more permanent placement on the tabletop. Kinesis USB Controller Hubs3- and 6-Port USB Controller Hubs allow multiple controllers to be connected to one PC for multi-axis applications. K-Cubes can be directly attached to the hubs while T-Cubes require a KAP101 Adapter Plate. Thorlabs' Kinesis® software can be used to control devices in the Kinesis or APT™ family, which covers a wide range of devices ranging from small, low-powered, single-channel drivers (such as the K-Cubes and T-Cubes) to high-power, multi-channel, modular 19" rack nanopositioning systems (the APT Rack System). The Kinesis Software features new .NET controls which can be used by 3rd party developers working in the latest C#, Visual Basic, LabVIEW™ or any .NET compatible languages to create custom applications. Low level DLL libraries are included for applications not expected to use the .NET framework. A Central Sequence Manager supports integration and synchronization of all Thorlabs motion control hardware. By providing these common software platforms, Thorlabs has ensured that users can easily mix and match any of the APT and Kinesis controllers in a single application, while only having to learn a single set of software tools. In this way, it is perfectly feasible to combine any of the controllers from the low-powered, single-axis to the high-powered, multi-axis systems and control all from a single, PC-based unified software interface. The software packages allow two methods of usage: graphical user interface (GUI) utilities for direct interaction with and control of the controllers 'out of the box', and a set of programming interfaces that allow custom-integrated positioning and alignment solutions to be easily programmed in the development language of choice. SoftwareKinesis Version 1.14.25 The Kinesis Software Package, which includes a GUI for control of Thorlabs' Kinesis and APT™ system controllers. Also Available:
![]() Kinesis GUI Screen for K-Cube Laser Sources Thorlabs' Kinesis® software features new .NET controls which can be used by third-party developers working in the latest C#, Visual Basic, LabVIEW™, or any .NET compatible languages to create custom applications. C# For a collection of example projects that can be compiled and run to demonstrate the different ways in which developers can build on the Kinesis motion control libraries, click on the links below. Please note that a separate integrated development environment (IDE) (e.g., Microsoft Visual Studio) will be required to execute the Quick Start examples. The C# example projects can be executed using the included .NET controls in the Kinesis software package (see the Kinesis Software tab for details).
LabVIEW
Laser Safety and ClassificationSafe practices and proper usage of safety equipment should be taken into consideration when operating lasers. The eye is susceptible to injury, even from very low levels of laser light. Thorlabs offers a range of laser safety accessories that can be used to reduce the risk of accidents or injuries. Laser emission in the visible and near infrared spectral ranges has the greatest potential for retinal injury, as the cornea and lens are transparent to those wavelengths, and the lens can focus the laser energy onto the retina. Safe Practices and Light Safety Accessories
Laser ClassificationLasers are categorized into different classes according to their ability to cause eye and other damage. The International Electrotechnical Commission (IEC) is a global organization that prepares and publishes international standards for all electrical, electronic, and related technologies. The IEC document 60825-1 outlines the safety of laser products. A description of each class of laser is given below:
![]()
The KLS635 and KLS1550 K-Cube laser sources are compact units with a fiber-coupled Fabry-Perot laser diode. The unit can be operated via the top panel display screen and controls as soon as the device is turned on. Alternatively, a USB connection allows for remote PC operation with the Kinesis software. An integrated feedback circuit maintains constant optical output power at the selected output intensity level. The unit has a very small 121.0 mm x 60.0 mm x 47.0 mm (4.76" x 2.36" x 1.85") footprint and may be mounted directly to the optical table using the 1/4" (M6) counterbored slots in the base plate. This compact size allows the laser source to be positioned close to the rest of the system for added convenience when manually adjusting components. Tabletop operation also allows minimal cable lengths for easier cable management. Please note that this controller does not ship with a power supply. Compatible power supplies are listed below. ![]() ![]() Click for Details A location-specific adapter is shipped with the power supply unit based on your location. The adapters for the KPS101 are shown here. ![]() Click to Enlarge The KPS101 Power Supply Unit
The KPS101 power supply outputs +15 VDC at up to 2.4 A and can power a single K-Cube or T-Cube with a 3.5 mm jack. It plugs into a standard wall outlet. The KCH301 and KCH601 USB Controller Hubs each consist of two parts: the hub, which can support up to three (KCH301) or six (KCH601) K-Cubes or T-Cubes, and a power supply that plugs into a standard wall outlet. The hub draws a maximum current of 10 A; please verify that the cubes being used do not require a total current of more than 10 A. In addition, the hub provides USB connectivity to any docked K-Cube or T-Cube through a single USB connection. For more information on the USB Controller Hubs, see the full web presentation. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|