ORIC® 20 mm Linear Translation XY Stage with Piezoelectric Inertia Drive


  • Monolithic XY Linear Stage with Open-Loop Positioning
  • 3 kg Horizontal Load Capacity
  • Stackable Design for Compact 3-Axis Setups

PD1D

XY Stage,
Imperial

Application Idea

PD1D and PD1 Stages
in XYZ Configuration

PD1D/M

XY Stage,
Metric

Related Items


Please Wait
ORIC Webinar

Features

  • Compact Stainless Steel XY Stage with Open-Loop Piezo Inertia Drive
  • Monolithic Construction with ≤2 mrad Orthogonality
  • Speeds Up to 3 mm/s when Driven with KIMx01 Controller
  • 3 kg Max Load Capacity
  • Ideal for OEMs and Set-and-Hold Applications that Require Relative Positioning with High Resolution
  • XYZ Configurations using Right-Angle Bracket Adapter
  • Requires Two KIM001, One KIM101, One PDXC or Two PDXC2 Piezo Inertia Controller(s) (Sold Separately Below)

Thorlabs' PD1D(/M) ORIC® Piezoelectric Inertia Drive Stage provides fast and stable piezo-controlled linear XY motion in a compact, monolithic package with no backlash. The piezo inertia drives are self-locking when the stage is at rest and no power is supplied to the piezos, making this stage ideal for set-and-hold applications that require nanometer resolution and long-term alignment stability.

Load Mounting Options
The load can be secured to the stage's moving platform using 2-56 (M2) threaded holes, 8-32 (M4) threaded holes, #2 (M2) counterbores, or #8 (M4) counterbores. Alternatively, the PD1T(/M) and PD1U(/M) adapter plates (sold separately below) provide alternative mounting hole patterns for the top plate of the stage. The load can also be aligned using the array of six Ø2 mm, 1.5 mm deep dowel pin holes. Ensure that the maximum insertion depth of these holes is not exceeded or else the stage may be damaged. For more information, please refer to the Specs tab or the support documents accessible through the red Support Docs () icons below.

Stage Mounting Options
The mounting counterbores are accessible when the moving plate is translated to the ends of the travel range. There are two mounting options: two 2-56 (M2) screws on the corners with 0.35 N·m recommended torque or 8-32 (M4) screws on the ends with 0.55 N·m recommended torque. We offer the TD75 torque driver for tightening to a specific torque value.

The stage should be mounted on an even surface with recommended flatness ≤5 μm. If the stage is mounted on a surface with >5 µm flatness (as with most breadboards and optical tables), the mounting torque may need to be decreased in order for the velocity variation and pitch/yaw of the stage to meet specifications. If needed, the PD1B(/M) and PD1B3(/M) mounting adapters provide a mounting surface with precise flatness to avoid warping the stage when mounting it to a table surface.

The PD1Z(/M) right-angle bracket adapter allows a PD1(/M) or PDX1(/M) stage to be mounted vertically on top of the PD1D(/M) stage for an XYZ configuration. Note that the vertically mounted stage's load capacity is greatly reduced. For applications that require smaller vertical travel, the PD1D(/M) XY stage can be mounted on the top plate of the PDXZ1(/M) 4.5 mm vertical travel stage allowing for a larger load to be driven vertically.

XY + Rotation Stage
The PD1D(/M) dual-axis stage can be combined with the PDR1(/M) Piezo Inertia Drive Rotation Stage for applications that require XY translation and rotation.

Required Controller
One of our KIM101 or PDXC piezo inertia controllers or two of our KIM001 or PDXC2 controllers are required to operate these stages. Note that the piezo inertia drives cannot be driven using a standard piezo controller.

Inertia Motor Operation
Click to Enlarge

Simplified Illustration Showing the Operation of the Piezo Inertia Drive
Inertia Motor Operation
The "stick-slip" cycle consists of a slow piezo expansion and a fast piezo contraction.

Piezoelectric Inertia "Stick-Slip" Motor

The piezo inertia motor consists of three main parts: a flexure-coupled piezo actuator, a friction element, and a slider (the moving platform). During the "stick" part of a cycle, the piezo slowly expands under the ramp voltage, pushing the friction element and the slider forward in unison. During the "slip" part, the drive voltage drops rapidly and the piezo element returns to its starting length, with the friction element "slipping" backward. The slider does not move due to its inertia and the low coefficient of kinetic friction between the friction element and the bottom surface of the slider. The graph to the right shows the piezo drive voltage during one "stick-slip" cycle.

Repeating this cycle produces continuous forward travel of the slider. For travel in the reverse direction, the opposite drive voltage pattern is required, resulting in rapid piezo expansion and slower piezo contraction, or "slip-stick". During operation, the stage makes a high pitch noise and may generate some heat. This is normal behavior in the performance of the device and does not indicate a fault condition.

Due to a number of factors that include the application conditions, piezo hysteresis, component variance, and the axial load, the achieved step size will vary and is not repeatable. To help overcome this variance, an external feedback system will be necessary.

Specifications
Item # PD1D(/M)a
Travel 20 mm x 20 mm (0.78" x 0.78")
Step Size Typical: 1 µmb
Maximum: <3 µmc
Adjustability: ≤30%c
Maximum Step Frequency 2 kHzd
Speed (Continuous Stepping) 3 mm/s Typical Maxe,f
Average Velocity Variation
Over Travel Range
±10%e,g
Horizontal Load Capacity 3 kg (6.61 lbs)
Vertical Load Capacity 100 g (3.5 oz)h,i
Clamping / Holding Force 3 N
Pitch / Yaw Over Travel Range 200 µrad
XY Stacked Orthogonality ≤2 mrad
Motor Type Piezoelectric Inertia Drive
Lifetime >10 Billion Stepsj,k
Piezo Specifications
Max Operating Voltage 125 V
Capacitance 170 nF
Physical Specifications
Operating Temperature 10 to 40 °C
Connector Type SMC Female
Cable Length 1 m (3.3 ft)l
Top Plate
Mounting Options
Four 2-56 (M2) Threaded Holes, 3 mm Deep
Two #2 (M2) Counterbores
Four 8-32 (M4) Threaded Holes, 3.2 mm Deep
Two #8 (M4) Counterbores
Four Ø2 mm Dowel Pin Holes, 1.5 mm Deep
PD1T(/M) and PD1U(/M) Adapters
Dimensions 32.5 mm x 32.5 mm x 20.0 mm
(1.28" x 1.28" x 0.79")
Weight (Including Cable) 137 g (4.83 oz)
Required Controller
(Available Separately Below)
KIM001, KIM101mPDXCn, or PDXC2n,o 
Extension Cable(s)
PAA101 Cable(s) and T5026 Adapter(s)l
  • Specifications are measured using the KIM101 Inertia Piezo Controller and with the stage mounted on a surface with flatness ≤5 µm.
  • This value can vary by up to 20% due to component variance, change of direction, and application conditions.
  • This is adjusted by changing the piezo drive voltage and frequency. See the KIM001 or KIM101 controller manuals for more details.
  • 2 kHz is the maximum output from the KIM101 and KIM001 controllers.
  • Specified at 2 kHz Step Frequency
  • The forward and backward speeds may differ by up to 50% due to the open-loop design, component variances, and application conditions. Operating the stage with the wrong software settings will further increase the variance. Be sure to set the stage type to "PD(R)" in the Kinesis software if using a KIMx01 controller. For applications that require the speed in both directions to be balanced, we recommend using the PDXC or PDXC2 controller to adjust the forward and backward drive voltage amplitudes individually in order to mitigate the speed difference.
  • Variation in Speed in a Single Travel Direction
  • This is equivalent to the push/pull force along the axial/travel direction, which is 1 N.
  • It’s not recommended to mount the PD1D(/M) stage vertically because one axis will get a lateral force to the rails and may influence its angular error and even reduce the lifespan of the rail.
  • When mounted vertically, long term usage (>3 billion steps) may cause creep of the rails, leading to decreased travel range. To avoid this, return the stage to a horizontal position and run it back and forth over the full range several times after approximately 1 billion steps in a vertical orientation.
  • Driven by the KIM101 Controller Under 2 kHz/85 V
  • The 1 m long cable(s) integrated into the PD1D(/M) stage may be extended up to a maximum of 2.5 m total using PAA101 cables and T5026 adapter. Longer cable lengths should not be used due to the capacitance of the cables.
  • The KIM101 controller version must be 2019 or newer (per the S/N label) with a firmware revision of 010003 or higher (indicated when the controller is powered on. Earlier versions of the KIM101 controller or those with older firmware will not function properly and may cause failure of the stage and/or the controller.
  • Since the PDXC and PDXC2 can operate at a higher frequency, they are capable of driving the PD1D(/M) stage at a higher speed and smaller step size compared to the KIM series controllers. However, due to the lower output voltage, the driving force will be lower.
  • SMC terminated stages require the PDXC2AD D-sub to SMC adapter cable for use with the PDXC2 controller.

Drive Connector

SMC Female

SMC Female
0 to 125 V
Note: This software is only compatible with the PDXC controller; it cannot be used with the PDXC2, KIM001, and KIM101 controllers.

Software

PDXC Version 2.0.0

The PDXC Software Package, which includes a GUI, drivers, and LabVIEW™/C++/Python SDK for third-party development.

Software Download

Thorlabs offers the PDXC software package to interface with the PDXC Piezo Stage Controller. This controller is designed to drive the following piezo inertia stages:

  • PDXZ1(/M) 4.5 mm Vertical Stage with Optical Encoder
  • PD2(/M) 5 mm Linear Stage
  • PDX2(/M) 5 mm Linear Stage with Optical Encoder
  • PD1(/M) 20 mm Linear Stage
  • PD1V(/M) Vacuum-Compatible 20 mm Linear Stage
  • PD1D(/M) 20 mm Monolithic XY Stage
  • PDX1(/M) 20 mm Linear Stage with Optical Encoder
  • PD3(/M) 50 mm Linear Stage
  • PDR1C(/M) Rotation Stage
  • PDXR1(/M) Rotation Stage with Optical Encoder

The software package allows two methods of usage: graphical user interface (GUI) utilities for direct interaction with and control of the controllers 'out of the box', and a set of programming interfaces for third-party development of custom-integrated positioning and alignment solutions to be easily programmed in the development language of choice (LabVIEW™/C++/Python SDK).

Note: This software is compatible with the PDXC2, KIM001, and KIM101 controllers; it cannot be used to operate the PDXC controller. The PDXC2 controller is only compatible with the Kinesis® software and cannot be used with the APT™ software package.

Thorlabs offers two platforms to drive our wide range of motion controllers: our Kinesis® software package or the legacy APT™ (Advanced Positioning Technology) software package. Either package can be used to control devices in the Kinesis family, which covers a wide range of motion controllers ranging from small, low-powered, single-channel drivers (such as the K-Cubes™ and T-Cubes™) to high-power, multi-channel, modular 19" rack nanopositioning systems (the APT Rack System).

The Kinesis Software features .NET controls which can be used by 3rd party developers working in the latest C#, Visual Basic, LabVIEW™, or any .NET compatible languages to create custom applications. Low-level DLL libraries are included for applications not expected to use the .NET framework. A Central Sequence Manager supports integration and synchronization of all Thorlabs motion control hardware.

Kinesis Software
Kinesis GUI Screen
APT Software
APT GUI Screen

Our legacy APT System Software platform offers ActiveX-based controls which can be used by 3rd party developers working on C#, Visual Basic, LabVIEW™, or any Active-X compatible languages to create custom applications and includes a simulator mode to assist in developing custom applications without requiring hardware.

By providing these common software platforms, Thorlabs has ensured that users can easily mix and match any of the Kinesis and APT controllers in a single application, while only having to learn a single set of software tools. In this way, it is perfectly feasible to combine any of the controllers from single-axis to multi-axis systems and control all from a single, PC-based unified software interface.

The software packages allow two methods of usage: graphical user interface (GUI) utilities for direct interaction with and control of the controllers 'out of the box', and a set of programming interfaces that allow custom-integrated positioning and alignment solutions to be easily programmed in the development language of choice.

A range of video tutorials is available to help explain our APT system software. These tutorials provide an overview of the software and the APT Config utility. Additionally, a tutorial video is available to explain how to select simulator mode within the software, which allows the user to experiment with the software without a controller connected. Please select the APT Tutorials tab above to view these videos.

Software

Kinesis Version 1.14.47

The Kinesis Software Package, which includes a GUI for control of Thorlabs' Kinesis and APT™ system controllers.

Also Available:

  • Communications Protocol
Software Download

Software

APT Version 3.21.6

The APT Software Package, which includes a GUI for control of Thorlabs' APT™ and Kinesis system controllers.

Also Available:

  • Communications Protocol
Software Download

Thorlabs' Kinesis® software features new .NET controls which can be used by third-party developers working in the latest C#, Visual Basic, LabVIEW™, or any .NET compatible languages to create custom applications.

C#
This programming language is designed to allow multiple programming paradigms, or languages, to be used, thus allowing for complex problems to be solved in an easy or efficient manner. It encompasses typing, imperative, declarative, functional, generic, object-oriented, and component-oriented programming. By providing functionality with this common software platform, Thorlabs has ensured that users can easily mix and match any of the Kinesis controllers in a single application, while only having to learn a single set of software tools. In this way, it is perfectly feasible to combine any of the controllers from the low-powered, single-axis to the high-powered, multi-axis systems and control all from a single, PC-based unified software interface.

The Kinesis System Software allows two methods of usage: graphical user interface (GUI) utilities for direct interaction and control of the controllers 'out of the box', and a set of programming interfaces that allow custom-integrated positioning and alignment solutions to be easily programmed in the development language of choice.

For a collection of example projects that can be compiled and run to demonstrate the different ways in which developers can build on the Kinesis motion control libraries, click on the links below. Please note that a separate integrated development environment (IDE) (e.g., Microsoft Visual Studio) will be required to execute the Quick Start examples. The C# example projects can be executed using the included .NET controls in the Kinesis software package (see the Kinesis Software tab for details).

C Sharp Icon Click Here for the Kinesis with C# Quick Start Guide
Click Here for C# Example Projects
Click Here for Quick Start Device Control Examples
C Sharp Icon

LabVIEW
LabVIEW can be used to communicate with any Kinesis- or APT-based controller via .NET controls. In LabVIEW, you build a user interface, known as a front panel, with a set of tools and objects and then add code using graphical representations of functions to control the front panel objects. The LabVIEW tutorial, provided below, provides some information on using the .NET controls to create control GUIs for Kinesis- and APT-driven devices within LabVIEW. It includes an overview with basic information about using controllers in LabVIEW and explains the setup procedure that needs to be completed before using a LabVIEW GUI to operate a device.

Labview Icon Click Here to View the LabVIEW Guide
Click Here to View the Kinesis with LabVIEW Overview Page
Labview Icon

Achieving the Specified Performance

In this application note, we will discuss how to achieve the specified velocity and step size for the open-loop PD1(/M), PD1D(/M), and PDR1(/M) ORIC® Stages when driving them with KIM001 or KIM101 K-Cube™ Controllers; examples using the Kinesis® software and the K-Cube's front panel controls are discussed below. There are limitations when using an open-loop system, and we have created this application note to help minimize velocity and step size variation. We recommend using this application note upon initial setup, and/or if you are having issues with velocity and step size variation. For further details on how to change settings, please refer to the manuals of the individual stage and controller.




Click to Enlarge

Figure 2: These are the recommended channel settings for the PD(R) stage type. They can be changed in Device Settings -> Current Device Settings-> Channel 1.

Click to Enlarge

Figure 1: When controlling an ORIC Stage, the stage type needs to be set to PD(R). This can be found in the Kinesis Software Device Settings -> Startup.

Click to Enlarge

Figure 4: Depicted in the circle is the jog mode, which should be set to continuous. This can be changed in Device Settings -> Current -> Channel 1.

Figure 3: Circled in black are the jog buttons which can be found in the device GUI.

Kinesis© Software Control with a K-Cube Controller

The Kinesis software defaults the stage type to PIA, which is not applicable to ORIC stages; to change this, we need to change the startup settings. The startup settings can be found by first accessing the device settings in the device GUI panel and then clicking the Startup tab. Under the Configuration tab, change the stage type to PD(R), check the "Persist Settings to the Device" box on the bottom right, and click the "Save" button in the lower left corner. These selections are shown circled in Figure 1. By using these settings, the Kinesis software will use the PD(R) stage type. The other device and channel settings can also be changed in the startup settings.

With the PD(R) stage type, we recommend certain channel settings to achieve the specified speed, speed variation, and force. These settings can be changed in the "Channel 1" tab of the device settings and are depicted in Figure 2. We will be focusing on the settings in the “Drive” box, circled in black, and the "Jog" box, circled in blue.

For the "Drive" box, we recommend setting the "Maximum Voltage" to 85 V, the "Rate" at 2000 steps/s, and "Acceleration" to 10000 Steps/s2. For the settings in the "Jog" box, we recommend setting the "Forward Size" to 250 Steps, the "Reverse Size" to 250 Steps, the "Mode" to "Continuous", the "Step Rate" to 2000 Steps/s, and the "Step Acceleration" to 10000 Steps/s2. To achieve the specified results, it is important to make sure the stage is mounted properly to an even surface, to our recommended mounting plate, or to a compatible adapter plate.

A continuous jog at a step rate higher than 1000 steps/s can only be achieved by using the jog buttons in the device GUI, shown circled in Figure 3. Continuous jog movement is limited to within 1000 step/s when using the joystick on the KIM101 K-Cube Controller or wheel on the KIM001 K-Cube Controller. Single movement or movement by counts is not limited to 1000 step/s when using the joystick or wheel.

Please note that if you change the jog mode in Kinesis to "Continuous" or "Single" this will only influence the jog buttons in the Kinesis GUI, shown circled in Figure 3. This will not change the joystick mode on the KIM001 or KIM101 controller front panel. The jog mode can be found in Kinesis under Device settings -> Channel 1 -> "Jog" box -> "Mode", also shown in Figure 4. More information on this can be found in the Front Panel Control section, located below.







Click to Enlarge

Figure 6: Kinesis software showing the "Device" tab under Device Settings in the Device GUI. The "Maximum Step Rate" setting is circled in blue. To use the joystick with continuous jogging mode this setting must be less than 1000 steps/s. The Kinesis joystick modes can be selected via the dropdown menu circled in black.

Figure 5: Drawing of the front panel of the KIM101 K-Cube Controller showing option 5, Joystick Mode.

Click to Enlarge

Figure 8: Kinesis software showing where the step size can be changed using the "Forward Size" and "Reverse Size" settings. The "Mode" setting, also shown, only affects the controls of the jog buttons in the GUI and does not affect the joystick mode.

Click to Enlarge

Figure 7: The drive rate can be changed in the Kinesis software under Device Settings -> Current -> Channel 1. This is equivalent to Front Panel Control option 3, "Set Velocity".

KIMx01 Front Panel Control and Related Settings in Kinesis

There are 10 options on the front panel control menu. These can be accessed using the two buttons and joystick on the KIM101 K-Cube Controller or the button and wheel on the KIM001 K-Cube Controller.

Option 5, Joystick Mode, shown in Figure 5, has 3 modes: "Jog to Count", "Jogging in Steps", and "Velocity Control". The Joystick mode in the Kinesis software is related to option 5, Joystick Mode, on the front panel. The three options for the Joystick Mode in the Kinesis software are "Step Rate", "Jog", and "Goto Position". This setting is circled in black in Figure 6.

"Jog to Count" mode will move the stage to the target count, which is defaulted at 0, under the velocity that is set by option 3, "Set Velocity" on the front panel. The setting for option 3 is the velocity at which the stage will move for option 5’s “Jog to Count” mode and for option 1, "Goto Pos Count". There is an equivalent setting in Kinesis which can be found in Device Settings -> Channel 1 -> "Drive" box -> "Rate". This is shown in Figure 7.

In "Jogging in Steps" mode, option 3, "Set Velocity" does not change the stage's velocity. The velocity in this mode must be changed in the Kinesis software. This can be changed in Device settings -> Channel 1 -> "Jog" box -> "Step Rate". Instead of changing the step rate to increase the stage speed, the step size can be changed to increase the stage speed. The step size can be changed on the front panel of a KIM001 or KIM101 device through option 4, "Jog Step Size". This can also be achieved in Kinesis through Device settings -> "Channel 1" -> "Jog" box-> "Forward Size" and "Reverse Size", shown in Figure 8.

In option 5 "Velocity Control" mode, the joystick can be used to achieve continuous jogging, but only if the velocity is less than 1000 step/s. This velocity cannot be changed by option 3 on the front panel. The velocity can only be changed in the Kinesis software under the Device settings -> Device -> "Maximum Step Rate", shown in Figure 6. A value of 10000 may appear initially, but this value is not accepted by the software and must be revised to a number between 1 and 1000.

In Kinesis, the joystick mode "Step Rate", is related to the "Velocity Control" mode on the front panel and can use the setting of "Maximum Step Rate". The "Direction Sense" can be used to switch the travel direction when using the joystick or wheel.

The APT video tutorials available here fall into two main groups - one group covers using the supplied APT utilities and the second group covers programming the APT System using a selection of different programming environments.

Disclaimer: The videos below were originally produced in Adobe Flash. Following the discontinuation of Flash after 2020, these tutorials were re-recorded for future use. The Flash Player controls still appear in the bottom of each video, but they are not functional.

Every APT controller is supplied with the utilities APTUser and APTConfig. APTUser provides a quick and easy way of interacting with the APT control hardware using intuitive graphical control panels. APTConfig is an 'off-line' utility that allows various system wide settings to be made such as pre-selecting mechanical stage types and associating them with specific motion controllers.

APT User Utility

The first video below gives an overview of using the APTUser Utility. The OptoDriver single channel controller products can be operated via their front panel controls in the absence of a control PC. The stored settings relating to the operation of these front panel controls can be changed using the APTUser utility. The second video illustrates this process.

APT User - Overview
APT User - OptoDriver Settings


APT Config Utility

There are various APT system-wide settings that can be made using the APT Config utility, including setting up a simulated hardware configuration and associating mechanical stages with specific motor drive channels. The first video presents a brief overview of the APT Config application. More details on creating a simulated hardware configuration and making stage associations are present in the next two videos.

APT Config - Overview
APT Config - Simulator Setup
APT Config - Stage Association


APT Programming

The APT Software System is implemented as a collection of ActiveX Controls. ActiveX Controls are language-independant software modules that provide both a graphical user interface and a programming interface. There is an ActiveX Control type for each type of hardware unit, e.g. a Motor ActiveX Control covers operation with any type of APT motor controller (DC or stepper). Many Windows software development environments and languages directly support ActiveX Controls, and, once such a Control is embedded into a custom application, all of the functionality it contains is immediately available to the application for automated operation. The videos below illustrate the basics of using the APT ActiveX Controls with LabVIEW, Visual Basic, and Visual C++. Note that many other languages support ActiveX including LabWindows CVI, C++ Builder, VB.NET, C#.NET, Office VBA, Matlab, HPVEE etc. Although these environments are not covered specifically by the tutorial videos, many of the ideas shown will still be relevant to using these other languages.

Visual Basic

Part 1 illustrates how to get an APT ActiveX Control running within Visual Basic, and Part 2 goes on to show how to program a custom positioning sequence.

APT Programming Using Visual Basic - Part 1
APT Programming Using Visual Basic - Part 2


LabVIEW

Full Active support is provided by LabVIEW and the series of tutorial videos below illustrate the basic building blocks in creating a custom APT motion control sequence. We start by showing how to call up the Thorlabs-supplied online help during software development. Part 2 illustrates how to create an APT ActiveX Control. ActiveX Controls provide both Methods (i.e. Functions) and Properties (i.e. Value Settings). Parts 3 and 4 show how to create and wire up both the methods and properties exposed by an ActiveX Control. Finally, in Part 5, we pull everything together and show a completed LabVIEW example program that demonstrates a custom move sequence.

APT Programming Using LabVIEW -
Part 1: Accessing Online Help
APT Programming Using LabVIEW -
Part 2: Creating an ActiveX Control
APT Programming Using LabVIEW -
Part 3: Create an ActiveX Method
APT Programming Using LabVIEW -
Part 4: Create an ActiveX Property
APT Programming Using LabVIEW -
Part 5: How to Start an ActiveX Control


The following tutorial videos illustrate alternative ways of creating Method and Property nodes:

APT Programming Using LabVIEW -
Create an ActiveX Method (Alternative)
APT Programming Using LabVIEW -
Create an ActiveX Property (Alternative)


Visual C++

Part 1 illustrates how to get an APT ActiveX Control running within Visual C++, and Part 2 goes on to show how to program a custom positioning sequence.

APT Programming with Visual C++ - Part 1
APT Programming with Visual C++ - Part 2


MATLAB

For assistance when using MATLAB and ActiveX controls with the Thorlabs APT positioners, click here.

To further assist programmers, a guide to programming the APT software in LabVIEW is also available here.

Motorized Linear Translation Stages

Thorlabs' motorized linear translation stages are offered in a range of maximum travel distances, from a stage with 20 µm of piezo translation to our 600 mm direct drive stage. Many of these stages can be assembled in multi-axis configurations, providing XY or XYZ translation. For fiber coupling applications, please see our multi-axis stages, which offer finer adjustment than our standard motorized translation stages. In addition to motorized linear translation stages, we offer motorized rotation stages and goniometers. We also offer manual translation stages.

Piezo Stages

These stages incorporate piezoelectric elements in a variety of drive mechanisms. ORIC® stages incorporate piezo inertia drives that use "stick-slip" friction properties to obtain extended travel ranges. Our Nanoflex™ translation stages use standard piezo chips along with manual actuators. Elliptec® stages use resonant piezo motors to push and pull the moving platform through resonant elliptical motion. Our LPS710E z-axis stage features a mechanically amplified piezo design and includes a matched controller.

Piezoelectric Stages
Product Family ORIC®
PDXZ1 Closed-Loop
4.5 mm Vertical Stage
ORIC®
PD2 Open-Loop
5 mm Stage
ORIC®
PDX2 Closed-Loop
5 mm Stage
Click Photo
to Enlarge
Travel 4.5 mm 5 mm
Speed 1 mm/s (Typ.)a 10 mm/s (Typ. Max)b 8 mm/s (Typ.)c
Drive Type Piezoelectric Inertia Drive
Possible Axis Configurations Z X, XY, XYZ
Mounting
Surface Size
45.0 mm x 42.0 mm 13 mm x 13 mm
Additional Details
  • Specified at 20 kHz Driving Frequency and in Closed-Loop Mode
  • Specified using PDXC and PDXC2 Benchtop Controllers. For performance when controlled with a KIM001 or KIM101 K-Cube Controller, see the Specs tab of the PD2 or PD3 stage presentation.
  • Specified using PDXC and PDXC2 Benchtop Controllers.

Piezoelectric Stages
Product Family ORIC®
PD1 Open-Loop
20 mm Stage
ORIC®
PD1D Open-Loop
20 mm Monolithic XY Stage
ORIC®
PDX1 Closed-Loop
20 mm Stage
ORIC®
PD3 Open-Loop
50 mm Stage
Click Photo
to Enlarge
Travel 20 mm 50 mm
Speed 3 mm/s (Typ. Max)a 20 mm/s (Typ. Max)b 10 mm/sc
Drive Type Piezoelectric Inertia Drive
Possible Axis Configurations X, XY, XYZ XY, XYZ X, XY, XYZ X, XY, XYZ
Mounting
Surface Size
30 mm x 30 mm 80 mm x 30 mm
Additional Details
  • Specified using KIM101 K-Cube Controller.
  • Specified using PDXC and PDXC2 Benchtop Controllers.
  • Specified using PDXC and PDXC2 Benchtop Controllers. For performance when controlled with a KIM001 or KIM101 K-Cube Controller, see the Specs tab of the PD2 or PD3 stage presentation.

Piezoelectric Stages
Product Family Nanoflex™
20 µm Stage
with 5 mm Actuator
Nanoflex™
25 µm Stage
with 1.5 mm Actuator
Elliptec® 28 mm Stage Elliptec® 60 mm Stage LPS710E 1.1 mm Vertical Stage
Click Photo
to Enlarge
Travel 20 µm + 5 mm Manual 25 µm + 1.5 mm Manual 28 mm 60.0 mm 1.1 mm
Maximum Velocity - 180 mm/s 90 mm/s -
Drive Type Piezo with Manual Actuator Resonant Piezoelectric Motor Amplified Piezo
Possible Axis Configurations X, XY, XYZ X Z
Mounting Surface Size 75 mm x 75 mm 30 mm x 30 mm 15 mm x 15 mm 21 mm x 21 mm
Additional Details

Stepper Motor Stages

These translation stages feature removable or integrated stepper motors and long travel ranges up to 300 mm. Many of these stages either have integrated multi-axis capability (PLSXY) or can be assembled into multi-axis configurations (PLSX, LNR Series, NRT Series, and LTS Series stages). The MLJ150 stage also offers high load capacity vertical translation.

Stepper Motor Stages
Product Family PLSX with and without PLST(/M) Top Plate
1" Stage
PLSXY with and without PLST(/M) Top Plate
1" Stage
LNR Series
25 mm Stage
LNR Series
50 mm Stage
Click Photo
to Enlarge
Travel 1" 25 mm 50 mm
Maximum Velocity 7.0 mm/s 2.0 mm/s 50 mm/s
Possible Axis
Configurations
X, XY X, XY, XYZ X, XY, XYZ
Mounting
Surface Size
3" x 3" 60 mm x 60 mm 100 mm x 100 mm
Additional Details

Stepper Motor Stages
Product Family NRT Series
100 mm Stage
NRT Series
150 mm Stage
LTS Series
150 mm Stage
LTS Series
300 mm Stage
MLJ250
50 mm Vertical Stage
Click Photo
to Enlarge
Travel 100 mm 150 mm 150 mm 300 mm 50 mm
Maximum Velocity 30 mm/s 50 mm/s 3.0 mm/s
Possible Axis
Configurations
X, XY, XYZ X, XY, XYZ Z
Mounting
Surface Size
84 mm x 84 mm 100 mm x 90 mm 148 mm x 131 mm
Additional Details

DC Servo Motor Stages

Thorlabs offers linear translation stages with removable or integrated DC servo motors. These stages feature low profiles and many can be assembled in multi-axis configurations.

DC Servo Motor Stages
Product Family MT Series
12 mm Stages
PT Series
25 mm Stages
MTS Series
25 mm Stage
MTS Series
50 mm Stage
Click Photo
to Enlarge
Travel 12 mm 25 mm 25 mm 50 mm
Maximum Velocity 2.6 mm/s 2.4 mm/s
Possible Axis Configurations X, XY, XYZ X, XY, XYZ
Mounting
Surface Size
61 mm x 61 mm 101.6 mm x 76.2 mm 43 mm x 43 mm
Additional Details
DC Servo Motor Stages
Product Family M30 Series
30 mm Stage
M30 Series
30 mm Monolithic
XY Stage
M150 Series
150 mm XY Stage
KVS30
30 mm Vertical Stage
Click Photo
to Enlarge
Travel 30 mm 150 mm 30 mm
Maximum Velocity 2.4 mm/s X-Axis: 170 mm/s
Y-Axis: 230 mm/s
8.0 mm/s
Possible Axis Configurations X, Z XY, XZ XY Z
Mounting
Surface Size
115 mm x 115 mm 272.4 mm x 272.4 mm  116.2 mm x 116.2 mm
Additional Details

Direct Drive Stages

These low-profile stages feature integrated brushless DC servo motors for high speed translation with zero backlash. When no power is applied, the platforms of these stages have very little inertia and are virtually free running. Hence these stages may not be suitable for applications where the stage's platform needs to remain in a set position when the power is off. We do not recommend mounting these stages vertically.

Direct Drive Stages
Product Family DDS Series
50 mm Stage
DDS Series
100 mm Stage
DDS Series
220 mm Stage
DDS Series
300 mm Stage
DDS Series
600 mm Stage
Click Photo
to Enlarge
Travel 50 mm 100 mm 220 mm 300 mm 600 mm
Maximum Velocity 500 mm/s 300 mm/s 400 mm/s 400 mm/s
Possible Axis Configurations X, XY X, XY X X
Mounting Surface Size 60 mm x 52 mm 88 mm x 88 mm 120 mm x 120 mm
Additional Details

Posted Comments:
No Comments Posted
Back to Top

20 mm XY Stage with Piezo Inertia Drive


Click for Details

PD1D(/M) Top Plate Schematic. Dimensions for the metric stage are given in parentheses.

Includes:

  • Monolithic XY Stage with Integrated Cables, SMC Female Connectors
  • Two 2-56 (M2) Mounting Screws
  • Two 8-32 (M4) Mounting Screws
  • Two Ø2 mm Dowel Pins
  • Open-Loop Operation Supported
  • Monolithic XY Stage with ≤2 mrad Orthogonality
  • Provides High-Resolution Dual-Axis Positioning
  • Speeds Up to 3 mm/s when Driven with KIMx01 Controller
  • Integrated 1 m (3.3 ft) Cables with SMC Female Connectors
  • Requires Two KIM001, One KIM101, One PDXC, or Two PDXC2 Piezo Inertia Controller(s) (Sold Separately Below)

This ORIC® open-loop, piezo inertia, monolithic XY stage can support loads up to 3 kg, operates with no backlash, and can achieve speeds up to 3 mm/s when driven with a KIMx01 controller. The piezo inertia drive is self-locking when the stage is at rest and no power is supplied to the piezo, making these actuators ideal for set-and-hold applications that require micrometer resolution and long-term alignment stability. See the Specs tab for detailed specifications. Note that the PD1D(/M) stage is monolithic and cannot be disassembled into two single-axis stages.

The stage should be placed on a surface with flatness ≤5 µm. If needed, the PD1B(/M), PD1B2(/M), or PD1B3(/M) mounting bases (sold separately below) will provide a flat surface for the stage to reduce stage warping. Along with this, we also offer alternative top plate adapters and a right-angle bracket adapter.

Each stage has integrated 1.0 m cables; 1.5 m SMC extension cables (Item # PAA101) and male-to-male SMC adapters (Item # T5026) are also available. Please note that, due to the capacitance of the cables, the total length of the control cable should not exceed 2.5 m.

The PD1D(/M) stage is compatible with all three of the controllers offered on this page: the KIM001 Single-Channel K-Cube™ Piezo Inertia Motor Controller, KIM101 Four-Channel K-Cube Piezo Inertia Motor Controller, the PDXC Piezo Inertia Stage Controller, and the the PDXC2 Compact Piezo Inertia Stage Controller. The PDXC2AD female D-sub to male SMC adapter cable is needed to use this stage with the PDXC2 controller. The KIM101 controller must be the 2019 or newer version and revision 010003 or higher firmware. Earlier versions of this controller or those with older firmware will not function properly and may cause failure of the stage and/or the controller. The specifications for this stage were measured using the KIM101 K-Cube™ Controller (see the Specs tab for details); similar performance is provided by the KIM001 controller. Since the PDXC operates at higher frequencies but outputs a lower maximum voltage than the K-Cube controllers, it is capable of driving the PD1D(/M) stage at a higher speed with a smaller step size and lower driving force.

Note: During operation, the stage makes a high-pitch noise and may generate some heat. This is normal behavior in the performance of the device and does not indicate a fault condition.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Imperial Price Available
PD1D Support Documentation
PD1DORIC 20 mm Monolithic XY Stage with Piezoelectric Inertia Drive, Imperial
$1,679.59
Today
+1 Qty Docs Part Number - Metric Price Available
PD1D/M Support Documentation
PD1D/MORIC 20 mm Monolithic XY Stage with Piezoelectric Inertia Drive, Metric
$1,679.59
Today
Back to Top

Adapter Plates


Click for Details

PD1U Adapter Plate Schematic. Dimensions for the metric adapter plate are given in parentheses.

Click for Details

PD1T and PD1T/M Adapter Plate Schematics
  • Provide Different Mounting Hole Patterns
  • Match 30 mm x 30 mm Footprint of Piezo Stage
  • Each Adapter Includes Two 2-56 (M2) Mounting Screws and Two Ø2 mm Dowel Pins

These adapter plates provide alternative mounting holes for the PD1D(/M) stage. Each adapter matches the footprint of the stage and can be secured to the the top or bottom of the stage using the two included 2-56 (M2) cap screws in the mounting counterbores near the corners.

The PD1T imperial adapter plate features a central 8-32 tapped hole and sixteen 4-40 tapped holes, four of which are spaced for 16 mm cage systems. The metric version features a central M4 tapped hole, ten M2 mounting taps, four M3 mounting taps, and four 4-40 taps with 16 mm cage system spacing.

The PD1U imperial adapter plate features four 6-32 and four 8-32 tapped holes in a cross pattern; the metric version features eight M4 tapped holes in the same layout. The bottom surface features five #8 (M4) counterbores, as well as four Ø2 mm dowel pin holes for alignment. See the drawing above for more details.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Imperial Price Available
PD1T Support Documentation
PD1T3.0 mm Thick Adapter Plate for 20 mm Piezo Inertia Stage, Imperial
$61.48
Today
PD1U Support Documentation
PD1U8.5 mm Thick Adapter Plate for 20 mm Piezo Inertia Stage, Imperial
$61.48
Today
+1 Qty Docs Part Number - Metric Price Available
PD1T/M Support Documentation
PD1T/M3.0 mm Thick Adapter Plate for 20 mm Piezo Inertia Stage, Metric
$61.48
Today
PD1U/M Support Documentation
PD1U/M8.5 mm Thick Adapter Plate for 20 mm Piezo Inertia Stage, Metric
$61.48
Today
Back to Top

Mounting Adapters


Click for Details

PD1B2(/M) Mounting Adapter Schematic. Dimensions for the metric stage are given in parentheses.

Click for Details

PD1B(/M) Mounting Adapter Schematic. Dimensions for the metric stage are given in parentheses.
  • Provide Flat Surface for Mounting PD1D(/M) Stage
  • Two Versions Available:
    • PD1B(/M): #8 (M4) Mounting Slot
    • PD1B2(/M): 1/4" (M6) Mounting Slots and 1/4"-20 (M6 x 1.0) Threaded Mounting Hole
  • Screws and Washers for Breadboard Mounting Included
    • PD1B(/M): Two 8-32 (M4) Screws and Two #8 (M4) Washers
    • PD1B2(/M): Two 1/4"-20 (M6) Screws and Two 1/4" (M6) Washers

These adapters provide a flat surface for mounting the PD1D(/M) stage. The PD1B(/M) adapter features a #8 (M4) mounting slot and the PD1B2(/M) adapter features 1/4" (M6) mounting slots and a 1/4"-20 (M6 x 1.0) threaded mounting hole. If the stage is mounted on a surface with >5 µm flatness (as with most breadboards and optical tables), the velocity variation and pitch/yaw of the stage may suffer due to the stage warping. Mounting the stage on these adapters drastically reduces the amount the stage warps when mounted on a table or breadboard with insufficient flatness.

The stage can be mounted to the adapter using two 2-56 (M2) screws near the corners with a maximum of 0.35 N·m torque. Alternatively, two 8-32 (M4) screws can be used on either end of the stage with up to 0.55 N·m torque. Two cap screws and washers are included with each adapter for breadboard or optical table mounting.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Imperial Price Available
PD1B Support Documentation
PD1BMounting Adapter for 20 mm Piezo Inertia Stage, #8 Mounting Slot
$73.66
Today
PD1B2 Support Documentation
PD1B2Mounting Adapter for 20 mm Piezo Inertia Stage, 1/4"-20 Mounting Features
$98.80
Today
+1 Qty Docs Part Number - Metric Price Available
PD1B/M Support Documentation
PD1B/MMounting Adapter for 20 mm Piezo Inertia Stage, M4 Mounting Slot
$73.66
Today
PD1B2/M Support Documentation
PD1B2/MMounting Adapter for 20 mm Piezo Inertia Stage, M6 x 1.0 Mounting Features
$98.80
Today
Back to Top

Universal Mounting Adapter for ORIC Stages


Click for Details

Mechanical Drawing for the PD1B3(/M) Adapter Plate. See the table on the left for descriptions of the hole labels. Dimensions for the metric version of the adapter plate are given in parentheses.

Click to Enlarge

PD1 Stage Mounted to
PD1B3 Adapter
  • Provide Flat Surface for Mounting ORIC Stages
  • Passivated Stainless Steel Construction
  • Reduces Stage Warping When Mounting to Table or Breadboard
  • Dimensions (L x W x H): (65.0 mm x 65.0 mm x 10.0 mm)

Thorlabs' PD1B3(/M) Universal Adapter Plate provides a flat surface (flatness ≤5 µm) for mounting any of the ORIC piezo inertia stages. Mounting holes are labelled in the mechanical drawing to the right corresponding to the table below. The four 4-40 threaded holes are 30 mm cage system compatible, and two 1/4"-20 (M6) screws are included for mounting to breadboards.

If the stage is mounted on a surface with >5 µm flatness (as with most breadboards and optical tables), the velocity variation and pitch/yaw of the stage may suffer due to the stage warping. Mounting the stage on the adapter drastically reduces the amount the stage warps when mounted on a table or breadboard with insufficient flatness. 

Labela Holes/Slots Patternb Spacingb (Stage Compatibility) Threading Depth Places
A 1/4"-20 (M6)  1" x 2" (25 x 50 mm) Through 6
B Ø2 mm Dowel Pin Holes 16 x 16 mm 1.5 mm 4
C #4-40 30 x 30 mm (Item # PDR1(/M), PDR1V(/M)) 3.5 mm 4
D 1/4"-20 (M6) C-Slot 1" to 2" (25 to 50 mm) N/A 4
E #00-90 (M1.2) 10 x 10 mm (Item # PD2(/M), PDX2(/M)) 3 mm 4
F #8-32 (M4) C-Slot 1.25" (31.25 mm) N/A 1
G #2-56 (M2) 27.0 x 23.4 mm (Item # PDXZ1(/M), PD1(/M), PDX1(/M), PD1D(/M), PD1V(/M), PDR1C(/M)) / 40.8 x 30 mm 7 mm 8
H #8-32 (M4) 2" (50 mm) (Item # PD3(/M)) / 2" x 2" (50 x 50 mm) (Item # PDXR1(/M)) 7.8 mm 4
  • See Mechanical Drawing for Details
  • Holes and dimensions for the metric version of the adapter plate are given in parentheses.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Imperial Price Available
PD1B3 Support Documentation
PD1B3Universal Mounting Adapter for Oric Piezo Inertia Stages, Imperial
$227.46
Today
+1 Qty Docs Part Number - Metric Price Available
PD1B3/M Support Documentation
PD1B3/MUniversal Mounting Adapter for Oric Piezo Inertia Stages, Metric
$227.46
Today
Back to Top

Right-Angle Bracket Adapter


Click for Details

Schematic of Right-Angle Bracket's Vertical Face. Dimensions for the metric bracket are given in parentheses.
  • Connects PD1(/M) or PDX1(/M) Stage to PD1D(/M) Stage for 3-Axis Configuration
  • Two 2-56 (M2) Mounting Screws Included

The PD1Z(/M) right-angle bracket allows the user to mount a PD1(/M) or PDX1(/M) linear stage on top of a PD1D(/M) stage for XYZ applications. It can be secured to the top plate of the stage using two 2-56 (M2) cap screws in the mounting counterbores near the corners. The vertical stage can be mounted on the bracket using the two included 2-56 (M2) cap screws in the mounting counterbores near the corners. Four Ø2 mm dowel pin holes are located on each face for precise alignment.

The PD1T(/M) or PD1U(/M) adapter plate can also be mounted directly to the bracket, in place of the vertical stage, for XY applications that require more mounting options. 

Note that in an XYZ configuration, the locking plate of the bottom stage may interfere with the translation range of the vertical stage. Simply remove the locking plate to achieve the full range of translation in all three dimensions.

Note: It is not recommended to mount the PD1D(/M) monolithic stage vertically because one axis will get a lateral force to the rails and may influence its angular error and even reduce the lifespan of the rail. When mounted vertically, long term usage (>3 billion steps) may cause creep of the rails, leading to decreased travel range. To avoid this, return the stage to a horizontal position and run it back and forth over the full range several times after approximately 1 billion steps in a vertical orientation.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Imperial Price Available
PD1Z Support Documentation
PD1ZRight-Angle Bracket Adapter for 20 mm Piezo Inertia Stage, Imperial
$94.41
Today
+1 Qty Docs Part Number - Metric Price Available
PD1Z/M Support Documentation
PD1Z/MRight-Angle Bracket Adapter for 20 mm Piezo Inertia Stage, Metric
$94.41
Today
Back to Top

K-Cube™ Controllers for Piezo Inertia Stages and Actuators

Key Specificationsa
Item # KIM001 KIM101
Piezoelectric Outputs (SMC Male) One Four
Piezo Output Voltage 85 to 125 VDC 85 to 125 VDC per Channel
Top Panel Controls Scroll Wheel Dual-Axis Joystick
External Input
(SMA Female)
±10 V ± 2%
Input Power +15 VDC @ 2 A
Housing Dimensionsb
(W x D x H)
60.0 mm x 60.0 mm x 47.0 mm
(2.36" x 2.36" x 1.85")
121.0 mm x 60.0 mm x 47.0 mm
(4.76" x 2.36" x 1.85")
Compatible Software Kinesis & Legacy APT
Compatible
Piezo Inertia Stagesc
5 mm Linear Stage, 20 mm Linear Stages,
50 mm Linear Stage, & Rotation Stages
  • For complete specifications, please see the manuals by clicking the red Docs icons () below.
  • Not Including Mounting Plate
  • Compatibility with the PD2(/M) 5 mm and PD3(/M) 50 mm stages require the PD2AD adapter cable. The KIM001 and KIM101 controllers are not compatible with the PDX1(/M) Linear Stage with Optical Encoder.
  • Compact Footprints
  • Adjustable Voltage Output from 85 V to 125 V
  • Single-Channel and Four-Channel Versions Available
  • Standalone Operation via Top Panel Controls and Display or PC Control via USB Plug and Play
  • See Table for Compatible Stages

These compact K-Cube Controllers provide easy manual and PC control of our piezo inertia stages that use SMC connectors, piezo inertia actuators, and optic mounts. They are also compatible with our PD2(/M) 5 mm or PD3(/M) 50 mm linear stages when used with a PD2AD adapter cable (sold separately). The controllers feature adjustable voltage output from 85 V to 125 V. The top panel display screen enables operation as soon as the unit is turned on, without the need for connection to a PC. Alternatively, both controllers have USB connectivity that provides 'Plug-and-Play' PC-controlled operation with our Kinesis® software package (included). These controllers can also be operated with our legacy APT™ (Advanced Positioning Technology) software package.

These units have small footprints and may be mounted directly to the optical table using the 1/4" (M6) counterbored slots in the base plate. Their compact size allows these controllers to be positioned close to the motorized system for added convenience when manually adjusting motor positions using the top panel controls. Tabletop operation also allows minimal drive cable lengths for easier cable management.

KIM001 Single-Channel Controller
This single-channel piezo inertia controller provides a voltage output for a single piezo inertia stage or actuator. The top panel features a spring-loaded scroll wheel for driving the stage or actuator as well as selecting menu options.

KIM101 Four-Channel Controller
This four-channel controller features four SMC outputs to drive piezo inertia devices. The channels can be controlled independently or simultaneously in pairs using the dual-axis joystick on the controller's top panel. The controller can be configured to operate up to four PD series piezo inertia stages, up to four PIA series piezo inertia actuators, or up to two PIM series piezo inertia optic mounts; one KIM101 can only concurrently drive devices that use the same "Select Stage" configuration in the controller's menu options (see the manuals for more details).

For more information, please see the full web presentation.

Operation
Set the stage configuration on the KIM001 or KIM101 controller to "PD(R)" before driving this stage. Select the "Select Stage" option, change it from "PIA" to "PD(R)", and then restart the controller. The display will show "Stage is PD(R)" and the configuration will be changed to drive the ORIC PD Series stage. For additional front panel configuration details, please see the KIM001 or KIM101 controller manuals by clicking the red Docs icons () below. These drivers have an internal sawtooth voltage signal generator capable of sending sub-millisecond pulses (steps) with controllable amplitudes from 85 V to 125 V.

Power Supply
The KIM001 and KIM101 Motor Controllers do not ship with a power supply. The compatible KPS201 Power Supply is sold separately below.

Note: Due to the nature of its design, and its non-linear high frequency switching, the KIM001 and KIM001 units are not compatible with the KCH301 and KCH601 hubs. Only use the KPS201 power supply unit. These controllers are also not compatible with the PDX1(/M) stage. Compatibility with the PD2(/M) 5 mm and PD3(/M) 50 mm stages require the PD2AD adapter cable.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
KIM001 Support Documentation
KIM001Customer Inspired! Single-Channel K-Cube Piezo Inertia Motor Controller (Power Supply Sold Separately)
$852.05
Today
KIM101 Support Documentation
KIM101Four-Channel K-Cube Piezo Inertia Motor Controller (Power Supply Sold Separately)
$1,207.66
Today
Back to Top

Compatible Power Supply

  • Power Supply Compatible with KIM001 and KIM101 Motor Controllers
  • Universal Input: 100 - 240 VAC
  • Region-Specific Adapter Plug Shipped with Power Supply

The KPS201 power supply outputs +15 VDC at up to 2.66 A and can power a single K-Cube or T-Cube with a 3.5 mm jack. It plugs into a standard wall outlet. One region-specific plug adapter, selectable at checkout, is included with each power supply.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
KPS201 Support Documentation
KPS20115 V, 2.66 A Power Supply Unit with 3.5 mm Jack Connector for One K- or T-Cube
$40.33
Today
Back to Top

ORIC® Piezo Inertia Stage Controller

Key Specificationsa
SMC Port Number of Ports Two
Voltage 0 to 40 V
Frequency 20 kHz Max
D-Sub Port Number of Ports One
Voltage -10 to 50 V
Frequency 20 kHz Max
Max Current Limit 10 A
Front USB Type A, USB Host 2.0
Back USB Type B, USB Device 2.0
Voltage of Analog In/Out -10 to 10 V, ±2%
Voltage of Trigger In/Out 0 to 5 V, TTL
Input Power 100 - 240 VAC, 50 - 60 Hz
  • For complete specifications, please see the manual by clicking the red Docs icon () below.
  • Controller for ORIC Piezo Inertia Linear Stages, PDXZ1(/M) Vertical Stage, and both PDR1C(/M) and PDXR1(/M) Rotation Stages
  • Supports Both Open- and Closed-Loop Operation
  • SMC and 15-Pin D-Sub Ports Available

This controller is designed to control our ORIC piezo-inertia-driven linear stages, PDXZ1(/M) vertical stage, and both PDR1C(/M) and PDXR1(/M) rotation stages. It offers two channels that support open-loop stage control using SMC outputs and one channel that can provide open- or closed-loop stage control using a 15-pin D-sub output. If a longer connection is required for ORIC stages with a D-Sub connector, the PDXCE Extension Cable can be used (sold separately below).

Embedded software allows this unit to be fully controlled using the buttons, LCD display, and knob on the front panel. Alternatively, built-in external trigger modes support single-channel operation. By connecting multiple controllers together, multi-channel operation in D-sub mode such as a raster scan is possible. Users can select the output port(s), switch between open-loop and closed-loop modes, and perform homing and encoder calibration without being connected to a PC. In addition to these on-unit controls, USB connectivity provides simple PC-control with our available software platform.

The unit comes with a compatible region-specific power cord. For all applications, use an IEC320 compatible power cord fitted with a plug appropriate for your particular power socket. Ensure the line voltage rating marked on the rear panel agrees with your local power supply. 

For more information, please see our full web presentation.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
PDXC Support Documentation
PDXCMulti-Stage ORIC® Piezo Inertia Stage Controller
$2,786.15
Today
Back to Top

Compact ORIC® Piezo Inertia Stage Controller

Key Specificationsa
Performance Specificationsa
D-sub Port Number of Ports One
Voltage 0 to 56 V
Frequency 20 kHz Max
Max Current Limit 10 A
Front USB Type A, USB HID Host
Back USB Type B, USB Device 2.0
I/O Port Voltage of Analog In/Out -10 to 10 V, ±2%
Voltage of Trigger In/Out 0 to 5 V, TTL
Ethernet PC Communication One RJ-45 Port
Dimensions (L x W x H) 115.2 mm x 150.0 mm x 48.5 mm
(4.54” x 5.91” x 1.91”)
Weight 0.53 kg
Input Power 12 V, 3 A DAC
  • For complete specifications, please see the manual by clicking the red Docs icon () below.
  • Controller for ORIC Piezo Inertia Linear Stages, PDXZ1(/M) Vertical Stage, and both PDR1C(/M) and PDXR1(/M) Rotation Stages
  • Compact Design and PC Control with Kinesis® Software 
  • Supports Both Open- and Closed-Loop Operation
  • Energy Efficient Switch Amplifier Circuit Outputs Peak Current of 10 A
  • Configurable High Speed Communication Interfaces: USB 2.0, Gigabit Ethernet, Digital I/0, Analog I/0
  • 800 Hz to 20 kHz Pulse Rate Range

The PDXC2 compact controller is designed for our ORIC piezo-inertia-driven linear stages, PDXZ1(/M) vertical stage, and both PDR1C(/M) and PDXR1(/M) rotation stages. It features one channel that supports open- or closed-loop stage control using a 15-pin D-sub output. The PDXC2AD D-sub to SMC adapter cable (sold below) can be used to operate stages with an SMC connection in open-loop mode. 

The PDXC2 controller is connected to PC by either the USB or ethernet ports on the back panel of the controller. All the operating parameters and operations, such as switching between open- and closed-loop modes, performing homing operation, and parameter optimization are controlled by PC with the Kinesis® software (available for download on the Motion Control tab above). Settings such as trigger modes and movement parameters can be configured for operations such as raster scans. Calibration for specific ORIC stages with encoders (Item #s PDX1(/M) and PDXR1(/M) only) is performed with the PDXC2 Calibration Tool found on the Motion Control Software page. Please see the user manual for details. Command-line control is also possible through the USB and RS-232 ports.

The PDXC2 unit is powered by the included DS12 12 VDC power adapter, which operates at an input voltage of 100 - 240 VAC and ships with a region-specific AC cable. For all applications, use an IEC320 compatible power cord fitted with a plug appropriate for your particular power socket. Make sure that the line voltage rating marked on the power adapter agrees with your local power supply.

For more information, please see our full web presentation.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
PDXC2 Support Documentation
PDXC2Customer Inspired! Compact Single Stage ORIC® Piezo Inertia Stage Controller
$1,734.00
Today
Back to Top

Female D-Type to Male SMC Piezo Drive Cable for PDXC2 Piezo Inertia Stage Controller

Adapter Cable for PDXC2
Click for Details

DB15 Female to SMC Male
Adapter Cable Terminators
Click for Details

Mechanical Drawing
  • 1 m Long D-Sub to SMC Adapter Cable
  • Connects the PDXC2 Controller's D-sub port to the PD1(/M), PD1V(/M), PD1D(/M), or PDR1C(/M) Stage's SMC Connection

The PDXC2AD adapter cable has a female 15 pin D-sub connection and a male SMC connection. The cable adapts the PDXC2 controller's male 15-pin D-sub port to the SMC termination of the PD1(/M), PD1D(/M), PD1V(/M) 20 mm stages, or PDR1C(/M) rotation stage

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
PDXC2AD Support Documentation
PDXC2ADAdapter Cable for PDXC2, 1 m, DB15 Female to SMC Male
$42.28
Today