Effect of Temperature on Polarization Maintaining Fiber


Effect of Temperature on Polarization Maintaining Fiber


Please Wait

 

Are polarization-maintaining fibers with stress rods affected by operating temperature?

Diagram of PANDA stress-birefringent PM fiber showing stress rods (SAP).
Click to Enlarge

Figure 1: The PANDA PM fiber has stress rods embedded in its cladding. These cylinders are aligned parallel to the core. Since the glass of the stress rods contracts more than the surrounding cladding as the fiber cools from fabrication temperatures, the core is pulled in tension along the slow axis.

Source of 
Change in Delay
Change in Parameter Resulting
Change in Delay
Birefringence Length
Temperature-Dependent
Birefringence

 

---

 

Temperature-Dependent
Fiber Length
---
Change in delay between orthogonal polarization components in a PM fiber when considering only the temperature-dependent length expansion due to CTE.
Click to Enlarge

Figure 3: Since the effect of the temperature-dependent birefringence dominates in Figure 2, the red trace from that figure is plotted alone to better show its range. These values were calculated using the assumption that the length of the fiber increases with temperature, while the fiber's birefringence remains constant with temperature. 

Change in delay between orthogonal polarization components in a stress-birefringent PM fiber when considering the temperature-dependent change in birefringence.
Click to Enlarge

Figure 2: The relative delay (y-axis) between orthogonal polarization components propagating through a PANDA PM fiber changes as the fiber's temperature changes (x-axis). As the temperature increases, the polarization-maintaining performance decreases. Performance is improved by reducing the temperature. The blue and red traces were calculated using the assumption that only the birefringence or fiber length, respectively, changed with temperature.

The larger the refractive index difference between the orthogonal slow and fast polarization axes of a polarization-maintaining (PM) fiber, the better its PM performance. However, the magnitude of this difference (birefringence) decreases with increasing temperature, since the thermally dependent tension across the core drops with increasing temperature. The decrease in the fiber's birefringence is approximately proportional to the increase in temperature.

Temperature-Dependent Birefringence
Stress-birefringent PM fibers like PANDA and bow-tie fibers have stress rods embedded in their claddings (Figure 1). Since the stress rod's glass has a higher coefficient of thermal expansion (CTE) than the cladding's glass, the glass in the stress rods contracts at a higher rate than the rest of the cladding as the fiber cools immediately after fabrication. Due to their greater contraction, the stress rods pull on the surrounding cladding, which places the core under significant tension around room temperature. This creates birefringence in the fiber's core.

A proportionality constant () relates the birefringence (),

,

to the difference between the temperature of the glass when it transitions between its liquid and glassy states (To , the fictive temperature), and the operating temperature ().

Estimating the Impact of Temperature
If all of the light propagating in a PM fiber is polarized parallel to the same fiber axis, the polarization state of the light output by the fiber will be independent of temperature. If the light includes components polarized parallel to each of the fiber's axes, changing the operating temperature will change the elliptical polarization state of the light output by the fiber.

This is due to the relative delay between the two orthogonal components determining the output polarization state. That delay depends on the fiber's birefringence and the length of the fiber, which are both temperature dependent. But, only the change in birefringence significantly affects the fiber's polarization-maintaining performance. 

Estimates of the relative significance of these two effects on the output polarization state were calculated using the equations in the table, a 1550 nm operating wavelength, and a 2 m length (L ) of PANDA PM fiber (PM980-XP), whose beat length is ~2.7 mm. The coefficient was assumed to be -5.6 x 10-7 [3]. A fused silica glass fiber core, with a CTE of 5.5 x 10-7/°C, was also assumed.

The calculated results are plotted in Figures 2 and 3. The delay changes (y-axis), when the temperature changes (x-axis). This indicates that monitoring the temperature-dependent delay can provide information about the fiber's temperature-dependent birefringence and the fiber's potential to preserve polarization.

Temperature and Beat Length
While the fiber's birefringence determines the strength of a PM fiber's ability to preserve polarization, birefringence is not usually specified by the manufacturer. Beat length is a related and typically specified parameter. The beat length (Lp ),

is the ratio of wavelength () and birefringence and is shorter for higher-performance PM fibers. Note that for stress-birefringent PM fibers, beat length increases with temperature.

References
[1] Chris Emslie, in Specialty Optical Fibers Handbook, edited by Alexis Mendez and T. F. Morse (Elsevier, Inc., New York, 2007) pp. 243-277.
[2] Malcolm P. Varnham et al., "Analytic Solution for the Birefringence Produced by Thermal Stress in Polarization-Maintaining Optical Fibers," J. Lightwave Technol., LT-1(2), 332-339 (1983).
[3] Zhenyang Ding et al., "Accurate Method for Measuring the Thermal Coefficient of Group Birefringence of Polarization-Maintaining Fibers," Opt. Lett., 36(11), 2173-2175 (2011).
[4] M. Cavillon, P. D. Dragic, and J. Ballato, "Additivity of the coefficient of thermal expansion in silicate optical fibers," Opt. Lett, 42(18), 3650 - 3653 (2017).

Looking for more Insights? 
Browse the index.

Date of Last Edit: Sept. 16, 2020


Posted Comments:
No Comments Posted