Click Link for Detailed Specifications on the Substrate
Much like surface flatness for flat optics, spherical surface power is a measure of the deviation between the surface of the curved optic and a calibrated reference gauge, typically for a 633 nm source, unless otherwise stated. This specification is also commonly referred to as surface fit.
Zemax Files
Click on the red Document icon next to the item numbers below to access the Zemax file download. Our entire Zemax Catalog is also available.
Features
Material: UV-Grade Fused Silica
AR V-Coating Centered at 633 nm
Focal Lengths Available from 20.0 mm - 1000.0 mm
Thorlabs' UV-Grade Fused Silica Plano-Convex lenses are available here with an AR V-Coating centered at 633 nm deposited on both surfaces. These lenses have diameters of Ø1/2" or Ø1". Each size is compatible with a multitude of Thorlabs lens mounts. Please see the Mounting Options tab for details.
UV-grade fused silica offers high transmission in the deep UV and exhibits virtually no laser-induced fluorescence (as measured at 193 nm), making it an ideal choice for applications from the UV to the near IR. In addition, UV fused silica has better homogeneity and a lower coefficient of thermal expansion than N-BK7.
The V-coating is a multilayer, antireflective, dielectric, thin-film coating that achieves less than 0.25% reflectance over a narrow wavelength range. Reflectance rises rapidly on either side of this minimum, giving the reflectance curve a "V" shape (see Graphs tab for performance plots). When compared to broadband AR offerings, dielectric V-coats achieve lower reflectivity over a narrower bandwidth and incident angle.
With a reflectance of less than 0.25% at 633 nm, these V-Coated lenses provide exceptional transmittance and are ideal for use with HeNe lasers, as well as applications where light is transmitted through complex optical systems.
Plano-convex lenses have positive focal lengths and are the most popular type of lens element. They are commonly used to focus a collimated incident beam; in such cases the collimated light source should be incident on the curved surface to minimize spherical aberrations. When image quality is not critical, plano-convex lenses can also be used as a substitute for achromatic doublets.
When deciding between a plano-convex lens and a bi-convex lens, both of which cause collimated incident light to converge, it is usually preferable to choose a plano-convex lens if the desired absolute magnification is either less than 0.2 or greater than 5. Between these two values, bi-convex lenses are generally preferred.
Thorlabs offers fixed lens mounts that can be used for mounting the lenses sold here. For mounting high-curvature lenses in select sizes, extra-thick retaining rings with SM05 (0.535"-40) or SM1 (1.035"-40) threading are available that provide extra clearance for spanner wrenches (see the Mounting Options tab for more information).
Optics cases are also available for storage of these lenses. Please click here for information.
Below is the transmission curve for a 10 mm thick uncoated sample of UV fused silica when the incident light is normal to the surface. Please note that this is the measured transmission, including surface reflections.
V-Coating: The V-coating is a multilayer, anti-reflective, dielectric thin-film coating designed to achieve minimal reflectance over a narrow band of wavelengths. Reflectance rises rapidly on either side of this minimum, giving the reflectance curve a “V” shape, as shown in the following performance plots. Thorlabs' V-coats have a minimum reflectance of less than 0.25% per surface and are designed for angles of incidence (AOI) between 0° and 20°. Compared to the broadband AR coatings, V-coatings achieve lower reflectance over a narrower bandwidth when used at the specified AOI. Click here for the raw data.
633 nm V-Coat Reflectance (AOI: 0 - 20°)
The plot on the right is an enlarged view of the shaded region:
They are also available from stock with the UV, visible, or NIR AR coatings shown in the graph below. Click here to view all coating options for UV-grade fused silica plano-convex lenses.
Click to Enlarge CXY1 Translation Mount and SM1 Lens Tube Mounted in a 30 mm Cage System
Self-Centering Mount for 60 mm Cage Systems, Ø0.15" (Ø3.8 mm) to Ø1.77" (Ø45.0 mm) Optics
Mounting High-Curvature Optics
Thorlabs' retaining rings are used to secure unmounted optics within lens tubes or optic mounts. These rings are secured in position using a compatible spanner wrench. For flat or low-curvature optics, standard retaining rings manufactured from anodized aluminum are available from Ø5 mm to Ø4". For high-curvature optics, extra-thick retaining rings are available in Ø1/2", Ø1", and Ø2" sizes.
Extra-thick retaining rings offer several features that aid in mounting high-curvature optics such as aspheric lenses, short-focal-length plano-convex lenses, and condenser lenses. As shown in the animation to the right, the guide flange of the spanner wrench will collide with the surface of high-curvature lenses when using a standard retaining ring, potentially scratching the optic. This contact also creates a gap between the spanner wrench and retaining ring, preventing the ring from tightening correctly. Extra-thick retaining rings provide the necessary clearance for the spanner wrench to secure the lens without coming into contact with the optic surface.