Polaris® Side Optic Retention Mounts for Ø1.50" Optics


  • Designed for Long-Term Stability
  • Matched Actuator/Body Threading Minimizes Drift and Backlash
  • Minimal Temperature-Dependent Hysteresis
  • Sapphire Adjuster Seats Prevent Wear Over Time

POLARIS-K15S4

Ø1.50" Mirror Mount
2 Adjusters

Application Idea

POLARIS-K15S4 Ø1.50" Mount with POLARIS-N5 Removable Adjuster Knobs on a Ø25 mm
Post for Polaris Mounts

US Patents 10,101,559

POLARIS-K15VS2

Ø1.50" Mirror Mount
2 Vertical-Drive Adjusters
Right-Handed

Left-Handed Version Available
Related Items


Please Wait

Features

  • Machined from Heat-Treated Stainless Steel with Low Coefficients of Thermal Expansion (CTE)
  • Hardened Stainless Steel Ball Contacts with Sapphire Seats for Durability and Smooth Movement
  • Matched Actuator and Back Plate Provide Stability and Smooth Kinematic Adjustment
  • Vertical-Drive Options for use in Compact Setups Available
  • Passivated Stainless Steel Surface Ideal for Vacuum and High-Power Laser Cavity Applications
  • Patented Optic Bore Design with Monolithic Flexure Arm (US Patent 10,101,559)
  • Custom Mount Configurations are Available by Contacting Tech Support

Polaris® Low-Drift Kinematic Ø1.5" Mirror Mounts are designed to securely hold Ø1.5" (38.1 mm) optics, such as our low-GDD ultrafast mirrors, and are the ultimate solution for applications requiring stringent long-term alignment stability.

Optic Retention
These Ø1.5" mirror mounts feature a patented optic bore design with a monolithic flexure arm to hold the optic. This design provides high holding force and pointing stability while allowing quick and easy installation of the optic.

Polaris optic bores are precision machined to achieve a fit that will provide optimum beam pointing stability over changing environmental conditions such as temperature changes, transportation shock, and vibration. Performance will be diminished if the Ø1.5" mount is used with optics that have an outer diameter tolerance greater than +0/-0.1 mm.

Design
Machined from heat-treated stainless steel, Polaris mounts utilize precision-matched adjusters with ball contacts and sapphire seats to provide smooth kinematic adjustment. The Polaris design addresses all of the common causes of beam misalignment; please refer to the Design Features tab for detailed information.

Post Mounting
The Polaris mirror mounts are equipped with #8 (M4) counterbores for post mounting. The Ø1.5" mounts also include Ø2 mm alignment pin holes around the mounting counterbore, allowing for precision alignments when paired with our posts for Polaris mirror mounts. See the Usage Tips tab for more recommendations about mounting configurations.

Cleanroom and Vacuum Compatibility
The POLARIS-K15S4 and POLARIS-K15VS2(L) mounts are designed to be compatible with cleanroom and vacuum applications. See the Specs and the Design Features tab for details.

Item # POLARIS-K15S4 POLARIS-K15VS2 POLARIS-K15VS2L
Optic Sizea Ø1.5" (38.1 mm)
Optic Thickness (Min) 0.24" (6.0 mm)
Number of Adjusters Two
Adjuster Drive 5/64" Hex, Ø0.07" Side Adjustment Holesb 5/64" Hex, Vertical Drive, Right Handed 5/64" Hex, Vertical Drive, Left Handed
Adjuster Pitch 100 TPI
Actuator Matching Matched Actuator/Body Pairs
Measured Point-to-Point
Mechanical Resolution per Adjuster
(Bidirectional Repeatability)
5 µrad (Typical);
2 µrad (Achievable)
Adjustment per Revolutionc ~5.5 mrad/rev
Mechanical Angular Range (Nominal) ±3°
Front Plate Separation at Pivot Adjuster 0.125" (3.175 mm)
Beam Deviation After Thermal Cyclingd <1 μrad ≤1 μrad
Recommended Optic Mounting Torquee 5 - 7 oz-in (0.035 - 0.049 N·m) for 6 mm Thick Optics
Mounting Two #8 (M4) Counterbores One #8 (M4) Counterbore
Alignment Pin Holes Two at Each Counterboref
Vacuum Compatibilityg 10-9 Torr at 25 °C with Proper Bake Out
10-5 Torr at 25 °C without Bake Out
Grease Vapor Pressure: 10-13 Torr at 20 °C; 10-5 Torr at 200 °C
Epoxy Meets Low Outgassing Standards NASA ASTM E595, Telcordia GR-1221
Operating Temperature Range -30 to 200 °C
  • For best performance, use optics with a diameter tolerance of up to +0/-0.1 mm.
  • The POLARIS-K15S4 mount can be positioned with the adjusters in a left-handed or right-handed orientation depending on the mounting holes used.
  • When the front plate is parallel to the back plate.
  • After 12.5 °C temperature cycle, the beam returns to within 1 μrad of its original position for a Polaris mounted on a Ø1" post.
  • The optimal optic mounting torque can vary by ±1 oz-in due to variations in optic diameter and tolerance buildup.
  • Standard DIN 7-m6 ground dowel pins are recommended. The recommended tolerance for the location of the mating dowel pin holes and threaded mounting hole is ±0.003".
  • Vacuum-compatible Polaris mounts are assembled in a clean environment, chemically cleaned using the Carpenter AAA passivation method to remove sulfur, iron, and contaminants from the surface, and double vacuum bagged. The 8-32 and M4 cap screws included with the Polaris mounts are not rated for pressures below 10-5 Torr. Prior to placing any components in a sensitive vacuum system, a thorough pre-baking in a bake-out oven should be performed to remove all moisture and surface volatiles. Contact Tech Support for details.

Polaris Mirror Mounts Test Data

All of the Polaris Low-Drift Kinematic Mirror Mounts have undergone extensive testing to ensure high-quality performance. Thermal Shock testing confirms the exceptional stability of the mounts and demonstrates that they reliably return to their initial position after a transient temperature shift. Interferometric wavefront distortion testing demonstrates the ability of Polaris mounts to secure an optic without significantly distorting the optical surface.


Positional Repeatability After Thermal Shock

Purpose: This testing was done to determine how reliably the mount returns the mirror, without hysteresis, to its initial position. These measurements show that the alignment of the optical system is unaffected by the temperature shock.

Procedure: After mounting the POLARIS-K15S4 mount to a Ø25 mm Post, the mirror and post assembly was secured to a stainless steel optical table in a temperature-controlled environment. The mirror was held using the flexure mechanism; see the Usage Tips tab for additional mounting recommendations. A beam from an independently temperature-stabilized laser diode was reflected by the mirror onto a position sensing detector. The temperature of each mirror mount tested was raised to 44 °C. The elevated temperature was maintained in order to soak the mount at a constant temperature. Then the temperature of the mirror mount was returned to the starting temperature. The results of these tests are shown below.

Results: As can be seen in the plots below, when the POLARIS-K15S4 mount was returned to its initial temperature, the angular position (both pitch and yaw) of the mirror returned to within 1 µrad of its initial position. The performance of the Polaris was tested further by subjecting the mount to repeated temperature change cycles. After each cycle, the mirror’s position reliably returned to within 1 µrad of its initial position.

For Comparison: To get a 1 µrad change in the mount’s position, the 100 TPI adjuster on the POLARIS-K15S4 mount needs to be rotated by only 0.05° (1/7200 of a turn). A highly skilled operator might be able to make an adjustment as small as 0.3° (1/1200 of a turn), which corresponds to 6 µrad.

Conclusions: The Polaris Mirror Mounts are high-quality, ultra-stable mounts that will reliably return a mirror to its original position after cycling through a temperature change. As a result, the Polaris mounts are ideal for use in applications that require long-term alignment stability.

POLARIS-K1VS2 Thermal Data
Click to Enlarge

Thermal Repeatability for POLARIS-K15S4 Ø1.5" Mirror Mounts
Polaris-K1VS2 Thermal Shock Tests
Click to Enlarge

The plot above shows the final angular position of a POLARIS-K15S4 mount for Ø1.5" optics for 10 consecutive thermal shock tests. The change in temperature is the difference between the starting temperature and the temperature at the end of the test and includes factors such as the variation in room temperature.

Optical Distortion Testing Using a ZYGO Phase-Shifting Interferometer

Mounting stresses are responsible for the strain that results in optical surface distortion. Minimizing distortion effects is crucial; any distortion to the optic affects the reflected wavefront. Our Ø1.5" Polaris mounts, feature a monolithic flexure arm that is designed to provide maximum stability while minimizing optic distortion.

To determine the amount of optic distortion exerted on the mirror by the flexure arm, a ZYGO Phase-Shifting Interferometer was used to measure the wavefront distortion at different torque values (see the images below to the left). Based on results of the tests seen below, we recommend a torque of 5 - 7 oz-in for our Ø1.5" Polaris mounts.

Please note that the optimal optic mounting torque can vary by ±1 oz-in due to variations in optic diameter and tolerance buildup.

Procedure:
A broadband dielectric mirror was installed into a Polaris mount using the setscrew to clamp down the flexure arm. Measurements of the optic distortion were then recorded using the ZYGO interferometer. Once each measurement was complete, the amount of force needed to push the optic out of the mount was measured to check optic retention. The wavefront distortion values shown here give peak-to-valley distortion across the entire optic, representing the worst-case scenario; the center of the optic exhibits significantly less distortion than the edge.

Results:
As seen in the table below, the peak-to-valley wavefront distortion was found to be ≤0.173λ when 5 - 7 oz-in of torque was applied to the setscrew of the mount.

POLARIS-K15S4 Optical Distortion Test Data
Torque (oz-in)a Wavefront Distortion (Peak to Valley)b
(Click for Example Zygo Screenshot)
Push-Out Force (lbf)c
Unmounted 0.083λ >12
4 0.108λ
5 0.165λ
6 0.137λ
7 0.173λ
8 0.175λ
9 0.281λ
10 0.302λ
  • The recommended optic mounting torque range is indicated by the green highlighted rows.
  • Wavefront distortion measurements were performed at λ = 633 nm. The Zygo interferometer aperture outer diameter was set to 80% for these measurements.
  • Push-out force is the force required to move the mounted optic at the given torque value.

Click to Enlarge

POLARIS-K15S4 Wavefront Distortion for Setscrew Torque of 7 oz-in (See Table to the Right for Other Setscrew Torques)

Click to Enlarge

Design Features of a POLARIS-K15S4 Mount

Several common factors typically lead to beam misalignment in an optical setup. These include temperature-induced hysteresis of the mirror's position, crosstalk, drift, and backlash. Polaris mirror mounts are designed specifically to minimize these misalignment factors and thus provide extremely stable performance. Hours of extensive research, multiple design efforts using sophisticated design tools, and months of rigorous testing went into choosing the best components to provide an ideal solution for experiments requiring ultra-stable performance from a kinematic mirror mount.

Thermal Hysteresis
The temperature in most labs is not constant due to factors such as air conditioning, the number of people in the room, and the operating states of equipment. Thus, it is necessary that all mounts used in an alignment-sensitive optical setup be designed to minimize any thermally induced alignment effects. Thermal effects can be minimized by choosing materials with a low coefficient of thermal expansion (CTE), like stainless steel. However, even mounts made from a material with a low CTE do not typically return the mirror to its initial position when the initial temperature is restored. All the critical components of the Polaris mirror mounts are heat treated prior to assembly since this process removes internal stresses that can cause a temperature-dependent hysteresis. As a result, the alignment of the optical system will be restored when the temperature of the mirror mount is returned to the initial temperature.

The method by which the mirror is secured in the mount is another important design factor for the Polaris; these Polaris mounts offer excellent performance without the use of adhesives. Instead, they use a monolithic flexure arm to hold the edge of the optic. The monolithic design is less sensitive to fluctuations in temperature and induces less distortion on the optic surface than a simple setscrew retention design.

Crosstalk
Crosstalk is minimized by carefully controlling the dimensional tolerances of the front and back plates of these mounts so that the pitch and yaw actuators are orthogonal. In addition, sapphire seats are used at all three contact points of the ball of each actuator. Standard metal-to-metal actuator contact points will wear down over time. The polished sapphire seats of the Polaris mounts, in conjunction with the hardened stainless steel actuator tips, maintain the integrity of the contact surfaces over time.

Drift and Backlash
In order to minimize the positional drift of the mirror mount and backlash, it is necessary to limit the amount of play in the adjuster as well as the amount of lubricant used. When an adjustment is made to the actuator, the lubricant will be squeezed out of some spaces and built up in others. This non-equilibrium distribution of lubricant will slowly relax back into an equilibrium state. However, in doing so, this may cause the position of the front plate of the mount to move. The Polaris mounts use adjusters matched to the body or bushings that exceed all industry standards so very little adjuster lubricant is needed. As a result, alignment of the Polaris mounts is extremely stable even after being adjusted. In addition, these adjusters have a smooth feel that allows the user to make small, repeatable adjustments.

Cleanroom and Vacuum Compatibility
All Polaris mounts sold on this page are designed to be compatible with cleanroom and vacuum applications. They are chemically cleaned using the Carpenter AAA passivation method to remove sulfur, iron, and contaminants from the surface. After passivation, they are assembled in a clean environment and then double vacuum bagged to eliminate contamination when transported into a cleanroom.

Double Vacuum Bagging for Polaris Mounts
Click to Enlarge

Polaris Mounts are Shipped Inside Two Vacuum Bag Layers

The sapphire contacts are bonded into place using a NASA-approved low outgassing procedure. In addition, DuPont LVP High-Vacuum (Krytox) Grease, an ultra-high vacuum compatible, low outgassing PTFE grease, is applied to the adjusters. These features provide high vacuum compatibility and low outgassing performance. When operating at pressures below 10-5 Torr, we highly recommend using an appropriate bake out procedure prior to installing the mount in order to minimize contamination caused by outgassing. Please note that the 8-32 and M4 cap screws included with the Polaris mounts are not rated for pressures below 10-5 Torr.

Cleanroom-Compatible Packaging
Each vacuum-compatible Polaris mount is packaged within two vacuum bag layers after assembly in a clean environment, as seen in the image to the right. The vacuum-tight fit of the bags stabilizes the mount, limiting translation of the front plate due to shocks during transportation. The tight fit also minimizes rubbing against the bag, preventing the introduction of bag material shavings that would contaminate the clean mount.

In the vacuum-sealing process, moisture-containing air is drawn out of the packaging. This eliminates unwanted reactions on the surface of the mount without the need for desiccant materials. The vacuum bags protect the mount from contamination by air or dust during transport and storage, and the double-vacuum bag configuration allows for a straightforward and effective cleanroom entry procedure. The outer bag can be removed outside of the cleanroom, allowing the contaminant-free inner bag to be placed into a clean container and transferred into the cleanroom while retaining the benefits of vacuum-bag packaging. Inside the cleanroom, the mount can be removed from the inner bag when ready for use.

Polaris 1/2" mounted on 1" post
Click to Enlarge

A POLARIS-K05 mounted to a surface using a Ø1" Post for Polaris Mirror Mounts and a Polaris Clamping Arm. Using a 1.50" long post, the optical axis is 2.0" above the table surface.
Back of Polaris Mount Shown on Breadboard
Click to Enlarge

POLARIS-K1 Mounted Directly to Breadboard using 1/4"-20 to 8-32 Adapter

Through thermal changes and vibrations, the Polaris kinematic mirror mounts are designed to provide years of use. Below are some usage tips to ensure that the mount provides optimal performance.

Match Materials
Due to its relatively low coefficient of thermal expansion, stainless steel was chosen as the material from which to fabricate the front and back plates of the Polaris mounts. When mounting, we recommend using components fabricated from the same material, such as our Ø25 mm Posts for Polaris Mirror Mounts and Polaris Clamping Arm.

Use a Wide Post
The Polaris' performance is optimized for use with our Ø25 mm Posts and our non-bridging clamping arms. These posts are made of stainless steel and provide two lines of contact with the mount, which help confine the bottom of the mount during variations in the surrounding temperature, thereby minimizing potential alignment issues.

Optic Mounting
Since an optic is prone to movement within its mounting bore, all optics should be mounted with the Polaris out of the setup to ensure accurate mounting that will minimize misalignment effects. We recommend using a torque wrench when installing an optic in the Polaris mounts. Over torquing the flexure-spring optic retainer can result in dramatic surface distortions.

Front Plate’s Position
These Ø1.5" Polaris mounts are designed to allow adjustments of up to 6°. To achieve the best performance, it is recommended that the front plate be kept as close to parallel to the back plate as possible. This ensures the highest stability of the adjustments.

Mount as Close to the Table’s Surface as Possible
To minimize the impact of vibrations and temperature changes, it is recommended that your setup has as low of a profile as possible. Using short posts will reduce the Y-axis translation caused by temperature variations and will minimize any movements caused by vibrations. Mount the Polaris directly onto a flat surface such as a breadboard using a 1/4"-20 to 8-32 thread adapter (AE8E25E) or M6 x 1.0 to M4 x 0.7 adapter (AE4M6M). By doing so, the instability introduced by a post will be eliminated. For direct mounting, knobs cannot be used on bottom adjusters, as shown in the photo to the right.

Polish and Clean the Points of Contact
We highly recommend that the points of contact between the mount and the post, as well as the post and the table, are clean and free of scratches or defects. For best results, we recommend using a polishing stone to clean the table’s surface and a LFG1P polishing pad for the top and bottom of the post as well as the bottom of the mount.

Use Polaris-Specific Adjustment Tools
The Thorlabs SA1 adjustment tool features a precision fit tip on that is designed for the 0.07" side hole adjusters of the POLARIS-K15S4 Ø1.5" mount. Additionally, its handle includes a 5/64" (2.0 mm) hex which is compatible with the adjuster screws of both the POLARIS-K15S4 and the POLARIS-K15VS2(L) mounts. We also offer the POLARIS-N5 stainless steel knobs, which can be used to adjust 1/4"-100 adjuster screws by hand; however, the addition of this knob may limit the mechanical angular range of the vertical-drive adjusters on the POLARIS-K15VS2(L) mounts.

For conditions where the mount will be exposed to shock and vibration, Thorlabs offers the POLARIS-LN1 1/4"-100 lock nut and the POLARIS-LNS1 locking collar for use with the POLARIS-K15S4 Ø1.5" mount and the POLARIS-K15VS2(L) Ø1.5" vertical-drive mount, respectively. In situations where frequent adjustment is the required, both the lock nut and the locking collar can be hand-tightened with a torque of
4 to 8 oz-in (0.03 to 0.06 N*m). If long term stability is required, the TW13 torque wrench can be used to tighten the POLARIS-LN1 lock nuts with 32 oz-in of torque. The POLARIS-LNS1 locking collars can be tightened to 32 oz-in using the POLARIS-T2 spanner wrench, which has a 13 mm hex at the top, in conjunction with the TW13 torque wrench.

Not Recommended
We do not recommend taking the adjusters out of the back plate, as it can contaminate the threading. This can reduce the fine adjustment performance significantly. Also, do not pull the front plate away as it might stretch the springs beyond their operating range or crack the sapphire seats. Finally, do not over tighten the setscrew on the monolithic optic retention arm; only slight force is required to secure the optic in place.


Posted Comments:
No Comments Posted
If your application requires an optic mount design that is not available below, please contact Tech Support.

Thorlabs offers several different general varieties of Polaris mounts, including kinematic side optic retention, SM-threaded, low optic distortion, piezo-actuated, vertical drive, and glue-in optic mounts, a fixed monolithic mirror mount and fixed optic mounts, an XY translation mount, 5-axis kinematic mount, and a kinematic platform mount. Refer to the tables below for our complete line of Polaris mounts, grouped by mount type, optic bore size, and then arranged by optic retention method and adjuster type (or intended application in the case of fixed mounts). We also offer a line of accessories that have been specifically designed for use with our Polaris mounts; these are listed in the table to the lower right. Note that the tables below list Item # suffixes that omit the "POLARIS" prefix for brevity. Click the photos below for details.

Polaris Mount Optic Retention Methods
Side Lock SM Threaded Low Distortion Glue-In
Polaris Mount Adjuster Types
Side Hole Hex Adjuster Knobs Adjuster
Lock Nuts
Piezo Adjusters Vertical-Drive Adjusters
Polaris Kinematic Mounts for Round Optics
Optic Retention Method Side Lock SM Threaded Low Distortion Glue-In
Ø1/2" Optics
2 Side Hole Adjusters - - - -K05C4
-K05G4
2 Hex Adjusters -K05S1 -K05T1 -K05F1 -
2 Adjusters with Lock Nuts -K05S2 -K05T2 -K05F2 -
2 Piezoelectric Adjusters -K05P2 - - -
3 Hex Adjusters -K05 - - -
3 Adjusters with Lock Nuts - -K05T6 -K05F6 -
Ø19 mm (3/4") Optics
2 Side Hole Adjusters -K19S4 - -K19F4/M -K19G4
Ø25 mm Optics
2 Side Hole Adjusters -K25S4/M - -K25F4/M -
Ø1" Optics
2 Side Hole Adjusters -K1S4 - - -K1C4
-K1G4
2 Hex Adjusters -K1E2
-K1-2AH
-K1T2 -K1F2 -
2 Adjuster Knobs - -K1T1 -K1F1 -
2 Piezoelectric Adjusters -K1S2P - - -
2 Vertical Adjusters -K1VS2
-K1VS2L
- - -
3 Side Hole Adjuster -K1S5 - - -
3 Hex Adjusters -K1E3
-K1-H
-K1T3 - -
3 Adjuster Knobs -K1E
-K1
-K1T -K1F -
3 Piezoelectric Adjusters -K1S3P - - -
Optic Retention Method Side Lock SM Threaded Low Distortion Glue-In
Ø1.5" Optics
2 Side Hole Adjusters -K15S4 - -K15F4 -
2 Vertical Adjusters -K15VS2
-K15VS2L
- - -
3 Adjuster Knobs (Tip/Tilt/Z) &
2 Hex Adjusters (X/Y)
- -K15XY - -
Ø50 mm Optics
2 Side Hole Adjusters -K50S4/M - -K50F4/M -
Ø2" Optics
2 Hex Adjusters -K2S2 -K2T2 -K2F2 -
2 Adjuster Knobs -K2S1 -K2T1 -K2F1 -
2 Piezoelectric Adjusters -K2S2P - - -
2 Vertical Adjusters -K2VS2
-K2VS2L
- - -
3 Hex Adjusters -K2S3 -K2T3 -K2F3 -
3 Adjuster Knobs -K2 -K2T -K2F -
Ø3" Optics
2 Side Hole Adjusters -K3S4 - - -
3 Side Hole Adjusters -K3S5 - - -
Ø4" Optics
2 Side Hole Adjusters - - -K4F4 -
Ø6" Optics
2 Side Hole Adjusters - - -K6F4 -
Polaris XY Translation Mounts for Round Optics
Optic Retention Method SM Threaded Representative Photos
Ø1" Optics
2 Hex Adjusters (X/Y) -1XY
Ø1.5" Optics
2 Hex Adjusters (X/Y) &
3 Adjuster Knobs (Tip/Tilt/Z)
-K15XY
Polaris Fixed Mounts for Round Optics
Optic Retention Method Side Lock Glue-In Representative Photos
Ø1/2" Optics



Optimized for Mirrors - -C05G
Optimized for Beamsplitters -B05S -B05G
Optimized for Lenses - -L05G
Ø19 mm (3/4") Optics
Optimized for Mirrors -19S50/M -
Ø1" Optics
Optimized for Mirrors - -C1G
Optimized for Beamsplitters -B1S -B1G
Optimized for Lenses - -L1G
Ø2" Optics
Optimized for Mirrors - -C2G
Optimized for Beamsplitters -B2S -
Polaris Kinematic 1.8" x 1.8" Platform Mount
Optomech Retention Method Tapped Holes &
Counterbores
2 Adjuster Knobs -K1M4(/M)
Accessories for Polaris Mounts
Description Representative Photos
Ø1" Posts for Polaris Mounts
Polaris Non-Bridging Clamping Arms
Polaris 45° Mounting Adapter

Polaris® Ø1.5" Kinematic Mirror Mount, 2 Adjusters

Polaris Mount Side Hole Adjuster Use
Click to Enlarge

Methods of Adjusting the POLARIS-K15S4 Ø1.5" Mount:
A: 5/64" or 2.0 mm Hex Key in the End of the Adjuster
B: SA1 Tool Through Adjuster Side Holes
C: POLARIS-N5 Removable Knobs on the Adjuster
D: HKTS-5/64 Hex Knobs with 1/16" or 1.5 mm Balldriver Through Side Hole for Fine Adjustment
  • 2 Hex Adjusters with Side Holes (See Image to the Right)
  • Designed for use with Ø1.5" (38.1 mm) Optics
  • 100 TPI Matched Actuator/Body Pairs
  • ±3° Mechanical Angular Range
  • ~5.5 mrad/rev Resolution
  • Less than 1 µrad Deviation after Temperature Cycling
  • Monolithic Flexure Arm for Minimal Optic Distortion and Improved Optic Holding Stability

This 2-adjuster Ø1.5" Polaris Kinematic Mirror Mount is designed to provide easy high-resolution adjustment and long-term alignment stability. The 2-adjuster design improves mount stability by limiting the available degrees of freedom for movement. The stiffer springs used in the construction of this mount provide enhanced stability and make it an ideal solution for OEM applications that require reliable operation in rugged environments.

The mount features a monolithic flexure arm to retain the optic that can be actuated using a 0.05" (1.3 mm) hex key. The monolithic flexure arm design keeps wavefront distortion on the mounted optic to a minimum while providing an optic retention force that is much stronger than the force provided by a standard setscrew mount. Performance data on our Ø1.5" Polaris Mounts with Monolithic Flexure Arms is available on the Test Data tab.

The 100 TPI adjusters feature three Ø0.07" through holes that allow for actuation from the side using our precision-fit SA1 Side Hole Adjustment Tool (sold below) or a 1/16" (1.5 mm) balldriver or hex key. Each adjuster also has a 5/64" (2.0 mm) hex and may be adjusted with the hex on the end of the SA1, our HKTS-5/64 Hex Key Thumbscrews (sold below), or any other 5/64" (2.0 mm) hex wrench. Alternatively, POLARIS-N5 removable, low-profile adjustment knobs (sold below) can be threaded onto the adjusters for improved feel in fine-resolution adjustments; note that the removable knobs will block the adjuster side holes but not the hex.

The adjusters on this mount can be locked using the POLARIS-LN1 lock nuts or POLARIS-LNS1 locking collar (sold separately below). For applications that require frequent tuning of the adjusters, the lock nut or locking collar only needs to be lightly tightened to a torque of approximately 4 to 8 oz-in (0.03 to 0.06 N·m). For long term stability, we recommend tightening to a torque of 32 oz-in, which can be achieved by using our TW13 preset torque wrench (sold below).

Post mounting is provided by two #8 (M4) counterbores. For custom mounting configurations, two Ø2 mm alignment pin holes are located on each mounting face for setting a precise location and mounting angle. Standard DIN 7-m6 ground dowel pins are recommended (click on the red documents icon below for details).

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
POLARIS-K15S4 Support Documentation
POLARIS-K15S4Polaris® Ø1.5" Mirror Mount, 2 Hex Adjusters with Side Holes
$254.96
7-10 Days

Polaris® Ø1.5" Kinematic Mirror Mounts, 2 Vertical-Drive Adjusters, Monolithic Optic Retention

  • 2 Vertical-Drive Hex Adjusters
  • Designed for use with Ø1.5" Optics
  • 100 TPI Matched Actuator/Body Pairs
  • ±3° Mechanical Angular Range
  • ~5.5 mrad/rev Resolution
  • No More than 1 µrad Deviation after Temperature Cycling
  • Monolithic Flexure Arm for Minimal Optic Distortion and Improved Optic Holding Stability
  • Patented (US Patent 11,320,621) Transverse Drive Provides Ultra Stable Kinematic Movement Via Hardened and Precision Finished Stainless Steel Movement Components.
  • Right and Left-Handed Versions Available

These 2-Adjuster Ø1.5" Polaris Kinematic Mirror Mounts provide long-term stability and high-resolution adjustment using vertical drives. Right-handed and left-handed versions of these mounts are available. The 2-adjuster design improves mount stability by limiting the available degrees of freedom for movement, and the vertical drives allow for adjustment in setups that do not have enough space behind the mount to access the adjuster hex.

These mounts feature a monolithic flexure arm to retain the optic that can be actuated a 0.05" (1.3 mm) hex key. The monolithic flexure arm design keeps wavefront distortion on the mounted optic to a minimum while providing an optic retention force that is much stronger than the force provided by our Polaris mounts that use a setscrew and flexure spring design. Performance data on our Ø1.5" Polaris Mounts with Monolithic Flexure Arms is available on the Test Data tab.

These mirror mounts come with 100 TPI adjusters that feature a 5/64" (2.0 mm) hex and may be adjusted with our HKTS-5/64 Hex Key Thumbscrews (sold below), the hex on the end of the SA1 Adjustment Tool, or any other 5/64" (2.0 mm) hex wrench. Alternatively, POLARIS-N5 Removable, Low-Profile Adjustment Knobs can be threaded onto the adjusters for improved feel in fine-resolution adjustments, although mechanical angular range may be reduced.

The adjusters on these mounts can be locked using the included POLARIS-LNS1 Locking Collars (additional locking collars are available separately below). The POLARIS-T2 Spanner Wrench, available separately below, can be used to tighten the collars with the tool oriented along the adjuster rotational axis; a hole through the center of the spanner wrench accepts a 5/64" (2.0 mm) hex key, allowing the adjuster to be held in place while the locking collar is tightened. For long term stability, the locking collars can be tightened to 32 oz-in by using the hex at the top of the POLARIS-T2 spanner wrench with the TW13 Torque Wrench.

Post mounting is provided by a #8 (M4) counterbore. For custom mounting configurations, two Ø2 mm alignment pin holes are located on the mounting face for setting a precise location and mounting angle. Standard DIN 7-m6 ground dowel pins are recommended (click on the red documents icon below for details). We recommend using these mounts with stainless steel posts that also have Ø2 mm alignment pin holes, such as our Ø1" Posts for Polaris Mirror Mounts.

To accomodate other optic sizes, Vertical-Drive Polaris Mounts with face plates for Ø1" or Ø2" optics are also available as part of our stocked catalog offerings. Alternatively, the mounts can be further customized with different face plates, such as those used in our in our low-distortion optic retention mounts. The back plate can also be custom configured with mounting and alignment pin holes on the side adjacent to their location on the POLARIS-K15VS2 or POLARIS-K15VS2L mount, so that the adjusters are oriented horizontally. Please contact Tech Support with inquiries.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
POLARIS-K15VS2 Support Documentation
POLARIS-K15VS2Polaris® Right-Handed Ø1.5" Mirror Mount, 2 Vertical-Drive Hex Adjusters, Monolithic Optic Retention
$630.00
Lead Time
POLARIS-K15VS2L Support Documentation
POLARIS-K15VS2LPolaris® Left-Handed Ø1.5" Mirror Mount, 2 Vertical-Drive Hex Adjusters, Monolithic Optic Retention
$630.00
Today

Removable Knob for 1/4"-100 Adjusters


Click to Enlarge

POLARIS-K1C4 Mount with Optic and Optional POLARIS-N5 Removable Knobs
  • For Convenient Adjustment of 1/4"-100 Adjusters
  • Attaches Directly to Adjuster Threading
  • Sold Individually

The Polaris® Removable Knobs for 1/4"-100 Adjusters allows the user to adjust a Polaris kinematic mirror mount by hand. The knobs can be used with select Polaris mounts, listed in the table to the right. Note that when the knobs are used with any of these mounts, they will block the side through holes on the adjuster. The adjuster screw's 5/64" (2 mm) hex socket is still usable when the knobs are attached.

The knobs are made from chemically cleaned and heat-treated 303 stainless steel that provides vacuum compatibility down to 10-9 Torr at 25 °C with proper bake out (10-5 Torr at 25 °C without bake out).

POLARIS-K1C4 and POLARIS-K1S4 Mounts purchased before September 21, 2016 cannot be used with the POLARIS-N5 Removable Knobs sold here. To order compatible knobs, please contact Tech Support.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
POLARIS-N5 Support Documentation
POLARIS-N5Polaris® Removable Knob for 1/4"-100 Adjusters with Side Holes, Qty. 1
$9.73
Today

5/64" Hex Key Adjusters

POLARIS-K12AH with HKTS-5/64 Adjuster
Click for Details

POLARIS-K1-2AH with HKTS-5/64 Adjuster
  • For Convenient Adjustment of 5/64" and 2 mm Hex-Driven Actuators
  • Red Anodized Adjustment Knob with Engraved Hex Size
  • Replaceable Hex Tip
  • Sold in Packages of 4

These 5/64" Hex Key Adjuster Thumbscrews allow for quick adjustment of many 5/64" and 2 mm hex-driven actuators (or standard actuators with the knobs removed). These temporary knobs can be left in the screw's hex socket between adjustments for convenience (see photo to the right). An 8-32 setscrew (5/64" hex) secures the replaceable hex bit, which can be reversed if the tip is stripped. Contact Tech Support to order replacement hex key bits.

We offer hex key thumbscrews in sizes from 0.050" to 3/16" and 2 mm to 5 mm.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
HKTS-5/64 Support Documentation
HKTS-5/64Customer Inspired! 5/64" (2 mm) Hex Key Thumbscrew, 4 Pack
$27.86
Today

Side Hole Adjustment Tool for Polaris® Mounts


Click to Enlarge

The SA1 tool can be used to adjust a POLARIS-K1S4 mount using the side holes (left) or rear hex (right).
  • Ø0.07" Precision-Fit Tip for Side Holes on Polaris Adjusters
  • 5/64" (2.0 mm) Hex on Handle
  • Magnetic, Chemically Cleaned Stainless Steel

The Side Hole Adjustment Tool features a Ø0.07" precision-fit tip designed for Polaris mounts with side hole adjusters. The handle features a 5/64" (2.0 mm) hex allowing the SA1 to act as a small knob, and the central nut is compatible with a 6.0 mm wrench allowing for a longer lever arm. The precision-fit tip minimizes backlash during adjustments and the depth stop allows the tool to rest securely in a side hole between adjustments. On Ø25 mm mirror mounts and larger, the 1.62" length allows the tool to adjust the actuator 360° without interfering with the other adjuster on the back of the mount.

The SA1 is made of chemically cleaned, hardened, super alloy stainless steel for durability and compatibility with clean environments. The tool is also magnetic allowing it to be easily retrieved from tight or sensitive setups using a magnet.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
SA1 Support Documentation
SA1Customer Inspired! Side Hole Adjustment Tool for Polaris Mounts, Ø0.07" Tip, 5/64" (2.0 mm) Hex
$35.45
Lead Time

1/4"-100 Adjuster Lock Nut for Polaris® Mounts

To install a lock nut without cross threading, gently place the lock nut against the end of the adjuster. "Unscrew" the nut until the threads of the nut and the adjuster align before threading the nut onto the adjuster. This animation shows the installation of a POLARIS-LN1 lock nut on a POLARIS-K1F1 low distortion mount.

  • Provides Long Term Adjuster Stability
  • Compatible with Select Polaris Mounts
  • 0.08" (1.9 mm) Thick
  • 13 mm Hex can be Tightened with Thin-Head or Cone Wrench

This lock nut is compatible with Polaris mounts that have 1/4"-100 adjusters, excluding the piezo-driven mounts, mounts with low-profile adjusters (Item #s POLARIS-K1-H, POLARIS-K1-2AH, POLARIS-K1E3, and POLARIS-K1E2), and vertically driven mounts (Item #s POLARIS-K1VS2 and POLARIS-K1VS2L). Designed for long-term adjuster stability or applications that are exposed to shock and vibration, the lock nut is pre-greased with the same ultra-high-vacuum-compatible, low-outgassing PTFE grease as the Polaris mounts and has been tested for adjuster fit.

For applications that require frequent tuning of the adjusters, the lock nuts only need to be lightly tightened by hand to a torque of approximately 4 to 8 oz-in (0.03 to 0.06 N·m). For long term stability, we recommend tightening to a torque of 32 oz-in, which can be achieved by using our TW13 preset torque wrench (sold below). POLARIS-LN1 lock nuts have a 13 mm hex. To avoid cross threading the lock nut, place it against the adjuster and "unscrew" the lock nut until you feel a slight drop; then thread the lock nut onto the adjuster.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Imperial Price Available
POLARIS-LN1 Support Documentation
POLARIS-LN11/4"-100 Lock Nut, 13 mm Hex, Stainless Steel
$9.14
Today

1/4"-100 Adjuster Locking Collar for Polaris® Mounts

  • Provides Long Term Adjuster Stability
  • Compatible with Select Polaris Mounts
  • Low Profile: Ø0.33" (Ø8.4 mm) x 0.08" (1.9 mm) Thick
  • Tighten Along Rotational Axis Using the POLARIS-T2 Spanner Wrench

This locking collar is compatible with Polaris mounts that have 1/4"-100 adjusters, excluding the piezo-driven mounts and mounts with low-profile adjusters (Item #s POLARIS-K1-H, POLARIS-K1-2AH, POLARIS-K1E3, and POLARIS-K1E2). Designed for long-term adjuster stability or applications that are exposed to shock and vibration, these locking collars are pre-greased with the same ultra-high-vacuum-compatible, low-outgassing PTFE grease as the Polaris mounts and have been tested for adjuster fit.

The POLARIS-T2 spanner wrench has been specifically designed for use in securing the POLARIS-LNS1 locking collar. The double spanner head enables complete engagement while the design allows locking collar adjustments to be along the same line as the adjuster itself. A center through hole allows a 2 mm ball driver to pass through the spanner wrench, so that the adjuster can be held in position while the locking collar is engaged.

For applications that require frequent tuning of the adjusters, the locking collar only needs to be lightly tightened to a torque of approximately 4 to 8 oz-in (0.03 to 0.06 N·m). For long term stability, we recommend tightening to a torque of 32 oz-in, which can be achieved by using our TW13 preset torque wrench (sold below) in combination with the POLARIS-T2 spanner wrench. To avoid cross threading the locking collar, place it against the adjuster and "unscrew" the collar until you feel a slight drop; then thread the collar onto the adjuster.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Imperial Price Available
POLARIS-LNS1 Support Documentation
POLARIS-LNS11/4"-100 Locking Collar, Stainless Steel
$10.76
Today
+1 Qty Docs Part Number - Universal Price Available
POLARIS-T2 Support Documentation
POLARIS-T2Spanner Wrench for POLARIS-LNS1 Locking Collar
$53.81
Today

Torque Wrench for Polaris® Lock Nuts

Coaxial Connector Wrench
Click to Enlarge

TW13 Torque Wrench Used to Secure POLARIS-LN1 Lock Nut on POLARIS-K2S2 Mirror Mount
Coaxial Connector Wrench
Click to Enlarge

The TW13 wrench is engraved with its preset torque value and item #.
  • 13 mm Hex for Use with POLARIS-LN1 Lock Nut and POLARIS-T2 Spanner Wrench, as well as POLARIS-LN4 Lock Nut
  • Preset Torque Value of 32 oz-in (0.23 N•m)
  • Break-Over Design Ensures Proper Torque is Applied
  • Ideal for Applications Requiring Long-Term Locking

This torque wrench has a preset torque value of 32 oz-in for use with the
POLARIS-LN1 lock nut used on Polaris® mounts as well as the POLARIS-T2 spanner wrench. The wrench is also compatible with the POLARIS-LN4 lock nut. When the preset torque value has been achieved, the break-over design will cause the pivoting joint to "break," as shown to the right. The wrench's hex head will move back into place once the force is removed. This design prevents further force from being applied to the lock nut. Engraved guidelines indicate the angle the wrench should pivot in order to apply the specified torque; pivoting the handle past these guidelines will over-torque the lock nut. The wrench is also engraved with its preset torque value, torque direction, wrench size, and item # for easy identification in the field.

This wrench is designed to be compatible with cleanroom and vacuum chamber applications. It is chemically cleaned using the Carpenter AAA passivation method to remove sulfur, iron, and contaminants from the surface. After passivation, it is assembled in a clean environment and double vacuum bagged to eliminate contamination when transported into a cleanroom. The wrench has a bead blasted finish to minimize reflections when working with setups that include lasers.

Please note that these wrenches are not intended for use in applications where adjusters are frequently tuned, as these applications typically require torque values of 4 to 8 oz-in (0.03 to 0.06 N·m).

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
TW13 Support Documentation
TW13Customer Inspired! 13 mm Preset Torque Wrench for Polaris Lock Nuts, 32 oz-in
$126.69
Lead Time