Rack System NanoTrak® Active Auto-Alignment Module


  • Advanced Active Alignment
  • High-Voltage Piezo Output Channels for Precise Positioning
  • IR (InGaAs) Detector Included
  • Visible (Si) Detector Available Separately

MNA601/IR

Rack Module

Application Idea

MNA601/IR Module in MMR601 Rack (Back View)

Full Suite of Software Support Tools Included

Related Items


Please Wait

Applications

  • Fiber-to-Fiber Active Alignment
  • Fiber-to-Free-Space Active Alignment
  • Optical Device Alignment
  • Waveguide Characterization
  • Fiber Characterization and Testing
  • Fiber Pigtailing of Active and Passive Devices
  • Maintain High Power Throughput to an Entire Optical Setup
Rack System Motion Control Modules
2-Channel Piezo Control Module
2-Channel Stepper Motor Controller Module
2-Channel NanoTrak® Auto-Alignment Module
2-Channel Brushless DC Motor Controller Module
USB Motion Control 19" Rack Chassis
All Thorlabs' Rack System Modules require the use of the MMR601 or MMR602 Rack System Enclosure. Independent operation of the modules outside the enclosure is not possible.

Features

  • Active Alignment System with Advanced Light Search Algorithm
  • Tracking Feature Maintains Optimum Throughput Indefinitely
  • Latch Mode to Maintain Alignment Stability over Time
  • MNA601/IR Module Provides 2-Axis Control
  • MMR601 and MMR602 Rack Systems Hold up to 6 Modules
  • Two Piezo Actuator Output Channels Provide Closed-Loop Feedback
  • IR (InGaAs) Detector & SMB Connector for External Diodes Included
  • Visible (Si) Detector Available Separately
  • Full Software GUI Control Suite and Support for Third-Party Custom Applications

The modular NanoTrak Auto-Alignment Controller is designed to maximize the power throughput of a fiber-to-fiber or fiber-to-free-space system. By driving a piezo-actuated stage to move the fiber tip in a circular scan pattern, the controller performs a power gradient search to determine the direction of peak power and positions the fiber for maximum throughput. Two high-voltage output channels provide the drive signal for the associated piezo actuators, eliminating the need for external piezo drivers. In combination with a multi-axis, piezo-driven stage, such as our 3-Axis NanoMax and 6-Axis NanoMax stages, a fiber alignment controller creates a complete auto-alignment system. It can be fully integrated into a rack system that is comprised of a selection of our plug-ins: brushless motor controllers, piezoelectric controllers, stepper motor controllers, and this NanoTrak autoalignment module.

USB connectivity provides easy 'Plug-and-Play' PC-controlled operation with the Kinesis® software package, which features new .NET controls that can be used by third-party developers working in the latest C, C#, LabVIEW™ or any .NET compatible languages to create custom applications. For more details, please see the Kinesis Software and Kinesis Tutorials tabs.

The initial coupling of light from one device (e.g. fiber) to another involves searching a multidimensional space until a signal is detected. The NanoTrak support software offers a series of motor search algorithms for this first light detection. Although used primarily for aligning optical fibers and integrated optical devices, the NanoTrak is ideal for automating just about any labor intensive alignment tasks such as waveguide characterization, fiber pigtailing of active and passive devices, as well as a multitude of other R&D applications.

The NanoTrak module is supplied with an InGaAs detector (item # NTA007) for infrared (900 - 1700 nm) wavelengths and a PIN diode SMB input for use with external detector heads. A Si detector (item # NTA009) for visible (320 - 1100 nm) wavelengths is available separately as detailed below.

Cabling
Cables for connecting actuators or stages to the controller are shipped with the actuators or stages, not the controller. If you need help identifying the appropriate replacement cable, please contact Tech Support.

NanoTrak® Automated Fiber Alignment Controllers
K-Cube™ 2-Channel Controllers Benchtop 2-Channel Controller Modular 2-Channel Rack System Module

Module Specifications

Signal Measurement
PIN Photodiode
Mechanical Connector SMB Male
Photocurrent Range 1 nA to 10 mA
Optical Connector FC/PC
NanoTraking
Circle Scanning Frequency 1 to 300 Hz
Circle Position Range <1% to >99% MPE
Circle Diameter Adj. Modes Automatic and Manual
Signal Phase Compensation ±180°
Piezoelectric Input/Output
Number of Piezo Channels 2
HV Output Connectors
Connector Type SMC Male
Voltage Output 0 to 75 VDC/Channel
Voltage Stability 100 ppm over 24 Hours
Noise <3 mV (RMS)
Output Current 500 mA/Channel
Analog Output Monitors
Connector Type BNC
Voltage Range 0 to 10 VDC
Strain Gauge Position Feedback
Connector Type 9-Pin D-Type Female
Feedback Type AC
Other Input/Output
Optical Power Monitor
Connector Type BNC
Voltage Range 0 to 10 VDC
Ext Signal In Input
Connector Type BNC
Voltage Range 0 to 10 VDC
User Control
Connector Type 26-Pin HD D-Type Female
Isolated Digital Inputs 4 off TTL
Isolated Digital Outputs 4 off TTL
Trigger Input 1 off TTL
Trigger Output 1 off TTL
Potentiometer Channel Ctrl Input 1 - 10 kΩ (Each Channel)
Analog Channel Output Monitors 0 to 10 VDC (Each Channel)
General
Dimensions (W x D x H) 190 mm x 270 mm x 50 mm
Weight 1.5 kg (3.3 lbs)

Optical Detector Specifications

Item # NTA009a NTA007a
Detector Type Si InGaAs
Operating Wavelength 320 - 1000 nm 900 - 1700 nm
Active Area Ø0.8 mm Ø0.12 mm
Fiber Input FC/PC
Rise Time 100 ps @ 12 V
NEP 1.5 x 10-15 W/√Hz 4.5 x 10-15 W/√Hz
Dark Current 0.01 nA @ 10 V 0.05 nA @ 5 V
  • Item # NTA007 is included with the MNA601/IR Module and Item # NTA009 is sold separately.

NanoTrak® Controller

D-type Female

DB26 Female

Pin Description Return Pin Description Return Pin Description Return
1 DIG I/P 1a 19 10 DIG O/P 1a 19 19 Isolated Groundb -
2 DIG I/P 2a 19 11 DIG O/P 2a 19 20 Ext Trigger I/P 22
3 DIG I/P 3a 19 12 DIG O/P 3a 19 21 Ext Trigger O/P 22
4 DIG I/P 4a 19 13 DIG O/P 4a 19 22 Ground -
5 Channel 1 RS485 (+) - 14 Channel 2 RS485 (+) - 23 5 V User O/P (Isolated) -
6 Channel 1 RS485 (-) - 15 Channel 2 RS485 (+) - 24 Not Used -
7 Not Used - 16 Not Used - 25 Analog Ground -
8 Channel 2 10 V O/Pc 25 17 External Analog I/P CH2 0 - 10 V 25 26 Signal Power Outd 25
9 Channel 1 10 V O/Pc 25 18 External Analog I/P CH1 0 - 10 V 25
  • Opto-isolated, TTL level signal
  • For use with digital signals
  • For use with external signal monitoring equipment
  • For use with dual NanoTrak® applications

Piezo Controller

D-type Female

DB9 Female

Pin Description Return Pin Description Return Pin Description Return
1 Wheatstone Bridge Excitation 4 or 6 4 D.C.(+) or Equipment Grounda - 7 D.C.(-) or Actuator ID Signala,b 4 or 6
2 +15Vc 4 or 6 5 Feedback Signal In 4 or 6 8 RS485 (-) 9
3 -15Vc 4 or 6 6 Equiptment Ground - 9 RS485 (+) 8
  • Software switchable signal for strain gauge or D.C. feedback
  • This signal is applicable only to Thorlabs actuators. It enables the system to identify the piezo extension associated with the actuator
  • Power supply for the piezo actuator feedback circuit. It must not be used to drive any other circuits or devices

LV Out

BNC Female

BNC Female

0 to +10V. This output is mirrors HV OUT, 10V being equivalent to 75V on the HV outputs, and can be connected to an oscilloscope to enable the drive signal of the piezo actuator to be monitored.

HV Out

SMC

SMC

0 to 75V, 0 to 500mA. Provides the drive signal to the piezo actuator.

Signal In

BNC Female

BNC Female

0 to 10V, 100kΩ load. Used to receive a signal of optical power from an external power meter.

Software

Kinesis Version 1.14.51

The Kinesis Software Package, which includes a GUI for control of Thorlabs' Kinesis system controllers.

Also Available:

  • Communications Protocol
Software Download
Kinesis Software
Kinesis GUI Screen

Thorlabs offers the Kinesis® software package to drive our wide range of motion controllers. The software can be used to control devices in the Kinesis family, which covers a wide variety of motion controllers ranging from small, low-powered, single-channel drivers (such as the K-Cubes™) to high-power, multi-channel benchtop units and modular 19" rack nanopositioning systems (the MMR60x Rack System).

The Kinesis Software features .NET controls which can be used by 3rd party developers working in the latest C#, Visual Basic, LabVIEW™, or any .NET compatible languages to create custom applications. Low-level DLL libraries are included for applications not expected to use the .NET framework and APIs are included with each install. A Central Sequence Manager supports integration and synchronization of all Thorlabs motion control hardware.

By providing this common software platform, Thorlabs has ensured that users can mix and match any of our motion control devices in a single application, while only having to learn a single set of software tools. In this way, it is perfectly feasible to combine any of the controllers from single-axis to multi-axis systems and control all from a single, PC-based unified software interface.

The software package allows two methods of usage: graphical user interface (GUI) utilities for direct interaction with and control of the controllers 'out of the box', and a set of programming interfaces that allow custom-integrated positioning and alignment solutions to be easily programmed in the development language of choice. 

Thorlabs' Kinesis® software features new .NET controls which can be used by third-party developers working in the latest C#, Visual Basic, LabVIEW™, or any .NET compatible languages to create custom applications.

C#
This programming language is designed to allow multiple programming paradigms, or languages, to be used, thus allowing for complex problems to be solved in an easy or efficient manner. It encompasses typing, imperative, declarative, functional, generic, object-oriented, and component-oriented programming. By providing functionality with this common software platform, Thorlabs has ensured that users can easily mix and match any of the Kinesis controllers in a single application, while only having to learn a single set of software tools. In this way, it is perfectly feasible to combine any of the controllers from the low-powered, single-axis to the high-powered, multi-axis systems and control all from a single, PC-based unified software interface.

The Kinesis System Software allows two methods of usage: graphical user interface (GUI) utilities for direct interaction and control of the controllers 'out of the box', and a set of programming interfaces that allow custom-integrated positioning and alignment solutions to be easily programmed in the development language of choice.

For a collection of example projects that can be compiled and run to demonstrate the different ways in which developers can build on the Kinesis motion control libraries, click on the links below. Please note that a separate integrated development environment (IDE) (e.g., Microsoft Visual Studio) will be required to execute the Quick Start examples. The C# example projects can be executed using the included .NET controls in the Kinesis software package (see the Kinesis Software tab for details).

C Sharp Icon Click Here for the Kinesis with C# Quick Start Guide
Click Here for C# Example Projects
Click Here for Quick Start Device Control Examples
C Sharp Icon

LabVIEW
LabVIEW can be used to communicate with any Kinesis-based controller via .NET controls. In LabVIEW, you build a user interface, known as a front panel, with a set of tools and objects and then add code using graphical representations of functions to control the front panel objects. The LabVIEW tutorial, provided below, provides some information on using the .NET controls to create control GUIs for Kinesis-driven devices within LabVIEW. It includes an overview with basic information about using controllers in LabVIEW and explains the setup procedure that needs to be completed before using a LabVIEW GUI to operate a device.

Labview Icon Click Here to View the LabVIEW Guide
Click Here to View the Kinesis with LabVIEW Overview Page
Labview Icon

Posted Comments:
Rich Rademacher  (posted 2019-10-09 11:46:45.533)
Hello, I am working on a nanopositioning project using the MMR601 product. This project requires custom automation and so we cannot use the APT or Kinesis GUI. I do see you have the APT protocol documented and I think we can use this. However, USB is a problem for us. I see the MMR601 has an external RS485 port on the D-sub user connector. Does this port use the same APT protocol, but obviously without the FTDI chip USB wrapper? Thanks, Rich
cwright  (posted 2019-10-11 06:19:55.0)
Hello Rich, thank you for contacting us. Yes, the serial commands described in the communication protocol can be used to communicate with the controller over the RS484 pins. The communications protocol is identical regardless of the interface used - USB or RS485.
TechnicalMarketing  (posted 2007-10-19 14:58:03.0)
Thank you for taking the time to point out the typo in our price box. We appreatiate your contribution to our effort of improving the accuracy and content of Thorlabs website.
cjohns  (posted 2007-10-19 14:20:35.0)
MNA601/IR - Should be "InGaAs" detector?
Back to Top

NanoTrak® Auto-Alignment Module

When used with the MMR601 or MMR602 rack systems, the NanoTrak® controller optimizes the coupling power when aligning optical devices. The output piezo drive signal is used to position the input and output devices for optimum throughput. It is shipped with an IR range (InGaAs) detector and a PIN current adapter. A visible range (Si) detector (NTA009) is available separately (see below).

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
MNA601/IR Support Documentation
MNA601/IR2-Ch Piezo/NanoTrak® Auto-Alignment Controller with InGaAs Detector (900 - 1700 nm)
$5,555.28
Today
MMR601 Support Documentation
MMR601Modular Midi-Rack Assembly & Server Software (No Cover)
$5,017.69
Today
MMR602 Support Documentation
MMR602Modular Midi-Rack Assembly with Cover & Server Software
$5,192.45
Lead Time
Back to Top

NanoTrak® Detector Heads

Detector Head Back ViewClick to Enlarge
Detector Head, Back View

These infrared (NTA007) and visible (NTA009) wavelength detector heads are compatible with the benchtop (BNT001/IR), previous-generation T-Cube™ (TNA001/IR), and rack-mounted (MNA601/IR) NanoTrak® controllers. Both detector heads have an FC/PC optical fiber input and interface with the benchtop controller via a jack at the back of the detector, as shown to the right.

Item # Wavelength Range Active Area Fiber Input Dark Current Junction Capacitance
NTA009 320 - 1000 nm Ø 0.8 mm FC/PC 0.01 nA (Typ.) @ 10 V 3.00 pF(Typ.) @ 10 V
NTA007 900 - 1700 nm Ø 0.12 mm FC/PC 0.05 nA (Typ.) @ 5 V 2.0 pF (Typ.) @ 5 V

NTA Responsivity

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
NTA009 Support Documentation
NTA009NanoTrak® Visible Light (Si) Detector Head, 320 - 1000 nm
$369.44
Today
NTA007 Support Documentation
NTA007NanoTrak® IR (InGaAs) Detector Head, 900 - 1700 nm
$355.18
Today