"; _cf_contextpath=""; _cf_ajaxscriptsrc="/cfthorscripts/ajax"; _cf_jsonprefix='//'; _cf_websocket_port=8578; _cf_flash_policy_port=1244; _cf_clientid='3C9BCE8E627106BC525929D48E8ABA6B';/* ]]> */
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2-Color Combiners![]()
GB11A1 488 nm / 532 nm (Blue/Green) RB41FP 488 nm / 640 nm (Blue/Red) Use with Microscopy Systems to Create Two-Color Fluorescence Images ![]() Please Wait
![]() Click for Details The fiber leads have color-coded jackets. The common port is located on the single fiber side and has a white jacket. Wavelength combiner housings are engraved with an Item # and the port wavelengths. Features
Thorlabs' 2-Color Fused Fiber Combiners, also known as wavelength division multiplexers (WDMs), consist of two separate input fibers that each accept a different wavelength of light and a single, common output fiber accepting both input wavelengths. Designed for laser lines commonly used in life science applications, these 2-color combiners are ideal for dual-color fluorescence imaging using confocal microscopy or laser scanning microscopy setups. Thorlabs also offers 2-color combiners with a 785 nm channel that are designed for near-IR applications such as Raman microscopy. Also available is a WDM containing polarization maintaining fiber. In total, 20 different combinations of combiners are available; please refer to the table to the right for a list of available combinations. Because 2-color combiners are reversible, they can also be used to split two colors entering the common port into two separate output ports. The fused fiber region of the combiner is packaged within a compact Ø0.12" x 2.95" (Ø3.2 mm x 75.0 mm) tube that is engraved with the operating wavelengths and Item # (see the image above). The Ø900 µm loose Hytrel® tube on each 0.8 m long fiber leg is color coded; the common port is located on the single fiber side and has a white jacket. These combiners are offered from stock with 2.0 mm narrow key FC/PC or FC/APC connectors. For applications sensitive to connector losses, we recommend splicing the fiber combiners into a setup because FC/PC and FC/APC connectors may not ideally align the small cores of these single mode fibers. Other fiber types and select wavelength combinations are available upon request. If a custom connector configuration is needed, one-day turnaround is possible for small orders if the order is placed before 12 PM EST. Please contact Technical Support with inquiries. The 2-color combiners are tested during the manufacturing process to ensure that they meet specifications within their specified operating range. The graphs below (provided for each color combination) show the typical insertion loss and transmission in each channel as a function of wavelength. Light at the operating wavelength of a channel will have an insertion loss close to zero, indicating high transmission of the desired signal, while light at the operating wavelength of the other channel will have higher insertion loss, indicating lower transmission of that signal. By suppressing the other channel's signals by at least 13 dB for the SM combiners and 17 dB for the PM combiners, they provide good isolation, minimizing crosstalk between the two channels. A detailed test report is included with each combiner; sample data sheets for each wavelength combination can be viewed below. Our couplers have undergone extensive testing to ensure they meet or surpass Telcordia requirements; please see the Reliability Testing tab for details. For combining three colors into a single fiber output, please see our line of RGB combiners. Wavelength Division Multiplexer DesignThorlabs' Wavelength Division Multiplexers (WDMs) are designed to combine or split light at two different wavelengths. Thorlabs offers a variety of multiplexers with wavelength combinations spanning the visible, near-IR, and IR regions of the spectrum. Our visible wavelength division multiplexers are also known as "wavelength combiners" as they are commonly used in microscopy applications to generate multi-color composite images. The animation to the right illustrates the basic operating principles of a 1x2 WDM. When combining light, the wavelength-specific ports will transmit light within a specified bandwidth region and combine them into a multi-wavelength signal output at the common port, with minimal loss in signal. Except where indicated, our WDMs are bidirectional; they can also split a two-wavelength signal that is inserted into the common port into the component wavelengths. For optimal combining/splitting performance, the input signal(s) should contain only the wavelengths specified for the WDM. An insertion loss graph can help estimate the transmission and coupling performance within and outside the specified bandwidth. For our WDMs which have a red, engraved housing, this data is included with the item-specific datasheet that ships with each coupler. ![]() Click to Enlarge The shaded regions in the plot indicate the bandwidth where each port meets the specified performance. Insertion Loss and Isolation where Pin and Pout are the input and output powers (in mW). Each port of the coupler is designed to have low insertion loss (i.e., high transmission) at the desired wavelength while suppressing the signal at the specified wavelength of the other port, which minimizes cross talk between the ports. Therefore, isolation is specified as the insertion loss of these undesired wavelengths. High dB values of isolation are ideal for signal separation applications using a WDM. For example, in the graph shown to the right, the long wavelength port (shown using a red dashed line) has a low insertion loss around 640 nm (indicated by the red shaded region), but exhibits high isolation (>25 dB) in the region specified for the short wavelength port (indicated by the light blue shaded region). Wavelength Division Multiplexer Manufacturing ProcessThis section details the steps used in manufacturing and verifying the performance of our wavelength division multiplexers. ![]() Click to Enlarge In the diagram, the fibers are color-coded; blue for the short wavelength port and red for the long wavelength port. Step 1At the first stage, two fibers are fused on a manufacturing station so that the two fiber cores are in close proximity. This allows light to propagate between the two fiber cores over the fused region in a process known as evanescent coupling. The fusing process is stopped once the desired insertion loss and isolation specifications are achieved. The output from the short wavelength port is monitored during the fusing process using a broadband source on one side and an optical spectrum analyzer (OSA) on the other. The insertion loss as a function of wavelength is calculated from the spectrum obtained from the OSA. ![]() Click to Enlarge In the diagram, the fibers are color-coded; blue for the short wavelength port and red for the long wavelength port. Step 2To verify the WDM performance, the output is measured in the long wavelength port using a broadband source and OSA. By combining the plots obtained in steps 1 and 2, the insertion loss and isolation in each channel can be calculated.
GR-1221-CORE TestingOur Single Mode Wavelength Division Multiplexers (WDMs) have undergone extensive testing to ensure they meet or surpass Telcordia requirements outlined in the regulation titled Generic Reliability Assurance Requirements for Passive Optical Components, Issue 2 (GR-1221-CORE). The results of this testing program qualify the WDMs and their manufacturing process for volume production. The selected test conditions are for uncontrolled environments and are considered to be some of the most stringent test conditions for passive components. To download a PDF of this test report, please click here. ![]() Close-Up of Mechanical Shock Test Setup ![]() SM-105 Mechanical Shock Test Machine ![]() Click To Enlarge Vibration Test Setup ![]() Damp Heat Testing Setup Testing ConditionsThis test program consisted of five test groups with a sample size of 11 per group. Testing was conducted with a 1310 nm laser source input into 980/1310 WDMs using a 1x16 waveguide coupler. The two outputs of every WDM were measured by a PM100USB power meter with an S154C sensor head.
Laser-Induced Damage in Silica Optical FibersThe following tutorial details damage mechanisms relevant to unterminated (bare) fiber, terminated optical fiber, and other fiber components from laser light sources. These mechanisms include damage that occurs at the air / glass interface (when free-space coupling or when using connectors) and in the optical fiber itself. A fiber component, such as a bare fiber, patch cable, or fused coupler, may have multiple potential avenues for damage (e.g., connectors, fiber end faces, and the device itself). The maximum power that a fiber can handle will always be limited by the lowest limit of any of these damage mechanisms. While the damage threshold can be estimated using scaling relations and general rules, absolute damage thresholds in optical fibers are very application dependent and user specific. Users can use this guide to estimate a safe power level that minimizes the risk of damage. Following all appropriate preparation and handling guidelines, users should be able to operate a fiber component up to the specified maximum power level; if no maximum is specified for a component, users should abide by the "practical safe level" described below for safe operation of the component. Factors that can reduce power handling and cause damage to a fiber component include, but are not limited to, misalignment during fiber coupling, contamination of the fiber end face, or imperfections in the fiber itself. For further discussion about an optical fiber’s power handling abilities for a specific application, please contact Thorlabs’ Tech Support. ![]() Click to Enlarge Undamaged Fiber End ![]() Click to Enlarge Damaged Fiber End Damage at the Air / Glass InterfaceThere are several potential damage mechanisms that can occur at the air / glass interface. Light is incident on this interface when free-space coupling or when two fibers are mated using optical connectors. High-intensity light can damage the end face leading to reduced power handling and permanent damage to the fiber. For fibers terminated with optical connectors where the connectors are fixed to the fiber ends using epoxy, the heat generated by high-intensity light can burn the epoxy and leave residues on the fiber facet directly in the beam path.
Damage Mechanisms on the Bare Fiber End FaceDamage mechanisms on a fiber end face can be modeled similarly to bulk optics, and industry-standard damage thresholds for UV Fused Silica substrates can be applied to silica-based fiber. However, unlike bulk optics, the relevant surface areas and beam diameters involved at the air / glass interface of an optical fiber are very small, particularly for coupling into single mode (SM) fiber. therefore, for a given power density, the power incident on the fiber needs to be lower for a smaller beam diameter. The table to the right lists two thresholds for optical power densities: a theoretical damage threshold and a "practical safe level". In general, the theoretical damage threshold represents the estimated maximum power density that can be incident on the fiber end face without risking damage with very good fiber end face and coupling conditions. The "practical safe level" power density represents minimal risk of fiber damage. Operating a fiber or component beyond the practical safe level is possible, but users must follow the appropriate handling instructions and verify performance at low powers prior to use. Calculating the Effective Area for Single Mode and Multimode Fibers As an example, SM400 single mode fiber has a mode field diameter (MFD) of ~Ø3 µm operating at 400 nm, while the MFD for SMF-28 Ultra single mode fiber operating at 1550 nm is Ø10.5 µm. The effective area for these fibers can be calculated as follows: SM400 Fiber: Area = Pi x (MFD/2)2 = Pi x (1.5 µm)2 = 7.07 µm2 = 7.07 x 10-8 cm2 To estimate the power level that a fiber facet can handle, the power density is multiplied by the effective area. Please note that this calculation assumes a uniform intensity profile, but most laser beams exhibit a Gaussian-like shape within single mode fiber, resulting in a higher power density at the center of the beam compared to the edges. Therefore, these calculations will slightly overestimate the power corresponding to the damage threshold or the practical safe level. Using the estimated power densities assuming a CW light source, we can determine the corresponding power levels as: SM400 Fiber: 7.07 x 10-8 cm2 x 1 MW/cm2 = 7.1 x 10-8 MW = 71 mW (Theoretical Damage Threshold) SMF-28 Ultra Fiber: 8.66 x 10-7 cm2 x 1 MW/cm2 = 8.7 x 10-7 MW = 870 mW (Theoretical Damage Threshold) The effective area of a multimode (MM) fiber is defined by the core diameter, which is typically far larger than the MFD of an SM fiber. For optimal coupling, Thorlabs recommends focusing a beam to a spot roughly 70 - 80% of the core diameter. The larger effective area of MM fibers lowers the power density on the fiber end face, allowing higher optical powers (typically on the order of kilowatts) to be coupled into multimode fiber without damage. Damage Mechanisms Related to Ferrule / Connector Termination![]() Click to Enlarge Plot showing approximate input power that can be incident on a single mode silica optical fiber with a termination. Each line shows the estimated power level due to a specific damage mechanism. The maximum power handling is limited by the lowest power level from all relevant damage mechanisms (indicated by a solid line). Fibers terminated with optical connectors have additional power handling considerations. Fiber is typically terminated using epoxy to bond the fiber to a ceramic or steel ferrule. When light is coupled into the fiber through a connector, light that does not enter the core and propagate down the fiber is scattered into the outer layers of the fiber, into the ferrule, and the epoxy used to hold the fiber in the ferrule. If the light is intense enough, it can burn the epoxy, causing it to vaporize and deposit a residue on the face of the connector. This results in localized absorption sites on the fiber end face that reduce coupling efficiency and increase scattering, causing further damage. For several reasons, epoxy-related damage is dependent on the wavelength. In general, light scatters more strongly at short wavelengths than at longer wavelengths. Misalignment when coupling is also more likely due to the small MFD of short-wavelength SM fiber that also produces more scattered light. To minimize the risk of burning the epoxy, fiber connectors can be constructed to have an epoxy-free air gap between the optical fiber and ferrule near the fiber end face. Our high-power multimode fiber patch cables use connectors with this design feature. Determining Power Handling with Multiple Damage MechanismsWhen fiber cables or components have multiple avenues for damage (e.g., fiber patch cables), the maximum power handling is always limited by the lowest damage threshold that is relevant to the fiber component. In general, this represents the highest input power that can be incident on the patch cable end face and not the coupled output power. As an illustrative example, the graph to the right shows an estimate of the power handling limitations of a single mode fiber patch cable due to damage to the fiber end face and damage via an optical connector. The total input power handling of a terminated fiber at a given wavelength is limited by the lower of the two limitations at any given wavelength (indicated by the solid lines). A single mode fiber operating at around 488 nm is primarily limited by damage to the fiber end face (blue solid line), but fibers operating at 1550 nm are limited by damage to the optical connector (red solid line). In the case of a multimode fiber, the effective mode area is defined by the core diameter, which is larger than the effective mode area for SM fiber. This results in a lower power density on the fiber end face and allows higher optical powers (on the order of kilowatts) to be coupled into the fiber without damage (not shown in graph). However, the damage limit of the ferrule / connector termination remains unchanged and as a result, the maximum power handling for a multimode fiber is limited by the ferrule and connector termination. Please note that these are rough estimates of power levels where damage is very unlikely with proper handling and alignment procedures. It is worth noting that optical fibers are frequently used at power levels above those described here. However, these applications typically require expert users and testing at lower powers first to minimize risk of damage. Even still, optical fiber components should be considered a consumable lab supply if used at high power levels. Intrinsic Damage ThresholdIn addition to damage mechanisms at the air / glass interface, optical fibers also display power handling limitations due to damage mechanisms within the optical fiber itself. These limitations will affect all fiber components as they are intrinsic to the fiber itself. Two categories of damage within the fiber are damage from bend losses and damage from photodarkening. Bend Losses A special category of optical fiber, called double-clad fiber, can reduce the risk of bend-loss damage by allowing the fiber’s cladding (2nd layer) to also function as a waveguide in addition to the core. By making the critical angle of the cladding/coating interface higher than the critical angle of the core/clad interface, light that escapes the core is loosely confined within the cladding. It will then leak out over a distance of centimeters or meters instead of at one localized spot within the fiber, minimizing the risk of damage. Thorlabs manufactures and sells 0.22 NA double-clad multimode fiber, which boasts very high, megawatt range power handling. Photodarkening Even with the above strategies in place, all fibers eventually experience photodarkening when used with UV or short-wavelength light, and thus, fibers used at these wavelengths should be considered consumables. Preparation and Handling of Optical FibersGeneral Cleaning and Operation Guidelines
Tips for Using Fiber at Higher Optical Power
![]() ![]() Click to Enlarge Click Here for Raw Data This plot shows an example measurement of the spectral performance of a GB21 wavelength combiner. The lines represent the spectral response of each channel, while the colored regions denote the bandwidth around the center wavelengths. This data is typical; performance may vary from unit to unit within the combiner specifications. Data was obtained without connectors.
![]() Each GB21 wavelength combiner is shipped with a detailed test report that includes transmission and isolation measurements as well as an insertion loss plot. ![]() ![]() Click to Enlarge Click Here for Raw Data This plot shows an example measurement of the spectral performance of a GB29 wavelength combiner. The lines represent the spectral response of each channel, while the colored regions denote the bandwidth around the center wavelengths. This data is typical; performance may vary from unit to unit within the combiner specifications. Data was obtained without connectors.
![]() Each GB29 wavelength combiner is shipped with a detailed test report that includes transmission and isolation measurements as well as an insertion loss plot. ![]() ![]() Click to Enlarge Click Here for Raw Data This plot shows an example measurement of the spectral performance of a GB11 wavelength combiner. The lines represent the spectral response of each channel, while the colored regions denote the bandwidth around the center wavelengths. This data is typical; performance may vary from unit to unit within the combiner specifications. Data was obtained without connectors.
![]() Each GB11 wavelength combiner is shipped with a detailed test report that includes transmission and isolation measurements as well as an insertion loss plot. ![]() ![]() Click to Enlarge Click Here for Raw Data This plot shows an example measurement of the spectral performance of a GB19 wavelength combiner. The lines represent the spectral response of each channel, while the colored regions denote the bandwidth around the center wavelengths. This data is typical; performance may vary from unit to unit within the combiner specifications. Data was obtained without connectors.
![]() Each GB19 wavelength combiner is shipped with a detailed test report that includes transmission and isolation measurements as well as an insertion loss plot. ![]() ![]() Click to Enlarge Click Here for Raw Data This plot shows an example measurement of the spectral performance of a RB32 wavelength combiner. The lines represent the spectral response of each channel, while the colored regions denote the bandwidth around the center wavelengths. This data is typical; performance may vary from unit to unit within the combiner specifications. Data was obtained without connectors.
![]() Each RB32 wavelength combiner is shipped with a detailed test report that includes transmission and isolation measurements as well as an insertion loss plot. ![]() ![]() Click to Enlarge Click Here for Raw Data This plot shows an example measurement of the spectral performance of a RB42 wavelength combiner. The lines represent the spectral response of each channel, while the colored regions denote the bandwidth around the center wavelengths. This data is typical; performance may vary from unit to unit within the combiner specifications. Data was obtained without connectors.
![]() Each RB42 wavelength combiner is shipped with a detailed test report that includes transmission and isolation measurements as well as an insertion loss plot. ![]() ![]() Click to Enlarge Click Here for Raw Data This plot shows an example measurement of the spectral performance of a RB62 wavelength combiner. The lines represent the spectral response of each channel, while the colored regions denote the bandwidth around the center wavelengths. This data is typical; performance may vary from unit to unit within the combiner specifications. Data was obtained without connectors.
![]() Each RB62 wavelength combiner is shipped with a detailed test report that includes transmission and isolation measurements as well as an insertion loss plot. ![]() ![]() Click to Enlarge Click Here for Raw Data This plot shows an example measurement of the spectral performance of a RB31 wavelength combiner. The lines represent the spectral response of each channel, while the colored regions denote the bandwidth around the center wavelengths. This data is typical; performance may vary from unit to unit within the combiner specifications. Data was obtained without connectors.
![]() Each RB31 wavelength combiner is shipped with a detailed test report that includes transmission and isolation measurements as well as an insertion loss plot. ![]() ![]() Click to Enlarge Click Here for Raw Data This plot shows an example measurement of the spectral performance of a RB41 wavelength combiner. The lines represent the spectral response of each channel, while the colored regions denote the bandwidth around the center wavelengths. This data is typical; performance may vary from unit to unit within the combiner specifications. Data was obtained without connectors.
![]() Each RB41 wavelength combiner is shipped with a detailed test report that includes transmission and isolation measurements as well as an insertion loss plot. ![]() ![]() Click to Enlarge Click Here for Raw Data This plot shows an example measurement of the spectral performance of a RB41 PM wavelength combiner. The lines represent the spectral response of each channel, while the colored regions denote the bandwidth around the center wavelengths. This data is typical; performance may vary from unit to unit within the combiner specifications. Data was obtained without connectors. ![]() Each RB41 PM wavelength combiner is shipped with a detailed test report that includes transmission and isolation measurements as well as an insertion loss plot. ![]() ![]() Click to Enlarge Click Here for Raw Data This plot shows an example measurement of the spectral performance of a RB61 wavelength combiner. The lines represent the spectral response of each channel, while the colored regions denote the bandwidth around the center wavelengths. This data is typical; performance may vary from unit to unit within the combiner specifications. Data was obtained without connectors.
![]() Each RB61 wavelength combiner is shipped with a detailed test report that includes transmission and isolation measurements as well as an insertion loss plot. ![]() ![]() Click to Enlarge Click Here for Raw Data This plot shows an example measurement of the spectral performance of a RG43 wavelength combiner. The lines represent the spectral response of each channel, while the colored regions denote the bandwidth around the center wavelengths. This data is typical; performance may vary from unit to unit within the combiner specifications. Data was obtained without connectors.
![]() Each RG43 wavelength combiner is shipped with a detailed test report that includes transmission and isolation measurements as well as an insertion loss plot. ![]() ![]() Click to Enlarge Click Here for Raw Data This plot shows an example measurement of the spectral performance of a RG40 wavelength combiner. The lines represent the spectral response of each channel, while the colored regions denote the bandwidth around the center wavelengths. This data is typical; performance may vary from unit to unit within the combiner specifications. Data was obtained without connectors.
![]() Each RG40 wavelength combiner is shipped with a detailed test report that includes transmission and isolation measurements as well as an insertion loss plot. ![]() ![]() Click to Enlarge Click Here for Raw Data This plot shows an example of the spectral performance of a RG45 wavelength combiner. The lines represent the spectral response of each channel, while the colored regions denote the bandwidth around the center wavelengths. This data is typical; performance may vary from unit to unit within the combiner specifications. Data was obtained without connectors.
![]() Each RG45 wavelength combiner is shipped with a detailed test report that includes transmission and isolation measurements as well as an insertion loss plot. ![]() ![]() Click to Enlarge Click Here for Raw Data This plot shows an example of the spectral performance of a RG65 wavelength combiner. The lines represent the spectral response of each channel, while the colored regions denote the bandwidth around the center wavelengths. This data is typical; performance may vary from unit to unit within the combiner specifications. Data was obtained without connectors.
![]() Each RG65 wavelength combiner is shipped with a detailed test report that includes transmission and isolation measurements as well as an insertion loss plot. ![]() ![]() Click to Enlarge Click Here for Raw Data This plot shows an example of the spectral performance of an NG71 wavelength combiner. The lines represent the spectral response of each channel, while the colored regions denote the bandwidth around the center wavelengths. This data is typical; performance may vary from unit to unit within the combiner specifications. Data was obtained without connectors.
![]() Each NG71 wavelength combiner is shipped with a detailed test report that includes transmission and isolation measurements as well as an insertion loss plot. ![]() ![]() Click to Enlarge Click Here for Raw Data This plot shows an example of the spectral performance of an NG72 wavelength combiner. The lines represent the spectral response of each channel, while the colored regions denote the bandwidth around the center wavelengths. This data is typical; performance may vary from unit to unit within the combiner specifications. Data was obtained without connectors.
![]() Each NG72 wavelength combiner is shipped with a detailed test report that includes transmission and isolation measurements as well as an insertion loss plot. ![]() ![]() Click to Enlarge Click Here for Raw Data This plot shows an example of the spectral performance of an NR73 wavelength combiner. The lines represent the spectral response of each channel, while the colored regions denote the bandwidth around the center wavelengths. This data is typical; performance may vary from unit to unit within the combiner specifications. Data was obtained without connectors.
![]() Each NR73 wavelength combiner is shipped with a detailed test report that includes transmission and isolation measurements as well as an insertion loss plot. ![]() ![]() Click to Enlarge Click Here for Raw Data This plot shows an example of the spectral performance of an NR74 wavelength combiner. The lines represent the spectral response of each channel, while the colored regions denote the bandwidth around the center wavelengths. This data is typical; performance may vary from unit to unit within the combiner specifications. Data was obtained without connectors.
![]() Each NR74 wavelength combiner is shipped with a detailed test report that includes transmission and isolation measurements as well as an insertion loss plot. ![]() ![]() Click to Enlarge Click Here for Raw Data This plot shows an example of the spectral performance of an NR75 wavelength combiner. The lines represent the spectral response of each channel, while the colored regions denote the bandwidth around the center wavelengths. This data is typical; performance may vary from unit to unit within the combiner specifications. Data was obtained without connectors.
![]() Each NR75 wavelength combiner is shipped with a detailed test report that includes transmission and isolation measurements as well as an insertion loss plot. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|