Create an Account  |   Log In

View All »Matching Part Numbers


Your Shopping Cart is Empty
         

NIR Laser Diodes: Center Wavelengths from 705 nm to 2000 nm


  • Output Powers up to 2 W
  • Multiple Package Styles
  • In-House Manufactured and Third-Party Options Available  

Ø5.6 mm

Ø9 mm

Chip on Submount

TO Can with
Fiber Pigtail

Butterfly

Ø9 mm

(High Heat Load)

Related Items


Please Wait
Laser Diode Selection Guidea
Shop by Wavelength
UV (375 nm)
Visible (404 nm - 690 nm)
NIR (705 nm - 2000 nm)
MIR (4.05 µm - 11.00 µm)
Shop by Package / Type
  • Our complete selection of laser diodes is available on the LD Selection Guide tab above.

Webpage Features
info icon Clicking this icon opens a window that contains specifications and mechanical drawings.
info icon Clicking this icon allows you to download our standard support documentation.

Choose Item

Clicking the words "Choose Item" opens a drop-down list containing all of the in-stock lasers around the desired center wavelength. The red icon next to the serial number then allows you to download L-I-V and spectral measurements for that serial-numbered device.
Contact ThorlabsLaser Diode Tutorial
Volume Pricing Discount
Contact Thorlabs

OEM & Custom Laser Diodes

Thorlabs manufactures custom and high volume OEM laser diodes and other optical semiconductor devices with output wavelengths from 705 nm to 2 µm. To inquire about custom or OEM devices, please contact us. A semiconductor specialist will contact you within 24 hours or the next business day.

Features

  • Fabry-Perot (FP), Distributed Feedback (DFB), Volume Holographic Grating (VHG) Stabilized, Distributed Bragg Reflector (DBR) Laser, and Vertical Cavity Surface Emitting Laser (VCSEL) Diodes
  • Output Powers up to 2 W
  • Center Wavelengths Available from 705 nm to 2000 nm
  • Various Packages Available: TO Can, TO Pigtails, Butterfly, C-Mount, and Chip on Submount
  • Easily Choose a Compatible Mount Using Our LD Pin Codes
  • Compatible with Thorlabs' Laser Diode and TEC Controllers
  • OEM Solutions Available

This web page contains Thorlabs' laser diodes with center wavelengths from 705 nm to 2000 nm. Diodes are arranged by wavelength and then power. The tables below list basic specifications to help you narrow down your search quickly. Lasers that are highlighted in light green in these tables below are single-frequency laser diodes. The blue button in the Info column within the tables opens a pop-up window that contains more detailed specifications for each item, as well as mechanical drawings.

Notes on Center Wavelength
While the center wavelength is listed for each laser diode, this is only a typical number. The center wavelength of a particular unit varies from production run to production run, so the diode you receive may not operate at the typical center wavelength. Diodes can be temperature tuned, which will alter the lasing wavelength. A number of items below are listed as Wavelength Tested, which means that the dominant wavelength of each unit has been measured and recorded. For many of these items, after clicking "Choose Item" below, a list will appear that contains the dominant wavelength, output power, and operating current of each in-stock unit. Clicking on the red Docs Icon next to the serial number provides access to a PDF with serial-number-specific L-I-V and spectral characteristics. Customers may also contact Tech Support to select one of these diodes based on the tested wavelength if serial-number-specific information is not available below.

Packages and Mounts
We offer laser diodes in various packages including standard Ø5.6 mm and Ø9 mm TO packages, non-standard TO-46 packages, as well as Fiber-Pigtailed TO-Packaged Diodes, Butterfly-Packaged Diodes, Chip on Submounts, and C-Mounts. We have categorized the pin configuration of TO-packaged diodes into standard A, B, C, D, E, F, G, and H pin codes (see image below). This pin code allows the user to easily determine compatible mounts. TO-packed diodes are the most widely supported diodes by our product line, followed by butterfly-packaged lasers. Chip on Submount and C-Mount lasers are better suited for OEM applications.

Some of our diodes are offered in header packages that can be converted to a sealed TO can package by request, as indicated in the tables below. Please contact Tech Support for details.

Spatial Mode and Linewidth
We offer laser diodes with different output characteristics (power, wavelength, beam size, shape, etc.). Most lasers offered here are single spatial mode (single mode, or SM) and a few are designed for higher-power, multi-spatial-mode (multimode, or MM) operation. Some single mode laser diodes can be operated with limited single-longitudinal-mode characteristics (see tables below for additional information). For better side mode suppression ratio (SMSR) performance, consider devices such as DFB lasers, VHG-stabilized lasers, DBR lasers, or external cavity lasers. Thorlabs also offers single-frequency lasers with very narrow linewidths (≤20 MHz for the VHG-stabilized and DFB lasers and <100 kHz for the DBR and ECL lasers), which are highlighted in green in the tables below. Please see our Laser Diode Tutorial for more information on these topics and laser diodes in general.

Laser diodes are sensitive to electrostatic shock. Please take the proper precautions when handling the device (see our electrostatic shock accessories). Lasers diodes are also sensitive to optical feedback, which can cause significant fluctuations in the output power of the laser diode depending on the application. See our optical isolators for potential solutions to this problem.

For all of the pigtailed laser diodes, the laser should be off when connecting or disconnecting the device from other fibers, particularly for lasers with power levels above 10 mW. We recommend cleaning the fiber connector before each use if there is any chance that dust or other contaminants may have deposited on the surface. The laser intensity at the center of the fiber tip can be very high and may burn the tip of the fiber if contaminants are present. While the connectors on the pigtailed laser diodes are cleaned and capped before shipping, we cannot guarantee that they will remain free of contamination after they are removed from the package.

Members of our Tech Support staff are available to help you select a laser diode and to discuss possible operation issues.

Pin Codes
Laser Diode Pin Codes
For warranty information, please refer to the LD Operation tab.
Pin Code Monitor Photodiode
A Yes
B Yes
C Yes
D Yes
E No
F Yes
G No
H No

Choosing a Collimation Lens for Your Laser Diode

Since the output of a laser diode is highly divergent, collimating optics are necessary. Since aspheric lenses do not introduce spherical aberration, they are commonly chosen when the collimated laser beam is to be between one and five millimeters. A simple example will illustrate the key specifications to consider when choosing the correct lens for a given application.

Example:
Laser Diode to be Used: L780P010
Desired Collimated Beam Diameter: Ø3 mm (Major Axis)

The specifications for the L780P010 laser diode indicate that the typical parallel and perpendicular FWHM beam divergences are 10° and 30°, respectively. Therefore, as the light diverges, an elliptical beam will result. To collect as much light as possible during the collimation process, consider the larger of these two divergence angles in any calculations (i.e., in this case use 30°). If you wish to convert your elliptical beam in to a round one, we suggest using an Anamorphic Prism Pair, which magnifies one axis of your beam.

laser diode collimation drawing

Ø = Beam Diameter

Θ = Divergence Angle

From the information above, the focal length of the lens can be determined, using the thin lens approximation:

focal length calculation

With this information known, it is now time to choose the appropriate collimating lens. Thorlabs offers a large selection of aspheric lenses to choose from. For this application the ideal lens is a -B AR-coated molded glass aspheric lens with focal length near 5.6 mm. The C171TMD-B (mounted) or 354171-B (unmounted) aspheric lenses have a focal length of 6.20 mm, which will result in a collimated beam diameter (major axis) of 3.3 mm. Next, check to see if the numerical aperture (NA) of the diode is smaller than the NA of the lens:

0.30 = NALens > NADiode ≈ sin(15°) = 0.26

Up to this point, we have been using the FWHM beam diameter to characterize the beam. However, a better practice is to use the 1/e2 beam diameter. For a Gaussian beam profile, the 1/e2 diameter is almost equal to 1.7X the FWHM diameter. The 1/e2 beam diameter therefore captures more of the laser diode's output light (for greater power delivery) and minimizes far-field diffraction (by clipping less of the incident light).

A good rule of thumb is to pick a lens with an NA twice of the NA of the laser diode. For example, either the A390-B or the A390TM-B could be used as these lenses each have an NA of 0.53, which is more than twice the approximate NA of our laser diode (0.26). Note that these lenses each have a focal length of 4.6 mm, resulting in an approximate major beam diameter of 2.5 mm.

Laser Diode and Laser Diode Pigtail Warranty

When operated within their specifications, laser diodes have extremely long lifetimes. Most failures occur from mishandling or operating the lasers beyond their maximum ratings. Laser Diodes are among the most static-sensitive devices currently made. Proper ESD Protection should be worn whenever handling a laser diode. Due to their extreme electrostatic sensitivity, laser diodes cannot be returned after their sealed package has been open. Laser diodes in their original sealed package can be returned for a full refund or credit.

Handling and Storage Precautions

Due to their extreme susceptibility to damage from electrostatic discharge (ESD), care should be taken whenever handling and operating laser diodes:

  • Wrist Straps: Use grounded anti-static wrist straps whenever handling diodes.
  • Anti-Static Mats: Always work on grounded anti-static mats.
  • Laser Diode Storage: When not in use, short the leads of the laser together to protect against ESD damage.

Operating and Safety Precautions

Use an Appropriate Driver:
Laser diodes require precise control of operating current and voltage to avoid overdriving the laser diode. In addition, the laser driver should provide protection against power supply transients. Select a laser driver appropriate for your application. Do not use a voltage supply with a current limiting resistor since it does not provide sufficient regulation to protect the laser.

Power Meters:
When setting up and calibrating a laser diode with its driver, use a NIST-traceable power meter to precisely measure the laser output. It is usually safest to measure the laser output directly before placing the laser in an optical system. If this is not possible, be sure to take all optical losses (transmissive, aperture stopping, etc.) into consideration when determining the total output of the laser.

Reflections:
Flat surfaces in the optical system in front of a laser diode can cause some of the laser energy to reflect back onto the laser’s monitor photodiode giving an erroneously high photodiode current. If optical components are moved within the system and energy is no longer reflected onto the monitor photodiode, a constant power feedback loop will sense the drop in photodiode current and try to compensate by increasing the laser drive current and possibly overdriving the laser. Back reflections can also cause other malfunctions or damage to laser diodes. To avoid this, be sure that all surfaces are angled 5-10°, and when necessary, use optical isolators to attenuate direct feedback into the laser.

Heat Sinks:
Laser diode lifetime is inversely proportional to operating temperature. Always mount the laser in a suitable heat sink to remove excess heat from the laser package.

Voltage and Current Overdrive:
Be careful not to exceed the maximum voltage and drive current listed on the specification sheet with each laser diode, even momentarily. Also, reverse voltages as little as 3 V can damage a laser diode.

ESD Sensitive Device:
Currently operating lasers are susceptible to ESD damage. This is particularly aggravated by using long interface cables between the laser diode and its driver due to the inductance that the cable presents. Avoid exposing the laser or its mounting apparatus to ESDs at all times.

ON/OFF and Power Supply Coupled Transients:
Due to their fast response times, laser diodes can be easily damaged by transients less than 1 µs. High current devices such as soldering irons, vacuum pumps, and fluorescent lamps can cause large momentary transients. Thus, always use surge-protected outlets.

If you have any questions regarding laser diodes, please call your local Thorlabs Technical Support office for assistance.

Laser Safety and Classification

Safe practices and proper usage of safety equipment should be taken into consideration when operating lasers. The eye is susceptible to injury, even from very low levels of laser light. Thorlabs offers a range of laser safety accessories that can be used to reduce the risk of accidents or injuries. Laser emission in the visible and near infrared spectral ranges has the greatest potential for retinal injury, as the cornea and lens are transparent to those wavelengths, and the lens can focus the laser energy onto the retina. 

Laser Glasses Blackout Materials Enclosure Systems
Laser Viewing Cards Alignment Tools Shutter and Controllers
Laser Safety Signs

Safe Practices and Light Safety Accessories

  • Thorlabs recommends the use of safety eyewear whenever working with laser beams with non-negligible powers (i.e., > Class 1) since metallic tools such as screwdrivers can accidentally redirect a beam.
  • Laser goggles designed for specific wavelengths should be clearly available near laser setups to protect the wearer from unintentional laser reflections.
  • Goggles are marked with the wavelength range over which protection is afforded and the minimum optical density within that range.
  • Blackout Materials can prevent direct or reflected light from leaving the experimental setup area.
  • Thorlabs' Enclosure Systems can be used to contain optical setups to isolate or minimize laser hazards.
  • A fiber-pigtailed laser should always be turned off before connecting it to or disconnecting it from another fiber, especially when the laser is at power levels above 10 mW.
  • All beams should be terminated at the edge of the table, and laboratory doors should be closed whenever a laser is in use.
  • Do not place laser beams at eye level.
  • Carry out experiments on an optical table such that all laser beams travel horizontally.
  • Remove unnecessary reflective items such as reflective jewelry (e.g., rings, watches, etc.) while working near the beam path.
  • Be aware that lenses and other optical devices may reflect a portion of the incident beam from the front or rear surface.
  • Operate a laser at the minimum power necessary for any operation.
  • If possible, reduce the output power of a laser during alignment procedures.
  • Use beam shutters and filters to reduce the beam power.
  • Post appropriate warning signs or labels near laser setups or rooms.
  • Use a laser sign with a lightbox if operating Class 3R or 4 lasers (i.e., lasers requiring the use of a safety interlock).
  • Do not use Laser Viewing Cards in place of a proper Beam Trap.

 

Laser Classification

Lasers are categorized into different classes according to their ability to cause eye and other damage. The International Electrotechnical Commission (IEC) is a global organization that prepares and publishes international standards for all electrical, electronic, and related technologies. The IEC document 60825-1 outlines the safety of laser products. A description of each class of laser is given below:

Class Description Warning Label
1 This class of laser is safe under all conditions of normal use, including use with optical instruments for intrabeam viewing. Lasers in this class do not emit radiation at levels that may cause injury during normal operation, and therefore the maximum permissible exposure (MPE) cannot be exceeded. Class 1 lasers can also include enclosed, high-power lasers where exposure to the radiation is not possible without opening or shutting down the laser.  Class 1
1M Class 1M lasers are safe except when used in conjunction with optical components such as telescopes and microscopes. Lasers belonging to this class emit large-diameter or divergent beams, and the MPE cannot normally be exceeded unless focusing or imaging optics are used to narrow the beam. However, if the beam is refocused, the hazard may be increased and the class may be changed accordingly.  Class 1M
2 Class 2 lasers, which are limited to 1 mW of visible continuous-wave radiation, are safe because the blink reflex will limit the exposure in the eye to 0.25 seconds. This category only applies to visible radiation (400 - 700 nm).  Class 2
2M Because of the blink reflex, this class of laser is classified as safe as long as the beam is not viewed through optical instruments. This laser class also applies to larger-diameter or diverging laser beams.  Class 2M
3R Lasers in this class are considered safe as long as they are handled with restricted beam viewing. The MPE can be exceeded with this class of laser, however, this presents a low risk level to injury. Visible, continuous-wave lasers are limited to 5 mW of output power in this class.  Class 3R
3B Class 3B lasers are hazardous to the eye if exposed directly. However, diffuse reflections are not harmful. Safe handling of devices in this class includes wearing protective eyewear where direct viewing of the laser beam may occur. In addition, laser safety signs lightboxes should be used with lasers that require a safety interlock so that the laser cannot be used without the safety light turning on. Class-3B lasers must be equipped with a key switch and a safety interlock.  Class 3B
4 This class of laser may cause damage to the skin, and also to the eye, even from the viewing of diffuse reflections. These hazards may also apply to indirect or non-specular reflections of the beam, even from apparently matte surfaces. Great care must be taken when handling these lasers. They also represent a fire risk, because they may ignite combustible material. Class 4 lasers must be equipped with a key switch and a safety interlock.  Class 4
All class 2 lasers (and higher) must display, in addition to the corresponding sign above, this triangular warning sign  Warning Symbol

Posted Comments:
alexeyzaytsev  (posted 2014-02-18 23:46:25.787)
I am interested to use LP852-SF30 for pulse applications. Can you provide the typical rise time for such kind laser diode? Thank you.
jlow  (posted 2014-02-27 02:20:17.0)
Response from Jeremy at Thorlabs: We do not have a specification of the rise time for this laser diode but it is estimated to be <1ns.
user  (posted 2013-07-18 11:16:20.02)
I would like to know, what beamquality is to be expected from LPS-1550-FC.
jlow  (posted 2013-07-18 11:02:00.0)
Response from Jeremy at Thorlabs: The laser diode inside the LPS-1550-FC is coupled to a single mode fiber so the beam quality will be very close to a Gaussian. Typically the M^2 value is <1.1.
jlow  (posted 2012-12-20 09:58:00.0)
Response from Jeremy at Thorlabs: The SFL1550S has a central wavelength of 1550nm (±0.5nm). The tuning range is only about 3GHz. Therefore the SFL1550S would not be able to be tuned to emit at the wavelength ranges you are interested in. You could possibly use our tunable laser kit (TLK-L1550M) to cover those two wavelength ranges. We will get in contact with you directly to discuss about your applications.
bslalit  (posted 2012-12-06 03:21:28.88)
Can SFL1550S diode laser be used to emit at wavelength between 1490 & 1530 and 1560 & 1580 ??
tcohen  (posted 2012-10-30 10:57:00.0)
Response from Tim at Thorlabs: From 25C to 60C a typical wavelength shift for L780P010 would be from ~780nm to ~788nm. The linewidth is 0.60nm. I will contact you with some representative data.
david.n.hutch  (posted 2012-10-26 18:53:00.313)
Hi, I am also interested in the things that fas2 asked for: What is the spectral width of this LD? Do you have a spectrum you can send me? And can I please get a graph with the temperature-wavelength dependence? Thanks.
bdada  (posted 2011-09-22 20:37:00.0)
Response from Buki at Thorlabs: Thank you for using our Feedback Tool. Our Tech Support team in China will contact you directly.
ddcheny  (posted 2011-09-14 10:28:55.0)
???1.83um?1.89um?1.94um?2.12um??????,????????????(?PbS????)?????????(????),?????????(?????),???????! ??:??? ??:???????????? ??:13898526034 ??:ddcheny@163.com ??:???????????????136?
Thorlabs  (posted 2010-06-30 18:20:08.0)
Response from Javier at Thorlabs to fas2: the spectral width of the L780P010 is 0.60 nm. I will send you a graph with the temperature coefficient.
fas2  (posted 2010-06-28 20:05:07.0)
What is the spectral width of this LD? Do you have a spectrum you can send me? Also, what is the temperature coefficient of the wavelength. Thanks, Fritz
Javier  (posted 2010-06-10 08:50:26.0)
Response from Javier at Thorlabs to farzanehm (update): We actually can provide some information regarding the structure of the VCSEL diodes we offer. There are 37 mirror pairs in the bottom DBR and 27 pairs in the top DBR. Thickness of top DBR is approximately 3.5µm. Thickness of bottom DBR is approximately 4.8µm. I hope this helps.
Javier  (posted 2010-06-09 10:40:13.0)
Response from Javier at Thorlabs to farzanehm: we cannot disclosed this information, as details about the design of this VCSEL are considered proprietary information. I will contact you directly in case you have any further questions.
farzanehm  (posted 2010-06-08 15:29:37.0)
I am using your VCSEL-850 in an experiment and am wondering if you can provide me with the structure of the VCSEL, e.g. the number of layers in the DBRs and their thicknesses. I need the information for modeling and simulation. Thank you.
Adam  (posted 2010-05-25 10:32:15.0)
A response from Adam at Thorlabs to Ayser: We can provide you with a quotation. Our UK department will contact you shortly.
ayser.hemed  (posted 2010-05-25 09:39:44.0)
I am a Ph.D student, working in optical feedback effect on DFB LD in 1310nm. I want to pay a 3 devices from your company, part no. is: ML725B8F. I HOPE TO RECEIVE AN OFFER WITH DELIVERY COST AND TIME REQUIRED TO RECEIVE IT FROM GLASGOW, UK. Thanks
Adam  (posted 2010-04-26 23:30:00.0)
A response from Adam at Thorlabs to Nizamov: I have not heard of this issue before, but it may not be related to the laser diode but to the laser driver and there is an inherent delay between the modulation input and the driving current from the LDC. One way that you can verify this is that you can monitor the LD current (there is a BNC on the back of the driver that should provide this signal) with respect to the modulation pulse. I will contact you directly with more information.
nizamov.shawkat  (posted 2010-04-26 10:46:16.0)
We have 3 LDC205C and TED200C pairs, combined with TCLDM9. One setup utilizes 650 nm LD and another one uses 980 nm LD. For 980 nm L980P010 and L9805E2P5 laser diodes I experience unusually high modulation latency - about 5-10us front delay plus slow rise during several milliseconds afterwards. The red ones are OK. Replacing items doesnt help - Thorlabs IR LD seem to be just very slow. But we obtained and set another 980nm LD from another supplier - still the same, even 1 kHz square modulation results in highly distorted non-square and delayed light intensity modulation. What may be wrong?

The rows shaded green below denote single-frequency lasers.

Item #WavelengthOutput
Power
Operating
Current
Operating
Voltage
Beam
Divergence
Spatial
Mode
Package
ParallelPerpendicular
L375P70MLD375 nm70 mW110 mA5.4 V22.5°Single ModeØ5.6 mm
L404P400M404 nm400 mW370 mA4.9 V13° (1/e2)42° (1/e2)MultimodeØ5.6 mm
LP405-SF10405 nm10 mW50 mA5.0 V--Single ModeØ5.6 mm, SM Pigtail
L405P20405 nm20 mW38 mA4.8 V8.5°19°Single ModeØ5.6 mm
L405G2405 nm35 mW50 mA4.9 V10°21°Single ModeØ3.8 mm
DL5146-101S405 nm40 mW70 mA5.2 V19°Single ModeØ5.6 mm
L405P150405 nm150 mW138 mA4.9 VSingle ModeØ3.8 mm
LP405-MF300405 nm300 mW350 mA4.5 V--MultimodeØ5.6 mm, MM Pigtail
L405G1405 nm1000 mW900 mA5.0 V13°45°MultimodeØ9 mm
L450G1447 nm3000 mW2000 mA5.2 V30°MultimodeØ9 mm
LP450-SF15450 nm15 mW85 mA5.5 V--Single ModeØ9 mm, SM Pigtail
PL450B450 nm80 mW100 mA5.8 V4 - 11°18 - 25°Single ModeØ3.8 mm
L450P1600MM450 nm1600 mW1200 mA4.8 V19 - 27°MultimodeØ5.6 mm
L473P100473 nm100 mW120 mA5.7 V1024Single ModeØ5.6 mm
LP488-SF20488 nm20 mW70 mA6.0 V--Single ModeØ5.6 mm, SM Pigtail
L488P60488 nm60 mW75 mA6.8 V23°Single ModeØ5.6 mm
L515A1515 nm10 mW50 mA5.4 V6.5°21°Single ModeØ5.6 mm
LP520-SF15520 nm15 mW140 mA6.5 V--Single ModeØ9 mm, SM Pigtail
PL520520 nm50 mW250 mA7.0 V22°Single ModeØ3.8 mm
L520P50520 nm45 mW150 mA7.0 V22°Single ModeØ5.6 mm
L520G1520 nm900 mW1600 mA4.8 V7.5°25°MultimodeØ9 mm (non-standard)
DJ532-10532 nm10 mW220 mA1.9 V0.69°0.69°Single ModeØ9.5 mm (non-standard)
DJ532-40532 nm40 mW330 mA1.9 V0.69°0.69°Single ModeØ9.5 mm (non-standard)
LP633-SF50633 nm50 mW170 mA2.6 V--Single ModeØ5.6 mm, SM Pigtail
HL63163DG633 nm100 mW170 mA2.6 V8.5°18°Single ModeØ5.6 mm
LPS-635-FC635 nm2.5 mW70 mA2.2 V--Single ModeØ9.5 mm, SM Pigtail
LPS-PM635-FC635 nm2.5 mW70 mA2.2 V--Single ModeØ9.5 mm, PM Pigtail
L635P5635 nm5 mW30 mA<2.7 V32°Single ModeØ5.6 mm
HL6312G635 nm5 mW55 mA<2.7 V31°Single ModeØ9 mm
LPM-635-SMA635 nm8 mW50 mA2.2 V--MultimodeØ9 mm, MM Pigtail
LP635-SF8635 nm8 mW60 mA2.3 V--Single ModeØ5.6 mm, SM Pigtail
HL6320G635 nm10 mW70 mA<2.7 V31°Single ModeØ9 mm
HL6322G635 nm15 mW85 mA<2.7 V30°Single ModeØ9 mm
L637P5637 nm5 mW20 mA<2.4 V34°Single ModeØ5.6 mm
LP637-SF50637 nm50 mW140 mA2.6 V--Single ModeØ5.6 mm, SM Pigtail
LP637-SF70637 nm70 mW220 mA2.7 V--Single ModeØ5.6 mm, SM Pigtail
HL63142DG637 nm100 mW140 mA2.7 V18°Single ModeØ5.6 mm
HL63133DG637 nm170 mW250 mA2.8 V17°Single ModeØ5.6 mm
HL6388MG637 nm250 mW340 mA2.3 V10°40°MultimodeØ5.6 mm
L637G1637 nm1200 mW1100 mA2.5 V10°32°MultimodeØ9 mm (non-standard)
L638P040638 nm40 mW92 mA2.4 V10°21°Single ModeØ5.6 mm
L638P150638 nm150 mW230 mA2.7 V918Single ModeØ3.8 mm
L638P200638 nm200 mW280 mA2.9 V814Single ModeØ5.6 mm
L638P700M638 nm700 mW820 mA2.2 V35°MultimodeØ5.6 mm
HL6358MG639 nm10 mW40 mA2.3 V21°Single ModeØ5.6 mm
HL6323MG639 nm30 mW95 mA2.3 V8.5°30°Single ModeØ5.6 mm
HL6362MG640 nm40 mW90 mA2.4 V10°21°Single ModeØ5.6 mm
LP642-SF20642 nm20 mW90 mA2.5 V--Single ModeØ5.6 mm, SM Pigtail
LP642-PF20642 nm20 mW90 mA2.5 V--Single ModeØ5.6 mm, PM Pigtail
HL6364DG642 nm60 mW125 mA2.5 V10°21°Single ModeØ5.6 mm
HL6366DG642 nm80 mW155 mA2.5 V10°21°Single ModeØ5.6 mm
HL6385DG642 nm150 mW280 mA2.6 V17°Single ModeØ5.6 mm
L650P007650 nm7 mW28 mA2.2 V28°Single ModeØ5.6 mm
LPS-660-FC658 nm7.5 mW65 mA2.6 V--Single ModeØ5.6 mm, SM Pigtail
LP660-SF20658 nm20 mW80 mA2.6 V--Single ModeØ5.6 mm, SM Pigtail
LPM-660-SMA658 nm22.5 mW65 mA2.6 V--MultimodeØ5.6 mm, MM Pigtail
HL6501MG658 nm30 mW65 mA2.6 V8.5°22°Single ModeØ5.6 mm
L658P040658 nm40 mW75 mA2.2 V10°20°Single ModeØ5.6 mm
LP660-SF40658 nm40 mW135 mA2.5 V--Single ModeØ5.6 mm, SM Pigtail
LP660-SF60658 nm60 mW210 mA2.4 V--Single ModeØ5.6 mm, SM Pigtail
HL6544FM660 nm50 mW115 mA2.3 V10°17°Single ModeØ5.6 mm
LP660-SF50660 nm50 mW140 mA2.3 V--Single ModeØ5.6 mm, SM Pigtail
HL6545MG660 nm120 mW170 mA2.45 V10°17°Single ModeØ5.6 mm
L660P120660 nm120 mW175 mA2.5 V10°17°Single ModeØ5.6 mm
LPS-675-FC670 nm2.5 mW55 mA2.2 V--Single ModeØ9 mm, SM Pigtail
HL6748MG670 nm10 mW30 mA2.2 V25°Single ModeØ5.6 mm
HL6714G670 nm10 mW55 mA<2.7 V22°Single ModeØ9 mm
HL6756MG670 nm15 mW35 mA2.3 V24°Single ModeØ5.6 mm
SLD1332V670 nm500 mW800 mA2.4 V23°MultimodeØ9 mm
LP685-SF15685 nm15 mW55 mA2.1 V--Single ModeØ5.6 mm, SM Pigtail
HL6750MG685 nm50 mW75 mA2.3 V21°Single ModeØ5.6 mm
HL6738MG690 nm30 mW90 mA2.5 V8.5°19°Single ModeØ5.6 mm
LP705-SF15705 nm15 mW55 mA2.3 V--Single ModeØ5.6 mm, SM Pigtail
HL7001MG705 nm40 mW75 mA2.5 V18°Single ModeØ5.6 mm
HL7302MG730 nm40 mW75 mA2.5 V18°Single ModeØ5.6 mm
DBR760PN761 nm9 mW125 mA2.0 V--Single FrequencyButterfly, PM Pigtail
L780P010780 nm10 mW24 mA1.8 V30°Single ModeØ5.6 mm
LP780-SAD15780 nm15 mW180 mA2.2 V--Single FrequencyØ9 mm, SM Pigtail
DBR780PN781 nm45 mW250 mA1.9 V--Single FrequencyButterfly, PM Pigtail
L785P5785 nm5 mW28 mA1.9 V10°29°Single ModeØ5.6 mm
LPS-PM785-FC785 nm6.25 mW65 mA---Single ModeØ5.6 mm, PM Pigtail
LPS-785-FC785 nm10 mW65 mA1.85 V--Single ModeØ5.6 mm, SM Pigtail
LP785-SF20785 nm20 mW85 mA1.9 V--Single ModeØ5.6 mm, SM Pigtail
DBR785S785 nm25 mW230 mA2.0 V--Single FrequencyButterfly, SM Pigtail
DBR785P785 nm25 mW230 mA2.0 V--Single FrequencyButterfly, PM Pigtail
L785P25785 nm25 mW45 mA1.9 V30°Single ModeØ5.6 mm
FPV785S785 nm50 mW410 mA2.2 V--Single FrequencyButterfly, SM Pigtail
FPV785P785 nm50 mW410 mA2.1 V--Single FrequencyButterfly, PM Pigtail
LP785-SAV50785 nm50 mW500 mA2.2 V--Single FrequencyØ9 mm, SM Pigtail
L785P090785 nm90 mW120 mA2.0 V16°Single ModeØ5.6 mm
LP785-SF100785 nm100 mW300 mA2.0 V--Single ModeØ9 mm, SM Pigtail
L785H1785 nm200 mW220 mA2.5 V8.5°16°Single ModeØ5.6 mm
FPL785S-250785 nm250 mW (Min)500 mA2.0 V--Single ModeButterfly, SM Pigtail
LD785-SEV300785 nm300 mW500 mA (Max)2.0 V16°Single FrequencyØ9 mm
LD785-SH300785 nm300 mW400 mA2.0 V18°Single ModeØ9 mm
FPL785C785 nm300 mW400 mA2.0 V18°Single Mode3 mm x 5 mm Submount
LD785-SE400785 nm400 mW550 mA2.0 V16°Single ModeØ9 mm
DBR795PN795 nm40 mW230 mA2.0 V--Single FrequencyButterfly, PM Pigtail
ML620G40805 nm500 mW650 mA1.9 V34°MultimodeØ5.6 mm
L808P010808 nm10 mW50 mA2 V10°30°Single ModeØ5.6 mm
L808P030808 nm30 mW65 mA2 V10°30°Single ModeØ5.6 mm
M9-808-0150808 nm150 mW180 mA1.9 V17°Single ModeØ9 mm
L808P200808 nm200 mW260 mA2 V10°30°MultimodeØ5.6 mm
LD808-SEV500808 nm500 mW800 mA (Max)2.2 V14°Single FrequencyØ9 mm
FPL808S808 nm200 mW750 mA2.3 V--Single ModeButterfly, SM Pigtail
LD808-SE500808 nm500 mW750 mA2.2 V14°Single ModeØ9 mm
L808P500MM808 nm500 mW650 mA1.8 V12°30°MultimodeØ5.6 mm
L808P1000MM808 nm1000 mW1100 mA2 V30°MultimodeØ9 mm
LP820-SF80820 nm80 mW230 mA2.3 V--Single ModeØ5.6 mm, SM Pigtail
L820P100820 nm100 mW145 mA2.1 V17°Single ModeØ5.6 mm
L820P200820 nm200 mW250 mA2.4 V17°Single ModeØ5.6 mm
DBR828PN828 nm24 mW250 mA2.0 V--Single FrequencyButterfly, PM Pigtail
LPS-830-FC830 nm10 mW120 mA---Single ModeØ5.6 mm, SM Pigtail
LPS-PM830-FC830 nm10 mW120 mA---Single ModeØ5.6 mm, PM Pigtail
LP830-SF30830 nm30 mW115 mA1.9 V--Single ModeØ9 mm, SM Pigtail
HL8338MG830 nm50 mW75 mA1.9 V22°Single ModeØ5.6 mm
FPL830S830 nm350 mW900 mA2.5 V--Single ModeButterfly, SM Pigtail
LD830-SE650830 nm650 mW900 mA2.3 V13°Single ModeØ9 mm
LD830-MA1W830 nm1 W1.330 A2.1 V24°MultimodeØ9 mm
LD830-ME2W830 nm2 W3 A (Max)2.0 V21°MultimodeØ9 mm
L840P200840 nm200 mW255 mA2.4 V917Single ModeØ5.6 mm
L850VG1850 nm2 mW4 mA2.2 V12°Single FrequencyTO-46
L850P010850 nm10 mW50 mA2 V10°30°Single ModeØ5.6 mm
L850P030850 nm30 mW65 mA2 V8.5°30°Single ModeØ5.6 mm
LP850-SF80850 nm80 mW230 mA2.3 V--Single ModeØ5.6 mm, SM Pigtail
L850P200850 nm200 mW255 mA2.4 V917Single ModeØ5.6 mm
FPV852S852 nm20 mW400 mA2.2 V--Single FrequencyButterfly, SM Pigtail
FPV852P852 nm20 mW400 mA2.2 V--Single FrequencyButterfly, PM Pigtail
DBR852PN852 nm24 mW300 mA2.0 V--Single FrequencyButterfly, PM Pigtail
LP852-SF30852 nm30 mW115 mA1.9 V--Single ModeØ9 mm, SM Pigtail
L852P50852 nm50 mW75 mA1.9 V22°Single ModeØ5.6 mm
L852P100852 nm100 mW120 mA1.9 V28°Single ModeØ9 mm
L852P150852 nm150 mW170 mA1.9 V18°Single ModeØ9 mm
FPL852S852 nm350 mW900 mA2.5 V--Single ModeButterfly, SM Pigtail
LD852-SE600852 nm600 mW950 mA2.3 V7° (1/e2)13° (1/e2)Single ModeØ9 mm
LD852-SEV600852 nm600 mW1050 mA (Max)2.2 V13° (1/e2)Single FrequencyØ9 mm
LP880-SF3880 nm3 mW25 mA2.2 V--Single ModeØ5.6 mm, SM Pigtail
L880P010880 nm10 mW30 mA2.0 V12°37°Single ModeØ5.6 mm
DBR895PN895 nm12 mW300 mA2 V--Single FrequencyButterfly, PM Pigtail
L904P010904 nm10 mW50 mA2 V10°30°Single ModeØ5.6 mm
LP915-SF40915 nm40 mW130 mA1.5 V--Single ModeØ9 mm, SM Pigtail
M9-915-0300915 nm300 mW370 mA1.9 V28°Single ModeØ9 mm
LP940-SF30940 nm30 mW90 mA1.5 V--Single ModeØ9 mm, SM Pigtail
M9-940-0200940 nm200 mW270 mA1.9 V28°Single ModeØ9 mm
FPV976S976 nm30 mW400 mA (Max)2.2 V--Single FrequencyButterfly, SM Pigtail
FPV976P976 nm30 mW400 mA (Max)2.2 V--Single FrequencyButterfly, PM Pigtail
DBR976PN976 nm33 mW450 mA2.0 V--Single FrequencyButterfly, PM Pigtail
DBR976S976 nm50 mW150 mA2.0 V--Single FrequencyButterfly, SM Pigtail
BL976-SAG300976 nm300 mW470 mA2.0 V--Single ModeButterfly, SM Pigtail
BL976-PAG500976 nm500 mW830 mA2.0 V--Single ModeButterfly, PM Pigtail
BL976-PAG700976 nm700 mW1090 mA2.0 V--Single ModeButterfly, PM Pigtail
BL976-PAG900976 nm900 mW1480 mA2.5 V--Single ModeButterfly, PM Pigtail
L980P010980 nm10 mW25 mA2 V10°30°Single ModeØ5.6 mm
LP980-SF15980 nm15 mW70 mA1.5 V--Single ModeØ5.6 mm, SM Pigtail
L980P030980 nm30 mW50 mA1.5 V10°35°Single ModeØ5.6 mm
L9805E2P5980 nm50 mW95 mA1.5 V33°Single ModeØ5.6 mm
L980P100A980 nm100 mW150 mA1.6 V32°MultimodeØ5.6 mm
L980P200980 nm200 mW300 mA1.5 V30°MultimodeØ5.6 mm
L1060P200J1060 nm200 mW280 mA1.3 V32°Single ModeØ9 mm
DBR1064S1064 nm40 mW150 mA2.0 V--Single FrequencyButterfly, SM Pigtail
DBR1064P1064 nm40 mW150 mA2.0 V--Single FrequencyButterfly, PM Pigtail
DBR1064PN1064 nm110 mW550 mA2.0 V--Single FrequencyButterfly, PM Pigtail
LPS-1060-FC1064 nm50 mW220 mA1.4 V--Single ModeØ9 mm, SM Pigtail
M9-A64-02001064 nm200 mW280 mA1.7 V28°Single ModeØ9 mm
M9-A64-03001064 nm300 mW390 mA1.7 V28°Single ModeØ9 mm
LP1310-SAD21310 nm2.0 mW40 mA1.1 V--Single FrequencyØ5.6 mm, SM Pigtail
LPS-1310-FC1310 nm2.5 mW20 mA1.1 V--Single ModeØ5.6 mm, SM Pigtail
LPS-PM1310-FC1310 nm2.5 mW20 mA1.1 V--Single ModeØ5.6 mm, PM Pigtail
L1310P5DFB1310 nm5 mW20 mA1.1 VSingle FrequencyØ5.6 mm
ML725B8F1310 nm5 mW20 mA1.1 V25°30°Single ModeØ5.6 mm
LPSC-1310-FC1310 nm50 mW350 mA2 V--Single ModeØ5.6 mm, SM Pigtail
FPL1053S1310 nm130 mW400 mA1.7 V--Single ModeButterfly, SM Pigtail
FPL1053P1310 nm130 mW400 mA1.7 V--Single ModeButterfly, PM Pigtail
FPL1053T1310 nm300 mW (Pulsed)750 mA2 V15°28°Single ModeØ5.6 mm
FPL1053C1310 nm300 mW (Pulsed)750 mA2 V15°27°Single ModeChip on Submount
L1310G11310 nm2000 mW5 A1.5 V24°MultimodeØ9 mm
L1370G11370 nm2000 mW5 A1.4 V22°MultimodeØ9 mm
L1450G11450 nm2000 mW5 A1.4 V22°MultimodeØ9 mm
L1480G11480 nm2000 mW5 A1.6 V20°MultimodeØ9 mm
LPS-1550-FC1550 nm1.5 mW30 mA1.0 V--Single ModeØ5.6 mm, SM Pigtail
LPS-PM1550-FC1550 nm1.5 mW30 mA1.1 V--Single ModeØ5.6 mm, SM Pigtail
LP1550-SAD21550 nm2.0 mW40 mA1.0 V--Single FrequencyØ5.6 mm, SM Pigtail
L1550P5DFB1550 nm5 mW20 mA1.1 V10°Single FrequencyØ5.6 mm
ML925B45F1550 nm5 mW30 mA1.1 V25°30°Single ModeØ5.6 mm
SFL1550S1550 nm40 mW300 mA1.5 V--Single FrequencyButterfly, SM Pigtail
SFL1550P1550 nm40 mW300 mA1.5 V--Single FrequencyButterfly, PM Pigtail
LPSC-1550-FC1550 nm50 mW250 mA2 V--Single ModeØ5.6 mm, SM Pigtail
FPL1009S1550 nm100 mW400 mA1.4 V--Single ModeButterfly, SM Pigtail
FPL1009P1550 nm100 mW400 mA1.4 V--Single ModeButterfly, PM Pigtail
FPL1001C1550 nm150 mW400 mA1.4 V18°31°Single ModeChip on Submount
FPL1055T1550 nm300 mW (Pulsed)750 mA2 V15°28°Single ModeØ5.6 mm
FPL1055C1550 nm300 mW (Pulsed)750 mA2 V15°28°Single ModeChip on Submount
L1550G11550 nm1700 mW5 A1.5 V28°MultimodeØ9 mm
L1575G11575 nm1700 mW5 A1.5 V28°MultimodeØ9 mm
LPSC-1625-FC1625 nm50 mW350 mA1.5 V--Single ModeØ5.6 mm, SM Pigtail
FPL1054S1625 nm80 mW400 mA1.7 V--Single ModeButterfly, SM Pigtail
FPL1054P1625 nm80 mW400 mA1.7 V--Single ModeButterfly, PM Pigtail
FPL1054C1625 nm250 mW (Pulsed)750 mA2 V15°28°Single ModeChip on Submount
FPL1054T1625 nm250 mW (Pulsed)750 mA2 V15°28°Single ModeØ5.6 mm
FPL1059S1650 nm80 mW400 mA1.7 V--Single ModeButterfly, SM Pigtail
FPL1059P1650 nm80 mW400 mA1.7 V--Single ModeButterfly, PM Pigtail
FPL1059C1650 nm225 mW (Pulsed)750 mA2 V15°28°Single ModeChip on Submount
FPL1059T1650 nm225 mW (Pulsed)750 mA2 V15°28°Single ModeØ5.6 mm
FPL1940S1940 nm15 mW400 mA2 V--Single ModeButterfly, SM Pigtail
FPL2000S2 µm15 mW400 mA2 V--Single ModeButterfly, SM Pigtail
FPL2000C2 µm30 mW400 mA5.2 V19°Single ModeChip on Submount
QD4500CM14.00 - 5.00 µm (DFB)40 mW<500 mA10.5 V30°40°Single FrequencyTwo-Tab C-Mount
QF4050D24.05 µm (FP)800 mW750 mA13 V30°40°Single ModeD-Mount
QF4050D34.05 µm (FP)1200 mW1000 mA13 V30°40°Single ModeD-Mount
QF4400CM14.40 µm (FP)500 mW1020 mA10.7 V26°53°Single ModeTwo-Tab C-Mount
QD4580CM14.54 - 4.62 µm (DFB)40 mW<600 mA10.5 V50°30°Single FrequencyTwo-Tab C-Mount
QF4550CM14.55 µm (FP)450 mW900 mA10.5 V30°55°Single ModeTwo-Tab C-Mount
QF4600T14.60 µm (FP)400 mW800 mA12.0 V40°30°Single ModeØ9 mm
QF4800CM14.80 µm (FP)500 mW850 mA15.5 V33°53°Single ModeTwo-Tab C-Mount
QD5500CM15.00 - 8.00 µm (DFB)40 mW<700 mA9.5 V30 °45 °Single FrequencyTwo-Tab C-Mount
QD5250CM15.20 - 5.30 µm (DFB)120 mW<660 mA10.2 V41°52°Single FrequencyTwo-Tab C-Mount
QF5300CM15.30 µm (FP)150 mW1200 mA9.0 V30°55°Single ModeTwo-Tab C-Mount
QD6500CM16.00 - 7.00 µm (DFB)40 mW<650 mA10 V35 °50 °Single FrequencyTwo-Tab C-Mount
QF7200CM17.20 µm (FP)250 mW1300 mA8.5 V35°65°Single ModeTwo-Tab C-Mount
QD7500CM17.00 - 8.00 µm (DFB)40 mW<600 mA10 V40°50°Single FrequencyTwo-Tab C-Mount
QD7500DM17.00 - 8.00 µm (DFB)100 mW<600 mA11.5 V40°55°Single FrequencyD-Mount
QF7700CM17.70 µm (FP)250 mW1100 mA7.8 V37°65°Single ModeTwo-Tab C-Mount
QD7950CM17.90 - 8.00 µm (DFB)100 mW<1000 mA9.5 V55°70°Single FrequencyTwo-Tab C-Mount
QD8050CM18.00 - 8.10 µm (DFB)100 mW<1000 mA9.5 V55°70°Single FrequencyTwo-Tab C-Mount
QD8500CM18.00 - 9.00 µm (DFB)100 mW<900 mA9.5 V40 °55 °Single FrequencyTwo-Tab C-Mount
QD8500HHLH8.00 - 9.00 µm (DFB)100 mW<600 mA10.2 V--Single FrequencyHorizontal HHL
QF8350CM18.55 µm (FP)300 mW1750 mA8.5 V55°70°Single ModeTwo-Tab C-Mount
QD8650CM18.60 - 8.70 µm (DFB)50 mW<900 mA9.5 V55°70°Single FrequencyTwo-Tab C-Mount
QD9500CM19.00 - 10.00 µm (DFB)60 mW<800 mA9.5 V40°55°Single FrequencyTwo-Tab C-Mount
QD9500HHLH9.00 - 10.00 µm (DFB)100 mW<600 mA10.2 V--Single FrequencyHorizontal HHL
QF9550CM19.55 µm (FP)80 mW1500 mA7.8 V35°60°Single ModeTwo-Tab C-Mount
QD10500CM110.00 - 11.00 µm (DFB)40 mW<600 mA10 V40°55°Single FrequencyTwo-Tab C-Mount

The rows shaded green above denote single-frequency lasers.

705 nm - 761 nm

Note: The rows shaded green below denote single-frequency laser diodes.

Item # Info Wavelength
(nm)
Power
(mW)a
Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Spatial Mode
LP705-SF15 info 705 15 55 mA / 80 mA Ø5.6 mm, SM Pigtail C Yes S7060Rc Yes Single Mode
HL7001MG info 705 40 75 mA / 100 mA Ø5.6 mm C Yes S7060R No Single Mode
LP730-SF15 info 730 15 70 mA / 100 mA Ø5.6 mm, SM Pigtail A Yes S7060Rc Yes Single Mode
HL7302MG info 730 40 75 mA / 100 mA Ø5.6 mm A Yes S7060R No Single Mode
DBR760PNd info 761 9 125 mA (Typ.) Butterfly, PM Pigtaile 14-Pin Butterfly Yes - Yes Single Frequencyd
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • This socket is included with the purchase of the corresponding laser diode.
  • Single-Frequency Laser (Single Longitudinal Mode)
  • The slow axis of the polarization-maintaining fiber is aligned to the connector key.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemLP705-SF15 Support Documentation
LP705-SF15705 nm, 15 mW, C Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$846.78
Today
HL7001MG Support Documentation
HL7001MGCustomer Inspired! 705 nm, 40 mW, Ø5.6 mm, C Pin Code, Laser Diode
$371.91
Volume Pricing
Today
Choose ItemLP730-SF15 Support Documentation
LP730-SF15730 nm, 15 mW, A Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$772.50
Today
HL7302MG Support Documentation
HL7302MG730 nm, 40 mW, Ø5.6 mm, A Pin Code, Diode
$371.91
Volume Pricing
Today
Choose ItemDBR760PN Support Documentation
DBR760PNCustomer Inspired! 761 nm, 9 mW, Butterfly DBR Laser, PM Fiber, FC/APC, Internal Isolator
$4,624.70
Today

780 nm - 795 nm

Note: The rows shaded green below denote single-frequency laser diodes.

Item # Info Wavelength
(nm)
Power
(mW)a
Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Spatial Mode
L780P010 info 780 10 24 mA / 40 mA Ø5.6 mm A Yes S7060R No Single Mode
LP780-SAD15c info 780 15 180 mA (Max) Ø9 mm, SM Pigtail B Yes S8060 or S8060-4 Yes Single Frequencyc
DBR780PNc info 781 45 250 mA (Typ.) Butterfly, PM Pigtaild 14-Pin Butterfly Yes - Yes Single Frequencyc
L785P5 info 785 5 28 mA / 40 mA Ø5.6 mm A Yes S7060R No Single Mode
LPS-PM785-FC info 785 6.25 65 mA / 90 mA Ø5.6 mm, PM Pigtaild A Yes S7060Re Yes Single Mode
LPS-785-FC info 785 10 65 mA / 90 mA Ø5.6 mm, SM Pigtail A Yes S7060Re Yes Single Mode
LP785-SF20 info 785 20 85 mA / 120 mA Ø5.6 mm, SM Pigtail A Yes S7060Re Yes Single Mode
DBR785Sc info 785 22 230 mA / 250 mA Butterfly, SM Pigtail 14-Pin Butterfly Yes - Yes Single Frequencyc
DBR785Pc info 785 22 230 mA / 250 mA Butterfly, PM Pigtaild 14-Pin Butterfly Yes - Yes Single Frequencyc
L785P25 info 785 25 45 mA / 60 mA Ø5.6 mm B Yes S7060R No Single Mode
LP785-SAV50c info 785 50 500 mA (Max)f Ø9 mm, SM Pigtail E No S8060 or S8060-4 Yes Single Frequencyc
FPV785Sc info 785 50 410 mA (Max)f Butterfly, SM Pigtail 14-Pin Butterfly Yes - Yes Single Frequencyc
FPV785Pc info 785 50 410 mA (Max)f Butterfly, PM Pigtail 14-Pin Butterfly Yes - Yes Single Frequencyc
L785P090 info 785 90 120 mA / 160 mA Ø5.6 mm C Yes S7060R No Single Mode
LP785-SF100 info 785 100 300 mA / 450 mA Ø9 mm, SM Pigtail H No S8060 or S8060-4 Yes Single Mode
L785H1 info 785 200 220 mA / 250 mA Ø5.6 mm H No S7060R Yes Single Mode
FPL785S-250 info 785 250 (Min) 500 mA / 550 mAg Butterfly, SM Pigtail 14-Pin Butterfly Yes - Yes Single Mode
LD785-SEV300c,h info 785 300 500 mA (Max)f Ø9 mmi E No S8060 or S8060-4 Yes Single Frequencyc
LD785-SH300j info 785 300 400 mA / 450 mA Ø9 mm H Yes S8060 or S8060-4 No Single Mode
FPL785C info 785 300 400 mA / 450 mA 3 mm x 5 mm Submount See Spec Sheet No - No Single Mode
LD785-SE400j info 785 400 550 mA / 600 mA Ø9 mm E No S8060 or S8060-4 Yes Single Mode
DBR795PNc info 795 40 230 mA (Typ.) Butterfly, PM Pigtaild 14-Pin Butterfly Yes - Yes Single Frequencyc
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • Single-Frequency Laser (Single Longitudinal Mode)
  • The slow axis of the polarization-maintaining fiber is aligned to the connector key.
  • This socket is included with the purchase of the corresponding laser diode.
  • The power can be tuned across the operating current range, given in the serial-number-specific documentation, while maintaining wavelength-stabilized, single-frequency performance within a stabilized temperature range.
  • Some FPL785S-250 lasers will produce an output power higher than the 300 mW maximum when driven with a 550 mA current. Do not drive the laser diode with a current that will cause the output power to exceed the specified maximum power rating. Operating in this regime can cause damage to the device.
  • In order to achieve the specified performance, we recommend using the LDM90 Laser Diode Mount and, when collimated, an NIR Optical Isolator; single frequency performance when collimated is only guaranteed with >35 dB isolation of back reflections. This volume holographic grating (VHG) laser diode is also available in an SM pigtail package.
  • The Ø9 mm package for the LD785-SEV300 is 4.30 mm (0.17") thick, which is more than the standard Ø9 mm package thickness of 1.50 mm (0.06"). The diode will still be compatible with all Ø9 mm laser diode mounts; please see the Drawing tab in the blue info icon (info) above for full package specifications. Mounting this diode in the LDM90 requires two 2-56 screws, included with this diode.
  • This diode is exceptionally sensitive to optical feedback. Any reflection with more than 2% of the incident power has the potential to permanently damage the diode.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
L780P010 Support Documentation
L780P010780 nm, 10 mW, Ø5.6 mm, A Pin Code, Laser Diode
$24.27
Volume Pricing
5-8 Days
Choose ItemLP780-SAD15 Support Documentation
LP780-SAD15780 nm, 15 mW, TO Can DFB Laser, SM Fiber, Internal Isolator, FC/APC
$3,760.10
Today
Choose ItemDBR780PN Support Documentation
DBR780PNNEW!781 nm, 45 mW, Butterfly DBR Laser, PM Fiber, FC/APC, Internal Isolator
$4,490.00
Today
L785P5 Support Documentation
L785P5785 nm, 5 mW, Ø5.6 mm, A Pin Code, Laser Diode
$11.45
Volume Pricing
Today
Choose ItemLPS-PM785-FC Support Documentation
LPS-PM785-FC785 nm, 6.25 mW, A Pin Code, PM Fiber-Pigtailed Laser Diode, FC/PC
$882.50
Today
Choose ItemLPS-785-FC Support Documentation
LPS-785-FC785 nm, 10 mW, A Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$449.66
Today
Choose ItemLP785-SF20 Support Documentation
LP785-SF20785 nm, 20 mW, A Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$520.05
Today
Choose ItemDBR785S Support Documentation
DBR785S785 nm, 25 mW, Butterfly DBR Laser, SM Fiber, FC/APC, Internal Isolator
$4,163.53
Today
Choose ItemDBR785P Support Documentation
DBR785P785 nm, 25 mW, Butterfly DBR Laser, PM Fiber, FC/APC, Internal Isolator
$4,243.37
Today
L785P25 Support Documentation
L785P25785 nm, 25 mW, Ø5.6 mm, B Pin Code, Laser Diode
$38.35
Volume Pricing
Today
Choose ItemLP785-SAV50 Support Documentation
LP785-SAV50785 nm, 50 mW, E Pin Code, SM Fiber, FC/APC, VHG Wavelength-Stabilized SF Laser Diode, Internal Isolator
$1,601.11
Today
Choose ItemFPV785S Support Documentation
FPV785S785 nm, 50 mW, VHG Wavelength-Stabilized SF Laser Diode, Butterfly Package, SM Fiber, FC/APC, TEC and Thermistor, Internal Isolator
$2,420.50
Volume Pricing
Today
Choose ItemFPV785P Support Documentation
FPV785PNEW!785 nm, 50 mW, VHG Wavelength-Stabilized SF Laser Diode, Butterfly Package, PM Fiber, FC/APC, TEC and Thermistor, Internal Isolator
$2,570.50
Volume Pricing
Today
L785P090 Support Documentation
L785P090785 nm, 90 mW, Ø5.6 mm, C Pin Code, Laser Diode
$44.65
Today
Choose ItemLP785-SF100 Support Documentation
LP785-SF100785 nm, 100 mW, H Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$1,016.98
Today
L785H1 Support Documentation
L785H1785 nm, 200 mW, Ø5.6 mm, H Pin Code, Laser Diode
$66.20
Volume Pricing
Today
Choose ItemFPL785S-250 Support Documentation
FPL785S-250785 nm, 250 mW (Min), Butterfly Laser Diode, SM Fiber, FC/APC
$1,923.65
Today
Choose ItemLD785-SEV300 Support Documentation
LD785-SEV300Customer Inspired! 785 nm, 300 mW, Ø9 mm TO Can, E Pin Code, VHG Wavelength-Stabilized Single-Frequency Laser Diode
$1,450.88
Today
Choose ItemLD785-SH300 Support Documentation
LD785-SH300785 nm, 300 mW, Ø9 mm, H Pin Code, Laser Diode
$295.22
Volume Pricing
Today
FPL785C Support Documentation
FPL785C785 nm, 300 mW, Chip on Submount, Laser Diode
$482.23
Today
Choose ItemLD785-SE400 Support Documentation
LD785-SE400785 nm, 400 mW, Ø9 mm, E Pin Code, Laser Diode
$375.06
Volume Pricing
Today
Choose ItemDBR795PN Support Documentation
DBR795PNNEW!Customer Inspired! 795 nm, 40 mW, Butterfly DBR Laser, PM Fiber, FC/APC, Internal Isolator
$4,450.00
Today

805 nm - 808 nm

Note: The rows shaded green below denote single-frequency laser diodes.
Item # Info Wavelength
(nm)
Power
(mW)a
Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Spatial Mode
ML620G40 info 805 500 650 mA / 850 mA Ø5.6 mm G No S7060R No Multimode
L808P010 info 808 10 50 mA / 70 mA Ø5.6 mm A Yes S7060R No Single Mode
L808P030 info 808 30 65 mA / 95 mA Ø5.6 mm A Yes S7060R No Single Mode
LP808-SA60 info 808 60 150 mA / 220 mA Ø9 mm, SM Pigtail B Yes S8060 or S8060-4 Yes Single Mode
M9-808-0150 info 808 150 180 mA / 220 mA Ø9 mm A Yes S8060 or S8060-4 No Single Mode
L808P200 info 808 200 260 mA / 300 mA Ø5.6 mm A Yes S7060R No Multimode
FPL808S info 808 250 700 mA / 750 mA Butterfly, SM Pigtail 14 Pin, Type 1 Yes - Yes Single Mode
LD808-SEV500c,f info 808 500 800 mA (Max)d Ø9 mme E No S8060 or S8060-4 Yes Single Frequencyf
LD808-SE500g info 808 500 750 mA / 800 mA Ø9 mme E No S8060 or S8060-4 Yes Single Mode
L808P500MM info 808 500 650 mA / 700 mA Ø5.6 mm A Yes S7060R No Multimode
L808P1000MM info 808 1000 1100 mA / 1500 mA Ø9 mm E No S7060R No Multimode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • In order to achieve the specified performance, we recommend using the LDM90 Laser Diode Mount and, when collimated, an NIR Optical Isolator; single frequency performance when collimated is only guaranteed with >35 dB isolation of back reflections.
  • The power can be tuned across the operating current range, given in the serial-number-specific documentation, while maintaining wavelength-stabilized, single-frequency performance within a stabilized temperature range.
  • The Ø9 mm package for this diode is 4.30 mm (0.17") thick, which is more than the standard Ø9 mm package thickness of 1.50 mm (0.06"). The diode will still be compatible with all Ø9 mm laser diode mounts; please see the Drawing tab in the blue info icon (info) above for full package specifications. Mounting this diode in the LDM90 requires two 2-56 screws, included with this diode.
  • Single-Frequency Laser (Single Longitudinal Mode)
  • This diode is exceptionally sensitive to optical feedback. Any reflection with more than 2% of the incident power has the potential to permanently damage the diode.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
ML620G40 Support Documentation
ML620G40805 nm, 500 mW, Ø5.6 mm, G Pin Code, MM, Laser Diode
$397.13
Volume Pricing
Today
L808P010 Support Documentation
L808P010808 nm, 10 mW, Ø5.6 mm, A Pin Code, Laser Diode
$21.43
Volume Pricing
Today
L808P030 Support Documentation
L808P030808 nm, 30 mW, Ø5.6 mm, A Pin Code, Laser Diode
$81.69
Volume Pricing
Today
Choose ItemLP808-SA60 Support Documentation
LP808-SA60Customer Inspired! 808 nm, 60 mW, B Pin Code, SM Fiber-Pigtailed Laser Diode, FC/APC
$803.40
Today
M9-808-0150 Support Documentation
M9-808-0150808 nm, 150 mW, Ø9 mm, A Pin Code, Laser Diode
$474.87
Volume Pricing
Today
L808P200 Support Documentation
L808P200808 nm, 200 mW, Ø5.6 mm, A Pin Code, MM, Laser Diode
$67.24
Volume Pricing
Today
Choose ItemFPL808S Support Documentation
FPL808S808 nm, 250 mW, Butterfly Laser Diode, SM Fiber, FC/APC
$1,943.61
Volume Pricing
Today
Choose ItemLD808-SEV500 Support Documentation
LD808-SEV500808 nm, 500 mW, Ø9 mm TO Can, E Pin Code, VHG Wavelength-Stabilized Single-Frequency Laser Diode
$1,558.04
Volume Pricing
Today
Choose ItemLD808-SE500 Support Documentation
LD808-SE500808 nm, 500 mW, Ø9 mm, E Pin Code, Laser Diode
$642.97
Today
L808P500MM Support Documentation
L808P500MM808 nm, 500 mW, Ø5.6 mm, A Pin Code, MM, Laser Diode
$39.67
Today
L808P1000MM Support Documentation
L808P1000MM808 nm, 1000 mW, Ø9 mm, E Pin Code, MM, Laser Diode
$78.27
Today

820 nm - 830 nm

Item # Info Wavelength
(nm)
Power
(mW)a
Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Spatial Mode
LP820-SF80 info 820 80 230 mA / 400 mA Ø5.6 mm, SM Pigtail C Yes S7060Rc Yes Single Mode
L820P100 info 820 100 145 mA / 210 mA Ø5.6 mm C Yes S7060R No Single Mode
L820P200 info 820 200 250 mA / 340 mA Ø5.6 mm C Yes S7060R No Single Mode
DBR828PNg info 828 24 250 mA (Typ.) Butterfly, PM Pigtaild 14 Pin, Type 1 Yes - Yes Single Frequencyg
LPS-830-FC info 830 10 50 mA / 80 mA Ø5.6 mm, SM Pigtail C Yes S7060Rc Yes Single Mode
LPS-PM830-FC info 830 10 120 mA (Typ.) Ø5.6 mm, PM Pigtaild C Yes S7060Rc Yes Single Mode
LP830-SF30 info 830 30 115 mA / 160 mA Ø9 mm, SM Pigtail A Yes S8060 or S8060-4 Yes Single Mode
HL8338MG info 830 50 75 mA / 100 mA Ø5.6 mm C Yes S7060R No Single Mode
FPL830S info 830 350 900 mA / 950 mA Butterfly, SM Pigtail 14 Pin, Type 1 Yes - Yes Single Mode
LD830-SE650e info 830 650 900 mA / 1050 mA Ø9 mmf E No S8060 or S8060-4 Yes Single Mode
LD830-MA1W info 830 1000 1330 mA / 1700 mA Ø9 mm A Yes S8060 or S8060-4 Yes Multimode
LD830-ME2W info 830 2000 3 A (Max) Ø9 mmf E No S8060 or S8060-4 Yes Multimode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • This socket is included with the purchase of the corresponding laser diode.
  • The slow axis of the polarization-maintaining fiber is aligned to the connector key.
  • This diode is exceptionally sensitive to optical feedback. Any reflection with more than 2% of the incident power has the potential to permanently damage the diode.
  • The Ø9 mm package for this diode is 4.30 mm (0.17") thick, which is more than the standard Ø9 mm package thickness of 1.50 mm (0.06"). The diode will still be compatible with all Ø9 mm laser diode mounts; please see the Drawing tab in the blue info icon (info) above for full package specifications. Mounting this diode in the LDM90 requires two 2-56 screws, included with this diode.
  • Single-Frequency Laser (Single Longitudinal Mode)
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemLP820-SF80 Support Documentation
LP820-SF80820 nm, 80 mW, C Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$875.50
Today
L820P100 Support Documentation
L820P100820 nm, 100 mW, Ø5.6 mm, C Pin Code, Laser Diode
$44.13
Today
L820P200 Support Documentation
L820P200820 nm, 200 mW, Ø5.6 mm, C Pin Code, Laser Diode
$87.99
Today
Choose ItemDBR828PN Support Documentation
DBR828PNCustomer Inspired! 828 nm, 24 mW, Butterfly DBR Laser, PM Fiber, FC/APC, Internal Isolator
$4,450.00
Today
Choose ItemLPS-830-FC Support Documentation
LPS-830-FC830 nm, 10 mW, C Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$529.50
Today
Choose ItemLPS-PM830-FC Support Documentation
LPS-PM830-FC830 nm, 10 mW, C Pin Code, PM Fiber-Pigtailed Laser Diode, FC/PC
$916.12
Today
Choose ItemLP830-SF30 Support Documentation
LP830-SF30830 nm, 30 mW, A Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$739.62
Today
HL8338MG Support Documentation
HL8338MG830 nm, 50 mW, Ø5.6 mm, C Pin Code, Laser Diode
$58.31
Volume Pricing
Today
Choose ItemFPL830S Support Documentation
FPL830S830 nm, 350 mW, Butterfly Laser Diode, SM Fiber, FC/APC
$1,943.61
Volume Pricing
Today
Choose ItemLD830-SE650 Support Documentation
LD830-SE650830 nm, 650 mW, Ø9 mm, E Pin Code, Laser Diode
$375.06
Volume Pricing
Today
LD830-MA1W Support Documentation
LD830-MA1W830 nm, 1 W, Ø9 mm, A Pin Code, MM, Laser Diode
$267.90
Today
Choose ItemLD830-ME2W Support Documentation
LD830-ME2W830 nm, 2 W, Ø9 mm, E Pin Code, MM, Laser Diode
$535.81
Today

840 nm - 852 nm

Note: The rows shaded green below denote single-frequency laser diodes.
Item # Info Wavelength
(nm)
Power
(mW)a
Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Spatial Mode
L840P200 info 840 200 255 mA / 340 mA Ø5.6 mm C Yes S7060R No Single Mode
L850VG1c info 850 2 4 mA / 6 mA TO-46 G No S8060d No Single Frequencyc
L850P010 info 850 10 50 mA / 70 mA Ø5.6 mm A Yes S7060R No Single Mode
L850P030 info 850 30 65 mA / 95 mA Ø5.6 mm A Yes S7060R No Single Mode
LP850-SF80 info 850 80 230 mA / 400 mA Ø5.6 mm, SM Pigtail C Yes S7060R Yes Single Mode
L850P200 info 850 200 255 mA / 340 mA Ø5.6 mm C Yes S7060R No Single Mode
FPV852Sc info 852 20 400 mA (Max)e Butterfly, SM Pigtail 14 Pin, Type 1 Yes - Yes Single Frequencyc
FPV852Pc info 852 20 400 mA (Max)e Butterfly, PM Pigtail 14 Pin, Type 1 Yes - Yes Single Frequencyc
DBR852PNc info 852 24 300 mA (Max)E Butterfly, PM Pigtail 14 Pin, Type 1 Yes - Yes Single Frequencyc
LP852-SF30 info 852 30 115 mA / 160 mA Ø9 mm, SM Pigtail A Yes S8060 or S8060-4 Yes Single Mode
L852P50 info 852 50 75 mA / 100 mA Ø5.6 mm A Yes S7060R No Single Mode
L852P100 info 852 100 120 mA / 170 mA Ø9 mm A Yes S8060 or S8060-4 No Single Mode
L852P150 info 852 150 170 mA / 220 mA Ø9 mm A Yes S8060 or S8060-4 No Single Mode
FPL852S info 852 350 900 mA / 950 mA Butterfly, SM Pigtail 14 Pin, Type 1 Yes - Yes Single Mode
LD852-SE600f info 852 600 950 mA / 1050 mA Ø9 mmg E No S8060 or S8060-4 Yes Single Mode
LD852-SEV600c,h info 852 600 1050 mA (Max)e Ø9 mmg E No S8060 or S8060-4 Yes Single Frequencyc
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in photodiode can operate at constant power.
  • Single-Frequency Laser (Single Longitudinal Mode)
  • Third Contact Point Not Needed for Proper Function; Does Not Make Diode Compatible with LDM Mounts
  • The power can be tuned across the operating current range, given in the serial-number-specific documentation, while maintaining wavelength-stabilized, single-frequency performance within a stabilized temperature range.
  • This diode is exceptionally sensitive to optical feedback. Any reflection with more than 2% of the incident power has the potential to permanently damage the diode.
  • The Ø9 mm package for this diode is 4.30 mm (0.17") thick, which is more than the standard Ø9 mm package thickness of 1.50 mm (0.06"). The diode will still be compatible with all Ø9 mm laser diode mounts; please see the Drawing tab in the blue info icon (info) above for full package specifications. Mounting this diode in the LDM90 requires two 2-56 screws, included with this diode.
  • In order to achieve the specified performance, we recommend using the LDM90 Laser Diode Mount and, when collimated, an NIR Optical Isolator; single frequency performance when collimated is only guaranteed with >35 dB isolation of back reflections.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
L840P200 Support Documentation
L840P200840 nm, 200 mW, Ø5.6 mm, C Pin Code, Laser Diode
$47.90
Today
L850VG1 Support Documentation
L850VG1NEW!850 nm, 2 mW, TO-46, G Pin Code, VCSEL Laser Diode
$74.71
Volume Pricing
Today
L850P010 Support Documentation
L850P010850 nm, 10 mW, Ø5.6 mm, A Pin Code, Laser Diode
$24.27
Volume Pricing
Today
L850P030 Support Documentation
L850P030850 nm, 30 mW, Ø5.6 mm, A Pin Code, Laser Diode
$91.14
Volume Pricing
Today
Choose ItemLP850-SF80 Support Documentation
LP850-SF80850 nm, 80 mW, C Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$875.50
Today
L850P200 Support Documentation
L850P200850 nm, 200 mW, Ø5.6 mm, C Pin Code, Laser Diode
$59.02
Today
Choose ItemFPV852S Support Documentation
FPV852S852 nm, 20 mW, VHG Wavelength-Stabilized SF Laser Diode, Butterfly Package, SM Fiber, FC/APC, TEC and Thermistor, Internal Isolator
$2,420.50
Volume Pricing
Today
Choose ItemFPV852P Support Documentation
FPV852PNEW!852 nm, 20 mW, VHG Wavelength-Stabilized SF Laser Diode, Butterfly Package, PM Fiber, FC/APC, TEC and Thermistor, Internal Isolator
$2,570.50
Volume Pricing
Today
Choose ItemDBR852PN Support Documentation
DBR852PNNEW!Customer Inspired! 852 nm, 24 mW, Butterfly DBR Laser, PM Fiber, FC/APC, Internal Isolator
$4,450.00
Today
Choose ItemLP852-SF30 Support Documentation
LP852-SF30852 nm, 30 mW, A Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$739.62
Today
L852P50 Support Documentation
L852P50852 nm, 50 mW, Ø5.6 mm, A Pin Code, Laser Diode
$152.34
Volume Pricing
Today
L852P100 Support Documentation
L852P100852 nm, 100 mW, Ø9 mm, A Pin Code, Laser Diode
$201.72
Volume Pricing
Today
L852P150 Support Documentation
L852P150852 nm, 150 mW, Ø9 mm, A Pin Code, Laser Diode
$297.32
Volume Pricing
Today
Choose ItemFPL852S Support Documentation
FPL852S852 nm, 350 mW, Butterfly Laser Diode, SM Fiber, FC/APC
$1,943.61
Volume Pricing
Today
Choose ItemLD852-SE600 Support Documentation
LD852-SE600852 nm, 600 mW, Ø9 mm, E Pin Code, Laser Diode
$642.97
Volume Pricing
Today
Choose ItemLD852-SEV600 Support Documentation
LD852-SEV600852 nm, 600 mW, Ø9 mm TO Can, E Pin Code, VHG Wavelength-Stabilized Single-Frequency Laser Diode
$1,558.04
Volume Pricing
Today

880 nm - 895 nm

Note: The row shaded green below denotes a single-frequency laser diode.
Item # Info Wavelength
(nm)
Power
(mW)a
Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Spatial Mode
LP880-SF3 info 880 3 25 mA / 40 mA Ø5.6 mm, SM Pigtail A Yes S7060Rc Yes Single Mode
L880P010 info 880 10 30 mA / 40 mA Ø5.6 mm A Yes S7060R No Single Mode
DBR895PNd info 895 12 300 mA (Typ.) PM-Pigtailed Butterfly 14-Pin Type 1 Yes - Yes Single Frequencyd
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • This socket is included with the purchase of the corresponding laser diode.
  • Single-Frequency Laser (Single Longitudinal Mode)
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemLP880-SF3 Support Documentation
LP880-SF3880 nm, 3 mW, A Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$488.53
Today
L880P010 Support Documentation
L880P010880 nm, 10 mW, Ø5.6 mm, A Pin Code, Laser Diode
$51.48
Volume Pricing
Today
Choose ItemDBR895PN Support Documentation
DBR895PNNEW!Customer Inspired! 895 nm, 12 mW, Butterfly DBR Laser, PM Fiber, FC/APC, Internal Isolator
$4,450.00
Today

904 nm

Item # Info Wavelength
(nm)
Power
(mW)a
Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Spatial Mode
LP904-SF3 info 904 3 30 mA / 60 mA Ø5.6 mm, SM Pigtail A Yes S7060R Yes Single Mode
L904P010 info 904 10 50 mA / 70 mA Ø5.6 mm A Yes S7060R No Single Mode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemLP904-SF3 Support Documentation
LP904-SF3NEW!Customer Inspired! 904 nm, 3 mW, A Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$465.50
Today
L904P010 Support Documentation
L904P010904 nm, 10 mW, Ø5.6 mm, A Pin Code, Laser Diode
$26.79
Volume Pricing
Today

915 nm

Item # Info Wavelength
(nm)
Power
(mW)a
Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Spatial Mode
LP915-SF40 info 915 40 130 mA / 200 mA Ø9 mm, SM Pigtail A Yes S8060 or S8060-4 Yes Single Mode
M9-915-0300 info 915 300 370 mA / 420 mA Ø9 mm A Yes S8060 or S8060-4 No Single Mode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemLP915-SF40 Support Documentation
LP915-SF40915 nm, 40 mW, A Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$772.19
Today
M9-915-0300 Support Documentation
M9-915-0300915 nm, 300 mW, Ø9 mm, A Pin Code, Laser Diode
$1,135.70
Volume Pricing
Today

940 nm

Item # Info Wavelength
(nm)
Power
(mW)a
Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Spatial Mode
LP940-SF30 info 940 30 90 mA / 120 mA Ø9 mm, SM Pigtail A Yes S8060 or S8060-4 Yes Single Mode
M9-940-0200 info 940 200 270 mA / 320 mA Ø9 mm A Yes S8060 or S8060-4 No Single Mode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemLP940-SF30 Support Documentation
LP940-SF30940 nm, 30 mW, A Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$591.69
Today
M9-940-0200 Support Documentation
M9-940-0200940 nm, 200 mW, Ø9 mm, A Pin Code, Laser Diode
$608.30
Volume Pricing
Today

976 nm

Note: The rows shaded green below denote single-frequency laser diodes.

Item # Info Wavelength
(nm)
Power
(mW)a
Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Spatial Mode
FPV976Sc info 976 30 400 mA (Max) Butterfly, SM Pigtail 14-Pin Butterfly Yes - Yes Single Frequencyc
FPV976Pc info 976 30 400 mA (Max) Butterfly, PM Pigtail 14-Pin Butterfly Yes - Yes Single Frequencyc
DBR976PNc info 976 33 450 mA (Typ.) Butterfly, PM Pigtaild 14-Pin Butterfly Yes - Yes Single Frequencyc
DBR976Sc info 976 50 150 mA / 200 mA Butterfly, SM Pigtail 14-Pin Butterfly Yes - Yes Single Frequencyc
BL976-SAG300 info 976 300 470 mA / 515 mA Butterfly, SM Pigtail 14-Pin Butterfly Yes - Yes Single Mode
BL976-PAG500 info 976 500 830 mA / 920 mA Butterfly, PM Pigtaild 14-Pin Butterfly Yes - Yes Single Mode
BL976-PAG700 info 976 700 1090 mA / 1150 mA Butterfly, PM Pigtaild 14-Pin Butterfly Yes - Yes Single Mode
BL976-PAG900 info 976 900 1480 mA / 1630 mA Butterfly, PM Pigtaild 14-Pin Butterfly Yes - Yes Single Mode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • Single-Frequency Laser (Single Longitudinal Mode)
  • The slow axis of the polarization-maintaining fiber is aligned to the connector key.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemFPV976S Support Documentation
FPV976S976 nm, 30 mW, VHG Wavelength-Stabilized SF Laser Diode, Butterfly Package, SM Fiber, FC/APC, TEC and Thermistor, Internal Isolator
$2,420.50
Volume Pricing
Today
Choose ItemFPV976P Support Documentation
FPV976PNEW!976 nm, 30 mW, VHG Wavelength-Stabilized SF Laser Diode, Butterfly Package, PM Fiber, FC/APC, TEC and Thermistor, Internal Isolator
$2,570.50
Volume Pricing
Today
Choose ItemDBR976PN Support Documentation
DBR976PNCustomer Inspired! 976 nm, 33 mW, Butterfly DBR Laser, PM Fiber, FC/APC, Internal Isolator
$4,377.50
Today
Choose ItemDBR976S Support Documentation
DBR976S976 nm, 50 mW, Butterfly DBR Laser, SM Fiber, FC/APC
$3,797.92
Lead Time
This item is out of stock and currently has a  lead time
BL976-SAG300 Support Documentation
BL976-SAG300976 nm, 300 mW, Butterfly FBG-Stabilized Laser, SM Fiber, FC/APC
$708.10
Volume Pricing
Today
BL976-PAG500 Support Documentation
BL976-PAG500976 nm, 500 mW, Butterfly FBG-Stabilized Laser, PM Fiber, FC/APC
$1,483.45
Today
BL976-PAG700 Support Documentation
BL976-PAG700976 nm, 700 mW, Butterfly FBG-Stabilized Laser, PM Fiber, FC/APC
$1,751.35
Today
BL976-PAG900 Support Documentation
BL976-PAG900976 nm, 900 mW, Butterfly FBG-Stabilized Laser, PM Fiber, FC/APC
$2,246.18
Today

980 nm

Item # Info Wavelength
(nm)
Power
(mW)a
Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Spatial Mode
L980P010 info 980 10 25 mA / 40 mA Ø5.6 mm A Yes S7060R No Single Mode
LP980-SF15 info 980 15 70 mA / 90 mA Ø5.6 mm, SM Pigtail E No S7060Rc Yes Single Mode
L980P030 info 980 30 100 mA / 150 mA Ø5.6 mm A Yes S7060R No Single Mode
L980P100A info 980 100 150 mA / 190 mA Ø5.6 mm A Yes S7060R No Multimode
LP980-SA100 info 980 100 180 mA / 240 mA Ø5.6 mm Gd Yes S7060R No Single Mode
L980P200 info 980 200 300 mA / 400 mA Ø5.6 mm A Yes S7060R No Multimode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • This socket is included with the purchase of the corresponding laser diode.
  • The LP980-SA100 has a Reverse G pin code. Please see Spec Sheet for details.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
L980P010 Support Documentation
L980P010980 nm, 10 mW, Ø5.6 mm, A Pin Code, Laser Diode
$28.11
Volume Pricing
Today
Choose ItemLP980-SF15 Support Documentation
LP980-SF15980 nm, 15 mW, E Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$476.97
Today
L980P030 Support Documentation
L980P030980 nm, 30 mW, Ø5.6 mm, A Pin Code, Laser Diode
$69.61
Volume Pricing
Today
L980P100A Support Documentation
L980P100A980 nm, 100 mW, Ø5.6 mm, A Pin Code, MM, Laser Diode
$110.31
Volume Pricing
Today
Choose ItemLP980-SA100 Support Documentation
LP980-SA100Customer Inspired! 980 nm, 100 mW, Reverse G Pin Code, SM Fiber-Pigtailed Laser Diode, FC/APC
$669.50
Today
L980P200 Support Documentation
L980P200980 nm, 200 mW, Ø5.6 mm, A Pin Code, Laser Diode
$139.73
Volume Pricing
Today

1060 nm - 1064 nm

Note: The rows shaded green below denote single-frequency laser diodes.

Item # Info Wavelength
(nm)
Power
(mW)a
Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Spatial Mode
L1060P200J info 1060 200 280 mA / 320 mA Ø9 mm A Yes S8060 or S8060-4 No Single Mode
DBR1064Sc info 1064 40 150 mA / 200 mA Butterfly, SM Pigtail 14-Pin Butterfly Yes - Yes Single Frequencyc
DBR1064Pc info 1064 40 150 mA / 200 mA Butterfly, PM Pigtaild 14-Pin Butterfly Yes - Yes Single Frequencyc
LPS-1060-FC info 1064 50 220 mA / 300 mA Ø9 mm, SM Pigtail A Yes S8060 or S8060-4 Yes Single Mode
DBR1064PNc info 1064 110 550 mA (Typ.) Butterfly, PM Pigtaild 14-Pin Butterfly Yes - Yes Single Frequencyc
M9-A64-0200 info 1064 200 280 mA / 350 mA Ø9 mm A Yes S8060 or S8060-4 No Single Mode
M9-A64-0300 info 1064 300 390 mA / 480 mA Ø9 mm A Yes S8060 or S8060-4 No Single Mode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • Single-Frequency Laser (Single Longitudinal Mode)
  • The slow axis of the polarization-maintaining fiber is aligned to the connector key.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
L1060P200J Support Documentation
L1060P200J1060 nm, 200 mW, Ø9 mm, A Pin Code, Laser Diode
$717.56
Volume Pricing
Today
Choose ItemDBR1064S Support Documentation
DBR1064S1064 nm, 40 mW, Butterfly DBR Laser, SM Fiber, FC/APC, Internal Isolator
$4,029.05
Today
Choose ItemDBR1064P Support Documentation
DBR1064P1064 nm, 40 mW, Butterfly DBR Laser, PM Fiber, FC/APC, Internal Isolator
$4,109.95
Today
Choose ItemLPS-1060-FC Support Documentation
LPS-1060-FC1064 nm, 50 mW, A Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$986.51
Today
Choose ItemDBR1064PN Support Documentation
DBR1064PN1064 nm, 110 mW, Butterfly DBR Laser, PM Fiber, FC/APC, Internal Isolator
$4,624.70
Lead Time
This item is out of stock and currently has a  lead time
M9-A64-0200 Support Documentation
M9-A64-02001064 nm, 200 mW, Ø9 mm, A Pin Code, Laser Diode
$439.15
Volume Pricing
Today
M9-A64-0300 Support Documentation
M9-A64-03001064 nm, 300 mW, Ø9 mm, A Pin Code, Laser Diode
$638.76
Volume Pricing
Today

1310 nm - 1370 nm

Note: The row shaded green below denote single-frequency laser diodes.

Item # Info Wavelength
(nm)
Power
(mW)a
Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Spatial Mode
LP1310-SAD2c info 1310 2 13 mA / 40 mA Ø5.6 mm, SM Pigtail D Yes - Yes Single Frequencyc
LPS-1310-FC info 1310 2.5 20 mA / 35 mA Ø5.6 mm, SM Pigtail D Yes - Yes Single Mode
LPS-PM1310-FC info 1310 2.5 20 mA / 35 mA Ø5.6 mm, PM Pigtaild D Yes - Yes Single Mode
L1310P5DFBc info 1310 5 20 mA / 40 mA Ø5.6 mm D Yes - Yes Single Frequencyc
ML725B8F info 1310 5 20 mA / 35 mA Ø5.6 mm D Yes - Yes Single Mode
LPSC-1310-FC info 1310 50 350 mA / 500 mA Ø5.6 mm, SM Pigtail E No S7060R Yes Single Mode
FPL1053S info 1310 130 400 mA / 500 mA Butterfly, SM Pigtail 14-Pin Butterfly No - Yes Single Mode
FPL1053P info 1310 130 400 mA / 500 mA Butterfly, PM Pigtaild 14-Pin Butterfly No - Yes Single Mode
FPL1053Te info 1310 300 (Pulsed) 750 mA / 1000 mA Ø5.6 mm E No S7060R No Single Mode
FPL1053C info 1310 300 (Pulsed) 750 mA / 1000 mA Chip on Submount See Spec Sheet No - No Single Mode
L1310G1 info 1310 2000 5 A / 8 A Ø9 mm G No S8060 or S8060-4 No Multimode
L1370G1 info 1370 2000 5 A / 8 A Ø9 mm G No S8060 or S8060-4 No Multimode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • Single-Frequency Laser (Single Longitudinal Mode)
  • The slow axis of the polarization-maintaining fiber is aligned to the connector key.
  • This diode is available from stock in an open header package. It can be converted to a sealed TO can package by customer request. Please contact Tech Support for details.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemLP1310-SAD2 Support Documentation
LP1310-SAD21310 nm, 2 mW, TO Can DFB Laser, SM Fiber, Internal Isolator, FC/APC
$546.31
Today
Choose ItemLPS-1310-FC Support Documentation
LPS-1310-FC1310 nm, 2.5 mW, D Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$478.02
Today
Choose ItemLPS-PM1310-FC Support Documentation
LPS-PM1310-FC1310 nm, 2.5 mW, D Pin Code, PM Fiber-Pigtailed Laser Diode, FC/PC
$862.54
Today
L1310P5DFB Support Documentation
L1310P5DFB1310 nm, 5 mW, Ø5.6 mm, D Pin Code, DFB Laser Diode with Aspheric Lens Cap
$81.69
Volume Pricing
Today
ML725B8F Support Documentation
ML725B8F1310 nm, 5 mW, Ø5.6 mm, D Pin Code, Laser Diode
$50.95
Volume Pricing
Today
Choose ItemLPSC-1310-FC Support Documentation
LPSC-1310-FC1310 nm, 50 mW, E Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$666.08
Today
FPL1053S Support Documentation
FPL1053S1310 nm, 130 mW, Butterfly Laser Diode, SM Fiber, FC/APC
$1,364.73
Today
FPL1053P Support Documentation
FPL1053P1310 nm, 130 mW, Butterfly Laser Diode, PM Fiber, FC/APC
$1,507.61
Today
FPL1053T Support Documentation
FPL1053T1310 nm, 300 mW Pulsed, Ø5.6 mm, E Pin Code
$375.06
Today
FPL1053C Support Documentation
FPL1053C1310 nm, 300 mW Pulsed, Chip on Submount, Laser Diode
$267.90
5-8 Days
L1310G1 Support Documentation
L1310G11310 nm, 2.0 W, Ø9 mm, G Pin Code, MM Laser Diode
$310.03
Today
L1370G1 Support Documentation
L1370G11370 nm, 2.0 W, Ø9 mm, G Pin Code, MM Laser Diode
$334.75
Today

1425 nm - 1480 nm

Item # Info Wavelength
(nm)
Power
(mW)a
Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Spatial Mode
BL1425-PAG500 info 1425 500 1.6 A / 2.1 A Butterfly, PM Pigtailc 14-Pin Butterfly No - Yes Single Mode
BL1436-PAG500 info 1436 500 1.6 A / 2.1 A Butterfly, PM Pigtailc 14-Pin Butterfly No - Yes Single Mode
L1450G1 info 1450 2000 5 A / 8 A Ø9 mm G No S8060 or S8060-4 No Multimode
BL1456-PAG500 info 1456 500 1.6 A / 2.1 A Butterfly, PM Pigtailc 14-Pin Butterfly No - Yes Single Mode
BL1465-PAG500 info 1465 500 1.6 A / 2.1 A Butterfly, PM Pigtailc 14-Pin Butterfly No - Yes Single Mode
L1480G1 info 1480 2000 5 A / 8 A Ø9 mm G No S8060 or S8060-4 No Multimode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • The slow axis of the polarization-maintaining fiber is aligned to the connector key.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
BL1425-PAG500 Support Documentation
BL1425-PAG500NEW!1425 nm, 500 mW, Butterfly FBG-Stabilized Laser, PM Fiber, FC/APC
$1,799.60
Today
BL1436-PAG500 Support Documentation
BL1436-PAG500NEW!1436 nm, 500 mW, Butterfly FBG-Stabilized Laser, PM Fiber, FC/APC
$1,799.60
Today
L1450G1 Support Documentation
L1450G11450 nm, 2.0 W, Ø9 mm, G Pin Code, MM Laser Diode
$311.06
Today
BL1456-PAG500 Support Documentation
BL1456-PAG500NEW!1456 nm, 500 mW, Butterfly FBG-Stabilized Laser, PM Fiber, FC/APC
$1,799.60
Today
BL1465-PAG500 Support Documentation
BL1465-PAG500NEW!1465 nm, 500 mW, Butterfly FBG-Stabilized Laser, PM Fiber, FC/APC
$1,799.60
Today
L1480G1 Support Documentation
L1480G11480 nm, 2.0 W, Ø9 mm, G Pin Code, MM Laser Diode
$313.12
Today

1550 nm - 1575 nm

Note: The rows shaded green below denote single-frequency laser diodes.

Item # Info Wavelength
(nm)
Power
(mW)a
Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Spatial Mode
LPS-1550-FC info 1550 1.5 30 mA / 50 mA Ø5.6 mm, SM Pigtail D Yes - Yes Single Mode
LPS-PM1550-FC info 1550 1.5 30 mA / 50 mA Ø5.6 mm, PM Pigtailc D Yes - Yes Single Mode
LP1550-SAD2d info 1550 2 20 mA / 40 mA Ø5.6 mm, SM Pigtail D Yes - Yes Single Frequencyd
L1550P5DFBd info 1550 5 20 mA / 40 mA Ø5.6 mm D Yes - Yes Single Frequencyd
ML925B45F info 1550 5 30 mA / 50 mA Ø5.6 mm D Yes - No Single Mode
SFL1550Sd info 1550 40 300 mA (Typ.) Butterfly, SM Pigtail 14-Pin Butterfly No - Yes Single Frequencyd
SFL1550Pd info 1550 40 300 mA (Typ.) Butterfly, PM Pigtailc 14-Pin Butterfly No - Yes Single Frequencyd
LPSC-1550-FC info 1550 50 250 mA / 500 mA Ø5.6 mm, SM Pigtail E No S7060R Yes Single Mode
FPL1009S info 1550 100 (Typ.) 400 mA / 500 mA Butterfly, SM Pigtail 14-Pin Butterfly No - Yes Single Mode
FPL1009P info 1550 100 (Typ.) 400 mA / 500 mA Butterfly, PM Pigtailc 14-Pin Butterfly No - Yes Single Mode
FPL1001C info 1550 150 400 mA / 500 mA Chip on Submount See Spec Sheet No - No Single Mode
FPL1055Te info 1550 300 (Pulsed) 750 mA / 1000 mA Ø5.6 mm E No S7060R No Single Mode
FPL1055C info 1550 300 (Pulsed) 750 mA / 1000 mA Chip on Submount See Spec Sheet No - No Single Mode
L1550G1 info 1550 1700 5 A / 8 A Ø9 mm G No S8060 or S8060-4 No Multimode
L1575G1 info 1575 1700 5 A / 8 A Ø9 mm G No S8060 or S8060-4 No Multimode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • The slow axis of the polarization-maintaining fiber is aligned to the connector key.
  • Single-Frequency Laser (Single Longitudinal Mode)
  • This diode is available from stock in an open header package. It can be converted to a sealed TO can package by customer request. Please contact Tech Support for details.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemLPS-1550-FC Support Documentation
LPS-1550-FC1550 nm, 1.5 mW, D Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$572.58
Today
Choose ItemLPS-PM1550-FC Support Documentation
LPS-PM1550-FC1550 nm, 1.5 mW, D Pin Code, PM Fiber-Pigtailed Laser Diode, FC/PC
$918.22
Today
Choose ItemLP1550-SAD2 Support Documentation
LP1550-SAD21550 nm, 2 mW, TO Can DFB Laser, SM Fiber, Internal Isolator, FC/APC
$682.89
Today
L1550P5DFB Support Documentation
L1550P5DFB1550 nm, 5 mW, Ø5.6 mm, D Pin Code, DFB Laser Diode with Aspheric Lens Cap
$81.69
Volume Pricing
Today
ML925B45F Support Documentation
ML925B45F1550 nm, 5 mW, Ø5.6 mm, D Pin Code, Laser Diode
$50.95
Volume Pricing
Today
SFL1550S Support Documentation
SFL1550S1550 nm, 40 mW, Butterfly External Cavity Laser, SM Fiber, FC/APC
$2,696.89
Today
SFL1550P Support Documentation
SFL1550P1550 nm, 40 mW, Butterfly External Cavity Laser, PM Fiber, FC/APC
$2,857.63
Today
Choose ItemLPSC-1550-FC Support Documentation
LPSC-1550-FC1550 nm, 50 mW, E Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$734.37
Today
FPL1009S Support Documentation
FPL1009S1550 nm, 100 mW, Butterfly Laser Diode, SM Fiber, FC/APC
$1,364.73
Today
FPL1009P Support Documentation
FPL1009P1550 nm, 100 mW, Butterfly Laser Diode, PM Fiber, FC/APC
$1,507.61
Today
FPL1001C Support Documentation
FPL1001C1550 nm, 150 mW Typical, Chip on Submount, Laser Diode
$267.90
Today
FPL1055T Support Documentation
FPL1055T1550 nm, 300 mW Pulsed, Ø5.6 mm, E Pin Code
$375.06
Today
FPL1055C Support Documentation
FPL1055C1550 nm, 300 mW Pulsed, Chip on Submount, Laser Diode
$267.90
5-8 Days
L1550G1 Support Documentation
L1550G11550 nm, 1.7 W, Ø9 mm, G Pin Code, MM Laser Diode
$314.15
Today
L1575G1 Support Documentation
L1575G11575 nm, 1.7 W, Ø9 mm, G Pin Code, MM Laser Diode
$315.18
Today

1625 nm - 1650 nm

Item # Info Wavelength
(nm)
Power
(mW)a
Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Spatial Mode
LPSC-1625-FC info 1625 50 350 mA / 500 mA Ø5.6 mm, SM Pigtail E No S7060R Yes Single Mode
FPL1054S info 1625 80 400 mA / 500 mA Butterfly, SM Pigtail 14-Pin Butterfly No - Yes Single Mode
FPL1054P info 1625 80 400 mA / 500 mA Butterfly, PM Pigtailc 14-Pin Butterfly No - Yes Single Mode
FPL1054C info 1625 250 (Pulsed) 750 mA / 1000 mA Chip on Submount See Spec Sheet No - No Single Mode
FPL1054Td info 1625 250 (Pulsed) 750 mA / 1000 mA Ø5.6 mm E No S7060R No Single Mode
FPL1059S info 1650 80 400 mA / 500 mA Butterfly, SM Pigtail 14-Pin Butterfly No - Yes Single Mode
FPL1059P info 1650 80 400 mA / 500 mA Butterfly, PM Pigtailc 14-Pin Butterfly No - Yes Single Mode
FPL1059C info 1650 225 (Pulsed) 750 mA / 1000 mA Chip on Submount See Spec Sheet No - No Single Mode
FPL1059Td info 1650 225 (Pulsed) 750 mA / 1000 mA Ø5.6 mm E No S7060R No Single Mode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
  • The slow axis of the polarization-maintaining fiber is aligned to the connector key.
  • This diode is available from stock in an open header package. It can be converted to a sealed TO can package by customer request. Please contact Tech Support for details.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
Choose ItemLPSC-1625-FC Support Documentation
LPSC-1625-FC1625 nm, 50 mW, E Pin Code, SM Fiber-Pigtailed Laser Diode, FC/PC
$734.37
Today
FPL1054S Support Documentation
FPL1054S1625 nm, 80 mW, Butterfly Laser Diode, SM Fiber, FC/APC
$1,418.31
Today
FPL1054P Support Documentation
FPL1054P1625 nm, 80 mW, Butterfly Laser Diode, PM Fiber, FC/APC
$1,558.04
Lead Time
FPL1054C Support Documentation
FPL1054C1625 nm, 250 mW Pulsed, Chip on Submount, Laser Diode
$295.22
Today
FPL1054T Support Documentation
FPL1054T1625 nm, 250 mW Pulsed, Ø5.6 mm, E Pin Code
$412.89
Today
FPL1059S Support Documentation
FPL1059S1650 nm, 80 mW, Butterfly Laser Diode, SM Fiber, FC/APC
$1,450.88
Today
FPL1059P Support Documentation
FPL1059P1650 nm, 80 mW, Butterfly Laser Diode, PM Fiber, FC/APC
$1,585.36
Today
FPL1059C Support Documentation
FPL1059C1650 nm, 225 mW Pulsed, Chip on Submount, Laser Diode
$321.48
5-8 Days
FPL1059T Support Documentation
FPL1059T1650 nm, 225 mW Pulsed, Ø5.6 mm, E Pin Code
$450.71
Today

1940 nm - 2000 nm

Item # Info Wavelength
(nm)
Power
(mW)a
Typical/Max
Drive Currenta
Package Pin Code Monitor
Photodiodeb
Compatible
Socket
Wavelength
Tested
Spatial Mode
FPL1940S info 1940 15 400 mA / 500 mA Butterfly, SM Pigtail 14-Pin Butterfly No - Yes Single Mode
FPL2000S info 2000 15 400 mA / 500 mA Butterfly, SM Pigtail 14-Pin Butterfly No - No Single Mode
FPL2000C info 2000 30 400 mA / 500 mA Chip on Submount See Spec Sheet No - No Single Mode
  • Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
  • Laser diodes with a built-in monitor photodiode can operate at constant power.
Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
FPL1940S Support Documentation
FPL1940S1940 nm, 15 mW, Butterfly Laser Diode, SM Fiber, FC/APC
$3,223.24
Today
FPL2000S Support Documentation
FPL2000S2000 nm, 15 mW, Butterfly Laser Diode, SM Fiber, FC/APC
$3,760.10
Today
FPL2000C Support Documentation
FPL2000C2000 nm, 30 mW Typical, Chip on Submount, Laser Diode
$1,611.62
5-8 Days
Log In  |   My Account  |   Contact Us  |   Careers  |   Privacy Policy  |   Home  |   FAQ  |   Site Index
Regional Websites: West Coast US | Europe | Asia | China | Japan
Copyright 1999-2019 Thorlabs, Inc.
Sales: 1-973-300-3000
Technical Support: 1-973-300-3000


High Quality Thorlabs Logo 1000px:Save this Image