Create an Account  |   Log In

View All »Matching Part Numbers

Your Shopping Cart is Empty

1040 nm Femtosecond Fiber Lasers

  • Menlo Systems' figure 9® Technology
  • Highly Stable and Easy to Use
  • High Power (>10 W) Version Available
  • Pulse Widths of <200 fs


Related Items

Please Wait

Optional Packages

    Picosecond Pulses for Seeding Applications
  • SYNC100 Repetition Rate Synchronization
    Allows for 330 kHz Cavity Length Tuning (Full Range), Integrated Stepper Motor and Piezo Setup Included
  • RRE-SYNCRO Repetition Rate Stabilization Electronics
    Feedback Electronics to Phase Lock Pulses to an External Clock
  • VARIO User-Defined Repetition Rate
    Factory-Set Value Selectable in the 50-250 MHz Range
  • MULTIBRANCH Additional Seed Ports
    Seeding of Multiple Amplifiers with Optional Subsequent Frequency Conversion to Cover Multiple Wavelengths
  • SHG 520 Second Harmonic Generation Module
    Frequency Doubling to 520 nm


  • Amplifier Seeding
  • THz Generation and THz Physics
  • 2-Photon Polymerization and 3D Printing
  • Ultrafast Spectroscopy
  • Multiphoton Excitation
  • OPO/OPA Seeding


  • Output Power Options from 100 mW to >10 W
  • High Stability
  • Low Amplitude and Phase Noise
  • All-PM Fiber Solution
  • Repetition Rate: 50 - 250 MHz
  • Single Mode-Lock State
  • Menlo Systems' figure 9® Technology
  • Laser Output in Less Than 60 Seconds
  • 520 nm Second Harmonic Generation Module Available

Menlo Systems’ femtosecond Yb fiber-based laser sources offer up to >10 W average power with pulse durations of <200 fs. Based on their unique figure 9® design, the lasers offer reproducible and long-term stable operation. Both the oscillator and the amplifier use only polarization-maintaining (PM) fiber components, ensuring excellent stability and low-noise operation. The optional SHG 520 second harmonic generator is a highly efficient module for frequency doubling to 520 nm with the ORANGE-HIGH-POWER model. The laser is maintenance free, user installed, and ready to use at the press of a single button. Customize your laser with the available options listed to the right based on the requirements of your application.

Simon Kocur
Simon Kocur
Menlo Systems
Need a Quote?

Please note that these femtosecond fiber lasers are available directly from Menlo Systems, Inc. within the United States and from Menlo Systems GmbH outside the United States.
United States
Phone: +1-973-300-4490
Outside United States
Phone: +49-89-189166-0
Wavelength 1040 nm ± 10 nm
Average Output Power >100 mW >1 W >10 W
Pulse Energy >1 nJ >10 nJ >100 nJ
Pulse Widtha <150 fs <150 fs <200 fs
Repetition Rate 100 MHz (50 - 250 MHz with VARIO)b
Repetition Rate Stability <1 ppm Over 90 Hours at Constant Temperature
Output Port Free Space
Auxiliary Output Port Optional
Additional Fiber-Coupled Seed Port 1 (Up to 4 with MULTIBRANCH)
Polarization Linear, P-Polarized
Beam Height 95 mm
Second Harmonic Module - SHG 520 -
Average Power - >400 mW -
Pulse Width - <150 fs -
Polarization - Linear, P-Polarized -
  • Please inquire with Menlo Systems about chirped output pulses for pulse lengths from 1 to 50 ps.
  • Please inquire with Menlo Systems for your specific combinations of average power, pulse duration and repetition rate.

Laser Safety and Classification

Safe practices and proper usage of safety equipment should be taken into consideration when operating lasers. The eye is susceptible to injury, even from very low levels of laser light. Thorlabs offers a range of laser safety accessories that can be used to reduce the risk of accidents or injuries. Laser emission in the visible and near infrared spectral ranges has the greatest potential for retinal injury, as the cornea and lens are transparent to those wavelengths, and the lens can focus the laser energy onto the retina. 

Laser Glasses Laser Curtains Blackout Materials
Enclosure Systems Laser Viewing Cards Alignment Tools
Shutter and Controllers Laser Safety Signs

Safe Practices and Light Safety Accessories

  • Thorlabs recommends the use of safety eyewear whenever working with laser beams with non-negligible powers (i.e., > Class 1) since metallic tools such as screwdrivers can accidentally redirect a beam.
  • Laser goggles designed for specific wavelengths should be clearly available near laser setups to protect the wearer from unintentional laser reflections.
  • Goggles are marked with the wavelength range over which protection is afforded and the minimum optical density within that range.
  • Laser Safety Curtains and Laser Safety Fabric shield other parts of the lab from high energy lasers.
  • Blackout Materials can prevent direct or reflected light from leaving the experimental setup area.
  • Thorlabs' Enclosure Systems can be used to contain optical setups to isolate or minimize laser hazards.
  • A fiber-pigtailed laser should always be turned off before connecting it to or disconnecting it from another fiber, especially when the laser is at power levels above 10 mW.
  • All beams should be terminated at the edge of the table, and laboratory doors should be closed whenever a laser is in use.
  • Do not place laser beams at eye level.
  • Carry out experiments on an optical table such that all laser beams travel horizontally.
  • Remove unnecessary reflective items such as reflective jewelry (e.g., rings, watches, etc.) while working near the beam path.
  • Be aware that lenses and other optical devices may reflect a portion of the incident beam from the front or rear surface.
  • Operate a laser at the minimum power necessary for any operation.
  • If possible, reduce the output power of a laser during alignment procedures.
  • Use beam shutters and filters to reduce the beam power.
  • Post appropriate warning signs or labels near laser setups or rooms.
  • Use a laser sign with a lightbox if operating Class 3R or 4 lasers (i.e., lasers requiring the use of a safety interlock).
  • Do not use Laser Viewing Cards in place of a proper Beam Trap.


Laser Classification

Lasers are categorized into different classes according to their ability to cause eye and other damage. The International Electrotechnical Commission (IEC) is a global organization that prepares and publishes international standards for all electrical, electronic, and related technologies. The IEC document 60825-1 outlines the safety of laser products. A description of each class of laser is given below:

Class Description Warning Label
1 This class of laser is safe under all conditions of normal use, including use with optical instruments for intrabeam viewing. Lasers in this class do not emit radiation at levels that may cause injury during normal operation, and therefore the maximum permissible exposure (MPE) cannot be exceeded. Class 1 lasers can also include enclosed, high-power lasers where exposure to the radiation is not possible without opening or shutting down the laser.  Class 1
1M Class 1M lasers are safe except when used in conjunction with optical components such as telescopes and microscopes. Lasers belonging to this class emit large-diameter or divergent beams, and the MPE cannot normally be exceeded unless focusing or imaging optics are used to narrow the beam. However, if the beam is refocused, the hazard may be increased and the class may be changed accordingly.  Class 1M
2 Class 2 lasers, which are limited to 1 mW of visible continuous-wave radiation, are safe because the blink reflex will limit the exposure in the eye to 0.25 seconds. This category only applies to visible radiation (400 - 700 nm).  Class 2
2M Because of the blink reflex, this class of laser is classified as safe as long as the beam is not viewed through optical instruments. This laser class also applies to larger-diameter or diverging laser beams.  Class 2M
3R Lasers in this class are considered safe as long as they are handled with restricted beam viewing. The MPE can be exceeded with this class of laser, however, this presents a low risk level to injury. Visible, continuous-wave lasers are limited to 5 mW of output power in this class.  Class 3R
3B Class 3B lasers are hazardous to the eye if exposed directly. However, diffuse reflections are not harmful. Safe handling of devices in this class includes wearing protective eyewear where direct viewing of the laser beam may occur. In addition, laser safety signs lightboxes should be used with lasers that require a safety interlock so that the laser cannot be used without the safety light turning on. Class-3B lasers must be equipped with a key switch and a safety interlock.  Class 3B
4 This class of laser may cause damage to the skin, and also to the eye, even from the viewing of diffuse reflections. These hazards may also apply to indirect or non-specular reflections of the beam, even from apparently matte surfaces. Great care must be taken when handling these lasers. They also represent a fire risk, because they may ignite combustible material. Class 4 lasers must be equipped with a key switch and a safety interlock.  Class 4
All class 2 lasers (and higher) must display, in addition to the corresponding sign above, this triangular warning sign  Warning Symbol

Posted Comments:
No Comments Posted

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
ORANGE Support Documentation
ORANGEFemtosecond Fiber Laser, 1040 nm, >100 mW, 100 MHz
Menlo Lead Time
ORANGE-HIGH-POWER Support Documentation
ORANGE-HIGH-POWERFemtosecond Fiber Laser, 1040 nm, >1 W, 100 MHz
Menlo Lead Time
ORANGE-HIGH-POWER-10 Support Documentation
ORANGE-HIGH-POWER-10Femtosecond Fiber Laser, 1040 nm, >10 W, 100 MHz
Menlo Lead Time
Log In  |   My Account  |   Contact Us  |   Careers  |   Privacy Policy  |   Home  |   FAQ  |   Site Index
Regional Websites: West Coast US | Europe | Asia | China | Japan
Copyright 1999-2019 Thorlabs, Inc.
Sales: 1-973-300-3000
Technical Support: 1-973-300-3000

High Quality Thorlabs Logo 1000px:Save this Image