"; _cf_contextpath=""; _cf_ajaxscriptsrc="/cfthorscripts/ajax"; _cf_jsonprefix='//'; _cf_websocket_port=8578; _cf_flash_policy_port=1244; _cf_clientid='DC13E011971C298B999D502537191305';/* ]]> */
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Photodiode Power Sensors (C-Series)![]()
S120C Sensor with IR S145C Integrating Sphere Sensor Posts and Post Holders Not Included S140C Integrating Sphere Sensor S130C Slim Sensor S154C Fiber Sensor S170C Microscope Slide Integrating Sphere Sensors Shown with Included FC/PC Adapters Articulating Arm Not Included ![]() Please Wait
Features
Thorlabs' C-Series Photodiode Power Meter Sensors cover a wide power and wavelength range. These sensors are offered in standard, slim, microscope slide, integrating sphere, and compact fiber versions to meet your specific application requirements. They are the best sensor choice when a fast response time or high resolution is required and there is not a need for a flat spectral response. These photodiode power meter sensors feature enhanced shielding to avoid electromagnetic interference as well as an over-temperature alert sensor to warn against damage and measurement errors due to overheating of the sensor (except the S130C Series Slim Sensors and the S170C Microscope Slide Sensor). For all sensors (except the S130C Slim Sensors and the S170C Microscope Slide Sensor), a set of fiber adapters is available to connect them to standard optical fiber patch cables (see below). Other fiber adapter types are available upon request. The sensors below (except the S150C series) have universal 8-32 and M4 taps for mounting to Ø1/2" Posts. Posts and post holders are not included and sold separately. Compatibility Calibration Thorlabs offers specific recalibration services for all our photodiode power sensors. To ensure accurate measurements, we recommend recalibrating the sensors annually. To order this service, scroll toward the bottom of the page and select the appropriate Item # that corresponds to your power sensor. For questions and pricing information pertaining to this service, please contact Tech Support. Sensor Upgrade Service Recalibration Service
These specifications were obtained at an ambient room temperature of 23 °C ± 0.5 °C and a humidity of 45% ± 15%. Standard Photodiode Sensors: S120C Series
Slim Profile Photodiode Sensors: S130C Series
Microscope Slide Photodiode Sensor
Integrating Sphere Photodiode Sensors
Fiber-Coupled Photodiode Sensors: S150C Series
Sensor ConnectorsD-Type Male
Pulsed Laser Emission: Power and Energy CalculationsDetermining whether emission from a pulsed laser is compatible with a device or application can require referencing parameters that are not supplied by the laser's manufacturer. When this is the case, the necessary parameters can typically be calculated from the available information. Calculating peak pulse power, average power, pulse energy, and related parameters can be necessary to achieve desired outcomes including:
Pulsed laser radiation parameters are illustrated in Figure 1 and described in the table. For quick reference, a list of equations are provided below. The document available for download provides this information, as well as an introduction to pulsed laser emission, an overview of relationships among the different parameters, and guidance for applying the calculations.
![]() Click to Enlarge Figure 1: Parameters used to describe pulsed laser emission are indicated in the plot (above) and described in the table (below). Pulse energy (E) is the shaded area under the pulse curve. Pulse energy is, equivalently, the area of the diagonally hashed region.
Example Calculation: Is it safe to use a detector with a specified maximum peak optical input power of 75 mW to measure the following pulsed laser emission?
The energy per pulse: seems low, but the peak pulse power is: It is not safe to use the detector to measure this pulsed laser emission, since the peak power of the pulses is >5 orders of magnitude higher than the detector's maximum peak optical input power. Thorlabs offers a wide selection of power and energy meter consoles and interfaces for operating our power and energy sensors. Key specifications of all of our power meter consoles and interfaces are presented below to help you decide which device is best for your application. We also offer self-contained wireless power meters and compact USB power meters. When used with our C-series sensors, Thorlabs' power meter consoles and interfaces recognize the type of connected sensor and measure the current or voltage as appropriate. Our C-series sensors have responsivity calibration data stored in their connectors. The console will read out the responsivity value for the user-entered wavelength and calculate a power or energy reading.
The consoles and interfaces are also capable of providing a readout of the current or voltage delivered by the sensor. Select models also feature an analog output. Consoles
Interfaces
![]() Click to Enlarge The PM160 wireless power meter, shown here with an iPad mini (not included), can be remotely operated using Apple mobile devices. This tab outlines the full selection of Thorlabs' power and energy sensors. Refer to the lower right table for power meter console and interface compatibility information. In addition to the power and energy sensors listed below, Thorlabs also offers all-in-one, wireless, handheld power meters and compact USB power meter interfaces that contain either a photodiode or a thermal sensor, as well as power meter bundles that include a console, sensor head, and post mounting accessories. Thorlabs offers four types of sensors:
Power and Energy Sensor Selection GuideThere are two options for comparing the specifications of our Power and Energy Sensors. The expandable table below sorts our sensors by type (e.g., photodiode, thermal, or pyroelectric) and provides key specifications. Alternatively, the selection guide graphic further below arranges our entire selection of photodiode and thermal power sensors by wavelength (left) or optical power range (right). Each box contains the item # and specified range of the sensor. These graphs allow for easy identification of the sensor heads available for a specific wavelength or power range.
Sensor Options
|
Item #a | S120VC | S120C | S121C | S122Cb |
---|---|---|---|---|
Sensor Image (Click the Image to Enlarge) |
||||
Aperture Size | Ø9.5 mm | |||
Wavelength Range | 200 - 1100 nm | 400 - 1100 nm | 400 - 1100 nm | 700 - 1800 nm |
Power Range | 50 nW - 50 mW | 500 nW - 500 mW | 50 nW - 40 mW | |
Detector Type | Si Photodiode (UV Extended) | Si Photodiode | Ge Photodiode | |
Linearity | ±0.5% | |||
Resolutionc | 1 nW | 10 nW | 2 nW | |
Measurement Uncertaintyd | ±3% (440 - 980 nm) ±5% (280 - 439 nm) ±7% (200 - 279 nm, 981 - 1100 nm) |
±3% (440 - 980 nm) ±5% (400 - 439 nm) ±7% (981 - 1100 nm) |
±5% | |
Responsivitye (Click for Plot) | ![]() Raw Data |
![]() Raw Data |
![]() Raw Data |
![]() Raw Data |
Coating/Diffuser | Reflective ND (OD1.5)f | Reflective ND (OD1)g | Reflective ND (OD2)h | Absorptive ND (Schott NG9) |
Head Temperature Measurement | NTC Thermistor 4.7 kΩ | |||
Housing Dimensions | Ø30.5 mm x 12.7 mm | |||
Active Detector Area | 9.7 mm x 9.7 mm | |||
Cable Length | 1.5 m | |||
Mounting Threadf,g,h | Universal 8-32 / M4 Tap, Post Not Included | |||
Aperture Thread | External SM1 (1.035"-40) | |||
Fiber Adapters | S120-FC, S120-APC, S120-SMA, S120-ST, S120-LC, and S120-SC (Not Included) | |||
Compatible Consoles | PM400, PM100D, PM100A, PM101A, PM100USB, and PM320E |
The S13xC Slim Photodiode Power Sensors are designed to take optical source power measurements in locations where space and accessibility are at a premium. The 5 mm thin
Slim Photodiode Sensors can fit between closely spaced optics, cage systems, and other arrangements where standard power meters may not fit. These sensors also feature a large Ø9.5 mm sensor aperture and slideable neutral density filter for dual power ranges in one compact device.
A separately available SM1A29 adapter can be attached by 2 setscrews to any S130 series power sensor to mount fiber adapters, light shields, filters or any other SM1-threaded (1.035"-40) mechanics or optics. The FBSM Mount allows our S130 series power sensors to be mounted vertically into FiberBench systems for stable mounting with a minimal footprint.
Each sensor is shipped with NIST- or PTB-traceable calibration data. The included data will match the calibration certification of the photodiode used to test the individual sensor. Thorlabs offers a recalibration service for these photodiode power sensors, which can be ordered below (see Item CAL-S130 for Si sensors and Item # CAL-S132 for Ge sensors).
Item #a | S130VC | S130C | S132Cb | |
---|---|---|---|---|
Sensor Image (Click the Image to Enlarge) |
||||
Aperture Size | Ø9.5 mm | |||
Wavelength Range | 200 - 1100 nm | 400 - 1100 nm | 700 - 1800 nmc | |
Power Range (with filter) |
500 pW - 0.5 mWd (Up to 50 mW)d |
500 pW - 5 mW (Up to 500 mW) |
5 nW - 5 mW (Up to 500 mW) |
|
Detector Type | Si Photodiode (UV Extended) | Si Photodiode | Ge Photodiode | |
Linearity | ±0.5% | |||
Resolution | 100 pWe | 1 nWf | ||
Measurement Uncertaintyg | ±3% (440 - 980 nm) ±5% (280 - 439 nm) ±7% (200 - 279 nm, 981 - 1100 nm) |
±3% (440 - 980 nm) ±5% (400 - 439 nm) ±7% (981 - 1100 nm) |
±5% | |
Responsivityh (Click for Plot) | ![]() Raw Data |
![]() Raw Data |
![]() Raw Data |
|
Coating/Diffuser | Reflective ND (OD1.5)d | Reflective ND (OD2)i | Absorptive ND (Schott NG9/KG3)c | |
Housing Dimensions | 150 mm x 19 mm x 10 mm; 5 mm Thickness on Sensor Side | |||
Active Detector Area | 9.7 mm x 9.7 mm | |||
Cable Length | 1.5 m | |||
Mounting Thread | Separate 8-32 and M4 Taps, Posts Not Included | |||
Adapters (Not Included) | SM1A29: Add SM1 Thread and Viewing Target to Aperture Fiber Adapters Compatible with SM1A29 Adapter: S120-FC, S120-APC, S120-SMA, S120-ST, S120-LC, and S120-SC FBSM: Integrate Sensor into FiberBench Setups |
|||
Compatible Consoles | PM400, PM100D, PM100USB, PM100A, PM101A, and PM320E |
Item #a | S170C |
---|---|
Sensor Image (Click Image to Enlarge) |
![]() |
Overall Dimensions | 76.0 mm x 25.2 mm x 5.0 mm (2.99" x 0.99" x 0.20") |
Active Detector Area | 18 mm x 18 mm |
Input Aperture | 20 mm x 20 mm |
Wavelength Range | 350 - 1100 nm |
Optical Power Working Range | 10 nW - 150 mW |
Detector Type | Silicon Photodiode |
Linearity | ±0.5% |
Resolutionb | 1 nW |
Calibration Uncertaintyc | ±3% (440 - 980 nm) ±5% (350 - 439 nm) ±7% (981 - 1100 nm) |
Responsivityd (Click for Plot) | ![]() Raw Data |
Neutral Density Filter | Reflective (OD 1.5) |
Cable Length | 1.5 m |
Mounting Thread | Universal 8-32 / M4 Tap, Post Not Included |
Compatible Consoles | PM400, PM100D, PM100USB, PM100A, PM101A, and PM320E |
The S170C Microscope Slide Power Sensor Head is a silicon photodiode sensor designed to measure the power at the sample in microscopy setups. The silicon photodiode can detect wavelengths between 350 nm and 1100 nm at optical powers between 10 nW and 150 mW. The sensor head's 76.0 mm x 25.2 mm footprint matches that of a standard microscope slide and is compatible with most standard upright and inverted microscopes.
The photodiode has an 18 mm x 18 mm active area and is contained in a sealed housing behind a neutral density (ND) filter with OD 1.5. A 20 mm x 20 mm indentation around the surface of the ND filter is sized to accept standard microscope cover slips. An immersion medium (water, glycerol, oil) may be placed in this well directly over the ND filter, or a cover slip may be inserted first to simplify clean up. The gap between the photodiode and the neutral density filter has been filled with an index matching gel in order to prevent internal reflections from causing significant measurement errors when using high NA objectives with oil or water.
The bottom of the sensor housing features a laser-engraved grid to aid in aligning and focusing the beam. In standard microscopes, this grid can be used for beam alignment before flipping the sensor head to face the objective for power measurements. In inverted microscopes, turn on the transmitted illuminator to align the grid on the detector housing with the beam, thereby centering the sensor in front of the objective. Alternatively, the diffusive surface of the ND filter can be used as a focusing plane.
Each sensor is shipped with NIST- or PTB-traceable calibration data. The included data will match the calibration certification of the photodiode used to test the individual sensor. Sensor specifications and the included NIST- or PTB-traceable calibration data are stored in non-volatile memory in the sensor connector and can be read out by the latest generation of Thorlabs power meters. We recommend yearly recalibration to ensure accuracy and performance. Calibration may be ordered using the CAL1 recalibration service available below. Please contact technical support for more information.
The complete set of specifications are presented on the Specs tab above. Thorlabs also offers a Microscope Slide Sensor Head with a thermal sensor; the full presentation can be found here.
These Integrating Sphere Photodiode Power Sensors are the ideal choice for power measurements independent of beam uniformity, divergence angle, beam shape, or entrance angle, making them excellent for use with fiber sources and off-axis free space sources.
Our integrating spheres are designed for wavelength ranges from the visible through the NIR. Sensor heads for use between 350 and 2500 nm use a single Ø1" or Ø2" sphere made from Zenith® PTFE and feature a black housing to minimize reflected light around the entrance aperture. These sensors use either a silicon photodiode for detection in the 350 - 1100 nm range or an InGaAs photodiode for detection in the 800 - 1700 nm, 900 - 1650 nm, or 1200 - 2500 nm wavelength range.
The S180C integrating sphere for 2.9 - 5.5 µm uses two connected, gold-plated Ø20 mm spheres, with an entrance port in the first sphere and a port for the MCT (HgCdTe) detector located in the second sphere. Compared to single-sphere designs, the two-sphere configuration improves device sensitivity by minimizing the internal sphere surface area while still effectively shielding the detector from direct illumination. This design reduces the effect of input angle, divergence, and beam shape on the measurement result by effectively shielding the photodiode without the use of a baffle or other shielding mechanism.
The integrating spheres below feature large Ø5 mm, Ø7 mm, or Ø12 mm apertures, externally SM1-threaded (1.035"-40) front connections, enhanced shielding against electromagnetic interference, and an over-temperature alert sensor. Because of the large active detector areas of these sensors, the included S120-FC fiber adapter can be used with FC/PC- or FC/APC-terminated fiber. The externally SM1-threaded adapter can be removed using a size 1 screwdriver to place components closer to the window.
Each sensor is shipped with NIST- or PTB-traceable calibration data. The included data will match the calibration certification of the photodiode used to test the individual sensor. NIST- or PTB-traceable data is stored in the sensor connector. Thorlabs offers a recalibration service for these photodiode power sensors, which can be ordered below (see Item # CAL1 for Si sensors, Item # CAL2 for InGaAs sensors, and Item # CAL4 for InGaAs or MCT sensors).
Item #a | S140C | S142C | S144C | S145C | S146C | S148C | S180C |
---|---|---|---|---|---|---|---|
Sensor Image (Click the Image to Enlarge) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Aperture Size | Ø5 mm | Ø12 mm | Ø5 mm | Ø12 mm | Ø5 mm | Ø7 mm | |
Wavelength Range | 350 - 1100 nm | 800 - 1700 nm | 900 - 1650 nm | 1200 - 2500 nm | 2.9 µm - 5.5 µm | ||
Power Range | 1 µW - 500 mW | 1 µW - 5 W | 1 µW - 500 mW | 1 µW - 3 W | 10 µW - 20 W | 1 µW - 1 W | 1 µW - 3 W |
Detector Type | Si Photodiode | InGaAs Photodiode | MCT (HgCdTe) Photodiode |
||||
Linearity | ±0.5% | ||||||
Resolutionb | 1 nW | 10 nW | 1 nW | 10 nW | |||
Measurement Uncertaintyc |
±3% (440 - 980 nm) ±5% (350 - 439 nm) ±7% (981 - 1100 nm) |
±5% | |||||
Responsivityd (Click for Plot) |
![]() Raw Data |
![]() Raw Data |
![]() Raw Data |
![]() Raw Data |
![]() Raw Data |
![]() Raw Data |
![]() Raw Data |
Integrating Sphere Material (Size) |
Zenith® PTFE (Ø1") |
Zenith® PTFE (Ø2") |
Zenith® PTFE (Ø1") |
Zenith® PTFE (Ø2") |
Zenith® PTFE (Ø1") |
Gold Plating (Two Ø20 mm Spheres) |
|
Head Temperature Measurement |
NTC Thermistor 4.7 kΩ | ||||||
Housing Dimensions |
Ø45 mm x 30.5 mm | 70 mm x 74 mm x 70 mm | Ø45 mm x 30.5 mm | 70 mm x 74 mm x 70 mm | Ø45 mm x 30.5 mm | 59.0 mm x 50.0 mm x 28.5 mm |
|
Active Detector Area | 3.6 mm x 3.6 mm | Ø2 mm | Ø1 mm | Ø1 mm | 1 mm x 1 mm | ||
Cable Length | 1.5 m | ||||||
Mounting Thread | Separate 8-32 and M4 Taps, Posts Not Included | Universal 8-32 / M4 Tap, Post Not Included | |||||
Aperture Thread | Included Adapter with SM1 (1.035"-40) External Thread | ||||||
Compatible Fiber Adapters |
S120-FC (Included) S120-APC, S120-SMA, S120-ST, S120-SC, S120-LC, and S140-BFA (Not Included) |
||||||
Compatible Consoles | PM400, PM100D, PM100USB, PM100A, PM101A, and PM320E |
The S15xC Compact Fiber Photodiode Power Sensor is designed to take power measurements from a wide variety of fiber-coupled sources. The compact sensor, integrated into the power meter connector, features a unique integrated design housing the photodiode sensor, fiber coupling, and NIST- or PTB-traceable data. The fiber adapter included with each sensor can be interchanged easily to accomodate a variety of fiber connectors (see table below).
Each sensor is shipped with NIST- or PTB-traceable calibration data. The included data will match the calibration certification of the photodiode used to test the individual sensor. NIST- or PTB-traceable data is stored in the sensor connector. Thorlabs offers a recalibration service for these photodiode power sensors, which can be ordered below (see Item # CAL1 for Si sensors and Item # CAL2 for InGaAs sensors).
Item #a | S150C | S151C | S154C | S155C |
---|---|---|---|---|
Sensor Image (Click the Image to Enlarge) |
||||
Wavelength Range | 350 - 1100 nm | 400 - 1100 nm | 800 - 1700 nm | |
Power Range | 100 pW to 5 mW (-70 dBm to +7 dBm) |
1 nW to 20 mW (-60 dBm to +13 dBm) |
100 pW to 3 mW (-70 dBm to +5 dBm) |
1 nW to 20 mW (-60 dBm to +13 dBm) |
Detector Type | Si Photodiode | InGaAs Photodiode | ||
Linearity | ±0.5% | |||
Resolutionb | 10 pW (-80 dBm) | 100 pW (-70 dBm) | 10 pW (-80 dBm) | 100 pW (-70 dBm) |
Measurement Uncertaintyc | ±3% (440 - 980 nm) ±5% (350 - 439 nm) ±7% (981 - 1100 nm) |
±3% (440 - 980 nm) ±5% (400 - 439 nm) ±7% (981 - 1100 nm) |
±5% | |
Responsivityd (Click for Details) | ![]() Raw Data |
![]() Raw Data |
![]() Raw Data |
![]() Raw Data |
Coating/Diffuser | N/A | Absorptive ND (Schott NG3) | N/A | |
Head Temperature Measuremente | NTC Thermistor 3 kΩ | |||
Aperture Thread | External SM05 (0.535"-40) | |||
Fiber Adaptersf | Included (FC and SMA): PM20-FC and PM20-SMA; Optional: PM20-APC, PM20-LC, PM20-SC, and PM20-ST |
Included (FC): PM20-FC; Optional: PM20-APC, PM20-LC, PM20-SC, PM20-ST, and PM20-SMA |
||
Compatible Consoles | PM400, PM100D, PM100USB, PM100A, PM101A, and PM320E |
These internally SM05-threaded (0.535"-40) adapters mate terminated fiber to our free-space detectors and power sensors, including, but not limited to:
For details on narrow versus wide key connectors, please see our Intro to Fiber tutorial. Please contact Tech Support if you are unsure if the adapter is mechanically compatible.
These internally SM1-threaded (1.035"-40) adapters mate terminated fiber to any of our externally SM1-threaded components, including a selection of our photodiode power sensors, our thermal power sensors, and our photodetectors.
The APC adapters have two dimples in the front surface that allow them to be tightened with the SPW909 or SPW801 spanner wrench. The dimples do not go all the way through the disk so that the adapter can be used in light-tight applications when paired with SM1 lens tubes.
For details on narrow versus wide key connectors, please see our Intro to Fiber tutorial. Please contact Tech Support if you are unsure if the adapter is mechanically compatible.
The SM1A29 adapter can be attached to our slim photodiode sensors using two setscrews, which are compatible with 0.035" (0.9 mm) hex keys. This allows for mounting SM1-threaded fiber adapters, filters, or other SM1-threaded mechanics or optics to our slim photodiode sensors. The target around the aperture uses the same material as our VRC2 Laser Viewing Card and is sensitive to light between the wavelength ranges of 400 - 645 nm and 800 - 1700 nm.
The FBSM FiberBench Mount enables stable mounting of our slim photodiode sensors into our FiberBench systems. A side-located setscrew with a 0.050" (1.3 mm) hex can be used to lock the sensor in place. The mount has dowel pins for compatibility with FiberBenches and an optical axis height of 0.56" (14.2 mm) to match other FiberBench components. The target around the aperture uses the same material as our VRC2 Laser Viewing Card and is sensitive to light between the wavelength ranges of 400 - 645 nm and 800 - 1700 nm.
Calibration Service Item # | Compatible Sensors |
---|---|
CAL1 | S120VC, S120C, S121C, S170C, S140C, S142C, S150C, S151C |
CAL2 | S122C, S144C, S145C, S146C, S154C, S155C |
CAL-S130 | S130VC, S130C |
CAL-S132 | S132C |
CAL4 | S148C, S180C |
Thorlabs offers calibration services for our photodiode optical power sensors and consoles. To ensure accurate measurements, we recommend recalibrating the sensors annually. Recalibration of the console is included with the recalibration of a sensor at no additional cost. If you wish to recalibrate only your power meter console, please contact Tech Support for details.
Refer to the table to the right for the appropriate calibration service Item # that corresponds to your power meter sensor. Once the appropriate Item # is selected, enter the Part # and Serial # of the sensor that requires recalibration prior to selecting Add to Cart.
Log In | My Account | Contact Us | Careers | Privacy Policy | Home | FAQ | Site Index | ||
Regional Websites: West Coast US | Europe | Asia | China | Japan | ||
Copyright © 1999-2021 Thorlabs, Inc. | ||
Sales: 1-973-300-3000 Technical Support: 1-973-300-3000 |