Mounted Half-Aperture Foils for Knife-Edge Scans
- Mounted Half-Aperture Foils Compatible with 1" Mounts
- Designed for Manual Knife-Edge Scans
- Stainless Steel, Gold-Plated Copper, and Tungsten Foils Available
KEMW
Tungsten Half-Aperture Foil
Ø1" Anodized-Aluminum Housing
KEMK
Stainless Steel Half-Aperture Foil
Ø1" Anodized-Aluminum Housing
KEMCB
Gold-Plated Copper Half-Aperture Foil
Ø1" Anodized-Aluminum Housing
Front
Back
Please Wait
Apertures Selection Guide |
---|
Single Precision Pinholes |
Circular in Stainless Steel Foils |
Circular in Stainless Steel Foils, Vacuum Compatible |
Circular in Gold-Plated Copper Foils |
Circular in Tungsten Foils |
Circular in Molybdenum Foils |
Square in Stainless Steel Foils |
Pinhole Kits |
Pinhole Wheels |
Manual |
Motorized |
Pinhole Spatial Filter |
Slits |
Annular Apertures |
Half-Aperture Foils for Knife-Edge Scans |
Alignment Tools |
Click for Detail
Dimensions of the KEMx Mounted, Half-Aperture Foils.
Click to Enlarge
A KEMW half-aperture foil is used with a translation stage and digital micrometer.
Features
- Precision-Cut Half-Aperture Foils for Knife-Edge Beam Quality Measurements
- Foils Available with Blackened Stainless Steel, Gold-Plated Copper, or Uncoated Tungsten
- Mounted in Ø1" Black-Anodized Aluminum Housings
- D-Shaped Aperture with a Height of 0.20" (5.0 mm)
These precision-cut half-aperture foils are designed to be used in manual beam quality measurements where a straight knife-edge is required or for picking off unwanted light from a laser path. Each foil is mounted in a Ø1" black-anodized-aluminum housing and provides a D-shaped clear aperture with a height of 0.20" (5.0 mm). See the drawing to the right for details. The foil and D-shaped clear aperture have a combined diameter of 0.42" (10.5 mm). The black anodized housings are compatible with many of our Ø1" optic mounts and lens tubes.
Knife-Edge Scan Beam Quality Measurements
These half-aperture mounted foils are ideal for performing knife-edge scan beam quality measurements. For an accurate knife-edge measurement, all of the power must be contained within <0.20" (5.0 mm) of the D-shaped aperture. Precise position measurements can be made using one of Thorlabs' manual stages with a micrometer and one of the half-aperture foils mounted in a Ø1" optic mount. The DM713 digital micrometer provides easy and precise measurements and is compatible with any manual stage that accepts a Ø3/8" barrel. In the image above, an RSP1 rotation mount is used to allow for accurate alignment of the knife edge to the vertical for an x-axis scan.
For 2-axis measurements of the beam, a XZ dual-axis stage such as a pair of Thorlabs' MT1(/M) 1/2" (12.7 mm) travel stages mated using an MT402 right angle bracket can be used. Other Thorlabs' manual or motorized stages can also be used to perform these measurements as well.
Power measurements can be made using one of Thorlabs' power meter consoles and sensors such as the PM100D console with an S121C power sensor.
Half-Aperture Foil Material Options
Thorlabs' precision pinholes are available with an assortment of fabrication materials and coatings. The choice of a material should depend on the application. Low-power applications may benefit more from the absorbance of blackened stainless steel foils. High-power applications may need the high damage threshold and reflectance of gold-plated copper foils, or the high melting point and lower reflectance of our tungsten foils. Please see the Foil Comparison for more information.
Precision Pinhole and Optical Slit Selection Guide | |||||
---|---|---|---|---|---|
Material | Product | ||||
Blackened Stainless Steel | Circular Precision Pinholes | ||||
Square Precision Pinholes | |||||
Optical Slits | |||||
Tungsten Foil | Circular Precision Pinholes | ||||
Stainless Steel with PVD Black Coating |
Circular Precision Pinholes | ||||
Molybdenum Foil (Rear) and Absorptive Polymer Coating (Front) |
Circular Precision Pinholes | ||||
Gold-Plated Copper Foil (Rear) and PVD Black Coating (Front) |
Circular Precision Pinholes | ||||
Gold-Plated Copper Foil (Front) and PVD Black Coating (Rear) |
High-Power Circular Precision Pinholes |
Precision Pinholes and Slits
Thorlabs offers precision pinholes with blackened stainless steel, gold-plated copper, tungsten, or molybdenum foils. Our pinholes with stainless steel foils are blackened on both sides for increased absorbance and are available from stock in circles from Ø1 µm to Ø9 mm and squares from 100 µm x 100 µm to 1 mm x 1 mm. Our stainless steel pinholes with a black PVD coating are vacuum compatible and available in 5 μm to 2 mm diameters. Our pinholes with gold-plated copper foils, plated with gold on one side and black PVD coated on the reverse, are available with pinhole diameters from 5 µm to 2 mm. High-power gold-plated copper foil pinholes are also available, with the gold-plated copper foil on the front face, and a PVD black coating on the rear. Our pinholes with tungsten foils are uncoated and available with pinhole diameters from 5 µm to 2 mm. Lastly, our pinholes with molybdenum foils have an absorptive polymer coating on the front sides and are available with pinhole diameters from 5 µm to 2 mm. We also offer slits in blackened stainless steel foils from stock with slit widths from 5 to 200 µm.
If you do not see what you need among our stock pinhole and slit offerings, it is also possible to special order pinholes and slits that are made with different foil materials, have different hole sizes and shapes, incorporate multiple holes in one foil, or provide different hole configurations. Please contact Tech Support to discuss your specific needs. For more information on the properties of the bulk materials from which the pinholes are fabricated, see the table below.
Material Properties
Depending on the application, it can be important to consider the material properties of the pinhole or slit. The material used to construct the aperture can have varying levels of melting point, density, and thermal conductivity, as detailed in the table below.
Material Properties | ||||
---|---|---|---|---|
Material | 300 Series Stainless Steela | Copperb | Tungsten | Molybdenumc |
Melting Point | 1390 - 1450 °C | 1085 °C | 3422 °C | 2623 °C |
Density | 8.03 g/cm3 | 8.96 g/cm3 | 19.25 g/cm3 | 10.28 g/cm3 |
Brinell Hardness | 170 MPa | 878 MPa | 2570 MPa | 1500 MPa |
Damage Thresholdd (10 ns Pulse, 1 kHz @ 355 nm) | 1.54 MW/mm2 | 4.82 MW/mm2 | 9.39 MW/mm2 | 6.34 MW/mm2 |
Thermal Expansion Coefficient | 16.2 (µm/m)/°C | 16.7 (µm/m)/°C | 4.5 (µm/m)/°C | 5.0 (µm/m)/°C |
Specific Heat @ 20 °C | 485 J/(K*kg) | 385 J/(K*kg) | 134 J/(K*kg) | 250 J/(K*kg) |
Thermal Conductivity | 16.2 W/(m*K) | 401 W/(m*K) | 173 W/(m*K) | 138 W/(m*K) |
Thermal Diffusivity @ 300 K | 3.1 mm2/s | 111 mm2/s | 80 mm2/s | 54.3 mm2/s |
Reflectance
The reflectance of the foil material or coating affects performance in a variety of applications. Below is presented a reflectance graph for all the materials and coatings that are offered with our circular and square precision pinholes, as well as our mounted optical slits. The raw reflectance data can be found here.
It is important to note that the front of the gold-plated copper foil circular precision pinholes have a low-reflectance PVD black coating. The rear of these pinholes leaves the gold-plated copper foil bare. This also occurs on the molybdenum foil circular precision pinholes, which have a low-reflectance absorptive polymer coating on the front and the molybdenum foil is left bare on the back.
Apertures Selection Guide | |||
---|---|---|---|
Aperture Type | Representative Image (Click to Enlarge) |
Description | Aperture Sizes Available from Stocka |
Single Precision Pinholesa |
Circular Pinholes in Stainless Steel Foils | Ø1 µm to Ø9 mm | |
Circular Pinholes in Stainless Steel Foils, Vacuum Compatible |
Ø5 µm to Ø2 mm | ||
Circular Pinholes in Gold-Plated Copper Foils | Ø5 µm to Ø2 mm | ||
Circular Pinholes in Gold-Plated Copper Foils with High-Power Housings |
Ø5 µm to Ø500 µm | ||
Circular Pinholes in Tungsten Foils | Ø5 µm to Ø2 mm | ||
Circular Pinholes in Molybdenum Foils | Ø5 µm to Ø2 mm | ||
Square Pinholes in Stainless Steel Foils | 100 to 1000 µm Square | ||
Slitsa | Slits in Stainless Steel Foils | 3 mm Slit Lengths: 5 to 500 µm Widths 10 mm Slit Lengths: 20 to 500 µm Widths |
|
Double Slits in Stainless Steel Foils | 3 mm Slit Lengths with 40, 50, or 100 µm Widths, Spacing of 3X or 6X the Slit Width |
||
Half-Apertures | Mounted, Half-Aperture Foils | Half-Apertures for Knife-Edge Scan Measurements | |
Annular Apertures | Annular Aperture Obstruction Targets on Quartz Substrates with Chrome Masks |
Ø1 mm Apertures with ε Ratiosb from 0.05 to 0.85 Ø2 mm Aperture with ε Ratiob of 0.85 |
|
Pinhole Wheels | Manual, Mounted, Chrome-Plated Fused Silica Disks with Lithographically Etched Pinholes |
Each Disk has 16 Pinholes from Ø25 µm to Ø2 mm and Four Annular Apertures (Ø100 µm Hole, 50 µm Obstruction) |
|
Motorized Pinhole Wheels with Chrome-Plated Glass Disks with Lithographically Etched Pinholes |
Each Disk has 16 Pinholes from Ø25 µm to Ø2 mm and Four Annular Apertures (Ø100 µm Hole, 50 µm Obstruction) |
||
Pinhole Kits | Stainless Steel Precision Pinhole Kits | Kits of Ten Circular Pinholes in Stainless Steel Foils Covering Ø5 µm to Ø9 mm |
Posted Comments: | |
No Comments Posted |