"; _cf_contextpath=""; _cf_ajaxscriptsrc="/cfthorscripts/ajax"; _cf_jsonprefix='//'; _cf_websocket_port=8578; _cf_flash_policy_port=1244; _cf_clientid='B1690F5ED67E03CE385A3EDD5D3F142E';/* ]]> */
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fiber-Coupled Laser Sources: Visible![]()
S1FC660 660 nm, 15 mW Front Panel Display Provides an Enable Button, Laser Power Control, and Display Screen Related Items ![]() Please Wait
Features
Thorlabs offers single mode, multimode, and polarization-maintaining fiber-coupled laser sources in the visible spectrum. Each benchtop laser source features both a pigtailed Fabry-Perot laser diode and current controller in a single unit. The front panel of each laser source displays the output power in mW, an on/off key, and an enable button, and a knob to adjust the laser power. The back panel includes a BNC input that allows the laser diode drive current to be controlled via an external DC or sine wave voltage source and a remote interlock input. Please refer to the table to the right for all of our single channel benchtop laser sources.
Modulation InBNC Female0 to 5 V Max, 50 Ω Remote Interlock Input2.5 mm Mono Jack
Terminals must be shorted either by included plug or user device, i.e. external switch, for laser mode "ON" to be enabled. Laser Safety and ClassificationSafe practices and proper usage of safety equipment should be taken into consideration when operating lasers. The eye is susceptible to injury, even from very low levels of laser light. Thorlabs offers a range of laser safety accessories that can be used to reduce the risk of accidents or injuries. Laser emission in the visible and near infrared spectral ranges has the greatest potential for retinal injury, as the cornea and lens are transparent to those wavelengths, and the lens can focus the laser energy onto the retina. Safe Practices and Light Safety Accessories
Laser ClassificationLasers are categorized into different classes according to their ability to cause eye and other damage. The International Electrotechnical Commission (IEC) is a global organization that prepares and publishes international standards for all electrical, electronic, and related technologies. The IEC document 60825-1 outlines the safety of laser products. A description of each class of laser is given below:
![]()
These Single Mode Fiber-Coupled Laser Sources conveniently package a pigtailed Fabry-Perot laser diode and current controller into a single benchtop unit. The Fabry-Perot laser diode inside each unit is pigtailed to a single mode fiber that is terminated at an FC/PC bulkhead (wide and narrow key compatible) attached to the front panel of the unit. Thorlabs offers single mode fiber optic patch cables for connecting to the bulkhead on the front panel. To minimize losses, we recommend using a fiber patch cable that is the same fiber type as the fiber-pigtailed laser; refer to the Specs tab for the internal fiber type used for the pigtail. Additionally, to reduce noise from back reflections, we recommend that a hybrid FC/PC to FC/APC cable be used with the FC/PC end connected to the laser source. Also found on the front panel is a display that shows the output power in mW, an on/off key, an enable button, and a knob to adjust the laser power. The back panel includes an input that allows the laser diode drive current to be controlled via an external DC or sine wave voltage source and a remote interlock input. Note: The laser must be off when connecting or disconnecting fibers from the device, particularly for power levels above 10 mW. For applications using a 635 nm source, Thorlabs also offers a compact fiber-coupled laser source with a USB interface. For optogenetics applications, Thorlabs offers a 473 nm benchtop laser source below that incorporates multimode fiber. For a polarized output, laser sources that incorporate polarization-maintaining fiber are also available below. For telecom applications that require tunable output, please see our benchtop tunable telecom laser sources. For laser sources with custom wavelengths or with an FC/APC fiber interface, please contact Tech Support. ![]()
The S1FC473MM Fiber-Coupled Laser provides 50 mW of output power and a wavelength of 473 nm, making it an ideal source for many Optogenetics applications. It includes a pigtailed FP laser diode and current controller in a single benchtop unit. The unit's output can also be externally modulated at 5 kHz full depth/30 kHz small signal. The output is a FG105UCA multimode fiber terminated at an FC/PC connector. The unit is compatible with our extensive line of multimode patch cables and optogenetics equipment. The front panel includes a display that shows the output power in mW, an on/off key, an enable button, and a knob to adjust the laser power. The back panel includes an input that allows the laser diode drive current to be controlled via an external voltage source and a remote interlock input. For complete operating instructions, please refer to the manual, available by clicking the red Docs icon ( Note: The laser must be off when connecting or disconnecting fibers from the device, particularly for power levels above 10 mW. We also offer fiber-coupled LEDs as well as other fiber-coupled laser sources. ![]()
These Polarization-Maintaining Fiber-Coupled Laser Sources package a pigtailed Fabry-Perot laser diode inside each benchtop unit. The laser diode is pigtailed to a single mode PM fiber that is terminated at an FC/PC bulkhead attached to the front panel of the unit. During the pigtailing process, the fiber alignment is actively maintained so that the polarization axis of the laser diode is aligned with the slow-axis of the PM fiber. In addition, the slow-axis of the PM fiber is aligned to the narrow key of the FC/PC bulkhead connector on the front panel of the benchtop unit. Thorlabs offers polarization-maintaining fiber optic patch cables for connecting to the bulkhead on the front panel. To minimize losses, we recommend using a fiber patch cable that is the same fiber type as the fiber-pigtailed laser; refer to the Specs tab for the internal fiber type used for the pigtail. Additionally, to reduce noise from back reflections, we recommend that a hybrid FC/PC to FC/APC cable be used with the FC/PC end connected to the laser source. Also found on the front panel is a display that shows the output power in mW, an on / off key, an enable button, and a knob to adjust the laser power. The back panel includes an input that allows the laser diode drive current to be controlled via an external voltage source and a remote interlock input. Note: The laser must be off when connecting or disconnecting fibers from the device. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|