Create an Account  |   Log In

View All »Matching Part Numbers


Your Shopping Cart is Empty
         

Electronic Variable Optical Attenuators (VOA), Voltage Controlled & Fiber Coupled


  • MEMS-Based Control of Optical Power in Single Mode Fiber
  • Five Models Cover Wavelengths from 450 nm to 1650 nm
  • Optical Attenuation up to >30 dB or >25 dB
  • Modulation up to 1 kHz
  • MEMS-Based Electronic Control of Optical Power in Fiber
  • Five Models Cover Wavelengths from 450 nm to 1650 nm
  • DC to 1 kHz Bandwidth
  • Maximum Attenuation >20 dB or >30 dB

V1550A

Electronic VOA, FC/APC Version 
(1250 nm -1650 nm Model)

Typical transmission as a function of applied voltage for all models, which are offered with FC/PC or FC/APC connectors.

Related Items


Please Wait
Quick Links 
Item # Prefix Wavelength Range Connector Options
V450 450 - 600 nm FC/APC
or
FC/PC
V600 600 - 780 nm
V800 780 - 980 nm
V1000 980 - 1250 nm
V1550 1250 - 1650 nm
Engraved V1550A
Click to Enlarge

A female BNC connector is located on one end of the barrel, and fiber leads with either FC/APC or FC/PC connectors are integrated into the opposite end. Each barrel is engraved with the shown information for convenience.

Features

  • MEMS-Based Devices Provide Attenuation up to >30 dB or >25 dB
  • Single Mode Operation over Five Wavelength Ranges:
    • 450 nm to 600 nm
    • 600 nm to 780 nm
    • 780 nm to 980 nm
    • 980 nm to 1250 nm
    • 1250 nm to 1650 nm 
  • Control Optical Power by Applying 0 to 5 V Signal (1 mA Max)
  • Input Optical Power up to 100 mW
  • Modulation up to 1 kHz
  • Input is Protected from Electrostatic Discharge (ESD)

Thorlabs' Fiber-Coupled Electronic Variable Optical Attenuators (VOAs) are microelectromechanical system (MEMS) based devices that provide attenuation up to >30 dB or >25 dB, depending on the model. The optical fiber built into each device is single mode over the specified operating wavelength range. Driving voltages of 0 to 5 V (1 mA max) control optical transmission, which decreases with applied voltage. These high-speed VOAs support modulation up to 1 kHz. Protection diodes integrated into the design limit the input voltage to protect the VOA from ESD, as well as from other over-voltage and under-voltage events.

A plot of the typical relationship between the applied voltage and the optical transmission for each electronic VOA model is included in the Specs tab. Most voltage sources, including power supplies, function generators, and digital-to-analog converters (DACs), can be used to control these electronic VOAs. Use a BNC cable (not included) to connect the electronic VOA to the voltage source. The MEMS VOA is an electrostatic device that inherently requires no current. However, the protection circuitry can draw up to 100 µA for applied voltages of 5 V.

Either of the unit's 0.5 m long fiber leads can be used as the input, as performance is similar in both directions. The IN label on one connector identifies the fiber used as the input during testing. As shown in the image above, the barrel of each electronic VOA is etched, for convenience, with information such as the operating wavelength range, maximum optical input power, maximum modulation bandwidth, and driving voltage range. These VOAs are designed for use with optical fiber that is single mode within the operating range. Please see the Specs tab for information on the single mode fibers integrated into each model.

Electronic VOAs with polarization-maintaining (PM) fiber and FC/APC connectors are available here.

Item # V450A  V450F V600A V600F V800A V800F V1000A V1000F V1550A V1550F
Wavelength Range 450 to 600 nm 600 to 780 nm 780 to 980 nm 980 to 1250 nm 1250 to 1650 nm
Attenuationa Max  >30 dB >25 dB
Min 2.5 dB 2.0 dB 1.5 dB
Optical Input Power (Maximum) 100 mW
Optical Return Loss >30 dB
Fiber Connectorsb FC/APC FC/PC FC/APC FC/PC FC/APC FC/PC FC/APC FC/PC FC/APC FC/PC
Device Fiber Typec 460HP 630HP 780HP HI1060-J9 SMF-28 Type
Modulation Signal Input
Input Voltage 0 to 5 V (1 mA Max)
Input Impedance High-Z
Bandwidth DC to 1 kHz
Input Voltage Connector Female BNC
Physical Specifications
Dimensions
Diameter: 15.7 mm (0.62")
Length Excluding Fiber Leads: 50.1 mm (1.97")
Length of the Fiber Leads: 0.50 m +0.07/-0 m
Operating Temperature Range 0 °C to 40 °C
Storage Temperature Range -20 °C to 70 °C
Relative Humidity 5% to 85% (Non-Condensing)
  • These specifications do not include fiber coupling loss. Minimum attenuation is dependent on good core-to-core alignment at the connector, especailly at shorter wavelengths. Best performance is achieved when the optical connection is made by fusion splicing to the VOA's fiber leads, which requires removing the connectors.
  • 2.0 mm Narrow Key
  • Single Mode over Specified Wavelength Range
BNC EVOA Transmission as a Function of Bias Voltage
Click to Enlarge

Typical Optical Transmission as a Function of Applied Voltage
(Test Wavelengths: 520 nm for V450 models; 635 nm for V600 models;
850 nm for V800 models; 1060 nm for V1000 models;
and 1550 nm for V1550 models)
BNC EVOA Supply Current
Click to Enlarge

The supply current required to drive these electronic VOAs over the 0 to 5 V operating range is plotted above.
BNC EVOA Mechanical Drawing
Click for Details

Mechanical Drawing of the Fiber-Coupled VOA Package
BNC Electronic VOA Connector Labels
Click to Enlarge

Either connector can be used as input, as performance is similar in both directions. The IN label identifies the fiber used as input during testing.

Janis Valdmanis, Ph.D. Optics
Ultrafast Optoelectronics
General Manager

Custom and OEM Options

When your application requirements are not met by our range of catalog products or their variety of user-configurable features, please contact me to discuss how we may serve your custom or OEM needs.  

Request a Demo Unit

Explore the benefits of using a Thorlabs high-speed instrument in your setup and under your test conditions with a demo unit. Contact me for details.

Contact Me
MX40B with cover removed
Click to Enlarge

 The MX40B Digital Reference Transmitter

Design, Manufacturing, and Testing Capabilities

Thorlabs' Ultrafast Optoelectronics Team designs, develops, and manufactures high-speed components and instrumentation for a variety of photonics applications having frequency responses up to 70 GHz. Our extensive experience in high-speed photonics is supported by core expertise in RF/microwave design, optics, fiber optics, optomechanical design, and mixed-signal electronics. As a division of Thorlabs, a company with deep vertical integration and a portfolio of over 20,000 products, we are able to provide and support a wide selection of equipment and continually expand our offerings.

Our catalog and custom products include a range of integrated fiber-optic transmitters, modulator drivers and controllers, detectors, receivers, pulsed lasers, variable optical attenuators, and a variety of accessories. Beyond these products, we welcome opportunities to design and produce custom and OEM products that fall within our range of capabilities and expertise. Some of our key capabilities are:

  • Detector and Receiver Design, to 70 GHz
  • Fiber-Optic Transmitter Design, to 70 GHz
  • RF & Microwave Design and Simulation
  • Design of Fiber-Optic and Photonics Sub-Assemblies
  • High-Speed Testing, to 70 GHz
  • Micro-Assembly and Wire Bonding
  • Hermetic Sealing of Microwave Modules
  • Fiber Splicing of Assemblies
  • Custom Laser Engraving
  • Qualification Testing

Overview of Custom and Catalog Products  

Our catalog product line includes a range of integrated fiber-optic transmitters, modulator drivers and controllers, detectors, pulsed lasers, and accessories. In addition to these, we offer related items, such as receivers and customized catalog products. The following sections give an overview of our spectrum of custom and catalog products, from fully integrated instruments to component-level modules.  

Fiber-Optic Instruments

To meet a range of requirements, our fiber-optic instruments span a variety of integration levels. Each complete transmitter includes a tunable laser, a modulator with driver amplifier and bias controller, full control of optical output power, and an intuitive touchscreen interface. The tunable lasers, modulator drivers, and modulator bias controllers are also available separately. These instruments have full remote control capability and can be addressed using serial commands sent from a PC.

  • Fiber-Optic Transmitters, to 70 GHz
  • Linear and Digital Transmitters
  • Electrical-to-Optical Converters, to 70 GHz
  • Modulator Drivers
  • Modulator Bias Controllers
  • C- and L-Band Tunable Lasers 

Customization options include internal laser sources, operating wavelength ranges, optical fiber types, and amplifier types.

Fiber-Optic Components

Our component-level, custom and catalog fiber-optic products take advantage of our module design and hermetic sealing capability. Products include detectors with frequency responses up to 50 GHz, and we also specialize in developing fiber-optic receivers, operating up to and beyond 40 GHz, for instrumentation markets. Closely related products include our amplifier modules, which we offer upon request, variable optical attenuators, microwave cables, and cable accessories.

  • Hermetically-Sealed Detectors, to 50 GHz
  • Fiber-Optic Receivers, to 40 GHz
  • Amplifier Modules
  • Electronic Variable Optical Attenuators
  • Microwave Cables and Accessories 

Customization options include single mode and multimode optical fiber options, where applicable, and detectors optimized for time or frequency domain operation.

Free-Space Instruments

Our free-space instruments include detectors with frequency responses around 1 GHz and pulsed lasers. Our pulsed lasers generate variable-width, nanosecond-duration pulses, and a range of models with different wavelengths and optical output powers are offered. User-adjustable repetition rates and trigger in/out signals provide additional flexibility, and electronic delay-line products enable experimental synchronization of multiple lasers. We can also adapt our pulsed laser catalog offerings to provide gain-switching capability for the generation of pulses in the 100 ps range.

  • Pulsed Lasers with Fixed 10 ns Pulse Duration
  • Pulsed Lasers with Variable Pulse Width and Repetition Rates
  • Electronic Delay Units to Synchronize NPL Series Pulsed Lasers
  • Amplified Detectors

Customization options for the pulsed lasers include emission wavelength, optical output powers, and sub-nanosecond pulse widths.


Posted Comments:
alexey.kokhanovskiy  (posted 2018-09-12 12:58:11.63)
Hello, Could you provide information about PM version of electronic variable optical attenuators V1000A and V1550A. Is it possible to make V1000A with PM980 fiber? With respect, Alexey Kokhanovskiy
YLohia  (posted 2018-09-18 09:16:43.0)
Hello Alexey, we already manufacture a PM version of the V1000A -- the part number for this is V1000PA and it contains PM980-XP fibers.
hmcgui  (posted 2017-06-27 14:32:33.16)
I am also interested in a PM version. Please let me know when one will be available.
tfrisch  (posted 2017-08-03 11:58:37.0)
Hello, thank you for contacting Thorlabs. PM versions of these VOAs have been submitted for release as stock items, and I expect they will be available soon. I will reach out to you with more details.
massey4  (posted 2017-06-02 07:15:04.803)
Is there a PDF manual for the device or only the spec sheet? What is the absolute maximum allowed applied voltage?
nbayconich  (posted 2017-06-15 01:42:54.0)
Thank you for contacting Thorlabs. The suggested applied voltage for these variable optical attenuators is 5V (1 mA. These VOA's can be operated up to 10V. There is a shunting circuit between the BNC connector and the MEMS VOA so this can be used at 10 Volts without damaging the circuit. Currently we have a brief operating guide in the .pdf spec sheet available to download. To operate the VOA connect the optical input and output to the respective fiber leads on the unit. Either of the unit’s fiber leads can be used as the input, as performance is similar in both directions. Use a BNC cable to connect a power supply or other voltage source to the unit, and then apply 0 to 5 V to control the attenuation. Optical transmission decreases with applied voltage. A techsupport representative will contact you directly.
f.m.j.cozijn  (posted 2017-05-12 11:56:34.4)
This is an excellent product and I would order one right away if it was a PM version. Is there a PM version planned in the near future?
tfrisch  (posted 2017-05-17 04:34:12.0)
Hello, thank you for contacting Thorlabs. I will reach out to you directly about availability of PM versions.
parkse  (posted 2017-04-17 22:19:14.997)
Please produce VOS for PM fiber.
tfrisch  (posted 2017-04-28 03:26:20.0)
Hello, thank you for contacting Thorlabs. I have posted your request in our internal engineering forum. I agree that this would be a useful extension of this product line.

450 to 600 nm Wavelength Range

  • Attenuation Range: 2.5 dB to >30 dB
  • Maximum Optical Input Power of 100 mW
  • Integrated 460HP Single Mode Fiber Pigtails with FC/APC or FC/PC Connectors

The V450A and V450F are fabricated with and designed for use with optical fiber that is single mode within its operating range. An example of compatible single mode optical fiber is 460HP. Please note that minimum attenuation is highly dependent on connector alignment, especially at shorter wavelengths. Given specifications assume good core-to-core alignment at the connector. 

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
V450A Support Documentation
V450AElectronic Variable Optical Attenuator, 450 to 600 nm, FC/APC
$499.55
Today
V450F Support Documentation
V450FElectronic Variable Optical Attenuator, 450 to 600 nm, FC/PC
$499.55
Today

600 to 780 nm Wavelength Range

  • Attenuation Range: 2.5 dB to >30 dB
  • Maximum Optical Input Power of 100 mW
  • Integrated 630HP Single Mode Fiber Pigtails with FC/APC or FC/PC Connectors

The V600A and V600F are fabricated with and designed for use with optical fiber that is single mode within its operating range. An example of compatible single mode optical fiber is 630HP. Please note that minimum attenuation is highly dependent on connector alignment, especially at shorter wavelengths. Given specifications assume good core-to-core alignment at the connector. 

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
V600A Support Documentation
V600AElectronic Variable Optical Attenuator, 600 to 780 nm, FC/APC
$478.95
Today
V600F Support Documentation
V600FElectronic Variable Optical Attenuator, 600 to 780 nm, FC/PC
$478.95
Today

780 to 980 nm Wavelength Range

  • Attenuation Range: 2.0 dB to >30 dB
  • Maximum Optical Input Power of 100 mW
  • Integrated 780HP Single Mode Fiber Pigtails with FC/APC or FC/PC Connectors

The V800A and V800F are fabricated with and designed for use with optical fiber that is single mode within its operating range. An example of compatible single mode optical fiber is 780HP. Given specifications assume good core-to-core alignment at the connector. Please note that minimum attenuation is highly dependent on connector alignment.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
V800A Support Documentation
V800AElectronic Variable Optical Attenuator, 780 to 980 nm, FC/APC
$458.35
Today
V800F Support Documentation
V800FElectronic Variable Optical Attenuator, 780 to 980 nm, FC/PC
$458.35
Today

980 to 1250 nm Wavelength Range

  • Attenuation Range: 2.0 dB to >30 dB
  • Maximum Optical Input Power of 100 mW
  • Integrated HI1060-J9 Single Mode Fiber Pigtails with FC/APC or FC/PC Connectors

The V1000A and V1000F are fabricated with and designed for use with optical fiber that is single mode within its operating range. An example of compatible single mode optical fiber is HI1060-J9. Given specifications assume good core-to-core alignment at the connector. Please note that minimum attenuation is highly dependent on connector alignment.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
V1000A Support Documentation
V1000AElectronic Variable Optical Attenuator, 980 to 1250 nm, FC/APC
$448.05
Today
V1000F Support Documentation
V1000FElectronic Variable Optical Attenuator, 980 to 1250 nm, FC/PC
$448.05
Today

1250 to 1650 nm Wavelength Range

  • Attenuation Range: 1.5 dB to >25 dB
  • Maximum Optical Input Power of 100 mW
  • Integrated SMF-28 Type Single Mode Fiber Pigtails with FC/APC or FC/PC Connectors

The V1550A and V1550F are fabricated with and designed for use with optical fiber that is single mode within its operating range. An example of compatible single mode optical fiber is SMF-28 Ultra. Given specifications assume good core-to-core alignment at the connector. Please note that minimum attenuation is highly dependent on connector alignment.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
V1550A Support Documentation
V1550AElectronic Variable Optical Attenuator, 1250 to 1650 nm, FC/APC
$406.85
Today
V1550F Support Documentation
V1550FElectronic Variable Optical Attenuator, 1250 to 1650 nm, FC/PC
$406.85
Today
Log In  |   My Account  |   Contact Us  |   Careers  |   Privacy Policy  |   Home  |   FAQ  |   Site Index
Regional Websites: West Coast US | Europe | Asia | China | Japan
Copyright 1999-2019 Thorlabs, Inc.
Sales: 1-973-300-3000
Technical Support: 1-973-300-3000


High Quality Thorlabs Logo 1000px:Save this Image