Compact Controllers for Microscopy


  • Operate Motorized Microscopy Stages and Components
  • 7.0 A Peak Current Output
  • Three Channel Control via Software or Three-Knob Joystick

MCM3002

Compact Controller for Microscopy

MCM3002 Used to Control the Cerna® Translating Platform

Controller Box

3-Knob Joystick

MCM301

Compact Controller for Motorized Rigid Stands and PLS Series Stages

Related Items


Please Wait
Motorized Rigid Stand
Click to Enlarge

View Imperial Product List
Item #QtyDescription
MPM2501Motorized Vertical Rigid Stand, Imperial
PLSXY12D Motorized Translation Stage for Rigid Stands
MCM3011Three-Channel Controller for Motorized Rigid Stands and PLS Series Stages
MCMK313-Knob USB HID Joystick
XT66C41Clamping Platform for 66 mm Rails, 1/4" Counterbored Slot, 40 mm Long
MPRM1Large Rectangular Insert Holder, 66 mm Dovetail, 1/4"-20 Taps
MLS203P21Petri Dish/Slide Holder for Inverted Microscopes
SH25LP3811/4"-20 Low-Profile Channel Screw, 3/8" Long, 100 Pack
SH25S03811/4"-20 Stainless Steel Cap Screw, 3/8" Long, 25 Pack
View Metric Product List
Item #QtyDescription
MPM250/M1Motorized Vertical Rigid Stand, Metric
PLSXY12D Motorized Translation Stage for Rigid Stands
MCM3011Three-Channel Controller for Motorized Rigid Stands and PLS Series Stages
MCMK313-Knob USB HID Joystick
XT66C41Clamping Platform for 66 mm Rails, 1/4" Counterbored Slot, 40 mm Long
MPRM/M1Large Rectangular Insert Holder, 66 mm Dovetail, M6 x 1.0 Taps
MLS203P21Petri Dish/Slide Holder for Inverted Microscopes
SH6M10LP1M6 x 1.0 Low-Profile Channel Screw, 10 mm Long, 100 Pack
SH6MS101M6 x 1.0 Stainless Steel Cap Screw, 10 mm Long, 25 Pack
MCM301 Controller and MCMK3 Three-Knob Joystick Used to Control Both Axes of the PLSXY Translation Stage and One-Axis MPM250 Motorized Rigid Stand

Features

  • Operate Motorized Microscopy Stages and Components
  • Control up to Three Channels at Once
    • MCMK3 Three-Knob Joystick Available Separately for Use with MCM301 Controller
    • MCM3002 Controller Includes Three-Knob Joystick for Hand-Operated Control
  • Each Axis can be Individually Disabled to Prevent Unintended Movements or to Retain a Position
    • Feature Available through Software or Three-Knob Joystick
  • Dial on top of Three-Knob Joystick Adjusts Translation Speed
  • Remotely Control Translation Using Standalone Software

Thorlabs offers a series of compact controllers to operate motorized microscopy stages and components. The MCM301 Controller is compatible with the MCMK3 Three-Knob Joystick (not included) for hand-operation. The MCM3002 Controller includes both a hand-operated three-knob joystick and a controller box. Each controller is designed to operate different stages: the MCM301 controller is compatible with the MPM250(/M) motorized rigid stand and PLS series translation stages, and the MCM3002 controller is compatible with motorized Cerna components with a travel range of 2" (see the table below). The MCM301 controller supports plug-and-play operation, automatically detecting compatible stages that are connected to it, while the MCM3002 controller requires manual stage selection in its related software.

Each side face of the three-knob joystick includes a rotating knob and a push-button switch that are dedicated to a single channel. The push-button switch enables and disables the channel, and is lit in green when the channel is enabled. Disabling the channel lets the user preserve a position or prevent accidental movements. A dial on the top face adjusts the velocity per rotation of the knob (see the Specs tab for details).

Since each controller has three channels, you only need to purchase enough channels for each of the modules you intend to drive. For example, an MPM250 Vertical Rigid Stand (which has one axis) mounted on a PLSXY Translation Stage (two axes) would only require one MCM301 controller.

Axis translation can also be adjusted remotely via software for all controllers (see the Software tab for details). Alternatively, a LabVIEW™ software development kit (SDK) for the MCM3002 controller; a LabVIEW™, C++, and Python SDK for the MCM301 controller; and support documentation are available to integrate these controllers with custom imaging software.

Item # MCM301 MCM3002
Compatible Stages MPM250(/M) Motorized Rigid Stand
PLSXPLSXY Translation Stages for Rigid Stands
PLSZ Motorized Focusing Module
PMP-2XY(/M) Translating Platform
MMP-2XY Microscope Body Translator
Item # MCM301 MCM3002
Motor Output
Motor Drive Voltage
24 V
Motor Drive Current 7.0 A (Peak)
3.0 A (RMS)
Motor Drive Type 12-Bit PWM Control
Control Algorithm Open/Closed-Loop Microstepping Open-Loop Microstepping
Stepping 128 Microsteps
per Full Step
128 Microsteps
per Full Step
Encoder Resolution - 0.5 μm
Total Steps per Revolution - 25 600
Maximum Stepping Velocity - 793 steps/s
Position Feedback Quadrature Encoder (QEP) Input
5 V
Encoder Feedback Bandwidth 1 MHz 16 MHz
Position Counter 32 Bit
Operating Modes Position and Velocity
Velocity Profile
Trapezoid
Motor Drive Connector
Mechanical Specifications 15 Position D-Type,
Female Pin Connector
15 Position D-Type, Micro-D Plug,
Male Pin Connector
Motor Drive Outputs Phase A and B 200
Quadrature Encoder (QEP) Input
Single Ended
Limit Switch Inputs Forward, Reverse
(+ Common Return)
Forward, Reverse, Index
Encoder Supply 5 V
Input Power Requirements
Voltage 24 VDC
Current 6.67 A 3.75 A (Peak)
General
Computer Connection
USB 2.0
Housing Dimensions
(W x D x H)
5.91" x 4.52" x 1.91"
(150.0 mm x 114.8 mm x 48.5 mm)
97.3 mm x 50.8 mm x 73.6 mm
(3.83" x 2.00" x 2.90")
Compatible Motor Specifications
Motor Type 2-Phase Bi-Polar Stepper
Rated Phase Current Up to 7 A Peak
Coil Resistance (Nominal) 5 to 20 Ω
Position Control Open or Closed Loop
Compatible Stages
MCM301 MPM250(/M) Motorized Vertical Rigid Stand
PLSX & PLSXY Translation Stages for Rigid Stands
PLSZ Motorized Focusing Module
MCM3002 MMP-2XY Microscope Body Translator
PMP-2XY(/M) Translating Platform

MCM301

Adapter Cable Connector for Motor Drive
D-Sub 15 Pin Female

D-Type Female

Computer Connection
USB 2.0 Type B

USB Type B
USB Type B to Type A Cable Included

Joystick Connection
USB 2.0 Type A

USB Type A
USB Type A Cable Attached
to MCMK3 Joystick

Pin Description Pin Description
1 Ground 9 Stage Identification
2 Reverse Limit Search 10 5 V
3 Forward Limit Search 11 Encoder, A
4 Motor Phase B- 12 Reserved for Future Use
5 Motor Phase B+ 13 Encoder, B
6 Motor Phase A- 14 Reserved for Future Use
7 Motor Phase A+ 15 Reserved for Future Use
8 Reserved for Future Use  -  -


MCM3002

Adapter Cable Connector for Controller I/O
Micro-D 15 Pin Female

Micro-D 15 Pin Female

Adapter Cable Connector for Motor Drive
D-Sub 15 Pin Male

D-Type Male

Adapter Cable Connector for Encoder Drive
D-Sub 15 Pin Female

D-Sub 15 Female

Pin Description
1 Stepper Motor Phase A+
2 Stepper Motor Phase A-
3 Not Used
4 Not Used
5 5 V
6 Ground
7 UL
8 Encoder Phase B+
9 Stepper Motor Phase B+
10 Stepper Motor Phase B-
11 Not Used
12 Ground
13 5 V
14 LL
15 Encoder Phase A+
Pin Description
1-6 Not Used
7 Stepper Motor Phase A+
8 Stepper Motor Phase B+
9-13 Not Used
14 Stepper Motor Phase A-
15 Stepper Motor Phase B-


Computer Connection
USB 2.0 Type B

USB Type B
USB Type B to Type A Cable Included

Pin Description
1 Not Used
2 Ground
3 Not Used
4 Not Used
5 Encoder Phase B-
6 Encoder Phase A-
7 5 V
8 5 V
9 Ground
10 LL
11 UL
12 Not Used
13 Encoder Phase B+
14 Encoder Phase A+
15 Not Used

MCM301 Software

Links to the latest verions of the MCM301 controller software and firmware are below. The software download page includes a GUI, drivers, and a LabView™/C++/Python software development kit (SDK) for third-party development support.

MCM3001 Software Screenshot
Click to Enlarge

MCM301 Controller Software

Software

Version 1.1 (May 24, 2024)

The software package contains the installation files
for the GUI interface, driver, and SDK. The software is compatible with Windows® 7 (64 bit) and later systems.

Software Download

MCM3000 Software Screenshot
Click to Enlarge

MCM3000 Controller Software

MCM3000 Series Software

Links to the latest versions of the MCM3000 series controllers software and firmware are below. The software download page offers a link to the GUI interface and driver. In addition, we provide a LabVIEW™ software development kit (SDK) and support documentation to allow any of the controllers to be controlled using custom imaging software.

Software

Version 4.0 (August 8, 2019)

The software package contains the installation files
for the GUI interface, driver, SDK, and support documentation. The software is compatible with Windows® 7 and 10 (64-bit) systems.

Software Download

Firmware Update

Version 1.3 (August 8, 2019)

The latest firmware version for the MCM3000 Series Controllers. For installation instructions, consult the User’s manual.

Software Download
MCM301 Controller and Cables
Click to Enlarge

MCM301 Contents

Each MCM301 includes the following:

  • Controller Box
  • Power Supply, with Location-Specific Power Cord
  • USB Cable (A to B)

Note: The MCM301 does not include a knob box. A compatible MCMK3 three-knob joystick is available separately.

MCM3001 Controller for 2" Cerna Stages
Click to Enlarge

MCM3002 Contents

Each MCM3002 includes the following:

  • Knob Box
  • Controller Box, with Joystick Controller Cable
  • Power Supply, with Location-Specific Power Cord
  • Three Motor Adapter Cables for Cerna® Microscope Body Translator and Translating Platforms
  • USB Cable (A to B)
  • Two 1/4"-20 Cap Screws, 1/2" Long
  • Two M6 Cap Screws, 12 mm Long
  • Twelve 4-40 Hex Stand-Offs to Secure Cables Out

Posted Comments:
seonghwan kim  (posted 2023-12-05 09:10:48.057)
Good morning, I am using the MCM3000 and MCM3001 with a PLS-XY stage. I want to control them using LabVIEW. Therefore, I utilized your SDK (MCM3000, v.40) and example. However, I am encountering an issue at the initial step. When I attempt to use the 'Find device.vi,' it fails to detect the device. I am utilizing it with COM32, and when I use your MCM3000.exe, it operates correctly. Best, Kim.
cdolbashian  (posted 2023-12-13 03:36:49.0)
Thank you for reaching out to us with this inquiry! I think perhaps the example code you are using might not be the most up-to-date one. I have reached out to you directly with the correct example.
Peter Doyle  (posted 2023-09-05 09:29:00.307)
Goop Morning, It would be very helpful to be able to buy replacement cables. I am particularly interested in replacement joystick cables. Best Regards, Peter Doyle
cdolbashian  (posted 2023-09-11 01:38:40.0)
Thank you for reaching out to us with this inquiry! We can certainly sell you the cables you need directly, even if they aren't on the web catalogue. I have contacted you directly to facilitate this. For future similar inquiries, please contact techsupport@thorlabs.com.
Qu Zhelin  (posted 2022-09-22 16:48:31.08)
We misplaced the power adapter of MCM3001, now we need to buy it again, but we don't know its model, we can only judge its company by the "MW" on the picture, could you please tell us the model of the power adapter?
ksosnowski  (posted 2022-09-26 11:12:32.0)
Hello Qu, thanks for reaching out to Thorlabs. We can quote replacement power supply accessory for the MCM3001 as a special item. These requests can be directed to techsupport@thorlabs.com or your region's local tech support team. I have reached out directly to discuss this further.
Chia-Hsien Lin  (posted 2020-02-10 21:41:00.333)
Hi, I try to use Labview to control the MCM3002 control with the version 4.0 driver. Is it possible to control the motor speed in the Labview? On the other hand, even if I call the parameter "PARAM_X_VELOCITY_CURRENT" by the commend "GetParam()", the value will return zero. Best, Chia-Hsien
llamb  (posted 2020-02-21 08:12:59.0)
Thank you for your feedback. The software cannot adjust the speed of the connected stage. Only the Speed Control knob can adjust the speed of translation per rotation of each knob when using the 3-Axis Knob Box to manually control a connected stage, as speed control is hard-wired to this dial. I have reached out to you directly to discuss further.
Dmytro Toptunov  (posted 2019-08-05 08:26:43.31)
Good morning, Does MCM3003 work with LNR50SE/M stages? They are also built around DRV014 stepper motor, but not mentioned in the MCM3003 supported equipment list. Does MCM3003 support mixed configuration, e.g. 2 x LNR50S/M stages and 1 x LNR50SE/M stage? Finally, could you please send an LabVIEW SDK and manuals? Best regards, Dmytro
nbayconich  (posted 2019-08-16 08:43:31.0)
Thank you for conctacting Thorlabs. The MCM3003 controller can be used with the encoded LNR50SE stages, the only downside is that the encoder can not be used with the MCM3003 controller. You can use a combination of either the LNR50S or LNR50SE just be aware that the encoder cannot be used with this particular controller, in order to have access to the encoders feedback you would have to use a controller like the BSC203 with the LNR50SE stages. Our SDK can be downloaded directly from our webpage under the software download link below. https://www.thorlabs.us/software_pages/ViewSoftwarePage.cfm?Code=MCM3000 I will reach out to you directly.
Matthew Broome  (posted 2019-07-03 05:35:19.95)
Does the SDK for this controller support integration with MatLab?
asundararaj  (posted 2019-07-08 02:59:06.0)
Thank you for contacting Thorlabs. At the moment, we do not have dedicated documentation/support for integration with MATLAB. However, we do have documentation for serial communication which can be used to integrate with MATLAB. I have reached out to you directly for further discussion.
Seonho Shin  (posted 2019-05-27 00:30:41.94)
'MCM3001 and ZFS2020' seems to work only on Windows 7. It does not work well when run on Windows 10. When I ordered just '0.1mm' move, It keeps going until the upper limit. It there other version of application or SDK which is compatible for Windows 10?
YLohia  (posted 2019-06-13 08:51:25.0)
Hello, thank you for contacting Thorlabs. We believe this to be a configuration issue rather than a software or hardware issue (and should not be dependent on the OS being used). Does the problem show up for any motion or just 0.1mm? What version of the software are you using? We reached out to you directly at the time of your original post to troubleshoot your issue. If you still have this problem, please send us an email with the screenshots of your GUI.
chris  (posted 2017-07-21 16:19:51.013)
+1 for adding the SDK/software/examples + manual to the website. Since it isn't there right now, could you send it to me directly?
tfrisch  (posted 2017-07-26 11:43:08.0)
Hello, thank you for contacting Thorlabs. It looks like our previous attempt to send you this file was returned because it contained a zip attachment. I will reach out to you directly about posting this in a place you can download it directly.
craig  (posted 2017-01-11 12:30:26.1)
The product MCM3001 has no manual available online. It would also be helpful if the SDK and LAbview examples were available for direct download rather than by contacting tech support. Your main office does not have any information to support this product and I was directed to contact the imaging group.
tfrisch  (posted 2017-01-11 01:24:23.0)
Hello, thank you for contacting Thorlabs. I will reach out to you directly about your application.

Click on the different parts of the microscope to explore their functions.

Explore the Cerna MicroscopeSample Viewing/RecordingSample MountingIllumination SourcesIllumination SourcesObjectives and MountingEpi-IlluminationEpi-IlluminationTrans-IlluminationMicroscope BodyMicroscope BodyMicroscope BodyMicroscope Body

Elements of a Microscope

This overview was developed to provide a general understanding of a Cerna® microscope. Click on the different portions of the microscope graphic to the right or use the links below to learn how a Cerna microscope visualizes a sample.

 

Terminology

Arm: Holds components in the optical path of the microscope.

Bayonet Mount: A form of mechanical attachment with tabs on the male end that fit into L-shaped slots on the female end.

Bellows: A tube with accordion-shaped rubber sides for a flexible, light-tight extension between the microscope body and the objective.

Breadboard: A flat structure with regularly spaced tapped holes for DIY construction.

Dovetail: A form of mechanical attachment for many microscopy components. A linear dovetail allows flexible positioning along one dimension before being locked down, while a circular dovetail secures the component in one position. See the Microscope Dovetails tab or here for details.

Epi-Illumination: Illumination on the same side of the sample as the viewing apparatus. Epi-fluorescence, reflected light, and confocal microscopy are some examples of imaging modalities that utilize epi-illumination.

Filter Cube: A cube that holds filters and other optical elements at the correct orientations for microscopy. For example, filter cubes are essential for fluorescence microscopy and reflected light microscopy.

Köhler Illumination: A method of illumination that utilizes various optical elements to defocus and flatten the intensity of light across the field of view in the sample plane. A condenser and light collimator are necessary for this technique.

Nosepiece: A type of arm used to hold the microscope objective in the optical path of the microscope.

Optical Path: The path light follows through the microscope.

Rail Height: The height of the support rail of the microscope body.

Throat Depth: The distance from the vertical portion of the optical path to the edge of the support rail of the microscope body. The size of the throat depth, along with the working height, determine the working space available for microscopy.

Trans-Illumination: Illumination on the opposite side of the sample as the viewing apparatus. Brightfield, differential interference contrast (DIC), Dodt gradient contrast, and darkfield microscopy are some examples of imaging modalities that utilize trans-illumination.

Working Height: The height of the support rail of the microscope body plus the height of the base. The size of the working height, along with the throat depth, determine the working space available for microscopy.

 

microscope bodyClick to Enlarge
Cerna Microscope Body
Body Height Comparison
Click to Enlarge

Body Details

Microscope Body

The microscope body provides the foundation of any Cerna microscope. The support rail utilizes 95 mm rails machined to a high angular tolerance to ensure an aligned optical path and perpendicularity with the optical table. The support rail height chosen (350 - 600 mm) determines the vertical range available for experiments and microscopy components. The 7.74" throat depth, or distance from the optical path to the support rail, provides a large working space for experiments. Components attach to the body by way of either a linear dovetail on the support rail, or a circular dovetail on the epi-illumination arm (on certain models). Please see the Microscope Dovetails tab or here for further details.

 

microscope bodyClick to Enlarge
Illumination with a Cerna microscope can come from above (yellow) or below (orange). Illumination sources (green) attach to either.

Illumination

Using the Cerna microscope body, a sample can be illuminated in two directions: from above (epi-illumination, see yellow components to the right) or from below (trans-illumination, see orange components to the right).

Epi-illumination illuminates on the same side of the sample as the viewing apparatus; therefore, the light from the illumination source (green) and the light from the sample plane share a portion of the optical path. It is used in fluorescence, confocal, and reflected light microscopy. Epi-illumination modules, which direct and condition light along the optical path, are attached to the epi-illumination arm of the microscope body via a circular D1N dovetail (see the Microscope Dovetails tab or here for details). Multiple epi-illumination modules are available, as well as breadboard tops, which have regularly spaced tapped holes for custom designs.

Trans-illumination illuminates from the opposite side of the sample as the viewing apparatus. Example imaging modalities include brightfield, differential interference contrast (DIC), Dodt gradient contrast, oblique, and darkfield microscopy. Trans-illumination modules, which condition light (on certain models) and direct it along the optical path, are attached to the support rail of the microscope body via a linear dovetail (see Microscope Dovetails tab or here). Please note that certain imaging modalities will require additional optics to alter the properties of the beam; these optics may be easily incorporated in the optical path via lens tubes and cage systems. In addition, Thorlabs offers condensers, which reshape input collimated light to help create optimal Köhler illumination. These attach to a mounting arm, which holds the condenser at the throat depth, or the distance from the optical path to the support rail. The arm attaches to a focusing module, used for aligning the condenser with respect to the sample and trans-illumination module.

 

microscope bodyClick to Enlarge
Light from the sample plane is collected through an objective (blue) and viewed using trinocs or other optical ports (pink).

Sample Viewing/Recording

Once illuminated, examining a sample with a microscope requires both focusing on the sample plane (see blue components to the right) and visualizing the resulting image (see pink components).

A microscope objective collects and magnifies light from the sample plane for imaging. On the Cerna microscope, the objective is threaded onto a nosepiece, which holds the objective at the throat depth, or the distance from the optical path to the support rail of the microscope body. This nosepiece is secured to a motorized focusing module, used for focusing the objective as well as for moving it out of the way for sample handling. To ensure a light-tight path from the objective, the microscope body comes with a bellows (not pictured).

Various modules are available for sample viewing and data collection. Trinoculars have three points of vision to view the sample directly as well as with a camera. Double camera ports redirect or split the optical path among two viewing channels. Camera tubes increase or decrease the image magnification. For data collection, Thorlabs offers both cameras and photomultiplier tubes (PMTs), the latter being necessary to detect fluorescence signals for confocal microscopy. Breadboard tops provide functionality for custom-designed data collection setups. Modules are attached to the microscope body via a circular dovetail (see the Microscope Dovetails tab or here for details).

 

microscope bodyClick to Enlarge
The rigid stand (purple) pictured is one of various sample mounting options available.

Sample/Experiment Mounting

Various sample and equipment mounting options are available to take advantage of the large working space of this microscope system. Large samples and ancillary equipment can be mounted via mounting platforms, which fit around the microscope body and utilize a breadboard design with regularly spaced tapped through holes. Small samples can be mounted on rigid stands (for example, see the purple component to the right), which have holders for different methods of sample preparation and data collection, such as slides, well plates, and petri dishes. For more traditional sample mounting, slides can also be mounted directly onto the microscope body via a manual XY stage. The rigid stands can translate by way of motorized stages (sold separately), while the mounting platforms contain built-in mechanics for motorized or manual translation. Rigid stands can also be mounted on top of the mounting platforms for independent and synchronized movement of multiple instruments, if you are interested in performing experiments simultaneously during microscopy.

Close

 

For sample viewing, Thorlabs offers trinoculars, double camera ports, and camera tubes. Light from the sample plane can be collected via cameras, photomultiplier tubes (PMTs), or custom setups using breadboard tops. Click here for additional information about viewing samples with a Cerna microscope.

Product Families & Web Presentations
Sample Viewing Breadboards
& Body Attachments
Cameras PMTs

Close

 

Microscope objectives are held in the optical path of the microscope via a nosepiece. Click here for additional information about viewing a sample with a Cerna microscope.

Close

 

Large and small experiment mounting options are available to take advantage of the large working space of this microscope. Click here for additional information about mounting a sample for microscopy.

Close

 

Thorlabs offers various light sources for epi- and trans-illumination. Please see the full web presentation of each to determine its functionality within the Cerna microscopy platform.

Close

 

Epi-illumination illuminates the sample on the same side as the viewing apparatus. Example imaging modalities include fluorescence, confocal, and reflected light microscopy. Click here for additional information on epi-illumination with Cerna.

Product Families & Web Presentations
Epi-Illumination Web Presentation Body Attachments Light Sources
Epi-Illumination Body Attachments Light Sources

Close

 

Trans-illumination illuminates from the opposite side of the sample as the viewing apparatus. Example imaging modalities include brightfield, differential interference contrast (DIC), Dodt gradient contrast, oblique, and darkfield microscopy. Click here for additional information on trans-illumination with Cerna.

Product Families & Web Presentations
Brightfield Web Presentation DIC Web Presentation Dodt Web Presentation Condensers Web Presentation Condenser Mounting Web Presentation Illumination Kits Web Presentation Other Light Sources
Brightfield DIC Dodt Condensers Condenser Mounting Illumination Kits Other Light Sources

Close

 

The microscope body provides the foundation of any Cerna microscope. The 7.74" throat depth provides a large working space for experiments. Click here for additional information about the Cerna microscope body.

Product Families & Web Presentations
Microscope Body Web Presentation Microscope Body Translator
Microscope Bodies Microscope Translator
Back to Top

Compact Controller for Motorized Rigid Stands and PLS Series Stages

MCM301 Controller
Click for Details

Controller Front View
(Click for Back View)
  • Designed for Motorized Rigid Stands, Rigid Stand Translation Stages, and Motorized Focusing Modules
  • Provides Control for up to Three Channels
    • Separately Available Three-Knob Joystick Allows Hand Operation
  • Each Axis can be Individually Disabled to Prevent Unintended Movements or to Retain a Position
    • Accomplished via Software or MCMK3 Three-Knob Joystick
  • Dial on top of Three-Knob Joystick Adjusts Translation Speed
  • Remotely Control Translation Using Standalone Software (Requires 64-Bit Windows® 7 or Later)

The MCM301 3-Axis Controller consists of a controller box; a compatible USB three-knob joystick is available separately for hand operation. Stages can be controlled independently using standalone software. The MCM301 is designed to operate the MPM250(/M) vertical rigid stand, the PLSX and PLSXY translation stages for rigid stands, and the PLSZ focusing module. Each stage will be automatically detected when connected to the MCM301 controller, allowing for plug-and-play operation. An interlock circuit is included, with the interlock jack located on the front panel of the controller. Additionally, the included DS24 power supply is also available separately if a replacement is needed.

When using the optional MCMK3 three-knob joystick, each side face of the joystick includes a rotating knob and a push-button switch that are dedicated to a single axis. The push-button switch on the three-knob joystick enables and disables the axis and is lit in green when the axis is enabled. Disabling the axis lets the user preserve a position or prevent accidental movements. A dial on the top face of the three-knob joystick adjusts the velocity per rotation of the knob. For more information on the MCMK3 three-knob joystick and how to utilize the USB HID protocol, please see the full web presentation. Note that the MCMK3 three-knob joystick is the only joystick compatible with the MCM301 controller.

Since each MCM301 controller has three channels, you only need to purchase enough channels for each of the modules you intend to drive. For example, an MPM250 Vertical Rigid Stand (which has one axis) and a PLSXY Translation Stage (two axes) would only require one MCM301 controller.

Axis translation can also be adjusted remotely via software (see the Software tab for details). Alternatively, a LabVIEW™, C++, and Python software development kit (SDK) and support documentation are available to integrate these controllers with custom imaging software.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
MCM301 Support Documentation
MCM301Three-Channel Controller for Motorized Rigid Stands and PLS Series Stages
$1,581.00
3 weeks
MCMK3 Support Documentation
MCMK3Customer Inspired! 3-Knob USB HID Joystick
$1,181.77
3 weeks
Back to Top

Compact Controllers for Focusing Modules and Motorized Cerna Components with a 2" Travel Range

Three-Knob Joystick
Click to Enlarge

Three-Knob Joystick
Controller Front and Back Views
Click for Details

Controller Front View
(Click for Back View)
  • Designed for Motorized Cerna Components with a 2" Travel Range 
  • Compatible with PMP-2XY(/M) Translating Platform and MMP-2XY Microscope Body Translator
  • Knobs Provide Hand-Operated Control for Up to Three Channels
  • Each Axis can be Individually Disabled to Prevent Unintended Movements and to Retain a Position
  • Adjust Translation Speed via Top-Located Knob
  • Remotely Control Translation Using Standalone Software (Requires 64-Bit
    Windows® 7 or 10)

The MCM3002 3-Axis Controller consists of a hand-operated knob box and a separate controller. Each side face of the knob box includes a rotating knob and a push-button switch that are dedicated to a single axis. The push-button switch enables and disables the axis, and is lit in green when the axis is enabled. Disabling the axis lets the user preserve a position or prevent accidental movements. A smaller knob on the top face adjusts the amount of translation per rotation of the knob (see the Specs tab for details).

The MCM3002 is compatible with motorized Cerna components that have a travel range of 2", such as our Microscope Body Translator and Translating Platforms. Since each controller has three channels, you only need to purchase enough channels for each of the modules you intend to drive. For example, a Cerna microscope equipped with a PMP-2XY Translating Platform (which has two axes) only requires one MCM3002 controller.

Axis translation can also be adjusted remotely via software (see the Software tab for details). Alternatively, LabVIEW™ software development kit (SDK) and support documentation are available to integrate these controllers with custom imaging software.

The MCM3002 includes adapter cables for connecting to motorized Cerna components with a 2" travel range.

Based on your currency / country selection, your order will ship from Newton, New Jersey  
+1 Qty Docs Part Number - Universal Price Available
MCM3002 Support Documentation
MCM3002Three-Channel Controller and Three-Knob Joystick for 2" Cerna Travel Stages
$4,274.15
Today