)

»
0 o

DM713 Digital Micrometer: C# Programming Overview

This application note provides a programming reference for interfacing a computer with the
DM713 Digital Micrometer using Visual C#. An example C# application is presented, step-by-
step, that connects to the DM713 via a communications port, requests a continuous stream of
output data from the DM713, extracts the displacement values and measurement units from
the returned data, displays the displacement values, and provides the option to log selected
displacement values to a file.

This example program is provided as a reference. The user is encouraged to extend or modify
the program to fit the specific needs of the application.

August 14, 2019

» Q
0 S

=Y - o U
2 Step-by-Step Instructions for Building the Application

2.1 Acquiring and Displaying Measurement Data
2.2 Logging the Displacement Data to a File...............

3 Complete Program Code........cccceeeiirireniiiiennicnnennnienne

» Q
L S

1 Preface

This application note provides an introduction to using Visual C# to communicate with the
DM713 Digital Micrometer. In Section 2, a step-by-step discussion of an example C# program is
presented. The full program text is provided in Section 3 without explanation.

The program connects the computer to the COM port of the DM713, receives the stream of
data output by the micrometer, operates on the data, displays the results, and allows the user
to log selected results. A secondary thread is spawned to implement continuous
communication with the micrometer. The stream of output data collected from the micrometer
includes displacement measurements and information about the unit of measurement. This
program extracts the displacement measurements and determines their units. These
displacement values are then displayed in the program's graphical user interface (GUI) with the
appropriate units. Logging a displacement value to a file in response to the click of a button was
also implemented.

Supported functionality and procedures may differ from those described in this application
note if different hardware, firmware, or software versions are used. The versions used to
develop this program example were:

e DM173 Hardware / Firmware Version 350-357-30
e Microsoft® Visual Studio Version 15.5.7

e Microsoft® .NET Framework Version 4.6.1

Page 3

» Q
L S

2 Step-by-Step Instructions for Building the Application

The code presented in Section 2.1 acquires data from the DM713, extracts the embedded
displacement values, and displays these values along with their units. A screen shot of the
running program is shown in Figure 1. Section 2.2 describes the portion of the program that
implements the data logging functionality.

o5 Form1 - O X

+0.041 mm

Figure 1 This screen shot shows the completed example application running.

2.1 Acquiring and Displaying Measurement Data

The steps required to create a C# application, which receives a stream of output data from the
DM713 and displays the displacement values in the Ul, are described in this section.

1. Begin a New Project
Connect the DM713 Digital Micrometer to the computer using an RS-232 cable, or an RS-232 to
USB converter.

Wait until the computer recognizes the micrometer. If the computer is running a Microsoft®
Windows operating system, the DM713 will be listed in the device manager under Ports (COM
and LPT) with a name that depends on the cable. The cable In this case was a Prolific USB-to-
Serial cable, as shown in Figure 2. Make a note of the COM port, which is COM2 in this case.

2 Device Manager - O X
Fie Action View Help

| m B

&P Network adapters
e ' Ports (COM & LPT)
Inted(R) Actree Management Technology - SOL (COMI)
|_= Proldic USE-to-Serial Comm Port (COMZ) |
— Prnnt queuEs

M Prececne b

Figure 2 The serial port used to communicate with the DM713 can be found under the Ports heading in
the Windows® Device Manager. In this case, the port is COM2.

Page 4

Open Microsoft Visual Studio and start a new project. This can be done by navigating the File
menu (File -> New -> Project) or by clicking on the create new project link shown in the lower
right corner of Figure 3.

) Start Page - Microsoft Visual Studio

['File | Edit View Project Debug Team Tools Test Driver Anmalyze Window Help
New * |3 Project.. Ctrl+Shift+N
Opsn P File. Ctrl+N

@ StartPage Project From Existing Code,

Get Started Open

Get code from a remote version control system or open
something on your local drive.

Close
Close Solution

Save Selected ltems Ctrl+S

Save Selected ltems

W savenn CtrlsShift+S Build your first app in 5 minutes!
Checkout from:
Source Control » Maximize your productivity with these tips and tricks for Visual Studio
© Visual Studio Team Services
Page Setup Take advantage of the newest technologies to deploy beautiful, low-cost and
Print. CtrleP reliable websites

&1 Open Project / Solution
Account Settinge. Develop moden, fully-native, Android and i0S apps

2. Open Folder
Recent Files >

Recent Projects and Solutions B % OpenWebsite

Exit

sma| Jadojane

Recent

This week New project

[l MCM3000PositionTest.sin Search project templates P
8- ¢, Amanzelmi\Documents\ThorLabs Setup Files\MCM3000\cpp\M.

Recent project templates:
KinesisDOTNETsIn

i |

Ci\Users\manzelmi\source\repos\KinesisDOTNET B Windows Console Application Crs
=) Tl Cppsin B Console App (NET Framework) =3
™ CaUsers\manzelmisourcelrepos\TLD_Cpp B Windows Forms Agp (NET Famewor., G5

KDCI01_CAPIsin B CLR Console Application [
CAUsers\manzelmi\sourcelrepos\KDET01_CAPI

|

Bl Console App (NET Core) ce
BeamProfiler BC.sin .
CAUsers\manzelmi\source\repos\ BeamProfiler_BC 5 Empty Project Cor

CameraCapture.sin Create new project..

0Wamings | @ 0Messages

i |

Entire Solution Build + IntelliSense - Search Error List

™ Description = Project File Line

Figure 3 Visual Studio's starting screen can be used to open a new project by clicking on the create new
project link shown in the lower right corner or navigating the File menu.

Sales: 973-300-3000 ¢ www.thorlabs.com

Page 5

» Q
L S

2. Start a New Windows Form Application

In the New Project window, select the Windows Forms App (.NET Framework) template. Enter
an appropriate name for the project in the Name field. For this example, as shown in Figure 4,
the project name DM713Datalogger was chosen.

By default, this project name will also be the name of the namespace applied to the class files
added to this project.

New Project (4 X
b Recent :.NET Framework 4.6.1 ~| Sort by: [Default ': = Search (Ctrl+E P~
4 |nstalled cs e %
= "] WPF App (NET Framework) Visual C# Type: Visual C#
4 Visual C# = A project for creating an application with a
cx . :
Windows Universal I Windows Forms App (.NET Framework) Visual C# Windows Forms user interface
Windows Classic Desktop
c
.NET Core E Console App (.NET Framework) Visual ¢
.NET Standard -
Test ni! Class Library (.NET Framework) Visual C#
: . &
Windows Drivers
: 5 =<3 2 =
b Visual Basic J Shared Project Visual C#
)
b Visual C++ o
b JavaScript = Windows Service (.NET Framework) Visual C&
b Other Project Types
=9 E Project (NET F k) Visual C#
m roject (. rameworl isual C#
b Online B] Al
ce
@ WPF Browser App (.NET Framework) Visual C#
{ b
cs
Hi! WPF Custom Control Library (.NET Framework) Visual C&
<
ce
& WPF User Control Library (.NET Framework) Visual C&
<ED)
] ; : :
EE—] Windows Forms Control Library (NET Framework) Visual C&
Not finding what you are looking for?
Open Visual Studio Installer
Name: [DM713DataLogger]
Location: vc:\users\manzelmi\source\repos - Browse...
Solution name: DM713DatalLogger Create directory for solution
D Add to Source Control

Figure 4 During the creation of this project, the Windows Forms App (.NET Framework) template was
selected, and the project was named DM713Datalogger.

3. Visual Studio Editor

The new project will look similar to the empty project shown in Figure 5. The yellow box on the
right encloses the two tabs of the editor window. The open tab is a forms designer used to
create the form's GUI. The other tab is the corresponding code editor. The tabs are named with
the file name, rather than the project name.

The forms designer is used to add all necessary runtime controls to the Ul. These elements can
be dragged into the application window directly from the toolbox, which is shown on the left of
the project window and enclosed in a green box. Controls can only be dragged into the
application window, which is enclosed by the purple box, and not into the whitespace outside
of the application window.

Page 6

» Q
L S

The size of the form window is the size of the runtime Ul window. Adjust the size of the window
as desired. In this example, the size of the forms window was adjusted to fit a couple of

controls.

Form1.cs [Design]* # X

4 All Windows Forms - (=) =R =R
Pointer
BackgroundWorker
BindingMavigator

=
Toolbox

P

o

v

@ BindingSource

G Button =
[¥] CheckBox

= CheckedListBox

% ColorDialog

7| ComboBox

& ContextMenuStrip
Wi DataGridView
w* DataSet

NateTimePicker

Figure 5 The project window includes an editor window (on right, enclosed by yellow box) and a toolbox
(on left, enclosed by green box). The active tab in the editor window is the forms designer, which is used
to create the GUI. The application window (enclosed by purple box) has been sized to accommodate a
couple of controls. Controls from the toolbox can be dragged and dropped into the application window.

4. Insert a Label into the Form

Use the toolbox (green box in Figure 6) to search for the label control, and then drag and drop a
label into the form window (purple box). A label is a control which can be used to display text,
and it will be used in this application to display the displacement values acquired from the
micrometer. In the forms designer of Figure 6 the text "labell" is displayed on the label.

Toolbox =X ~ | Solution Explorer
Label x ME-o-5¢FB o s
4 All Windows Forms t e tr
Label

}A\) %1 Solution 'DM713Datalogger’ (1 project)

A LinkLabel 4 == DM713DatalLogger
4 Common Controls b M Properties

A Label b =W References

A LinkLabel ¥ App.config

4 [Z] Forml.cs
b ™) Formi.Designer.cs
) Formi.resx

P ©* Program.cs
B o ——————————)

Properties
OutputValuelabel System.Windows.Forms.Label
NEe (@5 | #
[Accessibility
& Appearance
[Behavior
E Data
B (ApplicationSettings)
(DataBindings)
Tag

(Name) OutputValueLabel
eneratevemoer rue
Locked False
Modifiers Private
E Focus
CausesValidation True
B Layout
Anchor Top, Left
I ————— AutoSize True

Figure 6 In this form, an object called a label will be used to display the micrometer's displacement values
in the form. Drag and drop a label from the toolbox into the form window. Specify an identifier for the
label in the code by using the (Name) field under the Design heading in the Properties window.

Page 7

» Q
L S

The label's identifier in the code can be specified using the Properties window (yellow box).
Expand the options under the Design heading, and enter an appropriate identifier into the
(Name) field (orange box). In this example, the identifier OutputValuelabel was chosen.

5. Open Code Editor and Create Option to Handle User Clicks on the Label

An easy way to open the code editor is to double click the label in the forms designer. This
action also auto-creates a using block (See Step 6) and couple of methods, including an override
method that handles clicks on the label occurring during program runtime. The name of this
override method is the name of the identifier entered in Step 4. In this example, since the
override method is not used, it is deleted. It should be noted that this override method could
be useful for other applications.

A screen shot of the code editor is shown in Figure 7.

File Edit View Project Build Debug Team Tools Test Driver Analyze Window Help matthew.anzemi ~ [¥]
©-0|B-LMP|9 ¢ |obug -[aycru - bsu-|p@ % @A Bk Hemin [EEEN

s & X FormlDesigner.cs # X Form1.cs [Design]

-] % DM713DataLoggerFormt -] ©. OnClosed(Eventrgs €)

}
base.OnClosed(e);

rivate void Forml_Load(object sender, EventArgs e

selectedport = "CONI7";
InitializePort();
Wait (10

readThread = new Thread(ReadContinuous):

(CLR v4.0.30319: DM713DataLoy
(CLR v4.0.30319: DM713(

1y\GAC_HSIL\S,
(CLR v4.0.30319: DH713: : | thy\GAC_STL\Systen. Xn1\v4.0_4.0.0.0_b77a5¢561934¢089\System. Xal..
64] DH713Datalogger..exe’ ha

Figure 7 This screen shot shows the code editor.

6. Customize the List of using Directives to Include Desired Namespaces

In the code editor, the block of using directives may include some namespaces that are not
needed and may be missing some that are required. Modify the using block to contain:
using System;

using System.Windows.Forms;

using System.IO.Ports;

using System.IO;
using System.Threading;

Note that
namespace DM713DatalLogger

follows the using block. All methods added to this form will be contained in the
DM713Datalogger namespace, whose name defaults from the project name.

Page 8

» Q
L S

7. Make Some Declarations in Class Form1

The class Form1 will contain all methods in this form. At the beginning of the class it is
necessary to declare the serial port object (micPort) and a string (selectedPort) containing the
specific COM port designator. After the class definition statement,

public partial class Forml : Form

and after the opening parenthesis, add:

SerialPort micPort;
String selectedPort;

The SerialPort class is defined in the System./O.Ports namespace. The selectedPort string
provides an easy way to set the name in the initializePort method discussed in Step 8. This
string declaration provides an alternative to hard-coding a port name.

8. Initialize the Serial Port (micPort)

the InitializePort method is created in the Form1 class to help initialize the serial port (micPort),
which was declared in Step 7. The Form1_Load method, which is also in the Form1 class and
should have been auto-generated, will be modified in Step 15 to call this InitializePort method
and to make a string assignment to selectedPort.

The MessageBox method, which is included in the System.Windows.Forms namespace, is used
to notify the user if the port is unavailable. In this case, a pop-up will be displayed with an error
message and icon, and then the form will close.

private void InitializePort()

{
micPort = new SerialPort();
micPort.PortName selectedPort;
micPort.DataBits 8;
micPort.StopBits = StopBits.One;
micPort.BaudRate = 2400;
micPort.Parity = Parity.None;
micPort.Handshake = Handshake.None;
micPort.RtsEnable = true;
micPort.ReadTimeout = 500;
micPort.WriteTimeout = 500;
try
{

micPort.Open();

catch (IOException)
{

MessageBox.Show("Port could not be opened", "Port Error",
MessageBoxButtons.OK, MessageBoxIcon.Error);
this.Close();

}

9. Communicate with the Micrometer

Two methods are created in the Form1 class to enable communication with the micrometer.
The first method is RequestValue, which requests a data value from the micrometer by sending
a byte. The specific value of the byte that is sent does not matter, and the string 1 was chosen
for this example. It is good practice to include the try-catch structure to handle any thrown

Page 9

» Q
L S

timeout exceptions, but including the try-catch structure is not strictly necessary for
implementing the RequestValue method.

private void RequestValue()

{
try

{
}

catch (System.TimeoutException)

{1

micPort.Write("1");

}

The second method, ReadValue, reads the return string from the port. Since there is the risk
that all of the bytes may not be immediately available, surrounding the read command with the
try-catch structure to handle timeout exceptions is required. The ReadValue method passes the
acquired data value to the RemoveUnneededChars method, which is discussed in Step 10.

private String ReadValue()

{
String output = "";
try
{

output = micPort.ReadExisting();

catch (System.TimeoutException)

{1

return RemoveUnneededChars(output);

}

10. Extract Displacement Value from the Output Value
The data value output by the micrometer includes a number of characters not of interest to this
application. An example output string,

01A-0002.394\r\n
illustrates the format of the output data. From the left,

e The first three characters (01A) are not needed.

e The fourth character provides the sign value (-), and is needed. The sign will be + or -.
e The number of leading zeros (000) is variable, and these zeros are not needed.

e The fractional number following the zeros (2.394) is needed.

e The terminating characters (\r\n) are not needed.

The number of the characters between the decimal point and the terminating characters is
different depending on whether the measurement units are millimeters or inches. The above
displacement value is in millimeters. There are more decimal places when the inches are the
units of measurement. The unit of measurement is determined in Step 11.

The RemoveUnneededChars method concatenates the required characters into a string called
tmp. It is known that the first three characters in the output string are not needed, and the
fourth character is always needed. This sign character is immediately assigned to the string sign
and later concatenated with the value written to tmp. The characters in the output data
following the sign character are searched to find the first subsequent character that is either

Page 10

» Q
L S

non-zero or a decimal point. When the index of this character is found, the Substring method is
used to retrieve the substring that starts at this index and concludes at the end of the string.
The Trim method is then used to remove the trailing terminating characters \r\n. Both
Substring and Trim are included in the System namespace.

By selecting the entire remainder of the string, and then removing the terminating characters
from to tmp, it can be ensured that no digits of the output displacement value will be lost.

private String RemoveUnneededChars(String output)

{
String tmp = "";
String sign = "";
if (output.Length > @) //Check that the returned string from the port is not blank
{
sign = output[3].ToString(); //store the sign of the value to above string
for (int i = 3; i < output.Length; i++)
// Search through the string until the decimal place or first nonzero number is
//found
{
if (output[i] == ".")
tmp += output.Substring(i);
break;
}
else
{
try
{
int parsed = (int)char.GetNumericValue(output[i]);
if (parsed > @) //if the parsed string is a number and greater than
//0, add it to the output
{
tmp += output.Substring(i);
break;
}
}
catch (FormatException) { }
}
¥
}
return sign + tmp.Trim('\r',"'\n'); //add the sign and remove the trailing terminating
//characters
}

11. Determine the Units of Measurement from the Output Value

The Units method, created in the Form1 class, determines the units of measurement by
counting the number of characters between the decimal point and the terminating characters
in the data value output by the micrometer. The string output by the RemoveUnneededChars
method, which was discussed in Step 10, is passed to the Units method. The Units method finds
the length of the substring that starts at the index following the decimal place and concludes at
the last character of the string, which includes no terminating characters. If the length of this
substring is greater than four, the displacement reading was in inches. Otherwise, millimeters
are the units of measurement.

Page 11

» Q
L S

private String Units(String output)

{
int indexOfDecimal = output.IndexOf(".");
String tmp = "";
if (indexOfDecimal != -1)
{
if (output.Substring(indexOfDecimal+l).Length > 4)
{
tmp = " in";
}
else {
tmp = " mm";
}
}
return tmp;
}

12, Add Some Declarations to the Beginning of the Class Form1
The application will spawn a new thread to allow continuous communication with the
micrometer. New variables declared at the start of the Form1 class,

public partial class Forml : Form

that are associated with this second thread are the readThread thread and continueRead
Boolean. With these two additions shown in bold, the block of declarations is now:

SerialPort micPort;

String selectedPort;

Boolean continueRead = false;
Thread readThread;

13. Set the Text Shown on the Label

The purpose of the label added to the form in Step 4 is to display the displacement value
provided by the micrometer. The SetText method updates the text on the label. Recall that
OutputValuelabel is the identifier given to the label in Step 4. The SetText method must ensure
the label is not being handled by the Ul thread at the same time the text displayed by the label
is being updated. If InvokeRequired returns true, the handling will be passed to the delegate
method.

The Delegate Method:

delegate void StringArgReturningVoidDelegate(string text);

The SetText Method:
private void SetText(string text)
{
if (this.OutputValuelabel.InvokeRequired)
{
StringArgReturningVoidDelegate d = new StringArgReturningVoidDelegate(SetText);
this.Invoke(d, new object[] { text });
}
else
{
this.OutputValuelLabel.Text = text;
}
}

Page 12

» Q
L S

14. Make Continuous Readings of the Data Output by the Micrometer
Continuous readings of the data output by the micrometer are performed by the
ReadContinuous method. Since the continueRead Boolean variable is set true in the
Form1_Load method, which is discussed in Step 15, the ReadContinuous method will
continuously loop until the form is closed.

The ReadContinuous method calls the RequestValue and ReadValue methods described in

Step 9 to acquire the data value and extract the displacement reading. The string value is set
equal to the displacement reading. The units of the displacement reading are determined by
calling the Units method, which is discussed in Step 11, and concatenated with the value string.
The text displayed on the label in the form is then updated to value by calling The SetText
method, which is discussed in Step 13.

public void ReadContinuous()
{
while (continueRead)
{
Wait(300);
RequestValue();
Wait(300);
String value = ReadValue();
value += Units(value);
SetText(value);

}

The Wait method called by the ReadContinuous method sets the time delay between reads and
writes. This is implemented using the built-in Timer class that is included in the
System.Windows.Forms namespace. The wait value should be a minimum of 300 ms to allow
the device to receive the request and return a data value.

public void Wait(int milliseconds)
{
System.Windows.Forms.Timer timerl = new System.Windows.Forms.Timer();
if (milliseconds == @ || milliseconds < @) return;
timerl.Interval = milliseconds;
timerl.Enabled = true;
timerl.Start();
timerl.Tick += (s, e) =>
{
timerl.Enabled = false;
timerl.Stop();
s
while (timerl.Enabled)
{

}

Application.DoEvents();

}

15. Initialize the Thread and Begin Data Acquisition

The Form1_Load method is a part of the Form1 class. It assigns a name to the port, calls the
InitializePort method discussed in Step 8 to initialize the serial port, and it initializes the second
thread declared in Step 12 so that data acquisition can begin. The name of the specific COM
port found in Step 1 is assigned to the selectedPort string in this method. After changing the
value of the continueRead Boolean to true, this method uses the readThread.Start method to

Page 13

» Q
L S

begin execution of a new thread. This results in two threads running concurrently, with this
new thread executing the ReadContinuous method discussed in Step 14. The one second wait is
used to allow a proper connection to be established before requesting values.

private void Forml_Load(object sender, EventArgs e)

{
selectedPort = "COM2";

InitializePort();
Wait(1000);
readThread = new Thread(ReadContinuous);
continueRead = true;
readThread.Start();
}

16. Handle the Addition of Events

This method, which is needed to safely run the program, is included in the Form1 class and
overrides the OnClosed method included in the System. Windows.Forms namespace. Override is
a modifier that can be used to modify the implementation of an inherited method. In this case,
it is used to add several events, including stopping and joining the thread. The wait timer is
used to allow any possible in-progress read or write actions to conclude so that a Closed Port
exception is not thrown.

protected override void OnClosed(EventArgs e)

{
if (micPort != null & readThread != null)
{
continueRead = false;
Wait(micPort.ReadTimeout);
micPort.Close();
readThread.Join();
}
base.OnClosed(e);
}

17. Run the Program

Running the program should now open up a form, which includes a numerical read out. The
value of the readout should be continuously updated with the displacement value read by the
micrometer.

2.2 Logging the Displacement Data to a File

In this section, a button is added to the form that allows the user to save selected displacement
values to a file. Using a single method to open the file and save a displacement value ensures
that the file is never left open, and there is no data lost, when the program exits.

18. Add a Button to the Form

The example program is expanded to enable the displayed displacement value to be saved to a
file when a button is clicked. Use the toolbox to search for the button control (green box in
Figure 8) and then drag and drop a button into the form window (purple box). In this example,
Save Point is displayed on the button. The text displayed on the button can be customized via
the Properties window (yellow box), by expanding the Appearance section and updating the
Text field.

Page 14

» Q
L S

The identifier for the button used in the code can also be customized using the Properties
window. Expand the options under Design, and enter an appropriate identifier into the (Name)
field (orange box). In this example, the object has been named SavePointButton.

Double click the button in the form designer window to generate the event method in the
code. The method name will be (button name) + _click, which is SavePointButton_Click in this
example. This method is modified in Step 21.

« 0 x Form1l.cs* Forml.cs [Design]* +® X ~ | Solution Explorer
Button x 3 GfrEI-' 'GJ“-'.C.-E'@ - ﬁE
4 All Windows Forms u:l =150 e
B® Button
® RadioButton

% Solution ‘DM713Datalogger’ (1 project)
4 <= DMT713DataLogger

4 Common Controls B Properties
(9 Button labell b =8 References
® RadioButton & |:| 5 ¢ App.config

 Save Pont D 4 [Z] Forml.cs
o O o

b) Form1.Designer.cs
) Forml.resx
B €* Program.cs

RGIMELLY ST Team Explorer Resource View

Properties

SavePointButton System.Windows.Forms.Button

(ApplicationSettings)
E (DataBindings)
Tag

El Design
(Name) SavePointButton I

GenerateMember True
Locked False
Maodifiers Private

Figure 8 A button will be used to log individual data points to a file. Drag and drop a button from the
toolbox into the form window. Specify the identifier for this button in the code by entering the identifier
into the (Name) field under the Design heading in the Properties window.

19. Declare a String to Hold the Displacement Value
Next, an another declaration is added to the block of variable declarations included at the start
of the Form1 class,

public partial class Forml : Form

The new returned string is declared and made available to the class so that it can provide a
bridge between the Save Point button, which was added in Step 18, and text displayed on the
label. The updated block of declarations, in which the new line is shown bolded, is:

SerialPort micPort;
String selectedPort;
Boolean continueRead = false;
Thread readThread;
String returned =

un,
k]

Page 15

» Q
L S

20. Assign the Displacement Value to the returned String

Since the value of the returned string, which is discussed in Step 19, and the value displayed on
the label must be the same, the ReadContinuous method discussed in Step 14 is modified to set
the value of the returned string to the displacement value followed by the units of
measurement. The ReadValue method is called only once in the ReadContinuous method,
which ensures the value displayed on the label and the logged value will be the same at time of
save. The revised ReadContinuous method, with the new line bolded, is:

public void ReadContinuous()

{

while (continueRead)

{
Wait(300);
RequestValue();
Wait(300);
String value = ReadValue();
value += Units(value);
returned = value;
SetText(value);

}

21. Save the Displacement Value to a File when the Button is Clicked

The SaveButton_Click method was auto-created in the Form1 class during Step 18, when the
button in the form designer was double clicked. This method is revised here to define a file
path and to check whether the file exists before writing the displacement value. If the file does
not exist, it will be created. If the file exists, a new line containing the data value will be added.

In this example, the path and file name are hard coded. Alternatively, a text input and folder
chooser option can be added if desired. The StreamWriter and File.Create classes are included
in the System./O namespace.

private void SavePointButton_Click(object sender, EventArgs e)

{
string folderPath = "C:\\Users\\jdoe\\Documents";
string filename = "TestFile99.txt";
string fullPath = folderPath + "\\" + filename;
if (File.Exists(fullPath))
{
using (var Tw = new StreamWriter(fullPath, true))
{
Tw.WriteLine(returned + "\t" + System.DateTime.Now.ToString("h:mm:ss tt") + "\t" +
System.DateTime.Now.ToLongDateString());
}
}
else
{
FileStream Fs = File.Create(fullPath);
Fs.Close();
using (var Tw = new StreamWriter(fullPath, true))
{
Tw.WriteLine("Position \t Timestamp \t Date");
Tw.WriteLine(returned + "\t" + System.DateTime.Now.ToString("h:mm:ss tt") + "\t" +
System.DateTime.Now.ToLongDateString());
}
}
}

Page 16

» Q
L S

22 Run the Program
Running the program and clicking the Save Point button should write the selected displacement
value to the specified file.

3 Complete Program Code

The program code included in this section acquires, processes, and displays a continuous
stream of displacement values output by a DM713 Digital Micrometer. In addition, a button is
included that allows the user to save selected data points to a log file during runtime.

using System;

using System.Windows.Forms;
using System.IO.Ports;
using System.IO;

using System.Threading;

namespace DM713Datalogger

{

public partial class Forml : Form
{
SerialPort micPort;
String selectedPort;
Boolean continueRead = false;
Thread readThread;
String returned =

o,
E}

public Forml()
{

}

InitializeComponent();

protected override void OnClosed(EventArgs e)

{
if (micPort != null && readThread != null)
{
continueRead = false;
Wait(micPort.ReadTimeout);
micPort.Close();
readThread.Join();
}
base.OnClosed(e);
}

private void Forml_Load(object sender, EventArgs e)
{

selectedPort = "COM2";

InitializePort();

Wait(1000);

readThread = new Thread(ReadContinuous);

continueRead = true;

readThread.Start();

Page 17

» Q
L S

private void InitializePort()

{
micPort = new SerialPort();
micPort.PortName = selectedPort;
micPort.DataBits = 8;
micPort.StopBits = StopBits.One;
micPort.BaudRate = 2400;
micPort.Parity = Parity.None;
micPort.Handshake = Handshake.None;
micPort.RtsEnable = true;
micPort.ReadTimeout = 500;
micPort.WriteTimeout = 500;

try
{

}
catch (IOException)

{

micPort.Open();

MessageBox.Show("Port could not be opened", "Port Error",
MessageBoxButtons.OK, MessageBoxIcon.Error);
this.Close();

public void ReadContinuous()

{
while (continueRead)
{
Wait(300);
RequestValue();
Wait(300);
String value = ReadValue();
value += Units(value);
returned = value;
SetText(value);
}
}
private void RequestValue()
{
try
{
micPort.Write("1");
catch (System.TimeoutException)
{1
}

private String ReadValue()
{

String output = H
try
{

output = micPort.ReadExisting();

catch (System.TimeoutException)

{1

return RemoveUnneededChars(output);

Page 18

I S
-

private String RemoveUnneededChars(String output)

{
String tmp = "";
String sign = "";
if (output.Length > @) //Check that the returned string from the port is not blank
{
sign = output[3].ToString(); //store the sign of the value to above string
for (int i = 3; i < output.Length; i++)
// Search through the string until the decimal place or first nonzero number is
{
if (output[i] == '.")
tmp += output.Substring(i);
break;
}
else
{
try
{
int parsed = (int)char.GetNumericValue(output[i]);
if (parsed > @) //if the parsed string is a number and greater than
//0, add it to the output
{
tmp += output.Substring(i);
break;
}
}
catch (FormatException) { }
}
}
}
return sign + tmp.Trim('\r','\n'); //add the sign and remove the trailing terminating
//characters
}

delegate void StringArgReturningVoidDelegate(string text);

private void SetText(string text)

if (this.OutputValuelLabel.InvokeRequired)

{
StringArgReturningVoidDelegate d = new StringArgReturningVoidDelegate(SetText);
this.Invoke(d, new object[] { text });

}

else
this.OutputValuelLabel.Text = text;

¥

//found

Page 19

» Q
L S

private String Units(String output)

{
int indexOfDecimal = output.IndexOf(".");
String tmp = "";
if (indexOfDecimal != -1)
{
if (output.Substring(indexOfDecimal+l).Length > 4)
{
tmp = " in";
}
else {
tmp = " mm";
}
}
return tmp;
}

public void Wait(int milliseconds)
{
System.Windows.Forms.Timer timerl = new System.Windows.Forms.Timer();
if (milliseconds == @ || milliseconds < @) return;
timerl.Interval = milliseconds;
timerl.Enabled = true;
timerl.Start();
timerl.Tick += (s, e) =>
{
timerl.Enabled = false;
timerl.Stop();
s
while (timerl.Enabled)
{

}

Application.DoEvents();

private void SavePointButton_Click(object sender, EventArgs e)

{
string folderPath = "C:\\Users\\jdoe\\Documents™";
string filename = "TestFile99.txt";
string fullPath = folderPath + "\\" + filename;
if (File.Exists(fullPath))
{
using (var Tw = new StreamWriter(fullPath, true))
{
Tw.WriteLine(returned + "\t" + System.DateTime.Now.ToString("h:mm:ss tt") + "\t" +
System.DateTime.Now.ToLongDateString());
¥
¥
else
{
FileStream Fs = File.Create(fullPath);
Fs.Close();
using (var Tw = new StreamWriter(fullPath, true))
{
Tw.WriteLine("Position \t Timestamp \t Date");
Tw.WriteLine(returned + "\t" + System.DateTime.Now.ToString("h:mm:ss tt") + "\t" +
System.DateTime.Now.ToLongDateString());
¥
}
}

Page 20

