# **Light Catalog**

| Optomechanics           | Tables/<br>Breadboards | Mechanics             | Optomechanical<br>Devices          | Kits                       | Lab Supplies                        |
|-------------------------|------------------------|-----------------------|------------------------------------|----------------------------|-------------------------------------|
| Motion Control          | Manual Stages          | Motorized Stages      | Multi-Axis<br>Platforms            | Actuators                  | Controllers                         |
| Optics                  | Optical Elements       |                       |                                    |                            |                                     |
| Fiber                   | Fiber<br>Patch Cables  | Bare Fiber            | Fiber Optomechanics                | Fiber Components           | Test and<br>Measurement             |
|                         |                        | $\mathbf{N}$          |                                    |                            |                                     |
| Light                   | Coherent<br>Sources    | Incoherent<br>Sources | Covega                             | Drivers/Mounts             | Accessories                         |
| Light<br>Light Analysis |                        |                       | Covega<br>Beam<br>Characterization | Drivers/Mounts Polarimetry | Accessories Electronics Accessories |

The same categories can be found online: www.thorlabs.com

# Light

| Coherent Sources Pages 1031-1090   |
|------------------------------------|
| Incoherent Sources Pages 1091-1131 |
| Covega Pages 1132-1173             |
| Drivers/Mounts Pages 1174-1230     |
| Accessories Pages 1231-1245        |
| Menio Systems Pages 1246-1263      |

# **Coherent Sources Selection Guide**

Pages 1032-1090















#### Ø5.6 mm, Ø9 mm and Pigtailed Laser Diodes

- Laser Diodes Available from 405 nm to 1625 nm
- Single and Multimode Fiber with Internal 8° Angle Cleave
- Compatiable with Thorlabs' Laser Diode and TEC Controllers
- Fiber Bragg Grating Wavelength Stablized Laser Diode

#### See Pages 1032-1054

#### Single and Multichannel Fiber-Coupled Laser Sources

- SM and PM Pigtailed Laser Diode Sources (405 nm to 1550 nm)
- SLD Pigtailed Sources (Center Wavelengths: 1310 nm and 1550 nm)
- Fiber-Coupled Optical Amplifiers

#### See Pages 1058-1063

#### **PR08 Modular WDM Systems**

- Foundation for WDM Laser Diode Plug-In Modules
- DWDM Laser Modules Covering the C- and L- Bands
- LS5000 DWDM Laser Sources for Active and Passive DWDM Component Testing

## See Pages 1064-1073

#### **Helium-Neon Lasers**

- Self-Contained 632.8 nm HeNe Lasers Ideal for Alignment Applications
- Cylindrical Tube HeNe Lasers Mount Easily into Optical Systems
- Keyed Power Supply with Built-in Interlock

### See Pages 1074-1078

#### Laser Diode Modules and Kits

- Available Wavelengths of 405 nm and 635 nm
- Laser Diode Kits Ideal for General Purpose Alignment Aid
- Small, Lightweight CPS Series Laser Modules

## See Pages 1079-1080

#### **Benchtop and OEM Tunable Lasers**

- Low-Noise, High-Power Lasers
- Ideal for Integration into High-End Optical Test Instruments
- Also Available for use with TXP5000

### See Pages 1081-1087

#### **Frequency Swept Lasers Sources**

- 55 kHz Frequency Swept Laser Sources at 1050 and 1325 nm
- Ideal for Optical Coherence Tomography and Optical Frequency Domain Reflectometry
- Greater than 100 nm Tuning Range
- Greater than 10 mW of Fiber-Coupled Ouput Power

#### See Pages 1088-1089

Terahertz Transmitter See Page 1090

All laser diodes are extremely electrostatic sensitive; see page 1244 for our selection of antistatic products.





Light ▼ CHAPTERS

| Col | here | nt S | Sou | rces |
|-----|------|------|-----|------|

| Incoh | nerent | Sourc | 29 |
|-------|--------|-------|----|

Covega

#### **Drivers/Mounts**

Accessories

# ▼ SECTIONS

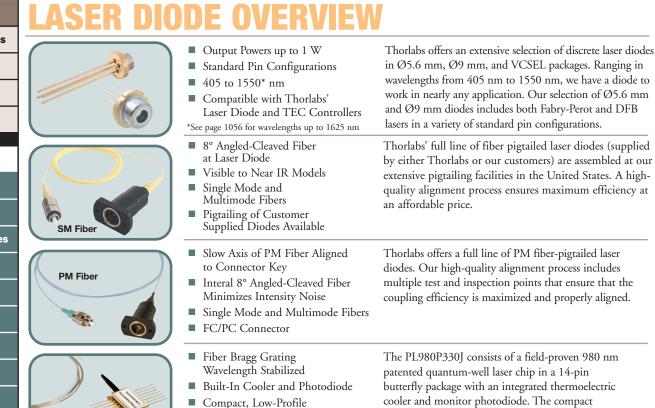
Laser Diodes

**Pigtailed Diodes** 

Fiber-Coupled Laser Sources

**WDM Laser Sources** 

**HeNe Lasers** 


Laser Diode

Modules Tunable

Lasers

Swept Source Lasers

Terahertz



14-Pin Butterfly Package

cooler and monitor photodiode. The compact design includes a fiber Bragg grating (FBG) for providing reliable wavelength-stabilized operation. ■ Telecordia GR-468-CORE Qualified

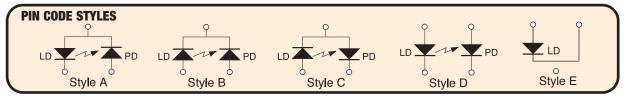
NOTE: The products on pages 1032 through 1057 are designated for use solely as components and are not sold as a finished product. The purchaser assumes responsibility to comply with US 21 CFR 1040.10 and 1040.11 or IEC 60825-1 with regard to the safe use of these components in a laboratory environment or their introduction into commerce. 

|     | Laser Die                          | ode Select            | ion Gui          | de                        |          | - versions |
|-----|------------------------------------|-----------------------|------------------|---------------------------|----------|------------|
|     | ITEM#                              | WAVELENGTH (nm)       | P (mW)           | PACKAGE (mm)              | PIN CODE | PAGE       |
|     | DL3146-151                         | 405                   | 5                | 5.60                      | 5B       | 1034       |
| NEW | GH04020B2A                         | 406                   | 20               | 5.60                      | 5B       | 1034       |
| NEW | GH04125A2A                         | 406                   | 125              | 5.60                      | 5B       | 1034       |
| NEW | LPS-406-FC                         | 406                   | 5.0              | Pigtailed                 | 5B       | 1056       |
|     | LPS-635-FC                         | 635                   | 2.5              | Pigtailed                 | 9A       | 1037       |
|     | HL6314MG <sup>a,b</sup>            | 635                   | 3                | 5.60                      | 5A       | 1035       |
|     | HL6312G <sup>a,b</sup>             | 635                   | 5                | 9.00                      | 9A       | 1035       |
|     | HL6335G                            | 635                   | 5                | 9.00                      | 9A       | 1035       |
|     | DL3148-025                         | 635                   | 5                | 5.60                      | 5A       | 1036       |
|     | HL6320Ga,b                         | 635                   | 10               | 9.00                      | 9A       | 1036       |
|     | HL6344G                            | 635                   | 10               | 9.00                      | 9A       | 1036       |
|     | HL6322G                            | 635                   | 15               | 9.00                      | 9A       | 1037       |
|     | DL5038-021                         | 635                   | 30               | 9.00                      | 9A       | 1037       |
|     | LPS-PM635-FC                       | 635                   | 2.5              | Pigtailed                 | 9A       | 1057       |
| NEW | LPM-635-SMA                        | 635                   | 7.5              | Pigtailed                 | 9A       | 1056       |
| NEW | DL5148-030                         | 638                   | 20               | 5.60                      | 5A       | 1037       |
| NEW | DL6148-030                         | 638                   | 40               | 5.60                      | 5A       | 1038       |
|     | DL3147-060                         | 650                   | 5                | 5.60                      | 5A       | 1038       |
|     | GH06510B2A                         | 654                   | 10               | 5.60                      | 5B       | 1038       |
|     | HL6501MG <sup>a</sup>              | 658                   | 35               | 5.60                      | 5C       | 1039       |
|     | DL6147-040                         | 658                   | 45               | 5.60                      | 5A       | 1039       |
|     | HL6512MG                           | 658                   | 50               | 5.60                      | OPEN     | 1039       |
|     | DL7147-201                         | 658                   | 60               | 5.60                      | OPEN     | 1040       |
|     | ML120G21                           | 658                   | 80               | 5.60                      | 5E       | 1040       |
|     | HL6548FG                           | 660                   | 90               | 9.00                      | 9F       | 1040       |
| NEW | HL6545MG                           | 660                   | 120              | 5.60                      | OPEN     | 1041       |
|     | LPS-660-FC                         | 660                   | 7.5              | Pigtailed                 | 5C       | 1056       |
|     | <sup>a</sup> Cinal Mada Landindind | beingto Model Terrore | C <sub>D</sub> d | During Street F0000280501 |          |            |

<sup>a</sup>Single Mode - Longitudinal

<sup>b</sup>Single Mode - Transverse

<sup>C</sup>Patented Device Structure: F0000380501




-

| TECHNOLOGY | V |
|------------|---|

Light

|                            |                                                       |                               |                   |           |         | CHAPTERS V         |
|----------------------------|-------------------------------------------------------|-------------------------------|-------------------|-----------|---------|--------------------|
| Laser D                    | iode Select                                           | ion Gui                       | de                |           |         | Coherent Sources   |
| ITEM#                      | WAVELENGTH (nm)                                       | P (mW)                        | PACKAGE (mm)      | PIN CODE  | PAGE    | Incoherent Sources |
| LPM-660-SMA                | 660                                                   | 22.5                          | Pigtailed         | 5C        | 1056    | inconcrete oburces |
| HL6724MG <sup>a,b</sup>    | 670                                                   | 5                             | 5.60              | 5A        | 1041    | Covega             |
| DL3149-057                 | 670                                                   | 5                             | 5.60              | 5A        | 1041    | oovega             |
| HL6714G <sup>a,b</sup>     | 670                                                   | 10                            | 9.00              | 9A        | 1042    | Drivers/Mounts     |
| LPS-675-FC                 | 675                                                   | 2.5                           | Pigtailed         | 9A        | 1056    | Divers/mounts      |
| HL6738MG <sup>a,b</sup>    | 690                                                   | 35                            | 5.60              | 5C        | 1042    | Accessories        |
| HL7001MG                   | 705                                                   | 40                            | 5.60              | 5C        | 1042    | W Accessories      |
| VCSEL-780                  | 780                                                   | 1.65                          | -                 | -         | 1043    | SECTIONS V         |
| L780P010                   | 780                                                   | 10                            | 5.60              | 5A        | 1043    | Laser Diodes       |
| DL4140-001S                | 785                                                   | 25                            | 5.60              | 5A        | 1043    | Laser Diddes       |
| HL7851G <sup>a,b</sup>     | 785                                                   | 50                            | 9.00              | 9A        | 1044    | Distailed Diadea   |
| DL7140-201S                | 785                                                   | 70                            | 5.60              | 5C        | 1044    | Pigtailed Diodes   |
| L785P100                   | 785                                                   | 100                           | 5.60              | 5A        | 1044    | Fiber-Coupled      |
| LPS-785-FC                 | 785                                                   | 6.25                          | Pigtailed         | 5A        | 1056    | Laser Sources      |
| LPS-PM785-FC               | 785                                                   | 6.25                          | Pigtailed         | 5A        | 1057    |                    |
| .808P010                   | 808                                                   | 10                            | 5.60              | 5A        | 1045    | WDM Laser Sources  |
| L808P030                   | 808                                                   | 30                            | 5.60              | 5A        | 1045    |                    |
| L808P200                   | 808                                                   | 200                           | 5.60              | 5A        | 1045    | HeNe Lasers        |
| .808P1WJ <sup>c</sup>      | 808                                                   | 1WATT                         | 9.00              | 9A        | 1046    | Laser Diode        |
| DL5032-001                 | 830                                                   | 30                            | 9.00              | 9A        | 1046    | Modules            |
| HL8325G <sup>a,b</sup>     | 830                                                   | 40                            | 9.00              | 90        | 1046    | Tunable            |
| DL7032-001 <sup>a,b</sup>  | 830                                                   | 100                           | 9.00              | 9A        | 1047    | Lasers             |
| DL8142-201                 | 830                                                   | 150                           | 5.60              | 5C        | 1047    | Swept Source       |
| LPS-830-FC                 | 830                                                   | 10.0                          | Pigtailed         | 9C        | 1056    | Lasers             |
| LPS-PM830-FC               | 830                                                   | 10.0                          | Pigtailed         | 9C        | 1057 NE |                    |
| VCSEL-850                  | 850                                                   | 1.85                          | _                 | -         | 1047    | Terahertz          |
| L850P010                   | 850                                                   | 10                            | 5.60              | 5A        | 1048    |                    |
| L850P030                   | 850                                                   | 30                            | 5.60              | 5A        | 1048    |                    |
| L850P100                   | 850                                                   | 100                           | 5.60              | 5A        | 1048    |                    |
| L904P010                   | 904                                                   | 10                            | 5.60              | 5A        | 1049    | All laser          |
| L904P030                   | 904                                                   | 30                            | 5.60              | 5A        | 1049    | diodes are         |
| L915P1WJ <sup>c</sup>      | 915                                                   | 1WATT                         | 9.00              | 9A        | 1049    | extremely          |
| L975P1WJ <sup>c</sup>      | 975                                                   | 1 WATT                        | 9.00              | 9A        | 1050    | electrostatic      |
| VCSEL-980                  | 980                                                   | 1.85                          | _                 | -         | 1050    | sensitive; see     |
| L980P010                   | 980                                                   | 10                            | 5.60              | 5A        | 1050    | page 1244 for      |
| _980P030                   | 980                                                   | 30                            | 5.60              | 5A        | 1051    | our selection      |
| L9805E2P5 <sup>b</sup>     | 980                                                   | 50                            | 5.60              | 5A        | 1051    |                    |
| L980P100                   | 980                                                   | 100                           | 5.60              | 5A        | 1051    | of antistatic      |
| .980P200J <sup>c</sup>     | 980                                                   | 200                           | 9.00              | 9A        | 1052    | products.          |
| _980P300J <sup>c</sup>     | 980                                                   | 300                           | 9.00              | 9A        | 1052    |                    |
| PL980P330J                 | 980                                                   | 330                           | Pigtailed         | BFY-14PIN | 1054    |                    |
| _1060P100J <sup>c</sup>    | 1060                                                  | 100                           | 9.00              | 9A        | 1052    |                    |
| LPS-1060-FC                | 1060                                                  | 20                            | Pigtailed         | 9A        | 1056    |                    |
|                            |                                                       |                               | Č.                |           |         | OFB                |
| ML725B11F<br>LPS-1310-FC   | 1310 DFB                                              | 10                            | 5.60<br>Pigtailed | 5D<br>5D  |         |                    |
| LPS-1310-FC                | 1310                                                  | 2.5                           | Pigtailed         | -         | 1056    |                    |
|                            |                                                       |                               | 0                 |           |         | W                  |
| LPS-PM1310-FC              | 1310                                                  | 2.5                           | Pigtailed         | 5D        | 1057    |                    |
| ML925B45F                  | 1550                                                  | 6                             | 5.60              | 5D        | 1055    | APR -              |
| ML925B11F                  | 1550 DFB                                              | 10                            | 5.60              | 5D        |         | OFB                |
| LPS-1550-FC                | 1550                                                  | 1.5                           | Pigtailed         | 5D        | 1056    |                    |
| LPS-PM1550-FC              | 1550                                                  | 1.5                           | Pigtailed         | 5D        | 1057    |                    |
| LPSC-1550-FC               | 1550                                                  | 50                            | Pigtailed         | -         | 1056    |                    |
| LPSC-1625-FC               | 1625                                                  | 50                            | Pigtailed         | -         | 1056    |                    |
| Single Mode - Longitudinal | <sup>b</sup> Single Mode - Transverse <sup>C</sup> Pa | tented Device Structure: F000 | 0380501           |           |         |                    |



1. All specifications are typical; see individual items for complete details.

2. Pin code is based on laser pin configuration and is used to help select socket cable assemblies.

Note: The 5 and 9 of the pin code designate 5.6 mm or 9 mm packages, respectively.

| Light                                           |                                                                                                                                                                   |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                           |                                                                                                                                                                                                              |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                 |                                                                                                                                                                   |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                           |                                                                                                                                                                                                              |
| ▼ CHAPTERS                                      |                                                                                                                                                                   | _                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                           |                                                                                                                                                                                                              |
| Coherent Sources                                | λ = <b>40</b>                                                                                                                                                     | 5 nm, F                                                                                                                                                                                                                        | <b>P</b> = 5 r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mW, S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Single Mod                                                                                                                                                                   | e Sanyo DL31<br>Maximum Ratings (T <sub>c</sub> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                           |                                                                                                                                                                                                              |
| Incoherent Sources                              | ■Ø5.6 mm Ø<br>■ 405 nm (Ty                                                                                                                                        | 0                                                                                                                                                                                                                              | th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pin Description                                                                                                                                                              | CHARACTERISTIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SYMBOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RA                                                                                                                                                                                                                                        | TING                                                                                                                                                                                                         |
| Covega                                          | ■ 5 mW Out                                                                                                                                                        |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 laser anode<br>2 common case                                                                                                                                               | Optical Output Power (CW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                           | mW                                                                                                                                                                                                           |
| Drivers/Mounts                                  | ∎ 35 mA (Typ                                                                                                                                                      | o.) Threshold                                                                                                                                                                                                                  | Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 monitor diode anode<br>3 / 1 /                                                                                                                                             | LD Reverse Voltage<br>PD Reverse Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V <sub>R(LD)</sub><br>V <sub>R(PD)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                           | 2 V<br>30 V                                                                                                                                                                                                  |
|                                                 | CAUTION:                                                                                                                                                          |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                              | Operation Case Temperature<br>Storage Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T <sub>c</sub><br>T <sub>stg</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                           | o 60 °C<br>to 85 °C                                                                                                                                                                                          |
| Accessories                                     | ELECTROSTATIO<br>SENSITIVE                                                                                                                                        | c –                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                              | Characteristics ( $T_c = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 °C, P =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                           |                                                                                                                                                                                                              |
| ▼ SECTIONS                                      |                                                                                                                                                                   |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PIN CODE 5B                                                                                                                                                                  | CHARACTERISTIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SYMBOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TYP.                                                                                                                                                                                                                                      | MAX                                                                                                                                                                                                          |
| Laser Diodes                                    |                                                                                                                                                                   |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TIN CODE JB                                                                                                                                                                  | Threshold Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I <sub>th</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35 mA                                                                                                                                                                                                                                     | 55 mA                                                                                                                                                                                                        |
| <b>Pigtailed Diodes</b>                         | ITEM#                                                                                                                                                             | £*<br>1-5 PCS                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E*<br>PCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RMB*<br>1-5 PCS                                                                                                                                                              | Operating Current Operating Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I <sub>op</sub><br>V <sub>op</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 40 mA<br>5.0 V                                                                                                                                                                                                                            | 60 mA<br>6.0 V                                                                                                                                                                                               |
| Fiber-Coupled                                   | DL3146-151                                                                                                                                                        | £ 1,124.                                                                                                                                                                                                                       | 70 € 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ¥ 13,757.20                                                                                                                                                                  | Lasing Wavelength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\lambda_p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 395 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 405 nm                                                                                                                                                                                                                                    | 415 nm                                                                                                                                                                                                       |
| Laser Sources                                   | *For quantities over 5                                                                                                                                            |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 15,757.20                                                                                                                                                                  | Beam Divergence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | θ_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20°                                                                                                                                                                                                                                       | 24°                                                                                                                                                                                                          |
|                                                 |                                                                                                                                                                   |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                              | (FWHM)<br>Off-Axis Angle (Perpendicular)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | θ//<br>Δθ <sub>y</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6°<br>-3°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8°                                                                                                                                                                                                                                        | 14°<br>3°                                                                                                                                                                                                    |
| WDM Laser Sources                               |                                                                                                                                                                   | PRICE                                                                                                                                                                                                                          | PRICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PRICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                              | Off-Axis Angle (Parallel)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\Delta \theta_{\rm h}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3<br>2°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                         | 2°                                                                                                                                                                                                           |
|                                                 | ITEM#                                                                                                                                                             | 1-5 PCS                                                                                                                                                                                                                        | 6-10 PCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11-20 PCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DESCRIPTION                                                                                                                                                                  | Slope Efficiency ( mW/ mA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | η <sub>s</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.8                                                                                                                                                                                                                                       | _                                                                                                                                                                                                            |
| HeNe Lasers                                     | DL3146-151                                                                                                                                                        | \$ 1630.00 \$                                                                                                                                                                                                                  | 6 CALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ CALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sanyo 405 nm, 5 mW                                                                                                                                                           | Monitor Current (mA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Im                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                       | 1.0                                                                                                                                                                                                          |
| Laser Diode                                     |                                                                                                                                                                   |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ļ                                                                                                                                                                                                                                         | ļ]                                                                                                                                                                                                           |
| Modules                                         | $\lambda = 406$                                                                                                                                                   | 6 nm. F                                                                                                                                                                                                                        | 2 = 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Single Mo                                                                                                                                                                    | de Sharp GH0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | B2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                           |                                                                                                                                                                                                              |
| Tunable                                         |                                                                                                                                                                   | , -                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                           |                                                                                                                                                                                                              |
| Lasers                                          |                                                                                                                                                                   | 2 1                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                              | Maximum Ratings (T <sub>c</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 25 °C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                           |                                                                                                                                                                                                              |
| Swept Source                                    | ■ Ø5.6 mm I                                                                                                                                                       | 0                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pin Description 1 laser anode                                                                                                                                                | CHARACTERISTIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SYMBOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RA                                                                                                                                                                                                                                        | TING                                                                                                                                                                                                         |
| Lasers                                          | ■ 406 nm (Ty                                                                                                                                                      |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 common case                                                                                                                                                                | Optical Output (CW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24                                                                                                                                                                                                                                        | 5 mW                                                                                                                                                                                                         |
| Terahertz                                       | ■ 20 mW Ou                                                                                                                                                        |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 monitor diode anode                                                                                                                                                        | LD Reverse Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V <sub>R(LD)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                           | 2 V                                                                                                                                                                                                          |
|                                                 | ■ 23 mA (Ty                                                                                                                                                       | p.) Threshold                                                                                                                                                                                                                  | Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 3                                                                                                                                                                          | PD Reverse Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V <sub>R(PD)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                         | 30 V                                                                                                                                                                                                         |
|                                                 |                                                                                                                                                                   |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ġ ĝ                                                                                                                                                                          | Operation Case Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T <sub>C</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                           | to 70 °C                                                                                                                                                                                                     |
|                                                 | CAUTION:                                                                                                                                                          |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                              | Storage Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tstg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -40                                                                                                                                                                                                                                       | to 85 °C                                                                                                                                                                                                     |
| All laser<br>diodes are                         | ELECTROSTATIC<br>SENSITIVE                                                                                                                                        | NE                                                                                                                                                                                                                             | w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                              | Characteristics ( $T_c = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 °C, P =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20 mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /)                                                                                                                                                                                                                                        |                                                                                                                                                                                                              |
| extremely                                       |                                                                                                                                                                   | prod                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PIN CODE 5B                                                                                                                                                                  | CHARACTERISTIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SYMBOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TYP.                                                                                                                                                                                                                                      | MAX                                                                                                                                                                                                          |
| electrostatic                                   | · · · ·                                                                                                                                                           |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                           | 50 mA                                                                                                                                                                                                        |
| ciectiostatic                                   |                                                                                                                                                                   |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                              | Threshold Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I <sub>th</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23 mA                                                                                                                                                                                                                                     | J0 III/1                                                                                                                                                                                                     |
| consistivos soo                                 |                                                                                                                                                                   |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                              | Operating Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I <sub>op</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38 mA                                                                                                                                                                                                                                     | 60 mA                                                                                                                                                                                                        |
| sensitive; see                                  |                                                                                                                                                                   | £*                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | €*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RMB*                                                                                                                                                                         | Operating Current<br>Operating Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I <sub>op</sub><br>V <sub>op</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 38 mA<br>4.9 V                                                                                                                                                                                                                            | 60 mA<br>5.8 V                                                                                                                                                                                               |
| page 1244 for                                   | ITEM#                                                                                                                                                             | £*<br>1-5 PCS                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | €*<br>5 PCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RMB*<br>1-5 PCS                                                                                                                                                              | Operating Current<br>Operating Voltage<br>Lasing Wavelength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c c} I_{op} \\ V_{op} \\ \lambda_p \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -<br>-<br>400 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 38 mA<br>4.9 V<br>406 nm                                                                                                                                                                                                                  | 60 mA<br>5.8 V<br>413 nm                                                                                                                                                                                     |
| page 1244 for<br>our selection                  |                                                                                                                                                                   | 1-5 PCS                                                                                                                                                                                                                        | 1-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 PCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1-5 PCS                                                                                                                                                                      | Operating Current<br>Operating Voltage<br>Lasing Wavelength<br>Beam Divergence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c c} I_{op} \\ V_{op} \\ \hline \lambda_p \\ \theta_{\perp} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -<br>400 nm<br>15°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38 mA<br>4.9 V<br>406 nm<br>20°                                                                                                                                                                                                           | 60 mA<br>5.8 V<br>413 nm<br>24°                                                                                                                                                                              |
| page 1244 for                                   | GH04020B2A                                                                                                                                                        | 1-5 PCS           £         217.3                                                                                                                                                                                              | <b>1-5</b><br>5 € 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>5 PCS</b> 280,35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                              | Operating Current<br>Operating Voltage<br>Lasing Wavelength<br>Beam Divergence<br>(FWHM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{c c} I_{op} \\ V_{op} \\ \hline \lambda_p \\ \theta_{\perp} \\ \theta' \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -<br>400 nm<br>15°<br>6.0°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38 mA<br>4.9 V<br>406 nm                                                                                                                                                                                                                  | 60 mA<br>5.8 V<br>413 nm<br>24°<br>12°                                                                                                                                                                       |
| page 1244 for<br>our selection                  | GH04020B2A                                                                                                                                                        | 1-5 PCS                                                                                                                                                                                                                        | <b>1-5</b><br>5 € 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>5 PCS</b> 280,35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1-5 PCS                                                                                                                                                                      | Operating Current<br>Operating Voltage<br>Lasing Wavelength<br>Beam Divergence<br>(FWHM)<br>Off-Axis Angle (Perpendicular)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c c} I_{op} \\ V_{op} \\ \hline \lambda_p \\ \theta_{\perp} \\ \hline \theta / / \\ \Delta \theta_v \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -<br>400 nm<br>15°<br>6.0°<br>-3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38 mA<br>4.9 V<br>406 nm<br>20°<br>9.5°<br>-                                                                                                                                                                                              | 60 mA<br>5.8 V<br>413 nm<br>24°<br>12°<br>3.0                                                                                                                                                                |
| page 1244 for<br>our selection<br>of antistatic | GH04020B2A<br>*For quantities over                                                                                                                                | 1-5 PCS       £     217.3       5 pieces, please call of PRICE                                                                                                                                                                 | 5 € 2<br>PRICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 PCS<br>280,35<br>pricing.<br>PRICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>1-5 PCS</b><br>¥ 2,658.60                                                                                                                                                 | Operating Current         Operating Voltage         Lasing Wavelength         Beam Divergence         (FWHM)         Off-Axis Angle (Perpendicular)         Off-Axis Angle (Parallel)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c c} I_{op} \\ V_{op} \\ \lambda_p \\ \theta_{\perp} \\ \theta_{\prime \prime} \\ \Delta \theta_v \\ \Delta \theta_h \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -<br>400 nm<br>15°<br>6.0°<br>-3.0<br>-2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38 mA<br>4.9 V<br>406 nm<br>20°<br>9.5°<br>-<br>-                                                                                                                                                                                         | 60 mA<br>5.8 V<br>413 nm<br>24°<br>12°<br>3.0<br>2.5                                                                                                                                                         |
| page 1244 for<br>our selection<br>of antistatic | GH04020B2A                                                                                                                                                        | 1-5 PCS           £         217.3           5 pieces, please call of                                                                                                                                                           | 1-5<br>5 € 2<br>ur local office for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 PCS<br>280,35<br>pricing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1-5 PCS                                                                                                                                                                      | Operating Current         Operating Voltage         Lasing Wavelength         Beam Divergence         (FWHM)         Off-Axis Angle (Perpendicular)         Off-Axis Angle (Parallel)         Slope Efficiency (mW/mA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c c} I_{op} \\ V_{op} \\ \hline \lambda_p \\ \theta_{\perp} \\ \hline \theta / / \\ \Delta \theta_v \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -<br>400 nm<br>15°<br>6.0°<br>-3.0<br>-2.5<br>0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38 mA<br>4.9 V<br>406 nm<br>20°<br>9.5°<br>-<br>-<br>1.1                                                                                                                                                                                  | 60 mA<br>5.8 V<br>413 nm<br>24°<br>12°<br>3.0<br>2.5<br>1.6                                                                                                                                                  |
| page 1244 for<br>our selection<br>of antistatic | GH04020B2A<br>*For quantities over                                                                                                                                | 1-5 PCS           £         217.3           5 pieces, please call of           PRICE           1-5 PCS                                                                                                                         | 5         €         2           our local office for processing         0         0           PRICE         6-10 PCS         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 PCS<br>280,35<br>pricing.<br>PRICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>1-5 PCS</b><br>¥ 2,658.60                                                                                                                                                 | Operating Current         Operating Voltage         Lasing Wavelength         Beam Divergence         (FWHM)         Off-Axis Angle (Perpendicular)         Off-Axis Angle (Parallel)         Slope Efficiency (mW/mA)         Monitor Current (mA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c c} I_{op} \\ V_{op} \\ \lambda_p \\ \theta_{\perp} \\ \theta_{\prime \prime} \\ \Delta \theta_v \\ \Delta \theta_h \\ \eta_s \\ I_m \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -<br>400 nm<br>15°<br>6.0°<br>-3.0<br>-2.5<br>0.7<br>0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 38 mA<br>4.9 V<br>406 nm<br>20°<br>9.5°<br>-<br>-                                                                                                                                                                                         | 60 mA<br>5.8 V<br>413 nm<br>24°<br>12°<br>3.0<br>2.5                                                                                                                                                         |
| page 1244 for<br>our selection<br>of antistatic | GH04020B2A<br>*For quantities over 1<br>ITEM#<br>GH04020B2A                                                                                                       | 1-5 PCS       £ 217.3       5 picces, please call of       PRICE       1-5 PCS       \$ 315.00                                                                                                                                 | 1-5       5     €       uur local office for       PRICE       6-10 PCS       \$ CALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 PCS<br>280,35<br>pricing.<br>PRICE<br>11-20 PCS<br>\$ CALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1-5 PCS           ¥         2,658.60           DESCRIPTION           Sharp 406 nm, 20 mW                                                                                     | Operating Current         Operating Voltage         Lasing Wavelength         Beam Divergence         (FWHM)         Off-Axis Angle (Perpendicular)         Off-Axis Angle (Parallel)         Slope Efficiency (mW/mA)         Monitor Current (mA)         Note: All data is presented as typical unless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{tabular}{ c c c c c }\hline I_{op} & V_{op} \\ \hline V_{op} & \lambda_p \\ \hline \theta_{\perp} & \theta_{\prime\prime} \\ \hline \theta_{\prime\prime} & \Delta \theta_v \\ \hline \Delta \theta_h & \eta_s \\ \hline I_m & otherwise species \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 38 mA<br>4.9 V<br>406 nm<br>20°<br>9.5°<br>-<br>1.1<br>0.6                                                                                                                                                                                | 60 mA<br>5.8 V<br>413 nm<br>24°<br>12°<br>3.0<br>2.5<br>1.6                                                                                                                                                  |
| page 1244 for<br>our selection<br>of antistatic | GH04020B2A<br>*For quantities over 1<br>ITEM#<br>GH04020B2A                                                                                                       | 1-5 PCS       £ 217.3       5 picces, please call of       PRICE       1-5 PCS       \$ 315.00                                                                                                                                 | 1-5       5     €       uur local office for       PRICE       6-10 PCS       \$ CALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 PCS<br>280,35<br>pricing.<br>PRICE<br>11-20 PCS<br>\$ CALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1-5 PCS           ¥         2,658.60           DESCRIPTION           Sharp 406 nm, 20 mW                                                                                     | Operating Current<br>Operating Voltage<br>Lasing Wavelength<br>Beam Divergence<br>(FWHM)<br>Off-Axis Angle (Perpendicular)<br>Off-Axis Angle (Parallel)<br>Slope Efficiency (mW/mA)<br>Monitor Current (mA)<br>Note: All data is presented as typical unless<br><b>Iode Sharp GH</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c c} I_{op} \\ V_{op} \\ \lambda_p \\ \theta_{\perp} \\ \theta_{\prime\prime} \\ \Delta \theta_v \\ \Delta \theta_h \\ \eta_s \\ I_m \\ 0 \text{ otherwise speci} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -<br>400 nm<br>15°<br>6.0°<br>-3.0<br>-2.5<br>0.7<br>0.3<br>fied.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38 mA<br>4.9 V<br>406 nm<br>20°<br>9.5°<br>-<br>1.1<br>0.6                                                                                                                                                                                | 60 mA<br>5.8 V<br>413 nm<br>24°<br>12°<br>3.0<br>2.5<br>1.6                                                                                                                                                  |
| page 1244 for<br>our selection<br>of antistatic | GH04020B2A<br>*For quantities over 1<br>ITEM#<br>GH04020B2A                                                                                                       | 1-5 PCS       £ 217.3       5 picces, please call of       PRICE       1-5 PCS       \$ 315.00                                                                                                                                 | 1-5       5     €       5     €       7     PRICE       6-10 PCS       \$ CALL   P = 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 PCS           280,35           pricing.           PRICE           11-20 PCS           \$ CALL           25 m\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1-5 PCS           ¥         2,658.60           DESCRIPTION           Sharp 406 nm, 20 mW                                                                                     | Operating Current<br>Operating Voltage<br>Lasing Wavelength<br>Beam Divergence<br>(FWHM)<br>Off-Axis Angle (Perpendicular)<br>Off-Axis Angle (Parallel)<br>Slope Efficiency (mW/mA)<br>Monitor Current (mA)<br>Note: All data is presented as typical unless<br><b>Iode Sharp GH</b><br>Absolute Maximum Ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c c} I_{op} \\ V_{op} \\ \lambda_p \\ \theta_{\perp} \\ \theta_{\prime\prime} \\ \Delta \theta_v \\ \Delta \theta_h \\ \eta_s \\ I_m \\ otherwise speci$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -<br>400 nm<br>15°<br>6.0°<br>-3.0<br>-2.5<br>0.7<br>0.3<br>fted.<br><b>25</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 38 mA<br>4.9 V<br>406 nm<br>20°<br>9.5°<br>-<br>1.1<br>0.6<br>A<br>C)                                                                                                                                                                     | 60 mA<br>5.8 V<br>413 nm<br>24°<br>12°<br>3.0<br>2.5<br>1.6<br>0.9                                                                                                                                           |
| page 1244 for<br>our selection<br>of antistatic | GH04020B2A<br>*For quantities over 1<br>ITEM#<br>GH04020B2A                                                                                                       | 1-5 PCS       £ 217.3       5 picces, please call of       PRICE       1-5 PCS       \$ 315.00                                                                                                                                 | 1-5     €     2       5     €     2       9     PRICE     6       6-10 PCS     \$       \$     CALL   P = 12 Pin D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PRCE     11-20 PCS     CALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1-5 PCS           ¥         2,658.60           DESCRIPTION           Sharp 406 nm, 20 mW                                                                                     | Operating Current<br>Operating Voltage<br>Lasing Wavelength<br>Beam Divergence<br>(FWHM)<br>Off-Axis Angle (Perpendicular)<br>Off-Axis Angle (Parallel)<br>Slope Efficiency (mW/mA)<br>Monitor Current (mA)<br>Note: All data is presented as typical unless<br><b>Iode Sharp GH</b><br>Absolute Maximum Ra<br>CHARACTERISTIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c c} I_{op} \\ V_{op} \\ \lambda_p \\ \theta_{\perp} \\ \theta_{\prime\prime} \\ \Delta \theta_v \\ \Delta \theta_h \\ \eta_s \\ I_m \\ otherwise speci$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 38 mA<br>4.9 V<br>406 nm<br>20°<br>9.5°<br>-<br>1.1<br>0.6<br>A<br>C)<br>R <sup>A</sup>                                                                                                                                                   | 60 mA<br>5.8 V<br>413 nm<br>24°<br>12°<br>3.0<br>2.5<br>1.6<br>0.9<br>XTING                                                                                                                                  |
| page 1244 for<br>our selection<br>of antistatic | GH04020B2A<br>*For quantities over :<br>ITEM#<br>GH04020B2A<br>$\lambda = 400$<br>CACTION:<br>ELECTROSTATIC                                                       | 1-5 PCS       £ 217.3       5 picces, please call of       PRICE       1-5 PCS       \$ 315.00                                                                                                                                 | 1-5       5     €       5     €       9     2       PRICE     6-10 PCS       \$ CALL   P = 12       Pin D       1     las                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 PCS           280,35           pricing.           PRICE           11-20 PCS           \$ CALL           25 m\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1-5 PCS           ¥         2,658.60           DESCRIPTION           Sharp 406 nm, 20 mW                                                                                     | Operating Current<br>Operating Voltage<br>Lasing Wavelength<br>Beam Divergence<br>(FWHM)<br>Off-Axis Angle (Perpendicular)<br>Off-Axis Angle (Parallel)<br>Slope Efficiency (mW/mA)<br>Monitor Current (mA)<br>Note: All data is presented as typical unless<br><b>Iodee Sharp GH</b><br>Absolute Maximum Ra<br>CHARACTERISTIC<br>Optical Output Power (CW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c c} I_{op} \\ V_{op} \\ \lambda_p \\ \theta_{\perp} \\ \theta_{\prime\prime} \\ \Delta \theta_v \\ \Delta \theta_h \\ \eta_s \\ I_m \\ otherwise speci$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 38 mA<br>4.9 V<br>406 nm<br>20°<br>9.5°<br>-<br>1.1<br>0.6<br>(C)<br>RA<br>15                                                                                                                                                             | 60 mA<br>5.8 V<br>413 nm<br>24°<br>12°<br>3.0<br>2.5<br>1.6<br>0.9<br>MTING<br>0 mW                                                                                                                          |
| page 1244 for<br>our selection<br>of antistatic | GH04020B2A         *For quantities over         ITEM#         GH04020B2A         λ = 400         CACTON:                                                          | 1-5 PCS       £ 217.3       5 picces, please call of       PRICE       1-5 PCS       \$ 315.00                                                                                                                                 | 1-5     €     2       5     €     2       uur local office for p       PRICE       6-10 PCS       \$ CALL   P = 12 Pin D 1 las 2 co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5 PCS       280,35       pricing.       PRICE       11-20 PCS       \$ CALL       25 m\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-5 PCS<br>¥ 2,658.60<br>DESCRIPTION<br>Sharp 406 nm, 20 mW<br><b>N, Single N</b><br>↓ 3<br>↓ 4                                                                              | Operating Current<br>Operating Voltage<br>Lasing Wavelength<br>Beam Divergence<br>(FWHM)<br>Off-Axis Angle (Perpendicular)<br>Off-Axis Angle (Parallel)<br>Slope Efficiency (mW/mA)<br>Monitor Current (mA)<br>Note: All data is presented as typical unless<br><b>Iodee Sharp GH</b><br>Absolute Maximum Ra<br>CHARACTERISTIC<br>Optical Output Power (CW)<br>LD Reverse Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c c} I_{op} \\ V_{op} \\ \lambda_p \\ \theta_{\perp} \\ \theta_{\prime\prime} \\ \Delta \theta_v \\ \Delta \theta_h \\ \eta_s \\ I_m \\ otherwise speci$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -<br>400 nm<br>15°<br>6.0°<br>-3.0<br>-2.5<br>0.7<br>0.3<br>fred.<br>55A2<br>symbol<br>P <sub>o</sub><br>V <sub>R(PD)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38 mA<br>4.9 V<br>406 nm<br>20°<br>9.5°<br>-<br>1.1<br>0.6<br>A<br>C)<br>R4                                                                                                                                                               | 60 mA<br>5.8 V<br>413 nm<br>24°<br>12°<br>3.0<br>2.5<br>1.6<br>0.9<br>WIING<br>0 mW<br>2 V                                                                                                                   |
| page 1244 for<br>our selection<br>of antistatic | GH04020B2A<br>*For quantities over :<br>ITEM#<br>GH04020B2A<br>$\lambda = 400$<br>CACTION:<br>ELECTROSTATIC                                                       | 1-5 PCS       £ 217.3       5 picces, please call of       PRICE       1-5 PCS       \$ 315.00                                                                                                                                 | 1-5     €     2       5     €     2       uur local office for p       PRICE       6-10 PCS       \$ CALL   P = 12 Pin D 1 las 2 co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PRICE<br>11-20 PCS<br>\$ CALL<br>285 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1-5 PCS<br>¥ 2,658.60<br>DESCRIPTION<br>Sharp 406 nm, 20 mW<br><b>N, Single N</b><br>                                                                                        | Operating Current         Operating Voltage         Lasing Wavelength         Beam Divergence         (FWHM)         Off-Axis Angle (Perpendicular)         Off-Axis Angle (Parallel)         Slope Efficiency (mW/mA)         Monitor Current (mA)         Note: All data is presented as typical unless         Iodde Sharp GH         Absolute Maximum Ra         CHARACTERISTIC         Optical Output Power (CW)         LD Reverse Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c c} I_{op} \\ V_{op} \\ \lambda_p \\ \theta_{\perp} \\ \theta_{\prime\prime} \\ \Delta \theta_v \\ \Delta \theta_h \\ \eta_s \\ I_m \\ otherwise speci$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -<br>400 nm<br>15°<br>6.0°<br>-3.0<br>-2.5<br>0.7<br>0.3<br>fied.<br><b>55A2</b><br><b>SYMBOL</b><br>P <sub>0</sub><br>V <sub>R(PD)</sub><br>V <sub>R(PD)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 38 mA<br>4.9 V<br>406 nm<br>20°<br>9.5°<br>-<br>-<br>1.1<br>0.6<br><b>A</b><br>(C)<br><b>R</b>                                                                                                                                            | 60 mA<br>5.8 V<br>413 nm<br>24°<br>12°<br>3.0<br>2.5<br>1.6<br>0.9<br>XTING<br>0 mW<br>2 V<br>30 V                                                                                                           |
| page 1244 for<br>our selection<br>of antistatic | GH04020B2A<br>*For quantities over :<br>ITEM#<br>GH04020B2A<br>$\lambda = 400$<br>CACTION:<br>ELECTROSTATIC                                                       | 1-5 PCS       £ 217.3       5 picces, please call of       PRICE       1-5 PCS       \$ 315.00                                                                                                                                 | 1-5     €     2       5     €     2       uur local office for p       PRICE       6-10 PCS       \$ CALL   P = 12 Pin D 1 las 2 co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PRICE<br>11-20 PCS<br>\$ CALL<br>285 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1-5 PCS<br>¥ 2,658.60<br>DESCRIPTION<br>Sharp 406 nm, 20 mW<br>N, Single N<br>anode 0, pp                                                                                    | Operating Current<br>Operating Voltage<br>Lasing Wavelength<br>Beam Divergence<br>(FWHM)<br>Off-Axis Angle (Perpendicular)<br>Off-Axis Angle (Parallel)<br>Slope Efficiency (mW/mA)<br>Monitor Current (mA)<br>Note: All data is presented as typical unless<br><b>Iodee Sharp GH</b><br>Absolute Maximum Ra<br>CHARACTERISTIC<br>Optical Output Power (CW)<br>ID Reverse Voltage<br>PD Reverse Voltage<br>Operation Case Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c c} I_{op} \\ V_{op} \\ \lambda_p \\ \theta_{\perp} \\ \theta_{\prime\prime} \\ \Delta \theta_v \\ \Delta \theta_h \\ \eta_s \\ I_m \\ otherwise speci$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} - \\ - \\ 400 \text{ nm} \\ 15^{\circ} \\ 6.0^{\circ} \\ -3.0 \\ -2.5 \\ 0.7 \\ 0.3 \\ \hline \\ 0.3 \\ \hline \\ \textbf{fred.} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 38 mA<br>4.9 V<br>406 nm<br>20°<br>9.5°<br>-<br>1.1<br>0.6<br><b>A</b><br><b>C</b><br><b>C</b><br><b>C</b>                                                                                                                                | 60 mA<br>5.8 V<br>413 nm<br>24°<br>12°<br>3.0<br>2.5<br>1.6<br>0.9<br>XTING<br>0 mW<br>2 V<br>30 V<br>to 70 °C                                                                                               |
| page 1244 for<br>our selection<br>of antistatic | $\frac{\text{GH04020B2A}}{\text{*For quantities over }}$ $\frac{\text{ITEM#}}{\text{GH04020B2A}}$ $\lambda = 400$ $\frac{\lambda}{\text{CACUTON:}}$ ELECTROSTATIC | 1-5 PCS         £ 217.3         5 pieces, please call of <b>PRICE</b> 1-5 PCS         \$ 315.00                                                                                                                                | 1-5         5       €         2       2         PRICE       6-10 PCS         \$ CALL          P = 122       Pin D         1       las         2       co         3       m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PRCE     11-20 PCS     CALL     CALL     Some anode     mescription     ser anode     mmon case     onitor diode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1-5 PCS<br>¥ 2,658.60<br>DESCRIPTION<br>Sharp 406 nm, 20 mW<br>N, Single N<br>anode 0, pp                                                                                    | Operating Current<br>Operating Voltage<br>Lasing Wavelength<br>Beam Divergence<br>(FWHM)<br>Off-Axis Angle (Perpendicular)<br>Off-Axis Angle (Parallel)<br>Slope Efficiency (mW/mA)<br>Monitor Current (mA)<br>Note: All data is presented as typical unless<br><b>Iodee Sharp GH</b><br>Absolute Maximum Ra<br>CHARACTERISTIC<br>Optical Output Power (CW)<br>LD Reverse Voltage<br>PD Reverse Voltage<br>Operation Case Temperature<br>Storage Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c c} I_{op} \\ V_{op} \\ \lambda_p \\ \theta_{\perp} \\ \theta_{\prime\prime} \\ \Delta \theta_v \\ \Delta \theta_h \\ \eta_s \\ I_m \\ otherwise species \\ \textbf{O412} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 38 mA<br>4.9 V<br>406 nm<br>20°<br>9.5°<br>-<br>1.1<br>0.6<br><b>A</b><br><b>C)</b><br><b>R</b><br><b>A</b><br>15<br>-10<br>-40                                                                                                           | 60 mA<br>5.8 V<br>413 nm<br>24°<br>12°<br>3.0<br>2.5<br>1.6<br>0.9<br>XTING<br>0 mW<br>2 V<br>30 V                                                                                                           |
| page 1244 for<br>our selection<br>of antistatic | GH04020B2A<br>*For quantities over :<br>ITEM#<br>GH04020B2A<br>$\lambda = 400$<br>CACHON:<br>ELECTROSTATIC<br>SENSITIVE                                           | 1-5 PCS         £ 217.3         5 pieces, please call of <b>PRICE</b> 1-5 PCS         \$ 315.00                                                                                                                                | 1-5         5       €         5       €         9       1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PRCE     11-20 PCS     CALL     S CALL     CS m     escription     ser anode     mmon case     onitor diode     NEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1-5 PCS<br>¥ 2,658.60<br>DESCRIPTION<br>Sharp 406 nm, 20 mW<br>N, Single N<br>anode 0, pp                                                                                    | Operating Current<br>Operating Voltage<br>Lasing Wavelength<br>Beam Divergence<br>(FWHM)<br>Off-Axis Angle (Perpendicular)<br>Off-Axis Angle (Parallel)<br>Slope Efficiency (mW/mA)<br>Monitor Current (mA)<br>Note: All data is presented as typical unless<br><b>IOCLE Sharp GH</b><br>Absolute Maximum Ra<br>CHARACTERISTIC<br>Optical Output Power (CW)<br>ID Reverse Voltage<br>PD Reverse Voltage<br>Operation Case Temperature<br>Storage Temperature<br>Characteristics (T <sub>c</sub> = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{c c} I_{op} \\ V_{op} \\ \lambda_{p} \\ \theta_{\perp} \\ \theta_{\prime\prime} \\ \Delta\theta_{v} \\ \Delta\theta_{v} \\ \Delta\theta_{h} \\ \eta_{s} \\ I_{m} \\ otherwise speci \\ \textbf{O4112} \\ \textbf{O4152} \\ \textbf{O4152} \\ \textbf{O455} \\ \textbf{O56} \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} - \\ - \\ 400 \text{ nm} \\ 15^{\circ} \\ 6.0^{\circ} \\ -3.0 \\ -2.5 \\ 0.7 \\ 0.3 \\ \text{field} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38 mA<br>4.9 V<br>406 nm<br>20°<br>9.5°<br>-<br>1.1<br>0.6<br><b>A</b><br>C)<br><b>R</b><br><b>A</b><br>-<br>15<br>-<br>10<br>-40<br><b>V</b>                                                                                             | 60 mA<br>5.8 V<br>413 nm<br>24°<br>12°<br>3.0<br>2.5<br>1.6<br>0.9<br>VITING<br>0 mW<br>2 V<br>30 V<br>to 70 °C<br>to 85 °C                                                                                  |
| page 1244 for<br>our selection<br>of antistatic | GH04020B2A<br>*For quantities over :<br>ITEM#<br>GH04020B2A<br>$\lambda = 40$<br>CACIDN:<br>ELECTROSTATIC<br>SENSITIVE<br>Ø 5.6 mm<br>125 mW                      | 1-5 PCS         £ 217.3         5 pieces, please call of <b>PRICE</b> 1-5 PCS         \$ 315.00 <b>6 nm, I</b> Package Output Powee                                                                                            | 1-5         5       €         5       €         7       PRICE         6-10 PCS       \$         \$       CALL         P = 12       1         1       las         2       coo         3       m         r (CW)       r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PRCE     11-20 PCS     CALL     S CALL     CS m     escription     ser anode     mmon case     onitor diode     NEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1-5 PCS<br>¥ 2,658.60<br>DESCRIPTION<br>Sharp 406 nm, 20 mW<br>N, Single N<br>anode 0, pp                                                                                    | Operating Current         Operating Voltage         Lasing Wavelength         Beam Divergence         (FWHM)         Off-Axis Angle (Perpendicular)         Off-Axis Angle (Parallel)         Slope Efficiency (mW/mA)         Monitor Current (mA)         Note: All data is presented as typical unless         EOGE Sharp GH         Absolute Maximum Ra         CHARACTERISTIC         Optical Output Power (CW)         ID Reverse Voltage         PD Reverse Voltage         Operation Case Temperature         Storage Temperature         Characteristics (T <sub>c</sub> = 2         CHARACTERISTIC                                                                                                                                                                                                                                                                                                                                                                                                                                             | $     \begin{array}{c}       I_{op} \\       V_{op} \\       \lambda_{p} \\       \theta_{\perp} \\       \theta_{\prime \prime} \\       \Delta \theta_{v} \\       \Delta \theta_{v} \\       \Delta \theta_{h} \\       \eta_{s} \\       I_{m} \\       otherwise speciend \\       0412 \\       tings (T_{c} \\       05) \\       5 ^{\circ}C, P = \\       SYMBOL $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c c} - & - & \\ & 400 \text{ nm} \\ 15^{\circ} & 6.0^{\circ} \\ & -3.0 & \\ & -2.5 & \\ & 0.3 & \\ & -2.5 & \\ & 0.3 & \\ & & \\ & & \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38 mA<br>4.9 V<br>406 nm<br>20°<br>9.5°<br>-<br>1.1<br>0.6<br><b>A</b><br>C)<br><b>R</b><br><b>A</b><br>C)<br><b>R</b><br><b>A</b><br>(C)<br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b> | 60 mA<br>5.8 V<br>413 nm<br>24°<br>12°<br>3.0<br>2.5<br>1.6<br>0.9<br>WTING<br>0 mW<br>2 V<br>30 V<br>to 70 °C<br>to 85 °C<br>MAX                                                                            |
| page 1244 for<br>our selection<br>of antistatic | GH04020B2A<br>*For quantities over :<br>ITEM#<br>GH04020B2A<br>$\lambda = 400$<br>CACHON:<br>ELECTROSTATIC<br>SENSITIVE                                           | 1-5 PCS         £ 217.3         5 pieces, please call of <b>PRICE</b> 1-5 PCS         \$ 315.00 <b>6 nm, I</b> Package Output Powee                                                                                            | 1-5         5       €         5       €         7       PRICE         6-10 PCS       \$         \$       CALL         P = 12       1         1       las         2       coo         3       m         r (CW)       r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PRCE     11-20 PCS     CALL     S CALL     CS m     escription     ser anode     mmon case     onitor diode     NEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1-5 PCS<br>¥ 2,658.60<br>DESCRIPTION<br>Sharp 406 nm, 20 mW<br>N, Single N<br>anode 0, pp                                                                                    | Operating Current         Operating Voltage         Lasing Wavelength         Beam Divergence         (FWHM)         Off-Axis Angle (Perpendicular)         Off-Axis Angle (Perpendicular)         Off-Axis Angle (Perpendicular)         Off-Axis Angle (Parallel)         Slope Efficiency (mW/mA)         Monitor Current (mA)         Note: All data is presented as typical unless         IOCE Sharp GH         Absolute Maximum Ra         CHARACTERISTIC         Optical Output Power (CW)         LD Reverse Voltage         Operation Case Temperature         Storage Temperature         Characteristics (T <sub>c</sub> = 2         CHARACTERISTIC         Threshold Current                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{c c} I_{op} \\ V_{op} \\ \lambda_{p} \\ \theta_{\perp} \\ \theta_{\prime\prime} \\ \Delta \theta_{v} \\ \Delta \theta_{v} \\ \Delta \theta_{v} \\ I_{m} \\ otherwise species \\ \textbf{O412} \\ O41$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} - \\ - \\ 400 \text{ nm} \\ 15^{\circ} \\ 6.0^{\circ} \\ -3.0 \\ -2.5 \\ 0.7 \\ 0.3 \\ \text{field} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38 mA<br>4.9 V<br>406 nm<br>20°<br>9.5°<br>-<br>1.1<br>0.6<br>(C)<br>(R4<br>15<br>-<br>15<br>-<br>15<br>-<br>15<br>-<br>10<br>-40<br>(V)<br>TYP.<br>35 mA                                                                                 | 60 mA<br>5.8 V<br>413 nm<br>24°<br>12°<br>3.0<br>2.5<br>1.6<br>0.9<br><b>XTING</b><br>0 mW<br>2 V<br>30 V<br>to 70 °C<br>to 85 °C<br><b>MAX</b><br>50 mA                                                     |
| page 1244 for<br>our selection<br>of antistatic | GH04020B2A<br>*For quantities over :<br>ITEM#<br>GH04020B2A<br>$\lambda = 40$<br>CACIDN:<br>ELECTROSTATIC<br>SENSITIVE<br>Ø 5.6 mm<br>125 mW                      | 1-5 PCS         £ 217.3         5 pieces, please call of <b>PRICE</b> 1-5 PCS         \$ 315.00 <b>6 nm, I</b> Package Output Powee                                                                                            | 1-5         5       €         5       €         7       PRICE         6-10 PCS       \$         \$       CALL         P = 12       1         1       las         2       coo         3       m         r (CW)       r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PRCE     11-20 PCS     CALL     S CALL     CS m     escription     ser anode     mmon case     onitor diode     NEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1-5 PCS<br>¥ 2,658.60<br>DESCRIPTION<br>Sharp 406 nm, 20 mW<br>N, Single N<br>anode 0, pp                                                                                    | Operating Current         Operating Voltage         Lasing Wavelength         Beam Divergence         (FWHM)         Off-Axis Angle (Perpendicular)         Off-Axis Angle (Parallel)         Slope Efficiency (mW/mA)         Monitor Current (mA)         Note: All data is presented as typical unless         EOGE Sharp GH         Absolute Maximum Ra         CHARACTERISTIC         Optical Output Power (CW)         ID Reverse Voltage         PD Reverse Voltage         Operation Case Temperature         Storage Temperature         Characteristics (T <sub>c</sub> = 2         CHARACTERISTIC                                                                                                                                                                                                                                                                                                                                                                                                                                             | $I_{op}$ $V_{op}$ $\lambda_{p}$ $\theta_{\perp}$ $\theta_{\prime\prime}$ $\Delta\theta_{v}$ $\Delta\theta_{v}$ $\Delta\theta_{h}$ $\eta_{s}$ $I_{m}$ otherwise specified of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c c} - & - \\ 400 \text{ nm} \\ 15^{\circ} \\ 6.0^{\circ} \\ -3.0 \\ -2.5 \\ 0.7 \\ 0.3 \\ \text{field} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38 mA<br>4.9 V<br>406 nm<br>20°<br>9.5°<br>-<br>1.1<br>0.6<br><b>A</b><br>C)<br><b>R</b><br><b>A</b><br>C)<br><b>R</b><br><b>A</b><br>(C)<br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b> | 60 mA<br>5.8 V<br>413 nm<br>24°<br>12°<br>3.0<br>2.5<br>1.6<br>0.9<br>WTING<br>0 mW<br>2 V<br>30 V<br>to 70 °C<br>to 85 °C<br>MAX                                                                            |
| page 1244 for<br>our selection<br>of antistatic | GH04020B2A<br>*For quantities over :<br>ITEM#<br>GH04020B2A<br>$\lambda = 40$<br>CACIDN:<br>ELECTROSTATIC<br>SENSITIVE<br>Ø 5.6 mm<br>125 mW                      | 1-5 PCS         £ 217.3         5 pieces, please call of         PRICE         1-5 PCS         \$ 315.00         6 nm, I         Package         Output Powee         yp.) Monitor                                             | 1-5         5       €         5       €         7       PRICE         6-10 PCS       \$         \$       CALL         P       =       12         Pin D       1       2 co         3       m         r (CW)       Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PRCE     11-20 PCS     CALL     S CALL     CS m     escription     ser anode     mmon case     onitor diode     NEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1-5 PCS<br>¥ 2,658.60<br>DESCRIPTION<br>Sharp 406 nm, 20 mW<br>N, Single N<br>anode<br>C LD 0 PD<br>PIN CODE 5B                                                              | Operating Current         Operating Voltage         Lasing Wavelength         Beam Divergence         (FWHM)         Off-Axis Angle (Perpendicular)         Off-Axis Angle (Perpendicular)         Off-Axis Angle (Parallel)         Slope Efficiency (mW/mA)         Monitor Current (mA)         Note: All data is presented as typical unless <b>IOCEE Sharp GH</b> Absolute Maximum Ra         CHARACTERISTIC         Optical Output Power (CW)         LD Reverse Voltage         PD Reverse Voltage         Operation Case Temperature         Storage Temperature         Characteristics (T <sub>C</sub> = 2         CHARACTERISTIC         Threshold Current         Operating Current                                                                                                                                                                                                                                                                                                                                                          | $I_{op}$ $V_{op}$ $\lambda_{p}$ $\theta_{\perp}$ $\theta_{\prime\prime}$ $\Delta\theta_{v}$ $\Delta\theta_{v}$ $\Delta\theta_{h}$ $\eta_{s}$ $I_{m}$ otherwise specified of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c c} - & - \\ 400 \text{ nm} \\ 15^{\circ} \\ 6.0^{\circ} \\ -3.0 \\ -2.5 \\ 0.7 \\ 0.3 \\ \text{fed.} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38 mA<br>4.9 V<br>406 nm<br>20°<br>9.5°<br>-<br>1.1<br>0.6<br><b>A</b><br><b>C</b> )<br><b>R</b><br><b>A</b><br><b>C</b> )<br><b>R</b><br><b>A</b><br><b>C</b> )<br><b>TYP</b><br>35 mA<br>125 mA                                         | 60 mA<br>5.8 V<br>413 nm<br>24°<br>12°<br>3.0<br>2.5<br>1.6<br>0.9<br>WING<br>0 mW<br>2 V<br>30 V<br>to 70 °C<br>to 85 °C<br>MAX<br>50 mA<br>155 mA                                                          |
| page 1244 for<br>our selection<br>of antistatic | GH04020B2A<br>*For quantities over :<br>ITEM#<br>GH04020B2A<br>$\lambda = 40$<br>CACIDN:<br>ELECTROSTATIC<br>SENSITIVE<br>Ø 5.6 mm<br>125 mW                      | 1-5 PCS         £ 217.3         5 pieces, please call of <b>PRICE</b> 1-5 PCS         \$ 315.00 <b>6 nm, I</b> Package Output Powee                                                                                            | 1-5         5       €         5       €         7       PRICE         6-10 PCS       \$         \$       CALL         P       =       12         Pin D       1       12         2       200       3         3       m       14         r       (CW)       Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PRCS<br>280,35<br>pricing.<br>PRICE<br>11-20 PCS<br>\$ CALL<br>25 m<br>Rescription<br>ser anode<br>ommon case<br>onitor diode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-5 PCS<br>¥ 2,658.60<br>DESCRIPTION<br>Sharp 406 nm, 20 mW<br>N, Single N<br>anode 0, pp                                                                                    | Operating Current         Operating Voltage         Lasing Wavelength         Beam Divergence         (FWHM)         Off-Axis Angle (Perpendicular)         Off-Axis Angle (Parallel)         Slope Efficiency (mW/mA)         Monitor Current (mA)         Note: All data is presented as typical unless <b>IODEE Sharp GH</b> Absolute Maximum Ra         CHARACTERISTIC         Operation Case Temperature         Storage Temperature         Characteristics (T <sub>C</sub> = 2         CHARACTERISTIC         Threshold Current         Operating Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c c} I_{op} \\ V_{op} \\ \lambda_{p} \\ \theta_{\perp} \\ \theta_{\prime\prime} \\ \Delta \theta_{v} \\ \Delta \theta_{h} \\ \eta_{s} \\ I_{m} \\ \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c c} - & - \\ 400 \text{ nm} \\ 15^{\circ} \\ 6.0^{\circ} \\ -3.0 \\ -2.5 \\ 0.7 \\ 0.3 \\ \text{fed.} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38 mA<br>4.9 V<br>406 nm<br>20°<br>9.5°<br>-<br>1.1<br>0.6<br><b>A</b><br><b>C</b><br><b>C</b><br><b>R</b><br><b>A</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b>                    | 60 mA<br>5.8 V<br>413 nm<br>24°<br>12°<br>3.0<br>2.5<br>1.6<br>0.9<br><b>XTING</b><br>0 mW<br>2 V<br>30 V<br>to 70 °C<br>to 85 °C<br><b>MAX</b><br>50 mA<br>155 mA<br>0.5                                    |
| page 1244 for<br>our selection<br>of antistatic | GH04020B2A<br>*For quantities over 1<br>ITEM#<br>GH04020B2A<br>$\lambda = 400$<br>caernov:<br>electrostanc<br>sensitive<br>0.6 mm<br>I25 mW<br>0.6 mA (T<br>ITEM# | 1-5 PCS         £ 217.3         5 pieces, please call of         PRICE         1-5 PCS         \$ 315.00         6 nm, I         Package         Output Powe         yp.) Monitor         £*         1-5 PCS                   | Image: system of the syste | PRCS<br>280,35<br>pricing.<br>PRICE<br>11-20 PCS<br>\$ CALL<br>25 m<br>escription<br>ser anode<br>ommon case<br>onitor diode<br>NEW<br>product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1-5 PCS         ¥       2,658.60         DESCRIPTION         Sharp 406 nm, 20 mW         N, Single N         anode         C       LD         D       PD         PIN CODE 5B | Operating Current         Operating Voltage         Lasing Wavelength         Beam Divergence         (FWHM)         Off-Axis Angle (Perpendicular)         Off-Axis Angle (Parallel)         Slope Efficiency (mW/mA)         Monitor Current (mA)         Note: All data is presented as typical unless <b>Iodde Sharp GH</b> Absolute Maximum Ra         CHARACTERISTIC         Optical Output Power (CW)         LD Reverse Voltage         PD Reverse Voltage         Operation Case Temperature         Storage Temperature         Characteristics (T <sub>c</sub> = 2         CHARACTERISTIC         Threshold Current         Operating Current         Monitor Current         Operating Voltage         Lasing Wavelength         Beam Divergence                                                                                                                                                                                                                                                                                             | $\begin{array}{c c} I_{op} \\ V_{op} \\ \lambda_{p} \\ \theta_{\perp} \\ \theta_{\prime\prime} \\ \Delta \theta_{\nu} \\ \Delta \theta_{h} \\ \eta_{s} \\ I_{m} \\ otherwise species \\ \hline 0412 \\ \hline 05 \ ^{\circ}C, P = \\ \hline \\ SYMBOL \\ I_{th} \\ I_{op} \\ I_{m} \\ V_{op} \\ \lambda_{p} \\ \theta_{\perp} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c c} - \\ - \\ 400 \text{ nm} \\ 15^{\circ} \\ 6.0^{\circ} \\ -3.0 \\ -2.5 \\ 0.7 \\ 0.3 \\ \hline \end{array}$ fied. $\begin{array}{c c} \\ \textbf{5A22} \\ \textbf{5A22} \\ \textbf{5A22} \\ \textbf{5MBOL} \\ \textbf{5A22} \\$ | 38 mA<br>4.9 V<br>406 nm<br>20°<br>9.5°<br>-<br>1.1<br>0.6<br><b>A</b><br>(C)<br><b>R</b><br><b>A</b><br>15<br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b>                               | 60 mA<br>5.8 V<br>413 nm<br>24°<br>12°<br>3.0<br>2.5<br>1.6<br>0.9<br>XTING<br>0 mW<br>2 V<br>30 V<br>to 70 °C<br>to 85 °C<br>MAX<br>50 mA<br>155 mA<br>0.5<br>6.4 V<br>413 nm<br>24.5°                      |
| page 1244 for<br>our selection<br>of antistatic | GH04020B2A<br>*For quantities over 1<br>ITEM#<br>GH04020B2A<br>$\lambda = 400$<br>CACHON:<br>ELECTROSTATIC<br>SENSITIVE<br>0.6 mM (T<br>ITEM#<br>GH04125A2A       | 1-5 PCS         £ 217.3         5 pieces, please call of         PRICE         1-5 PCS         \$ 315.00         6 nm, I         Package         Output Power         yp.) Monitor         £*         1-5 PCS         £ 868.80 | I-5       €       1.5         5       €       1.5         9RICE       6-10 PCS       \$         6-10 PCS       \$       CALL         P =       12       1         1       las       2         2       2       3         3       mc       1         1       las       2         2       co       3       mc         1       las       1       las         2       co       3       mc         1       las       las       las         2       co       3       mc         1       las       las       las         2       co       3       mc         1       las       las       las                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PCS     280,35     pricing.     PRICE     11-20 PCS     \$ CALL     CALL     CS m      cser anode     mmon case     onitor diode      NEW     product      Product      cs     a     cs     contact     cs     cs     contact     cs     cs     contact     cs     cs     cs     contact     cs     cs     cs     cs     contact     cs     cs | 1-5 PCS<br>¥ 2,658.60<br>DESCRIPTION<br>Sharp 406 nm, 20 mW<br><b>N, Single N</b><br>anode 0, 20 mV<br>PIN CODE 5B                                                           | Operating Current         Operating Voltage         Lasing Wavelength         Beam Divergence         (FWHM)         Off-Axis Angle (Perpendicular)         Monitor Current (mA)         Note: All data is presented as typical unless <b>IOCLE Sharp GH</b> Absolute Maximum Ra <b>CHARACTERISTIC</b> Optical Output Power (CW)         LD Reverse Voltage         Operation Case Temperature         Storage Temperature <b>Characteristics (T<sub>c</sub> = 2 CHARACTERISTIC</b> Threshold Current         Operating Current         Monitor Current         Operating Voltage         Lasing Wavelength         Beam Divergence         (FWHM) | $\begin{array}{c c} I_{op} \\ V_{op} \\ \lambda_{p} \\ \theta_{\perp} \\ \theta_{\prime\prime} \\ \Delta \theta_{v} \\ \Delta \theta_{v} \\ \Delta \theta_{v} \\ \Delta \theta_{h} \\ \eta_{s} \\ I_{m} \\ otherwise special \\ \textbf{O412} \\ \textbf{O5} \\ \textbf{O412} \\ \textbf{O5} \\ \textbf{O5} \\ \textbf{O5} \\ \textbf{O5} \\ \textbf{O5} \\ \textbf{O5} \\ \textbf{O6} \\ \textbf{O6} \\ \textbf{O6} \\ \textbf{O6} \\ \textbf{O6} \\ \textbf{O7} \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c c} - & - \\ 400 \text{ nm} \\ 15^{\circ} \\ 6.0^{\circ} \\ -3.0 \\ -2.5 \\ 0.7 \\ 0.3 \\ \text{field} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38 mA<br>4.9 V<br>406 nm<br>20°<br>9.5°<br>-<br>1.1<br>0.6<br><b>A</b><br>(C)<br><b>R</b><br><b>A</b><br>15<br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b>                               | 60 mA<br>5.8 V<br>413 nm<br>24°<br>12°<br>3.0<br>2.5<br>1.6<br>0.9<br><b>XTING</b><br>0 mW<br>2 V<br>30 V<br>to 70 °C<br>to 85 °C<br><b>MAX</b><br>50 mA<br>155 mA<br>0.5<br>6.4 V<br>413 nm<br>24.5°<br>12° |
| page 1244 for<br>our selection<br>of antistatic | GH04020B2A<br>*For quantities over 1<br>ITEM#<br>GH04020B2A<br>$\lambda = 400$<br>CACHON:<br>ELECTROSTATIC<br>SENSITIVE<br>0.6 mm<br>IZ5 mW<br>0.6 mA (T<br>ITEM# | 1-5 PCS         £ 217.3         5 pieces, please call of         PRICE         1-5 PCS         \$ 315.00         6 nm, I         Package         Output Power         yp.) Monitor         £*         1-5 PCS         £ 868.80 | I-5       €       1.5         5       €       1.5         9RICE       6-10 PCS       \$         6-10 PCS       \$       CALL         P =       12       1         1       las       2         2       2       3         3       mc       1         1       las       2         2       co       3       mc         1       las       1       las         2       co       3       mc         1       las       las       las         2       co       3       mc         1       las       las       las         2       co       3       mc         1       las       las       las                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PCS     280,35     pricing.     PRICE     11-20 PCS     \$ CALL     CALL     CS m      cser anode     mmon case     onitor diode      NEW     product      Product      cs     a     cs     contact     cs     cs     contact     cs     cs     contact     cs     cs     cs     contact     cs     cs     cs     cs     contact     cs     cs | 1-5 PCS         ¥       2,658.60         DESCRIPTION         Sharp 406 nm, 20 mW         N, Single N         anode         C       LD         D       PD         PIN CODE 5B | Operating Current         Operating Voltage         Lasing Wavelength         Beam Divergence         (FWHM)         Off-Axis Angle (Perpendicular)         Monitor Current (mA)         Note: All data is presented as typical unless         IOCLE Sharp GH         Absolute Maximum Ra         CHARACTERISTIC         Optical Output Power (CW)         LD Reverse Voltage         Operation Case Temperature         Storage Temperature         Characteristics (T <sub>c</sub> = 2         CHARACTERISTIC         Threshold Current         Operating Voltage         Lasing Wavelength         Beam Divergence         (FWHM)         Off-Axis Angle (Perpendicular)                                                                                             | $\begin{array}{c c} I_{op} \\ V_{op} \\ \lambda_{p} \\ \theta_{\perp} \\ \theta_{\prime\prime} \\ \Delta \theta_{v} \\ \delta \theta_$ | $\begin{array}{c c} - \\ - \\ 400 \text{ nm} \\ 15^{\circ} \\ 6.0^{\circ} \\ -3.0 \\ -2.5 \\ 0.7 \\ 0.3 \\ \text{fed.} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38 mA<br>4.9 V<br>406 nm<br>20°<br>9.5°<br>-<br>1.1<br>0.6<br><b>A</b><br>C)<br><b>R</b><br><b>A</b><br>C)<br><b>TYP</b><br>35 mA<br>125 mA<br>125 mA<br>0.3<br>5.4 V<br>406 nm<br>19°<br>9.5°<br>-                                       | 60 mA<br>5.8 V<br>413 nm<br>24°<br>12°<br>3.0<br>2.5<br>1.6<br>0.9<br>0 mW<br>2 V<br>30 V<br>to 70 °C<br>to 85 °C<br>MAX<br>50 mA<br>155 mA<br>0.5<br>6.4 V<br>413 nm<br>24.5°<br>12°<br>3.0                 |
| page 1244 for<br>our selection<br>of antistatic | GH04020B2A<br>*For quantities over 1<br>ITEM#<br>GH04020B2A<br>$\lambda = 400$<br>CACHON:<br>ELECTROSTATIC<br>SENSITIVE<br>0.6 mM (T<br>ITEM#<br>GH04125A2A       | 1-5 PCS         £ 217.3         5 pieces, please call of         PRICE         1-5 PCS         \$ 315.00         6 nm, I         Package         Output Power         yp.) Monitor         £*         1-5 PCS         £ 868.80 | I-5       €       1.5         5       €       1.5         9RICE       6-10 PCS       \$         6-10 PCS       \$       CALL         P =       12       1         1       las       2         2       2       3         3       mc       1         1       las       2         2       co       3       mc         1       las       1       las         2       co       3       mc         1       las       las       las         2       co       3       mc         1       las       las       las         2       co       3       mc         1       las       las       las                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PCS     280,35     pricing.     PRICE     11-20 PCS     \$ CALL     CALL     CS m      cser anode     mmon case     onitor diode      NEW     product      Product      cs     a     cs     contact     cs     cs     contact     cs     cs     contact     cs     cs     cs     contact     cs     cs     cs     cs     contact     cs     cs | 1-5 PCS         ¥       2,658.60         DESCRIPTION         Sharp 406 nm, 20 mW         N, Single N         anode         C       LD         D       PD         PIN CODE 5B | Operating Current         Operating Voltage         Lasing Wavelength         Beam Divergence         (FWHM)         Off-Axis Angle (Perpendicular)         Monitor Current (mA)         Note: All data is presented as typical unless <b>IOCLE Sharp GH</b> Absolute Maximum Ra <b>CHARACTERISTIC</b> Optical Output Power (CW)         LD Reverse Voltage         Operation Case Temperature         Storage Temperature <b>Characteristics (T<sub>c</sub> = 2 CHARACTERISTIC</b> Threshold Current         Operating Current         Monitor Current         Operating Voltage         Lasing Wavelength         Beam Divergence         (FWHM) | $\begin{array}{c c} I_{op} \\ V_{op} \\ \lambda_{p} \\ \theta_{\perp} \\ \theta_{\prime\prime} \\ \Delta \theta_{v} \\ \Delta \theta_{v} \\ \Delta \theta_{v} \\ \Delta \theta_{h} \\ \eta_{s} \\ I_{m} \\ otherwise special \\ \textbf{O412} \\ \textbf{O5} \\ \textbf{O412} \\ \textbf{O5} \\ \textbf{O5} \\ \textbf{O5} \\ \textbf{O5} \\ \textbf{O5} \\ \textbf{O5} \\ \textbf{O6} \\ \textbf{O6} \\ \textbf{O6} \\ \textbf{O6} \\ \textbf{O6} \\ \textbf{O7} \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c c} - & - \\ 400 \text{ nm} \\ 15^{\circ} \\ 6.0^{\circ} \\ -3.0 \\ -2.5 \\ 0.7 \\ 0.3 \\ \text{field} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38 mA<br>4.9 V<br>406 nm<br>20°<br>9.5°<br>-<br>1.1<br>0.6<br><b>A</b><br>()<br><b>R</b><br><b>A</b><br>()<br><b>TYP</b><br>35 mA<br>125 mA<br>0.3<br>5.4 V<br>406 nm<br>19°<br>9.5°                                                      | 60 mA<br>5.8 V<br>413 nm<br>24°<br>12°<br>3.0<br>2.5<br>1.6<br>0.9<br><b>XTING</b><br>0 mW<br>2 V<br>30 V<br>to 70 °C<br>to 85 °C<br><b>MAX</b><br>50 mA<br>155 mA<br>0.5<br>6.4 V<br>413 nm<br>24.5°<br>12° |

| ITEM#      | PRICE<br>1-5 PCS | PRICE<br>6-10 PCS | PRICE<br>11-20 PCS | DESCRIPTION          |
|------------|------------------|-------------------|--------------------|----------------------|
| GH04125A2A | \$ 1259.00       | \$ CALL           | \$ CALL            | Sharp 406 nm, 125 mW |

Monitor Current (mA) I<sub>m</sub> Note: All data is presented as typical unless otherwise specified.

0.1

0.3

0.5



#### Light

Covega

#### CHAPTERS V

**Coherent Sources** 

**Incoherent Sources** 

**Drivers/Mounts** 

Accessories

Laser Diodes

**Pigtailed Diodes** 

Fiber-Coupled Laser Sources

**HeNe Lasers** Laser Diode Modules

Swept Source Lasers

Terahertz

Tunable

Lasers

WDM Laser Sources

SECTIONS V

### $\lambda$ = 635 nm, P = 3 mW, Single Mode Hitachi HL6314MG Absolute Maximum Ratings (T<sub>c</sub> = 25 °C)



Ø5.6 mm Package

ITEM# HL6314

\*For quanti

ITEM#

HL6314MG

- AlGaInP Index-Guided MQW Structure
- Single Longitudinal Mode
- Low 8 µm Astigmatism @3 mW

PRICE

1-5 PCS

\$ 31.50

High Polariz

| h Polai                                                        | rization      |       | PIN CODI      |       |   |                 |   |
|----------------------------------------------------------------|---------------|-------|---------------|-------|---|-----------------|---|
|                                                                | £*<br>1-5 PCS |       | €*<br>1-5 PCS |       |   | RMB*<br>1-5 PCS |   |
| MG                                                             | £             | 21.74 | €             | 28,04 | ¥ | 265.90          |   |
| ities over 5 pieces, please call our local office for pricing. |               |       |               |       |   |                 |   |
|                                                                |               |       |               |       |   |                 | - |

PRICE

11-20 PCS

\$ 21.11

PRICE

6-10 PCS

\$ 26.78

| Pi | n Descri  | ption       |
|----|-----------|-------------|
| 1  | monitor   | diode anode |
| 2  | commor    | n case      |
| 3  | laser cat | thode       |
|    |           |             |
|    | 1         | 3 🖌         |



E 5A

DESCRIPTI

Hitachi 635 nm,

| 1        | PD Reverse Voltage                  | V <sub>R(P</sub>      | D)        | 30 V           |    |              |  |
|----------|-------------------------------------|-----------------------|-----------|----------------|----|--------------|--|
| <u> </u> | Operation Case Temperatu            | re                    | Tc        | T <sub>c</sub> |    | -10 to 50 °C |  |
|          | Storage Temperature                 | T <sub>stş</sub>      | ;         | -40 to 85 °C   |    |              |  |
| D        | *Pulse condition: Pulse width ≤ 1   | µs, Duty $\leq 50\%$  |           |                |    |              |  |
| Ą        | Characteristics (T                  | <sub>c</sub> = 25 °C, | , P = 3 m | W)             |    |              |  |
| 1        | CHARACTERISTIC                      | SYMBOL                | MIN       | TYI            | 2  | MAX          |  |
|          | Threshold Current                   | I <sub>th</sub>       | -         | 25 mA          |    | 35 mA        |  |
|          | Operation Current                   | I <sub>op</sub>       | _         | 30 mA          |    | 42 mA        |  |
|          | Operation Voltage Vop               |                       | -         |                |    | 2.7 V        |  |
| -        | Lasing Wavelength                   | $\lambda_p$           | 630 nm    | 635 nm         |    | 640 nm       |  |
|          | Beam Divergence                     | θ//                   | 6°        | 8°             |    | 10°          |  |
| ION      | (FWHM)                              | θ⊥                    | 23°       | 309            | ,  | 39°          |  |
|          | Monitor Current                     | Im                    | 0.08 mA   | 0.15 1         | nA | 0.40 mA      |  |
| , 3 mW   | Note: All data is presented as typi | se specified.         |           |                |    |              |  |

SYMBOL

Po

Po(pulse)

V<sub>R(PD)</sub>

RATING

3 mW

5 mW\*

2 V

# $\lambda$ = 635 nm, P = 5 mW, Single Mode Hitachi HL6312G

com

3

laser cathode

- Ø9 mm Package
- AlGaInP Index-Guided MQW Structure
- Single Longitudinal Mode
- Low 6 µm Astigmatism @ 5 mW
- High Polarization Ratio >400 @ 5 mW
- 6 mW Pulsed Optical Power with a 50% Duty Cycle and a Maximum Pulse Width of 1 µs PIN CODE 9A

| ITEM#                                                                    | £*<br>1-5 PCS | €*<br>1-5 PCS | RMB*<br>1-5 PCS |  |  |
|--------------------------------------------------------------------------|---------------|---------------|-----------------|--|--|
| HL6312G                                                                  | £ 25.19       | € 32,49       | ¥ 308.06        |  |  |
| *For quantities over 5 pieces, please call our local office for pricing. |               |               |                 |  |  |

| ITEM#   | -  | RICE<br>5 PCS | -  | PRICE<br>10 PCS | <br>RICE<br>20 PCS | DESCRIPTION          | E<br>(1 |
|---------|----|---------------|----|-----------------|--------------------|----------------------|---------|
| HL6312G | \$ | 36.50         | \$ | 31.03           | \$<br>24.46        | Hitachi 635 nm, 5 mW | N       |

| Pin | Description | Maximu      |  |  |
|-----|-------------|-------------|--|--|
| 1   |             | CHARACT     |  |  |
| 2   | common case | Optical Out |  |  |

### m Ratings (T<sub>c</sub> = 25 °C)

CHARACTERISTIC

Pulsed Optical Power

LD Reverse Voltage

Optical Output Power (CW)

| CHARACTERISTIC             | SYMBOL             | RATING       |
|----------------------------|--------------------|--------------|
| Optical Output Power (CW)  | Po                 | 5 mW         |
| Pulsed Optical Power       | Po(pulse)          | 6 mW         |
| LD Reverse Voltage         | V <sub>R(PD)</sub> | 2 V          |
| PD Reverse Voltage         | V <sub>R(PD)</sub> | 30 V         |
| Operation Case Temperature | T <sub>c</sub>     | -10 to 50 °C |
| Storage Temperature        | T <sub>stg</sub>   | -40 to 85 °C |

Characteristics ( $T_{e} = 25 \ ^{\circ}C_{e}P = 5 \ mW$ )

| $(1_{c}^{2} - 2_{c}^{2} - 2_{c}^{2})$ |                      |              |        |        |  |
|---------------------------------------|----------------------|--------------|--------|--------|--|
| CHARACTERISTIC                        | SYMBOL               | MIN          | TYP.   | MAX    |  |
| Threshold Current                     | I <sub>th</sub>      | 20 mA        | 45 mA  | 70 mA  |  |
| Operation Current                     | I <sub>op</sub>      | -            | 55 mA  | 85 mA  |  |
| Operation Voltage                     | V <sub>op</sub>      | -            | -      | 2.7 V  |  |
| Lasing Wavelength                     | λ <sub>p</sub>       | 625 nm       | 635 nm | 640 nm |  |
| Beam Divergence                       | θ//                  | 5°           | 8°     | 11°    |  |
| (FWHM)                                | $\theta_{\perp}$     | 25°          | 31°    | 37°    |  |
| Monitor Current                       | Im                   | 0.2 mA       | 0.4 mA | 0.8 mA |  |
| Note: All data is presented as typ    | ical unless otherwis | se specified |        |        |  |

# $\lambda$ = 635 nm, P = 5mW, Single Mode Hitachi HL6335G



- Ø9 mm Package
- 5 mW (Min) Operating Current
- TM Mode Oscillation
- Single Longitudinal Mode

| Pi | n Description       |
|----|---------------------|
| 1  | monitor diode anode |
| 2  | common case         |
| 3  | laser cathode       |
|    |                     |
|    |                     |



PIN CODE 9A

| ITEM#   | £*      | €*      | RMB*     |  |
|---------|---------|---------|----------|--|
|         | 1-5 PCS | 1-5 PCS | 1-5 PCS  |  |
| HL6335G | £ 34.16 | € 44,06 | ¥ 417.80 |  |

For quantities over 5 pieces, please call our local office for pricing

| ITEM#   | PRICE<br>1-5 PCS | PRICE<br>6-10 PCS | PRICE<br>11-20 PCS | DESCRIPTION          |  |
|---------|------------------|-------------------|--------------------|----------------------|--|
| HL6335G | \$ 49.50         | \$ 42.08          | \$ 33.17           | Hitachi 635 nm, 5 mW |  |

| Absolute Maximum Ratings (T <sub>c</sub> = 25 °C)  |                            |           |                    |           |               |             |  |
|----------------------------------------------------|----------------------------|-----------|--------------------|-----------|---------------|-------------|--|
| CHARACTERISTIC                                     |                            |           |                    | SYMBOL    |               | RATING      |  |
| Optical Output Power                               | (CW)                       |           |                    | Po        |               | 5 mW        |  |
| Pulsed Optical Output                              | Power                      |           |                    | Po(Pulse) |               | 6 mW*       |  |
| LD Reverse Voltage                                 |                            |           | V <sub>R(LD)</sub> |           | 2 V           |             |  |
| PD Reverse Voltage                                 |                            |           | V <sub>R(PD)</sub> |           | 30 V          |             |  |
| Operation Case Temper                              | rature                     |           | Tc                 |           | - 1           | 0 to +50 °C |  |
| Storage Temperature                                |                            |           | T <sub>stg</sub>   |           | -40 to +85 °C |             |  |
| *Note: Pulse condition: Pulse                      | width $\leq 1 \ \mu s$ , c | luty = 50 | 1%                 |           |               |             |  |
| Characteristics (T <sub>c</sub> = 25 °C, P = 5 mW) |                            |           |                    |           |               |             |  |
| CHARACTERISTIC                                     | SYMBOL                     | M         | IN                 | TYP.      |               | MAX         |  |
| Optical Output Power                               | Po                         | 5 n       | νW                 | _         |               | _           |  |

| Optical Output Power           | Po                         | 5 mW      | _         | -         |
|--------------------------------|----------------------------|-----------|-----------|-----------|
| Threshold Current              | $I_{\rm th}$               | -         | 20 mA     | 30 mA     |
| Slope Efficiency               | ηs                         | 0.5 mW/mA | 0.8 mW/mA | 1.1 mW/mA |
| Operation Current              | I <sub>op</sub>            | -         | 25 mA     | 40 mA     |
| Operation Voltage              | V <sub>op</sub>            | -         | 2.4 V     | 2.7 V     |
| Lasing Wavelength              | $\lambda_{p}$              | 630 nm    | 635 nm    | 640 nm    |
| Beam Divergence                | θ//                        | 13°       | 17°       | 25°       |
| (FWHM)                         | $\theta \bot$              | 16°       | 20°       | 25°       |
| Aspect Ratio                   | $\theta \bot / \theta / /$ | _         | 1.2       | 1.5       |
| Monitor Current                | Im                         | 0.03 mA   | 0.07 mA   | 0.12 mA   |
| Note: All data is presented as |                            |           |           |           |

ote: All data is presented as typical unless otherwise specified.

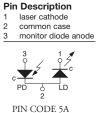
#### Light ▼ CHAPTERS

Laser Diodes **Pigtailed Diode** 

Fiber-Coupled Laser Sources

WDM Laser Sou

▼ SECTIONS


#### $\lambda$ = 635 nm, P = 5 mW, Single Mode Sanyo DL3148-025 **Coherent Sources**

#### Absolute Maximum Ratings (T<sub>c</sub> = 25 °C)

| Incoherent Sources | Absolute Maximum Ratings (1 <sub>c</sub> = 25 °C) |                    |               |  |  |  |  |
|--------------------|---------------------------------------------------|--------------------|---------------|--|--|--|--|
|                    | CHARACTERISTIC                                    | SYMBOL             | RATING        |  |  |  |  |
| Covega             | Optical Output Power                              | Po                 | 6 mW          |  |  |  |  |
|                    | LD Reverse Voltage                                | V <sub>R(LD)</sub> | 2 V           |  |  |  |  |
| Drivers/Mounts     | PD Reverse Voltage                                | V <sub>R(PD)</sub> | 30 V          |  |  |  |  |
|                    | Operating Temperature                             | Top                | -10 to +40 °C |  |  |  |  |
| Accessories        | Storage Temperature                               | T <sub>stg</sub>   | -40 to +85 °C |  |  |  |  |
|                    |                                                   |                    |               |  |  |  |  |

#### Characteristics (T<sub>c</sub> = 25 °C, P = 5 mW)

|       | CHARACTERISTIC                                                     | SYMBOL          | MIN    | TYP.   | MAX    |  |  |
|-------|--------------------------------------------------------------------|-----------------|--------|--------|--------|--|--|
|       | Threshold Current                                                  | I <sub>th</sub> | -      | 20 mA  | 35 mA  |  |  |
| s     | Operation Current                                                  | $I_{\rm op}$    | -      | 30 mA  | 45 mA  |  |  |
|       | Operation Voltage                                                  | $V_{op}$        | -      | 2.2 V  | 2.4 V  |  |  |
|       | Lasing Wavelength                                                  | $\lambda_{p}$   | 630 nm | 635 nm | 640 nm |  |  |
|       | Beam Divergence                                                    | θ//             | 6°     | 8°     | 10°    |  |  |
| urces | (FWHM)                                                             | θ⊥              | 25°    | 30°    | 35°    |  |  |
|       | Astigmatism                                                        | As              | -      | 8 µm   | -      |  |  |
|       | Monitor Current                                                    | Im              | 0.08   | 0.2    | 0.5    |  |  |
|       | Note: All data is presented as typical unless otherwise specified. |                 |        |        |        |  |  |







Ø5.6 mm Package

20 mA (Typ.) Threshold Current

2.2V (Typ.) Operating Voltage

Laser Pointer Applications

| ITEM#      | £*      | €*      | RMB*     |
|------------|---------|---------|----------|
|            | 1-5 PCS | 1-5 PCS | 1-5 PCS  |
| DL3148-025 | £ 12.63 | € 16,29 | ¥ 154.46 |

| ITEM#      | -  | RICE<br>5 PCS | RICE<br>0 PCS | <br>RICE<br>20 PCS | DESCRIPTION       |
|------------|----|---------------|---------------|--------------------|-------------------|
| DL3148-025 | \$ | 18.30         | \$<br>15.56   | \$<br>12.27        | Sanyo 635 nm, 5m₩ |

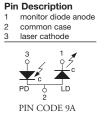
**HeNe Lasers** Laser Diode

Modules

Tunable Lasers

Swept Source Lasers

Terahertz


# $\lambda$ = 635 nm, P = 10 mW, Single Mode Hitachi HL6320G

#### Maximum Ratings (T<sub>c</sub> = 25 °C)

| CHARACTERISTIC             | SYMBOL             | RATING       |
|----------------------------|--------------------|--------------|
| Optical Output Power (CW)  | Po                 | 10 mW        |
| LD Reverse Voltage         | V <sub>R(LD)</sub> | 2 V          |
| PD Reverse Voltage         | V <sub>R(PD)</sub> | 30 V         |
| Operation Case Temperature | T <sub>C</sub>     | -10 to 50 °C |
| Storage Temperature        | Tstg               | -40 to 85 °C |

#### Characteristics ( $T_c = 25 \text{ °C}$ , P = 10 mW)

| CHARACTERISTIC                       | SYMBOL             | MIN           | TYP.    | MAX     |  |
|--------------------------------------|--------------------|---------------|---------|---------|--|
| Threshold Current                    | I <sub>th</sub>    | 20 mA         | 50 mA   | 75 mA   |  |
| Operation Current                    | I <sub>op</sub>    | -             | 70 mA   | 95 mA   |  |
| Operation Voltage                    | Vop                | -             | -       | 2.7 V   |  |
| Lasing Wavelength                    | λ <sub>p</sub>     | 625 nm        | 635 nm  | 640 nm  |  |
| Beam Divergence                      | θ//                | 5°            | 8°      | 11°     |  |
| (FWHM)                               | $\theta_{\perp}$   | 25°           | 31°     | 37°     |  |
| Monitor Current                      | Im                 | 0.05 mA       | 0.17 mA | 0.30 mA |  |
| Note: All data is presented as typic | cal unless otherwi | se specified. |         |         |  |





Ø9 mm Package

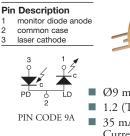
InGaAsP Index Guided Structure

10 mW CW Optical Output Power

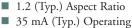
| 1-5 PCS  |
|----------|
| ¥ 603.50 |
|          |

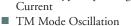
| 1 |               |          |                    |          |                     |
|---|---------------|----------|--------------------|----------|---------------------|
|   |               | PRICE    | PRICE              | PRICE    |                     |
|   | ITEM# 1-5 PCS |          | 6-10 PCS 11-20 PCS |          | DESCRIPTION         |
|   | HL6320G       | \$ 71.50 | \$ 60.78           | \$ 47.91 | Hitachi 635nm, 10mW |

# $\lambda$ = 635 nm, P = 10 mW, Single Mode Hitachi HL6344G


#### Absolute Maximum Ratings (T<sub>c</sub> = 25 °C)

| CHARACTERISTIC                                           | SYMBOL             | RATING        |
|----------------------------------------------------------|--------------------|---------------|
| Optical Output Power (CW)                                | Po                 | 10 mW         |
| Pulse Optical Output Power                               | Po(Pulse)          | 12 mW*        |
| LD Reverse Voltage                                       | V <sub>R(LD)</sub> | 2 V           |
| PD Reverse Voltage                                       | V <sub>R(PD)</sub> | 30 V          |
| Operation Case Temperature                               | T <sub>C</sub>     | -10 to +50 °C |
| Storage Temperature                                      | T <sub>stg</sub>   | -40 to +85 °C |
| Pulse condition: Pulse width $\leq 1 \mu s$ , duty = 50% |                    |               |


#### Characteristics (T<sub>c</sub> = 25 °C, P = 10 mW)


| CHARACTERISTIC    | SYMBOL                      | MIN        | TYP.       | MAX        |
|-------------------|-----------------------------|------------|------------|------------|
| Threshold Current | Ith                         | -          | 20 mA      | 35 mA      |
| Operation Current | Iop                         | -          | 35 mA      | 45 mA      |
| Operation Voltage | Vop                         | -          | 2.4 V      | 2.7 V      |
| Lasing Wavelength | λρ                          | 630 nm     | 635 nm     | 640 nm     |
| Beam Divergence   | θ//                         | 13         | 17°        | 25°        |
| (FWHM)            | $\theta \perp$              | 13         | 20°        | 25°        |
| Aspect Ratio      | $\theta \perp / \theta / /$ | -          | 1.2        | 1.5        |
| Slope Efficiency  | ηs                          | 0.5 mW/ mA | 0.8 mW/ mA | 1.2 mW/ mA |
| Monitor Current   | Im                          | 0.06 mA    | 0.14 mA    | 0.24 mA    |

Note: All data is presented as typical unless otherwise specified.



See Our Selection of VCSEL Laser **Diodes Starting** on Page 1043 Ø9 mm Package





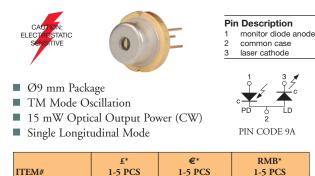
Single I

| ode Oscillation   | SENS |
|-------------------|------|
| Longitudinal Mode |      |

| ITEM#   | £*      | €*      | RMB*     |
|---------|---------|---------|----------|
|         | 1-5 PCS | 1-5 PCS | 1-5 PCS  |
| HL6344G | £ 70.81 | € 91,33 | ¥ 866.10 |

| ITEM#   | PRICE<br>1-5 PCS | PRICE<br>6-10 PCS | PRICE<br>11-20 PCS | DESCRIPTION           |
|---------|------------------|-------------------|--------------------|-----------------------|
| HL6344G | \$ 102.62        | \$ 92.36          | \$ 71.84           | Hitachi 635 nm, 10 mW |

STATIC


#### TECHNOLOGY V

#### Light

CHAPTERS V

**Coherent Sources** 

# $\lambda$ = 635 nm, P = 15 mW, Single Mode Hitachi HL6322G



| Maximum Ratings (T <sub>c</sub> = 25 °C) |                    |              |  |  |  |
|------------------------------------------|--------------------|--------------|--|--|--|
| CHARACTERISTIC                           | SYMBOL             | RATING       |  |  |  |
| Optical Output Power (CW)                | Po                 | 15 mW        |  |  |  |
| LD Reverse Voltage                       | V <sub>R(LD)</sub> | 2 V          |  |  |  |
| PD Reverse Voltage                       | V <sub>R(PD)</sub> | 30 V         |  |  |  |
| Operation Case Temperature               | T <sub>opr</sub>   | -10 to 50 °C |  |  |  |
| Storage Temperature                      | Tstg               | -40 to 85 °C |  |  |  |

#### Characteristics (T<sub>c</sub> = 25 °C, P = 15 mW)

| CHARACTERISTIC                                                     | SYMBOL          | MIN        | TYP.   | MAX        |  |  |  |  |
|--------------------------------------------------------------------|-----------------|------------|--------|------------|--|--|--|--|
| Threshold Current                                                  | Ith             | 20 mA      | 55 mA  | 70 mA      |  |  |  |  |
| Operation Current                                                  | I <sub>op</sub> | -          | 85 mA  | 100 mA     |  |  |  |  |
| Operation Voltage                                                  | V <sub>op</sub> | -          | -      | 2.7 V      |  |  |  |  |
| Lasing Wavelength                                                  | λp              | 630 nm     | 635 nm | 640 nm     |  |  |  |  |
| Beam Divergence                                                    | θ//             | 6°         | 8°     | 11°        |  |  |  |  |
| (FWHM)                                                             | $\theta \perp$  | 25°        | 30°    | 36°        |  |  |  |  |
| Slope Efficiency                                                   | ηs              | 0.3 mW/ mA | -      | 0.7 mW/ mA |  |  |  |  |
| Monitor Current                                                    | Im              | 0.1 mA     | 0.2 mA | 0.4 mA     |  |  |  |  |
| Note: All data is presented as typical unless otherwise specified. |                 |            |        |            |  |  |  |  |

# $\lambda$ = 635 nm, P = 30 mW, Single Mode Sanyo DL5038-021

1,054.16

DESCRIPTION

Hitachi 635 nm, 15 mW



£\*

1-5 PCS

PRICE

6-10 PCS

\$ 338.45

£ 265.38

\*For quantities over 5 pieces, please call a local office for pricing.

PRICE

1-5 PCS

\$ 384.60

£

PRICE

1-5 PCS

\$ 124.90

\*For quantities over 5 pieces, please call a local office for pricing

86.19

PRICE

6-10 PCS

\$ 118.66

€ 111,17

€\*

1-5 PCS

€ 342,30

PRICE

11-20 PCS

\$ 307.68

PRICE

11-20 PCS

\$ 99.92

1 x 3 μm Emitter Size

HL6322G

ITEM#

HL6322G

ITEM#

ITEM#

DL5038-021

DL5038-021



¥



RMB\*

1-5 PCS

DESCRIPTION

Sanyo 635 nm, 30 mW

¥ 3,246.10

| Maximum       | Ratings | (T <sub>-</sub> = | 25 °C) |
|---------------|---------|-------------------|--------|
| IVIAAIIIIUIII | naungs  | 110 -             | 20 01  |

| CHARACTERISTIC             | SYMBOL             | RATING       |
|----------------------------|--------------------|--------------|
| Optical Output Power (CW)  | Po                 | 35 mW        |
| LD Reverse Voltage         | V <sub>R(LD)</sub> | 2 V          |
| PD Reverse Voltage         | V <sub>R(PD)</sub> | 30 V         |
| Operation Case Temperature | T <sub>C</sub>     | -10 to 40 °C |
| Storage Temperature        | Tstg               | -40 to 85 °C |

Characteristics (T<sub>c</sub> = 25 °C, P = 30 mW)

| CHARACTERISTIC                                                     | SYMBOL          | MIN    | TYP.   | MAX    |  |  |
|--------------------------------------------------------------------|-----------------|--------|--------|--------|--|--|
| Threshold Current                                                  | I <sub>th</sub> | -      | 50 mA  | 70 mA  |  |  |
| Operation Current                                                  | I <sub>op</sub> | -      | 90 mA  | 110 mA |  |  |
| Operation Voltage                                                  | V <sub>op</sub> | -      | 2.4 V  | 2.7 V  |  |  |
| Lasing Wavelength                                                  | λp              | -      | 635 nm | 645 nm |  |  |
| Beam Divergence                                                    | θ//             | 6°     | 7°     | 9°     |  |  |
| (FWHM)                                                             | θ⊥              | 25°    | 30°    | 35°    |  |  |
| Monitor Current                                                    | Im              | 0.1 mA | 0.3 mA | 0.6 mA |  |  |
| Note: All data is presented as typical unless otherwise specified. |                 |        |        |        |  |  |

**Incoherent Sources** Covega **Drivers/Mounts** Accessories SECTIONS V Laser Diodes **Pigtailed Diodes** Fiber-Coupled Laser Sources WDM Laser Sources **HeNe Lasers** Laser Diode Modules Tunable Lasers Swept Source Lasers Terahertz

diodes are extremely electrostatic sensitive; see page 1244 for our selection of antistatic products.

All laser

# $\lambda$ = 638 nm, P = 20 mW, Single Mode Sanyo DL5148-030



| ITEM#      | £*      | €*       | RMB*       |
|------------|---------|----------|------------|
|            | 1-5 PCS | 1-5 PCS  | 1-5 PCS    |
| DL5148-030 | £ 93.50 | € 120,60 | ¥ 1,143.70 |

\*For quantities over 5 pieces, please call a local office for pricing.

| ITEM#      | PRICE<br>1-5 PCS | PRICE<br>6-10 PCS | PRICE<br>11-20 PCS | DESCRIPTION         |
|------------|------------------|-------------------|--------------------|---------------------|
| DL5148-030 | \$ 135.50        | \$ 115.18         | \$ 94.85           | Sanyo 638 nm, 20 mW |

# Maximum Ratings (T<sub>c</sub> = 25 °C)

|                            | •,                 |              |
|----------------------------|--------------------|--------------|
| CHARACTERISTIC             | SYMBOL             | RATING       |
| Optical Output Power (CW)  | Po                 | 25 mW        |
| LD Reverse Voltage         | V <sub>R(LD)</sub> | 2 V          |
| PD Reverse Voltage         | V <sub>R(PD)</sub> | 30 V         |
| Operation Case Temperature | T <sub>C</sub>     | -10 to 50 °C |
| Storage Temperature        | Tstg               | -40 to 85 °C |

#### Characteristics (T<sub>c</sub> = 25 °C, P = 20 mW)

|   | CHARACTERISTIC                   | SYMBOL           | MIN    | TYP.   | MAX    |  |  |  |
|---|----------------------------------|------------------|--------|--------|--------|--|--|--|
|   | Threshold Current                | I <sub>th</sub>  | -      | 60 mA  | 85 mA  |  |  |  |
|   | Operation Current                | I <sub>op</sub>  | -      | 80 mA  | 105 mA |  |  |  |
|   | Operation Voltage                | V <sub>op</sub>  | -      | 2.3 V  | 2.7 V  |  |  |  |
|   | Lasing Wavelength                | λp               | -      | 638 nm | 645 nm |  |  |  |
| 1 | Beam Divergence                  | θ//              | 6°     | 8°     | 12°    |  |  |  |
|   | (FWHM)                           | $\theta_{\perp}$ | 12°    | 16°    | 20°    |  |  |  |
|   | Monitor Current                  | Im               | 0.1 mA | 0.3 mA | 0.6 mA |  |  |  |
| L | Numerall data is managed as much |                  |        |        |        |  |  |  |

Note: All data is presented as typical unless otherwise specified

| TECHNOLOGY         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                  |                                                                                                        |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Light              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                  |                                                                                                        |
| CHAPTERS           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                  |                                                                                                        |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | de Cerre D                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          | 0 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                  |                                                                                                        |
| Coherent Sources   | λ = 638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>; nm,</b>                                                                                         | P = 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                              | , Single Mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | de Sanyo D                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )                                                                                                                                                |                                                                                                        |
| ncoherent Sources  | CALTIONI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                              | Pin Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maximum Rating                                                                                                                                                                                                                                                                                                                                                                                        | s (T <sub>c</sub> = 2                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                  |                                                                                                        |
| ovega              | ELECTROSTATIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                    | =100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                              | 1 laser cathode<br>2 common case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CHARACTERISTIC                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                          | SYM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BOL                                                                                                                                              | RATING                                                                                                 |
| Jucga              | SENSITIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 I                                                                                                                                                         | 3 monitor diode anode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Optical Output Power (C                                                                                                                                                                                                                                                                                                                                                                               | W)                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | °o 📃                                                                                                                                             | 40 mW                                                                                                  |
| ivers/Mounts       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ,                                                                                                                                                            | 3 1 🖌                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LD Reverse Voltage                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (LD)                                                                                                                                             | 2 V                                                                                                    |
|                    | 📕 Ø5.6 mm 🛛                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Package                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                              | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PD Reverse Voltage                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (PD)                                                                                                                                             | 30 V                                                                                                   |
| cessories          | ■ 60 mA (Ty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | p.) Threshc                                                                                          | old Currer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nt                                                                                                                                                           | C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Operation Case Temperat<br>Storage Temperature                                                                                                                                                                                                                                                                                                                                                        | ure                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                  | 10 to 50 °C<br>40 to 85 °C                                                                             |
| ECTIONS            | <ul> <li>Single Long</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | gitudinal M                                                                                          | lode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                              | PD & LD<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Storage Temperature                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | sig                                                                                                                                              | 40 10 0 )                                                                                              |
|                    | 2:1 Aspect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ratio (Typ                                                                                           | .)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                              | PIN CODE 5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                  |                                                                                                        |
| ser Diodes         | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Characteristics (                                                                                                                                                                                                                                                                                                                                                                                     | T <sub>c</sub> = 25 °                                                                                    | C, P = 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mW)                                                                                                                                              |                                                                                                        |
| tailed Diedea      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | £*                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | €*                                                                                                                                                           | RMB*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHARACTERISTIC                                                                                                                                                                                                                                                                                                                                                                                        | SYMBOI                                                                                                   | . MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TYP.                                                                                                                                             | MAX                                                                                                    |
| tailed Diodes      | ITEM#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1-5 PCS                                                                                              | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1-5 PCS                                                                                                                                                      | 1-5 PCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Threshold Current                                                                                                                                                                                                                                                                                                                                                                                     | I <sub>th</sub>                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60 mA                                                                                                                                            | 85 mA                                                                                                  |
| er-Coupled         | DL6148-030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | £ 164.2                                                                                              | 20 €                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 211,80                                                                                                                                                       | ¥ 2,007.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Operation Current                                                                                                                                                                                                                                                                                                                                                                                     | I <sub>op</sub>                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100 mA                                                                                                                                           | 130 mA                                                                                                 |
| er Sources         | *For quantities over 5 p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pieces, please call                                                                                  | our local office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e for pricing.                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Operation Voltage                                                                                                                                                                                                                                                                                                                                                                                     | V <sub>op</sub><br>λp                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.4 V                                                                                                                                            | 2.7 V<br>645 nm                                                                                        |
| M Laser Sources    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lasing Wavelength<br>Beam Divergence                                                                                                                                                                                                                                                                                                                                                                  | θ//                                                                                                      | 635 nm<br>6.5°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 638 nm<br>8.5°                                                                                                                                   | 645 nn<br>12°                                                                                          |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PRICE                                                                                                | PRICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PRICE                                                                                                                                                        | DECONFERENCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (FWHM)                                                                                                                                                                                                                                                                                                                                                                                                | θ//<br>θ⊥                                                                                                | 12°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.3<br>16°                                                                                                                                       | 22°                                                                                                    |
| e Lasers           | ITEM#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1-5 PCS                                                                                              | 6-10 PCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Monitor Current                                                                                                                                                                                                                                                                                                                                                                                       | Im                                                                                                       | 0.3 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.6 mA                                                                                                                                           | 0.9 mA                                                                                                 |
|                    | DL6148-030 \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$ 237.90                                                                                            | \$ 214.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$ 190.32                                                                                                                                                    | Sanyo 638 nm, 40 mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Note: All data is presented as ty                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                  | 1                                                                                                      |
| er Diode<br>ules   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                      | <b>D</b> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - O <b>-</b> -                                                                                                                                                                                                                                                                                                                                                                                        | 044-                                                                                                     | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                  |                                                                                                        |
| nable<br>sers      | λ = 650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • nm,                                                                                                | P = 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | o mw,                                                                                                                                                        | Single Mod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | le Sanyo DL                                                                                                                                                                                                                                                                                                                                                                                           | 3147                                                                                                     | -060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                  |                                                                                                        |
| ept Source<br>sers |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                              | Pin Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Absolute Maximur                                                                                                                                                                                                                                                                                                                                                                                      | n Rating                                                                                                 | s (Ta = 2!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 °C)                                                                                                                                            |                                                                                                        |
| - h - ut-          | CAUTION:<br>ELECTROSTATIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                    | JO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                              | 1 laser cathode<br>2 common case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CHARACTERISTIC                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                          | SYMBOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                  | TINC                                                                                                   |
| rahertz            | SENSITIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                              | <ul><li>2 common case</li><li>3 monitor diode anode</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Optical Power Output (CW                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                          | Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                  | r <b>ING</b><br>mW                                                                                     |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                      | and the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | LD Reverse Voltage                                                                                                                                                                                                                                                                                                                                                                                    | ·)                                                                                                       | V <sub>R(LD)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                  | V                                                                                                      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                              | $\frac{3}{2}$ $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PD Reverse Voltage                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          | V <sub>R(PD)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                | ) V                                                                                                    |
| All laser          | ■ Ø5.6 mm 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Operating Temperature                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                          | T <sub>op</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                  | o 70 ℃                                                                                                 |
| diodes are         | ■ 20 mA (Ty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Storage Temperature                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                          | T <sub>stg</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -40 to                                                                                                                                           | 0 85 ℃                                                                                                 |
| extremely          | Operating '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Temperatur                                                                                           | e of 70 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C at 5 mW                                                                                                                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                  |                                                                                                        |
| electrostatic      | TE Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                              | PIN CODE 5A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Characteristics /T                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          | D 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14/1                                                                                                                                             |                                                                                                        |
| sensitive; see     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Characteristics (T                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                  |                                                                                                        |
| page 1244 for      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CHARACTERISTIC                                                                                                                                                                                                                                                                                                                                                                                        | SYMBOL                                                                                                   | MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TYP.                                                                                                                                             | MAX                                                                                                    |
| our selection      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | £*                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | €*                                                                                                                                                           | RMB*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Threshold Current<br>Operation Current                                                                                                                                                                                                                                                                                                                                                                | I I                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20 mA<br>30 mA                                                                                                                                   | 35 mA<br>45 mA                                                                                         |
| of antistatic      | ITEM#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1-5 PC                                                                                               | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1-5 PCS                                                                                                                                                      | 1-5 PCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Operation Voltage                                                                                                                                                                                                                                                                                                                                                                                     | I <sub>op</sub><br>V <sub>op</sub>                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.3 V                                                                                                                                            | 2.6 V                                                                                                  |
| products.          | DL3147-060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | £ 7.8                                                                                                | 80 €                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10,06                                                                                                                                                        | ¥ 95.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Lasing Wavelength                                                                                                                                                                                                                                                                                                                                                                                     | λρ                                                                                                       | 645 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 650 nm                                                                                                                                           | 660 nm                                                                                                 |
|                    | *For quantities over 5 p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pieces, please call                                                                                  | a local office fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | or pricing.                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Beam Divergence                                                                                                                                                                                                                                                                                                                                                                                       | θ//                                                                                                      | 7°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8°                                                                                                                                               | 10°                                                                                                    |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DDICE                                                                                                | DDICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DDICE                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (FWHM)                                                                                                                                                                                                                                                                                                                                                                                                | $\theta_{\perp}$                                                                                         | 25°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30°                                                                                                                                              | 35°                                                                                                    |
|                    | TTTTTTTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PRICE                                                                                                | PRICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PRICE                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                       | 01                                                                                                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                  |                                                                                                        |
|                    | M#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1-5 PCS                                                                                              | 6-10 PCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11-20 PCS                                                                                                                                                    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Monitor Current                                                                                                                                                                                                                                                                                                                                                                                       | Im                                                                                                       | 0.08 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.2 mA                                                                                                                                           | 0.4 mA                                                                                                 |
|                    | ITEM#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1-5 PCS                                                                                              | 6-10 PCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11-20 PCS                                                                                                                                                    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                       | Im                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                  |                                                                                                        |
|                    | DL3147-060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 11.30                                                                                             | \$ 9.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$ 7.58                                                                                                                                                      | Sanyo 650 nm, 5 mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Monitor Current<br>Astigmatism<br>Note: All data is presented as typi                                                                                                                                                                                                                                                                                                                                 | I <sub>m</sub><br>As<br>cal unless otherv                                                                | 0.08 mA<br>–<br>vise specified.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 µm                                                                                                                                             |                                                                                                        |
|                    | DL3147-060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 11.30                                                                                             | \$ 9.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$ 7.58                                                                                                                                                      | Sanyo 650 nm, 5 mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Astigmatism<br>Note: All data is presented as typi                                                                                                                                                                                                                                                                                                                                                    | Im<br>As<br>cal unless otherw                                                                            | 0.08 mA<br>-<br>vise specified.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 μm                                                                                                                                             |                                                                                                        |
|                    | $\lambda = 654$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$ 11.30                                                                                             | \$ 9.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$ 7.58                                                                                                                                                      | Sanyo 650 nm, 5 mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Astigmatism<br>Note: All data is presented as typi                                                                                                                                                                                                                                                                                                                                                    | Im<br>As<br>cal unless otherw<br>H065<br>m Rating                                                        | 0.08 mA<br>-<br>vise specified.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <sup>8 μm</sup>                                                                                                                                  |                                                                                                        |
|                    | DL3147-060 \$\$<br>λ = 654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 11.30                                                                                             | \$ 9.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$ 7.58                                                                                                                                                      | Sanyo 650 nm, 5 mW<br>Single Mo<br>Pin Description<br>1 laser anode<br>2 common case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Astigmatism<br>Note: All data is presented as typi<br>Dede Sharp G<br>Absolute Maximu                                                                                                                                                                                                                                                                                                                 | Im<br>As<br>cal unless otherw<br>H065<br>m Rating                                                        | 0.08 mA<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8 μm<br><b>Α</b><br><b>5 °C)</b><br><b>RA</b>                                                                                                    | 0.4 mA<br>_                                                                                            |
|                    | DL3147-060 $\lambda = 654$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 11.30                                                                                             | \$ 9.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$ 7.58                                                                                                                                                      | Sanyo 650 nm, 5 mW<br><b>Single Mo</b><br>Pin Description<br>1 laser anode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Astigmatism<br>Note: All data is presented as typi<br><b>de Sharp G</b><br>Absolute Maximu<br><u>CHARACTERISTIC</u>                                                                                                                                                                                                                                                                                   | Im<br>As<br>cal unless otherw<br>H065<br>m Rating                                                        | 0.08 mA<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8 μm<br><b>A</b><br><b>5 °C)</b><br><b>RA</b><br>10                                                                                              | 0.4 mA<br>_                                                                                            |
|                    | DL3147-060 $\lambda = 654$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 11.30                                                                                             | \$ 9.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$ 7.58                                                                                                                                                      | Sanyo 650 nm, 5 mW<br>Single Mo<br>Pin Description<br>1 laser anode<br>2 common case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Astigmatism<br>Note: All data is presented as typi<br><b>Ode Sharp G</b><br><b>Absolute Maximu</b><br><b>CHARACTERISTIC</b><br>Optical Power Output<br>LD Reverse Voltage<br>PD Reverse Voltage                                                                                                                                                                                                       | Im<br>As<br>cal unless otherv<br>H065<br>m Rating                                                        | 0.08 mA<br>-<br>vise specified.<br><b>10B2</b><br>IS (T <sub>c</sub> = 2<br><u>SYMBOL</u><br>P <sub>o</sub><br>V <sub>R(LD)</sub><br>V <sub>R(PD)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 μm<br><b>A</b><br><b>5 °C)</b><br><b>RA</b><br>10<br>2<br>30                                                                                   | 0.4 mA<br>-<br>FING<br>mW<br>V                                                                         |
|                    | DL3147-060 \$<br>λ = 654<br>CAC DN:<br>ELECTROSTATIC<br>SENSITIVE<br>Ø 5.6 mm 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$ 11.30                                                                                             | \$ 9.95<br>P = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | \$ 7.58                                                                                                                                                      | Sanyo 650 nm, 5 mW<br>Single Mo<br>Pin Description<br>1 laser anode<br>2 common case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Astigmatism<br>Note: All data is presented as typi<br>Absolute Maximu<br>CHARACTERISTIC<br>Optical Power Output<br>LD Reverse Voltage<br>PD Reverse Voltage<br>Operation Case Temperatu                                                                                                                                                                                                               | Im<br>As<br>cal unless otherv<br>H065<br>m Rating                                                        | 0.08 mA<br>-<br>vise specified.<br><b>10B2</b><br>Is (T <sub>c</sub> = 2<br><u>SYMBOL</u><br>P <sub>0</sub><br>V <sub>R(LD)</sub><br>V <sub>R(PD)</sub><br>T <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 μm<br><b>A</b><br><b>5 °C)</b><br><b>RA</b><br>10<br>2<br>30<br>-10 to                                                                         | 0.4 mA<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-  |
|                    | DL3147-060 \$<br>λ = 654<br>CACTON:<br>ELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ 11.30<br><b>I nm,</b><br>Package<br>rp.) Low Cu                                                   | \$ 9.95<br><b>P = 1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$ 7.58                                                                                                                                                      | Sanyo 650 nm, 5 mW<br>Single Mo<br>Pin Description<br>1 laser anode<br>2 common case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Astigmatism<br>Note: All data is presented as typi<br>Definition of the second second<br>Absolute Maximu<br>CHARACTERISTIC<br>Optical Power Output<br>LD Reverse Voltage<br>PD Reverse Voltage<br>Operation Case Temperatu<br>Storage Temperature                                                                                                                                                     | Im<br>As<br>cal unless otherv<br>H065<br>m Rating                                                        | 0.08 mA<br>-<br>vise specified.<br><b>10B2</b><br>Is $(T_c = 2$<br>SYMBOL<br>Po<br>V <sub>R(LD)</sub><br>V <sub>R(PD)</sub><br>T <sub>c</sub><br>T <sub>stg</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8 μm<br><b>A</b><br><b>5 °C)</b><br><b>RA</b><br>10<br>2<br>30<br>-10 tc<br>-40 tc                                                               | 0.4 mA<br>-<br><b>FING</b><br>mW<br>V<br>0 V<br>0 70 °C<br>0 85 °C                                     |
|                    | DL3147-060 $(\lambda = 654)$<br>CAU DN:<br>ELECT 0 STATIC<br>SETTIVE<br>= Ø5.6 mm I<br>= 40 mA (Ty)<br>= 10 mW Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ 11.30<br><b>I nm,</b><br>Package<br>(p.) Low Cu<br>aximum Op                                      | \$ 9.95<br><b>P = 1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | \$ 7.58                                                                                                                                                      | Sanyo 650 nm, 5 mW<br>Single Mo<br>Pin Description<br>1 laser anode<br>2 common case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Astigmatism<br>Note: All data is presented as typi<br>Absolute Maximu<br>CHARACTERISTIC<br>Optical Power Output<br>LD Reverse Voltage<br>PD Reverse Voltage<br>Operation Case Temperatu                                                                                                                                                                                                               | Im<br>As<br>cal unless otherv<br>H065<br>m Rating                                                        | 0.08 mA<br>-<br>vise specified.<br><b>10B2</b><br>Is (T <sub>c</sub> = 2<br><u>SYMBOL</u><br>P <sub>0</sub><br>V <sub>R(LD)</sub><br>V <sub>R(PD)</sub><br>T <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 μm<br><b>A</b><br><b>5 °C)</b><br><b>RA</b><br>10<br>2<br>30<br>-10 tc<br>-40 tc                                                               | 0.4 mA<br>-<br>TING<br>mW<br>V<br>0 V<br>0 V<br>0 °C                                                   |
|                    | DL3147-060 \$<br>λ = 654<br>CACTON:<br>ELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELECTROSTATIC<br>SELEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ 11.30<br>Package<br>p.) Low Cu<br>aximum Op<br>put (CW)                                           | \$ 9.95<br>$\mathbf{P} = 1$ $= \underbrace{0}_{\text{intremt Driptical}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$ 7.58                                                                                                                                                      | Sanyo 650 nm, 5 mW<br>Single Mo<br>Pin Description<br>1 laser anode<br>2 common case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Astigmatism<br>Note: All data is presented as typi<br>Definition of the second second<br>Absolute Maximu<br>CHARACTERISTIC<br>Optical Power Output<br>LD Reverse Voltage<br>PD Reverse Voltage<br>Operation Case Temperatu<br>Storage Temperature                                                                                                                                                     | Im<br>As<br>cal unless otherw<br>HO65<br>m Rating                                                        | 0.08 mA<br>-<br>vise specified.<br><b>10B2</b><br>Is $(T_c = 2$<br>SYMBOL<br>P <sub>0</sub><br>V <sub>R(LD)</sub><br>V <sub>R(D)</sub><br>T <sub>c</sub><br>T <sub>stg</sub><br>T <sub>std</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8 μm                                                                                                                                             | 0.4 mA<br>-<br><b>FING</b><br>mW<br>V<br>V<br>V<br>0 V<br>0 °C<br>0 85 °C                              |
|                    | DL3147-060       \$         λ = 654         car trial         ELECTROSTATIC         Secontrive         Ø5.6 mm I         40 mA (Ty)         10 mW Ma         Power Outp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \$ 11.30<br>Package<br>rp.) Low Cu<br>aximum Op<br>put (CW)<br>x) Operatin                           | \$ 9.95<br>$\mathbf{P} = 1$ $= \underbrace{0}_{\text{intremt Driptical}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$ 7.58                                                                                                                                                      | Sanyo 650 nm, 5 mW<br>Single Mo<br>Pin Description<br>1 laser anode<br>2 common case<br>3 monitor diode anode<br>3 d d d d d d d d d d d d d d d d d d d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Astigmatism<br>Note: All data is presented as typi<br>Astigmatism<br>Absolute Maximu<br>CHARACTERISTIC<br>Optical Power Output<br>LD Reverse Voltage<br>PD Reverse Voltage<br>Operation Case Temperatur<br>Storage Temperature<br>Soldering Temperature                                                                                                                                               | Im<br>As<br>cal unless otherw<br>HO65<br>m Rating                                                        | 0.08 mA<br>-<br>vise specified.<br><b>10B2</b><br>Is $(T_c = 2$<br>SYMBOL<br>P <sub>0</sub><br>V <sub>R(LD)</sub><br>V <sub>R(D)</sub><br>T <sub>c</sub><br>T <sub>stg</sub><br>T <sub>std</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8 μm                                                                                                                                             | 0.4 mA<br>-<br>TING<br>mW<br>V<br>0 V<br>0 V<br>0 °C<br>0 85 °C                                        |
|                    | DL3147-060       3         λ = 654         cAU DN:         ELECT 0 STATIC         Set STIVE         Ø5.6 mm I         40 mA (Ty         10 mW Ma         Power Outj         70 °C (Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | \$ 11.30<br>Package<br>rp.) Low Cu<br>aximum Op<br>put (CW)<br>x) Operatin<br>£*                     | \$ 9.95<br><b>P = 1</b><br><b>C</b><br>arrent Dri-<br>ptical<br>ag Temper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$ 7.58<br><b>O mW</b><br>••••<br>••••<br>••••<br>••••<br>••••<br>••••<br>••••<br>••••<br>••••<br>••••<br>••••<br>•••••<br>•••••<br>•••••<br>•••••<br>•••••• | Sanyo 650 nm, 5 mW<br>Sanyo | Astigmatism<br>Note: All data is presented as typi<br>Absolute Maximu<br>CHARACTERISTIC<br>Optical Power Output<br>LD Reverse Voltage<br>PD Reverse Voltage<br>Operation Case Temperature<br>Storage Temperature<br>Soldering Temperature<br>Characteristics (T                                                                                                                                       | Im<br>As<br>cal unless otherw<br>HO65<br>m Rating<br>re                                                  | 0.08 mA<br>-<br>vise specified.<br><b>10B2</b><br>Is $(T_c = 2$<br>SYMBOL<br>Po<br>V <sub>R(LD)</sub><br>V <sub>R(PD)</sub><br>Tc<br>Tstg<br>Tstd<br>C, P = 7 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8 μm<br><b>A</b><br><b>5 °C)</b><br><b>RA</b><br>10<br>2<br>30<br>-10 tc<br>-40 tc<br>260                                                        | 0.4 mA<br>-<br>TING<br>mW<br>V<br>V<br>V<br>V<br>V<br>0 V<br>0 °C<br>0 °C                              |
|                    | DL3147-060       S         λ = 654         car bh:         electrostatic         scortive         Ø5.6 mm I         40 mA (Ty)         10 mW Ma         Power Outj         70 °C (Max)         ITEM#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$ 11.30 Package (p.) Low Cu aximum Opput (CW) x) Operatin £* 1-5 PC                                 | \$ 9.95<br>P = 1<br>For the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$ 7.58<br><b>O mW</b><br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•<br>•                                                                      | Sanyo 650 nm, 5 mW<br>Sanyo 650 nm, 5 mW<br>Single Mo<br>Pin Description<br>1 laser anode<br>2 common case<br>3 monitor diode anode<br>3 common case<br>3 monitor diode anode<br>0 common case<br>3 monitor diode anode<br>1 common case<br>3 monitor diode anode<br>2 common case<br>3 monitor diode anode<br>3 monitor diode an    | Astigmatism<br>Note: All data is presented as typi<br>Absolute Maximu<br>CHARACTERISTIC<br>Optical Power Output<br>LD Reverse Voltage<br>PD Reverse Voltage<br>Operation Case Temperature<br>Storage Temperature<br>Soldering Temperature<br>Characteristics (T<br>CHARACTERISTIC                                                                                                                     | Im<br>As<br>cal unless other<br>HO65<br>m Rating<br>re<br>c = 25 °C<br>SYMBOL<br>Ith<br>Iop              | 0.08 mA<br>-<br>vise specified.<br><b>10B2</b><br>Is $(T_c = 2$<br>SYMBOL<br>Po<br>V <sub>R(LD)</sub><br>V <sub>R(PD)</sub><br>Tc<br>Tstg<br>Tstd<br>C, P = 7 m<br>MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8 μm                                                                                                                                             | 0.4 mA<br>-<br>TING<br>mW<br>V<br>0 V<br>0 V<br>0 C<br>0 °C<br>MAX                                     |
|                    | DL3147-060       S         λ = 654         cAU DN:         ELECT ACSTATIC         Selection         40 mA (Ty         10 mW Ma         Power Outj         70 °C (Ma:         ITEM#         GH06510B2A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$ 11.30<br>Package<br>p.) Low Cu<br>aximum Op<br>put (CW)<br>x) Operatin<br>£*<br>1-5 PC<br>£ 14.8* | $\begin{array}{c c} \$ & 9.95 \\ \hline P = 1 \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 7.58<br><b>O mW</b><br><b>o</b><br>ve<br>rature<br>€*<br>1-5 PCS<br>€ 19,14                                                                               | Sanyo 650 nm, 5 mW<br>Sanyo | Astigmatism<br>Note: All data is presented as typi<br>Definition of the second second second<br>Absolute Maximu<br>CHARACTERISTIC<br>Optical Power Output<br>LD Reverse Voltage<br>PD Reverse Voltage<br>Operation Case Temperature<br>Soldering Temperature<br>Soldering Temperature<br>Characteristics (T<br>CHARACTERISTIC<br>Threshold Current<br>Operation Current<br>Operation Voltage          | Im<br>As<br>cal unless other<br>HO65<br>m Rating<br>re<br>c = 25 °C<br>SYMBOL<br>Ich<br>Iop<br>Vop       | $\begin{array}{c c} 0.08 \text{ mA} & - & \\ \hline - & \\ \text{vise specified.} \\ \hline \\ \textbf{10B22} \\ \textbf{symB01} \\ \textbf{r}_{c} \\ \textbf{r}_{std} \\ \hline \\ \textbf{V}_{R(PD)} \\ \hline \\ \textbf{T}_{c} \\ \textbf{T}_{stg} \\ \hline \\ \textbf{T}_{std} \\ \hline \\ \textbf{C}, \textbf{P} = \textbf{7} \\ \textbf{mIN} \\ \hline \\ \hline \\ \textbf{-} \\ \hline \\ - \\ \hline \\ - \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8 μm<br><b>A</b><br><b>5 °C)</b><br><b>RA1</b><br>10<br>2<br>33<br>-10 tc<br>-40 tc<br>266<br><b>W)</b><br><b>TYP</b><br>30 mA<br>40 mA<br>2.2 V | 0.4 mA<br>-<br>TING<br>mW<br>V<br>0 V<br>0 V<br>0 °C<br>0 °C<br>0 °C<br>MAX<br>45 mA<br>55 mA<br>2.5 V |
|                    | DL3147-060       S         λ = 654         car bh:         electrostatic         scortive         Ø5.6 mm I         40 mA (Ty)         10 mW Ma         Power Outj         70 °C (Max)         ITEM#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \$ 11.30<br>Package<br>p.) Low Cu<br>aximum Op<br>put (CW)<br>x) Operatin<br>£*<br>1-5 PC<br>£ 14.8* | $\begin{array}{c c} \$ & 9.95 \\ \hline P = 1 \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \\ \\ \\ \\ \\ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$ 7.58<br><b>O mW</b><br><b>o</b><br>ve<br>rature<br>€*<br>1-5 PCS<br>€ 19,14                                                                               | Sanyo 650 nm, 5 mW<br>Sanyo 650 nm, 5 mW<br>Single Mo<br>Pin Description<br>1 laser anode<br>2 common case<br>3 monitor diode anode<br>3 common case<br>3 monitor diode anode<br>0 common case<br>3 monitor diode anode<br>1 common case<br>3 monitor diode anode<br>2 common case<br>3 monitor diode anode<br>3 monitor diode an    | Astigmatism<br>Note: All data is presented as typi<br><b>Ode Sharp Gi</b><br><b>Absolute Maximu</b><br><b>CHARACTERISTIC</b><br>Optical Power Output<br>LD Reverse Voltage<br>PD Reverse Voltage<br>Operation Case Temperature<br>Soldering Temperature<br>Soldering Temperature<br><b>Characteristics (T</b><br><b>CHARACTERISTIC</b><br>Threshold Current<br>Operation Voltage<br>Lasing Wavelength | Im<br>As<br>cal unless other<br>HO65<br>m Rating<br>re<br>c = 25 °C<br>SYMBOL<br>Ich<br>Iop<br>Vop<br>λρ | $\begin{array}{c c} 0.08 \text{ mA} & - & \\ \hline - & \\ \text{vise specified.} \\ \hline \textbf{10B22} \\ \text{symB01} \\ \hline \textbf{P}_0 \\ \hline \textbf{V}_{R(D)} \\ \hline \textbf{V}_{R(D)} \\ \hline \textbf{T}_c \\ \hline \textbf{T}_s \\ \hline \textbf{T}$ | 8 μm<br>8 μm<br>5 °C)<br>RA1<br>10<br>2<br>30<br>-10 tc<br>-40 tc<br>266<br>W)<br>TYP.<br>30 mA<br>40 mA<br>2.2 V<br>654 nm                      | 0.4 mA<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                |
|                    | DL3147-060       \$         λ = 654         caeron:         ecoron:         ecoron: <td>\$ 11.30<br/>Package<br/>p.) Low Cu<br/>aximum Op<br/>put (CW)<br/>x) Operatin<br/>£*<br/>1-5 PC<br/>£ 14.8*</td> <td>\$ 9.95<br/><math>\mathbf{P} = <b>1</b></math><br/><math>\mathbf{P} = <b>1</b></math></td> <td>\$ 7.58<br/><b>O mW</b><br/><b>o</b><br/>ve<br/>rature<br/>€*<br/>1-5 PCS<br/>€ 19,14</td> <td>Sanyo 650 nm, 5 mW<br/>Sanyo 650 nm, 5 mW<br/>Single Mo<br/>Pin Description<br/>1 laser anode<br/>2 common case<br/>3 monitor diode anode<br/>3 common case<br/>3 monitor diode anode<br/>0 common case<br/>3 monitor diode anode<br/>1 common case<br/>3 monitor diode anode<br/>2 common case<br/>3 monitor diode anode<br/>3 monitor diode an</td> <td>Astigmatism<br/>Note: All data is presented as typi<br/>Definition of the second second second<br/>Absolute Maximu<br/>CHARACTERISTIC<br/>Optical Power Output<br/>LD Reverse Voltage<br/>PD Reverse Voltage<br/>Operation Case Temperature<br/>Soldering Temperature<br/>Soldering Temperature<br/>Characteristics (T<br/>CHARACTERISTIC<br/>Threshold Current<br/>Operation Current<br/>Operation Voltage</td> <td>Im<br/>As<br/>cal unless other<br/>HO65<br/>m Rating<br/>re<br/>c = 25 °C<br/>SYMBOL<br/>Ich<br/>Iop<br/>Vop</td> <td><math display="block">\begin{array}{c c} 0.08 \text{ mA} &amp; - &amp; \\ \hline - &amp; \\ \text{vise specified.} \\ \hline \\ \textbf{10B22} \\ \textbf{symB01} \\ \textbf{r}_{c} \\ \textbf{r}_{std} \\ \hline \\ \textbf{V}_{R(PD)} \\ \hline \\ \textbf{T}_{c} \\ \textbf{T}_{stg} \\ \hline \\ \textbf{T}_{std} \\ \hline \\ \textbf{C}, \textbf{P} = \textbf{7} \\ \textbf{mIN} \\ \hline \\ \hline \\ \textbf{-} \\ \hline \\ - \\ \hline \\ - \\ \hline \end{array}</math></td> <td>8 μm<br/><b>A</b><br/><b>5 °C)</b><br/><b>RA1</b><br/>10<br/>2<br/>33<br/>-10 tc<br/>-40 tc<br/>266<br/><b>W)</b><br/><b>TYP</b><br/>30 mA<br/>40 mA<br/>2.2 V</td> <td>0.4 mA<br/>-<br/>TING<br/>mW<br/>V<br/>0 V<br/>0 V<br/>0 °C<br/>0 °C<br/>0 °C<br/>MAX<br/>45 mA<br/>55 mA<br/>2.5 V</td> | \$ 11.30<br>Package<br>p.) Low Cu<br>aximum Op<br>put (CW)<br>x) Operatin<br>£*<br>1-5 PC<br>£ 14.8* | \$ 9.95<br>$\mathbf{P} = 1$<br>$\mathbf{P} = 1$ | \$ 7.58<br><b>O mW</b><br><b>o</b><br>ve<br>rature<br>€*<br>1-5 PCS<br>€ 19,14                                                                               | Sanyo 650 nm, 5 mW<br>Sanyo 650 nm, 5 mW<br>Single Mo<br>Pin Description<br>1 laser anode<br>2 common case<br>3 monitor diode anode<br>3 common case<br>3 monitor diode anode<br>0 common case<br>3 monitor diode anode<br>1 common case<br>3 monitor diode anode<br>2 common case<br>3 monitor diode anode<br>3 monitor diode an    | Astigmatism<br>Note: All data is presented as typi<br>Definition of the second second second<br>Absolute Maximu<br>CHARACTERISTIC<br>Optical Power Output<br>LD Reverse Voltage<br>PD Reverse Voltage<br>Operation Case Temperature<br>Soldering Temperature<br>Soldering Temperature<br>Characteristics (T<br>CHARACTERISTIC<br>Threshold Current<br>Operation Current<br>Operation Voltage          | Im<br>As<br>cal unless other<br>HO65<br>m Rating<br>re<br>c = 25 °C<br>SYMBOL<br>Ich<br>Iop<br>Vop       | $\begin{array}{c c} 0.08 \text{ mA} & - & \\ \hline - & \\ \text{vise specified.} \\ \hline \\ \textbf{10B22} \\ \textbf{symB01} \\ \textbf{r}_{c} \\ \textbf{r}_{std} \\ \hline \\ \textbf{V}_{R(PD)} \\ \hline \\ \textbf{T}_{c} \\ \textbf{T}_{stg} \\ \hline \\ \textbf{T}_{std} \\ \hline \\ \textbf{C}, \textbf{P} = \textbf{7} \\ \textbf{mIN} \\ \hline \\ \hline \\ \textbf{-} \\ \hline \\ - \\ \hline \\ - \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8 μm<br><b>A</b><br><b>5 °C)</b><br><b>RA1</b><br>10<br>2<br>33<br>-10 tc<br>-40 tc<br>266<br><b>W)</b><br><b>TYP</b><br>30 mA<br>40 mA<br>2.2 V | 0.4 mA<br>-<br>TING<br>mW<br>V<br>0 V<br>0 V<br>0 °C<br>0 °C<br>0 °C<br>MAX<br>45 mA<br>55 mA<br>2.5 V |

| L | *For quantities over 5 pieces, please call a local office for pricing. |          |          |           |                     |  |  |
|---|------------------------------------------------------------------------|----------|----------|-----------|---------------------|--|--|
| l |                                                                        | PRICE    |          |           |                     |  |  |
| L | ITEM#                                                                  | 1-5 PCS  | 6-10 PCS | 11-20 PCS | DESCRIPTION         |  |  |
|   | GH06510B2A                                                             | \$ 21.50 | \$ 20.43 | \$ 17.20  | Sharp 654 nm, 10 mW |  |  |

# Note: All data is presented as typical unless otherwise specified.

Divergence Perpendicular Monitor Current

 ${\rm I_m}$ 

#### www.thorlabs.com

33° 0.2 mA 0.4 mA

0.08 mA

# $\lambda$ = 658 nm, P = 35 mW, Single Mode Hitachi HL6501MG



ITEM#

ITEM#

HL6501MG

HL6501MG

 Ø5.6 mm Package AlGaInP Structure

1 x 5 µm Emitter Size

Single Longitudinal Mode



Pulsed Optical Power of 50 mW with  $a \le 50\%$ 

Duty Cycle, Maximum Pulse Width of 100 ns

£\*

1-5 PCS

£ 27.26

PRICE

1-5 PCS

\$ 39.50

\*For quantities over 5 pieces, please call a local office for pricing.

Pin Description monitor diode cathode common case laser anode



RMB\*

1-5 PCS

333.38

DESCRIPTION

Hitachi 658 nm, 35 mW

¥

| Absolute Maximum Ratings (T <sub>c</sub> = 25 °C) |                |              |  |  |  |
|---------------------------------------------------|----------------|--------------|--|--|--|
| CHARACTERISTIC                                    | SYMBOL         | RATING       |  |  |  |
| Optical Output Power (CW)                         | Po             | 35 mW        |  |  |  |
| LD Reverse Voltage                                | VR(LD)         | 2 V          |  |  |  |
| PD Reverse Voltage                                | VR(PD)         | 30 V         |  |  |  |
| Operation Case Temperature                        | T <sub>c</sub> | -10 to 60 °C |  |  |  |
| Storage Temperature                               | Tstg           | -40 to 85 °C |  |  |  |

#### Characteristics (T<sub>c</sub> = 25 °C, P = 30 mW)

|   |                                      | •               |         |        |        |  |  |
|---|--------------------------------------|-----------------|---------|--------|--------|--|--|
|   | CHARACTERISTIC                       | SYMBOL          | MIN     | TYP.   | MAX    |  |  |
|   | Threshold Current                    | I <sub>th</sub> | 30 mA   | 45 mA  | 70 mA  |  |  |
|   | Operation Current                    | I <sub>op</sub> | -       | 65 mA  | 95 mA  |  |  |
|   | Operation Voltage                    | Vop             | 2.1     | 2.6 V  | 3.0 V  |  |  |
|   | Lasing Wavelength                    | $\lambda_p$     | 645 nm  | 658 nm | 665 nm |  |  |
| 1 | Beam Divergence                      | θ//             | 7°      | 8.5°   | 10.5°  |  |  |
|   | (FWHM)                               | $\theta \perp$  | 18°     | 22°    | 26°    |  |  |
|   | Monitor Current                      | Im              | 0.05 mA | 0.2 mA | 1.5 mA |  |  |
|   | Note: All data is presented as typic |                 |         |        |        |  |  |

# $\lambda$ = 658 nm, P = 45 mW, Single Mode Sanyo DL6147-040





€\*

1-5 PCS

PRICE

11-20 PCS

\$ 25.68

€ 35,16

PRICE

6-10 PCS

\$ 33.58

**Pin Description** laser cathode common case monitor diode anode 3

Ν



- Ø5.6 mm Package
- 30 mA (Typ.) Threshold Current
- Single Longitudinal Mode

| ITEM#                                                                  | £*<br>1-5 PCS | €*<br>1-5 PCS | RMB*<br>1-5 PCS |  |  |  |  |
|------------------------------------------------------------------------|---------------|---------------|-----------------|--|--|--|--|
| DL6147-040                                                             | £ 24.64       | € 31,78       | ¥ 301.31        |  |  |  |  |
| *For quantities over 5 pieces, please call a local office for pricing. |               |               |                 |  |  |  |  |

| ITEM#      | PRICE<br>1-5 PCS | PRICE<br>6-10 PCS | PRICE<br>11-20 PCS | DESCRIPTION         |
|------------|------------------|-------------------|--------------------|---------------------|
| DL6147-040 | \$ 35.70         | \$ 32.13          | \$ 24.99           | Sanyo 658 nm, 45 mW |

| M | aximum | Ratings | (T <sub>c</sub> = | 25 | °C) |
|---|--------|---------|-------------------|----|-----|
|   |        |         |                   |    |     |

| CHARACTERISTIC             | SYMBOL         | RATING       |
|----------------------------|----------------|--------------|
| Optical Output Power (CW)  | Po             | 45 mW        |
| LD Reverse Voltage         | VR(LD)         | 2 V          |
| Operation Case Temperature | T <sub>c</sub> | -10 to 60 °C |
| Storage Temperature        | Tstg           | -40 to 85 °C |

#### Characteristics ( $T_c = 25 \,^{\circ}C$ , P = 40 mW)

| CHARACTERISTIC                    | SYMBOL          | MIN    | TYP.   | MAX    |  |  |  |
|-----------------------------------|-----------------|--------|--------|--------|--|--|--|
| Threshold Current                 | I <sub>th</sub> | -      | 30 mA  | 50 mA  |  |  |  |
| Operation Current                 | I <sub>op</sub> | -      | 65 mA  | 85 mA  |  |  |  |
| Operation Voltage                 | V <sub>op</sub> | -      | 2.4 V  | 2.8 V  |  |  |  |
| Lasing Wavelength                 | λρ              | 650 nm | 658 nm | 665 nm |  |  |  |
| Beam Divergence                   | θ//             | 7°     | 10°    | 13°    |  |  |  |
| (FWHM)                            | θ⊥              | 12°    | 16°    | 20°    |  |  |  |
| Monitor Current                   | Im              | 0.3 mA | 0.5 mA | 0.7 mA |  |  |  |
| NI All data is more and as sensit | .1              |        |        |        |  |  |  |

Note: All data is presented as typical unless otherwise specified

# $\lambda$ = 658 nm, P = 50 mW, Single Mode Hitachi HL6512MG

LD

OPEN PIN CODE

(Compatible with

Styles A, B, & C)

Pin Description no connection laser cathode

laser anode

2

3





Ø5.6 mm Package

- AlGaInP Structure
- Single Longitudinal Mode
- 70 mW Output Power with 100 ns Pulse Width, 50% Duty Cycle

| ITEM#                      | £*<br>1-5 PCS            | €*<br>1-5 PCS       | RMB*<br>1-5 PCS |
|----------------------------|--------------------------|---------------------|-----------------|
| HL6512MG                   | £ 34.02                  | € 43,88             | ¥ 416.10        |
| *For quantities over 5 pie | ces, please call a local | office for pricing. |                 |

| ITEM#    | PRICE<br>1-5 PCS | PRICE<br>6-10 PCS | PRICE<br>11-20 PCS | DESCRIPTION           |
|----------|------------------|-------------------|--------------------|-----------------------|
| HL6512MG | \$ 49.30         | \$ 46.84          | \$ 43.39           | Hitachi 658 nm, 50 mW |

#### Maximum Ratings ( $T_c = 25 \ ^{\circ}C$ )

| CHARACTERISTIC               | SYMBOL         | RATING         |  |  |  |  |
|------------------------------|----------------|----------------|--|--|--|--|
| Optical Output Power (CW)    | Po             | 50 mW          |  |  |  |  |
| Optical Output Power (Pulse) | Po             | 70 mW*         |  |  |  |  |
| LD Reverse Voltage           | VR(LD)         | 2 V            |  |  |  |  |
| Operation Case Temperature   | T <sub>c</sub> | -10 to 70 °C** |  |  |  |  |
| Storage Temperature          | Tstg           | -40 to 85 °C*  |  |  |  |  |

\*Pulse Width = 100 ns, Duty Cycle = 50%.

\*\*Note: The value of -10 to +70 °C is effective under pulse operation.

The value under CW operation is -10 to +60 °C.

#### Characteristics (T<sub>c</sub> = 25 °C, P = 50 mW)

| •                 |                 | •      |        |        |
|-------------------|-----------------|--------|--------|--------|
| CHARACTERISTIC    | SYMBOL          | MIN    | TYP.   | MAX    |
| Threshold Current | I <sub>th</sub> | 30 mA  | 45 mA  | 60 mA  |
| Operation Current | I <sub>op</sub> | -      | 115 mA | 135 mA |
| Operation Voltage | Vop             | 2.1    | 2.6 V  | 3.0 V  |
| Beam Divergence   | θ//             | 7°     | 8.5°   | 11°    |
| (FWHM)            | θ⊥              | 18°    | 21°    | 26°    |
| Lasing Wavelength | $\lambda_p$     | 650 nm | 658 nm | 662 nm |
| Astigmatism       | As              | -      | 5 µm   | -      |
| NT ALL 1          | 1 1 1 1         |        |        |        |

Note: All data is presented as typical unless otherwise specified

CHAPTERS V **Coherent Sources Incoherent Sources** Covega **Drivers/Mounts** Accessories SECTIONS V Laser Diodes **Pigtailed Diodes** Fiber-Coupled Laser Sources WDM Laser Sources **HeNe Lasers** Laser Diode

Modules

Tunable Lasers Swept Source Lasers

Terahertz

TECHNOLOGY V Light

| Light                                                  |                                                                                                                                                  |                              |                                                                                                                   |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |                                                                |                                                                                                   |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| ▼ CHAPTERS                                             |                                                                                                                                                  |                              |                                                                                                                   |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |                                                                |                                                                                                   |
| Coherent Sources                                       | λ = 65                                                                                                                                           | 8 nm                         | , P =                                                                                                             | 50 mW                                                                                       | , Single Mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | de Sanyo D                                                                                                                                                                                                                                  | L714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7-201                                                      | I                                                              |                                                                                                   |
| Incoherent Sources                                     | CAUTION:                                                                                                                                         |                              |                                                                                                                   |                                                                                             | Pin Description 1 laser anode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |                                                                |                                                                                                   |
| Covega                                                 | ELECTROSTAT<br>SENSITIVE                                                                                                                         |                              |                                                                                                                   |                                                                                             | 2 laser cathode<br>3 no connection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Absolute Maximu                                                                                                                                                                                                                             | m Rating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s (T <sub>c</sub> = 2                                      | 5 °C)                                                          |                                                                                                   |
|                                                        |                                                                                                                                                  |                              |                                                                                                                   |                                                                                             | 1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CHARACTERISTIC                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SYMI                                                       | BOL                                                            | RATING                                                                                            |
| Drivers/Mounts                                         |                                                                                                                                                  | D 1                          |                                                                                                                   |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Optical Output Power (CV<br>Optical Output Power (Pu                                                                                                                                                                                        | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P <sub>c</sub><br>P <sub>c</sub>                           | -                                                              | 60 mW<br>100 mW*                                                                                  |
| Accessories                                            | <ul> <li>Ø5.6 mm</li> <li>1 μm Ast</li> </ul>                                                                                                    | 0                            | @ 50 mW                                                                                                           | <del>,</del>                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LD Reverse Voltage                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VR                                                         | LD)                                                            | 2 V                                                                                               |
| ▼ SECTIONS                                             | Pulsed O                                                                                                                                         | ptical Pow                   | er: $P_0 = 10$                                                                                                    | 00 mW with                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Operation Case Temperature                                                                                                                                                                                                                  | ire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T                                                          | -                                                              | -10 to 75 °C<br>-40 to 85 °C                                                                      |
| Laser Diodes                                           |                                                                                                                                                  |                              | Cycle and                                                                                                         | l a Max Pulse                                                                               | OPEN PIN CODE<br>(Compatible with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *Note: Pulse width ≤0.1 µs, duty                                                                                                                                                                                                            | r = 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                          | stg                                                            | 10 10 0) 0                                                                                        |
| Laser Didues                                           | width of                                                                                                                                         | 0.1 µs                       |                                                                                                                   |                                                                                             | Styles B & C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |                                                                |                                                                                                   |
| <b>Pigtailed Diodes</b>                                |                                                                                                                                                  |                              | £*                                                                                                                | €*                                                                                          | RMB*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Characteristics (1                                                                                                                                                                                                                          | c = 25 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , P = 50                                                   | mW)                                                            |                                                                                                   |
| Fiber Counted                                          | ITEM#                                                                                                                                            |                              | PCS                                                                                                               | 1-5 PCS                                                                                     | 1-5 PCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHARACTERISTIC                                                                                                                                                                                                                              | SYMBOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MIN                                                        | TYP.                                                           | MAX                                                                                               |
| Fiber-Coupled<br>Laser Sources                         | DL7147-201                                                                                                                                       |                              | 32.37                                                                                                             | € 41,75                                                                                     | ¥ 395.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Threshold Current                                                                                                                                                                                                                           | I <sub>th</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                          | 40 mA                                                          | 50 mA                                                                                             |
|                                                        | *For quantities over                                                                                                                             |                              |                                                                                                                   |                                                                                             | 1 579.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Operation Current                                                                                                                                                                                                                           | I <sub>op</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                          | 90 mA                                                          | 120 mA                                                                                            |
| WDM Laser Sources                                      |                                                                                                                                                  | · ·                          | _                                                                                                                 |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Operation Voltage<br>Lasing Wavelength                                                                                                                                                                                                      | V <sub>op</sub><br>λ <sub>p</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                          | 2.5 V<br>658 nm                                                | 3.0 V<br>662 nm                                                                                   |
|                                                        |                                                                                                                                                  | PRICE                        | PRIC                                                                                                              |                                                                                             | DECONTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Beam Divergence                                                                                                                                                                                                                             | $\frac{\lambda_p}{\theta//}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <br>7.5°                                                   | 9°                                                             | 11°                                                                                               |
| HeNe Lasers                                            | ITEM#                                                                                                                                            | 1-5 PCS                      | 6-10 P                                                                                                            |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (FWHM)                                                                                                                                                                                                                                      | θ_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15°                                                        | 16°                                                            | 20°                                                                                               |
| Laser Diode                                            | DL7147-201                                                                                                                                       | \$ 46.90                     | \$ 42                                                                                                             | .21 \$ 30.49                                                                                | Sanyo 658 nm, 50 mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Note: All data is presented as typ                                                                                                                                                                                                          | ical unless otherw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | vise specified.                                            | 1                                                              |                                                                                                   |
| Modules<br>Tunable<br>Lasers<br>Swept Source<br>Lasers | λ = 65                                                                                                                                           | 8 nm                         | , P =                                                                                                             | 80 mW                                                                                       | Pin Description 1 laser anode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | de Mitsubi                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                            |                                                                |                                                                                                   |
|                                                        | CAUTION:<br>ELECTROSTA                                                                                                                           | TIC                          | - 6                                                                                                               |                                                                                             | <ol> <li>laser cathode</li> <li>no connection</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Absolute Maximu                                                                                                                                                                                                                             | Im Rating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | is (T <sub>c</sub> = 2                                     | 25 °C)                                                         |                                                                                                   |
| Terahertz                                              | SENSITIVE                                                                                                                                        |                              | -16                                                                                                               | •                                                                                           | 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CHARACTERISTIC                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SYMBOL                                                     | RA                                                             | TING                                                                                              |
|                                                        |                                                                                                                                                  |                              | 100                                                                                                               |                                                                                             | φ φ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Optical Output Power (C                                                                                                                                                                                                                     | W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Po                                                         | 80                                                             | mW                                                                                                |
|                                                        |                                                                                                                                                  |                              |                                                                                                                   |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Optical Output Power (Pu                                                                                                                                                                                                                    | ılse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Po                                                         |                                                                | mW*                                                                                               |
| Visit                                                  | ■ Ø5.6 mm                                                                                                                                        | n Package                    |                                                                                                                   |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Reverse Voltage                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V <sub>RL</sub>                                            |                                                                | 2 V                                                                                               |
| www.thorlabs.com                                       | ■ 1.8 (Typ.                                                                                                                                      | ) Aspect F                   | Ratio                                                                                                             |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Operation Case Temperate                                                                                                                                                                                                                    | ıre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Tc                                                         |                                                                | o 75 °C                                                                                           |
| For Mechnical                                          | 🔳 1 μm (Ty                                                                                                                                       | -                            |                                                                                                                   | ance                                                                                        | 0<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Storage Temperature<br>*Note: Pulse width ≤50 ns, duty                                                                                                                                                                                      | 500/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T <sub>stg</sub>                                           | -40 to                                                         | o 100 °C                                                                                          |
| Drawings and                                           | ■ 0.95 W/                                                                                                                                        |                              |                                                                                                                   | lifee                                                                                       | PIN CODE 9E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sup>*</sup> Note: Pulse width ≤50 ns, duty                                                                                                                                                                                                 | r = 50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |                                                                |                                                                                                   |
| Our New                                                | 0.000                                                                                                                                            | - (-)pi) -                   |                                                                                                                   |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Characteristics /T                                                                                                                                                                                                                          | - 05 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D _ 00 ~                                                   |                                                                |                                                                                                   |
| Solid Models                                           |                                                                                                                                                  |                              | £*                                                                                                                | €*                                                                                          | RMB*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Characteristics (T                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 1                                                        | -                                                              |                                                                                                   |
|                                                        | ITEM#                                                                                                                                            | 1-4                          | 5 PCS                                                                                                             | 1-5 PCS                                                                                     | 1-5 PCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CHARACTERISTIC                                                                                                                                                                                                                              | SYMBOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MIN                                                        | TYP.                                                           | MAX                                                                                               |
|                                                        | ML120G21                                                                                                                                         |                              |                                                                                                                   |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Threshold Current<br>Operation Current                                                                                                                                                                                                      | Ith                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                                          | 65 mA                                                          | -                                                                                                 |
| Adobe DXF                                              | *For quantities over                                                                                                                             |                              | 48.65                                                                                                             |                                                                                             | ¥ 595.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Operation Voltage                                                                                                                                                                                                                           | I <sub>OP</sub><br>V <sub>OP</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                          | 150 mA<br>2.4V                                                 | -<br>3.0 V                                                                                        |
|                                                        | Tor quantities over                                                                                                                              |                              |                                                                                                                   | lee for pricing.                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Slope Efficiency                                                                                                                                                                                                                            | ηs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                          | 0.95 mW/n                                                      |                                                                                                   |
|                                                        |                                                                                                                                                  | PRICE                        | PRICE                                                                                                             | PRICE                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Peak Wavelength                                                                                                                                                                                                                             | λρ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 654 nm                                                     | 658 nm                                                         | 662 nm                                                                                            |
|                                                        | ITEM#                                                                                                                                            | 1-5 PCS                      | 6-10 PCS                                                                                                          | S 11-20 PCS                                                                                 | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Beam Divergence                                                                                                                                                                                                                             | θ//                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7°                                                         | 9.5°                                                           | 12°                                                                                               |
|                                                        | ML120G21**                                                                                                                                       | \$ 70.50                     | \$ 66.98                                                                                                          | \$ 59.93                                                                                    | Mitsubishi 658 nm, 80 mW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (FWHM)                                                                                                                                                                                                                                      | $\theta \perp$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14°                                                        | 17°                                                            | 20°                                                                                               |
| <b>S</b> W                                             | **Not Compatible                                                                                                                                 |                              |                                                                                                                   |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Note: All data is presented as typ                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                          |                                                                |                                                                                                   |
|                                                        | $\lambda = 66$                                                                                                                                   | 0 nm                         | , P =                                                                                                             | Pin I<br>1 la                                                                               | Description<br>aser cathode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Absolute Maximu                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s (T <sub>c</sub> = 2                                      | 5 °C)                                                          |                                                                                                   |
|                                                        | ELECTROSTA                                                                                                                                       | TIC                          | 3(1)                                                                                                              |                                                                                             | nonitor diode cathode/case<br>aser anode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CHARACTERISTIC                                                                                                                                                                                                                              | 070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SYMI                                                       |                                                                | RATING                                                                                            |
|                                                        | SENSTIVE                                                                                                                                         |                              | 11                                                                                                                |                                                                                             | nonitor diode anode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Optical Output Power (CV                                                                                                                                                                                                                    | X)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Po                                                         |                                                                | 100 mW                                                                                            |
|                                                        |                                                                                                                                                  |                              |                                                                                                                   |                                                                                             | o <sup>1</sup> o <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LD Reverse Voltage                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VR(I                                                       |                                                                | 2 V<br>20 V                                                                                       |
|                                                        |                                                                                                                                                  | D1                           |                                                                                                                   |                                                                                             | c⊥⊥⊥⊂                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PD Reverse Voltage                                                                                                                                                                                                                          | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VR(I                                                       |                                                                | 30 V                                                                                              |
|                                                        | (7)0 mm                                                                                                                                          |                              |                                                                                                                   |                                                                                             | <b>-</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Operation Case Temperatu                                                                                                                                                                                                                    | ue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ts                                                         |                                                                | -10 to 60 °C<br>-40 to 85 °C                                                                      |
|                                                        | ■ Ø9 mm ]                                                                                                                                        | 0                            |                                                                                                                   |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - T                                                        |                                                                |                                                                                                   |
|                                                        | ■ AlGaInP                                                                                                                                        | Structure                    | 1                                                                                                                 |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | StorageTemperature                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T,                                                         | 2                                                              | 40 10 87 C                                                                                        |
|                                                        |                                                                                                                                                  | Structure                    | Mode                                                                                                              |                                                                                             | $\frac{10}{5} = \frac{10}{5} $ | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T,                                                         | 2                                                              | 40 10 89 C                                                                                        |
|                                                        | ■ AlGaInP                                                                                                                                        | Structure                    |                                                                                                                   |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                       | 「 <sub>c</sub> = 25 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                          |                                                                | 40 10 89 C                                                                                        |
|                                                        | <ul><li>AlGaInP</li><li>Single Lo</li></ul>                                                                                                      | Structure                    | £*                                                                                                                | €*<br>15 PCS                                                                                | RMB*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | StorageTemperature                                                                                                                                                                                                                          | C <sub>c</sub> = 25 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                          |                                                                | MAX                                                                                               |
|                                                        | <ul> <li>AlGaInP</li> <li>Single Lo</li> <li>ITEM#</li> </ul>                                                                                    | Structure                    | £*<br>5 PCS                                                                                                       | 1-5 PCS                                                                                     | RMB*<br>1-5 PCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Storage Temperature Characteristics (1                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , P = 90                                                   | mW)                                                            |                                                                                                   |
|                                                        | <ul> <li>AlGaInP</li> <li>Single Lo</li> <li>ITEM#</li> <li>HL6548FG*</li> </ul>                                                                 | Structure<br>ongitudinal     | <b>£</b> *<br><b>5 PCS</b><br>137.31                                                                              | <b>1-5 PCS</b> € 177,11                                                                     | RMB*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | StorageTemperature Characteristics (T CHARACTERISTIC                                                                                                                                                                                        | SYMBOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>P = 90</b>                                              | <b>mW)</b><br>TYP.                                             | MAX                                                                                               |
|                                                        | <ul> <li>AlGaInP</li> <li>Single Lo</li> <li>ITEM#</li> </ul>                                                                                    | Structure<br>ongitudinal     | <b>£</b> *<br><b>5 PCS</b><br>137.31                                                                              | <b>1-5 PCS</b> € 177,11                                                                     | RMB*<br>1-5 PCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | StorageTemperature Characteristics (T CHARACTERISTIC Threshold Current                                                                                                                                                                      | SYMBOL<br>I <sub>th</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>F</b> , <b>P</b> = 90                                   | <b>m₩)</b><br><u>TYP.</u><br>55 mA                             | MAX<br>70 mA                                                                                      |
|                                                        | <ul> <li>AlGaInP</li> <li>Single Lo</li> <li>ITEM#</li> <li>HL6548FG*</li> </ul>                                                                 | Structure<br>ngitudinal      | £*           5 PCS           137.31           e call a local off                                                  | 1-5 PCS<br>€ 177,11<br>ice for pricing.                                                     | RMB*<br>1-5 PCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | StorageTemperature Characteristics (T CHARACTERISTIC Threshold Current Operation Current                                                                                                                                                    | SYMBOL<br>I <sub>th</sub><br>I <sub>op</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>P = 90</b><br>MIN<br>–                                  | <b>m₩)</b><br>55 mA<br>140 mA                                  | MAX<br>70 mA<br>180 mA                                                                            |
|                                                        | <ul> <li>AlGaInP</li> <li>Single Lo</li> <li>ITEM#</li> <li>HL6548FG*</li> <li>*For quantities ove</li> </ul>                                    | Structure<br>ingitudinal     | £*           5 PCS           137.31           e call a local off           PRICE                                  | 1-5 PCS<br>€ 177,11<br>ice for pricing.<br>PRICE                                            | RMB*           1-5 PCS           ¥         1,679.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | StorageTemperature Characteristics (T CHARACTERISTIC Threshold Current Operation Current Operation Voltage                                                                                                                                  | SYMBOL<br>I <sub>th</sub><br>I <sub>op</sub><br>V <sub>op</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>P = 90</b><br>MIN<br>-<br>-<br>-                        | <b>TYP.</b><br>55 mA<br>140 mA<br>2.4 V                        | MAX<br>70 mA<br>180 mA<br>2.8 V                                                                   |
|                                                        | <ul> <li>AlGaInP</li> <li>Single Lo</li> <li>ITEM#</li> <li>HL6548FG*</li> <li>*For quantities ove</li> <li>ITEM#</li> </ul>                     | Structure<br>ngitudinal<br>f | £*         5           5 PCS         137.31           c call a local off           PRICE           6-10 PCS       | 1-5 PCS         € 177,11         ice for pricing.         8         PRICE         11-20 PCS | RMB*         1-5 PCS         ¥       1,679.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | StorageTemperature Characteristics (T CHARACTERISTIC Threshold Current Operation Current Operation Voltage Lasing Wavelength                                                                                                                | $\begin{tabular}{ c c c c } \hline SYMBOL & I_{th} \\ \hline I_{op} & V_{op} \\ \hline V_{op} & \lambda \\ \hline \theta / / \\ \hline \theta \bot \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>P = 90</b><br>MIN<br>-<br>-<br>654 nm                   | <b>TYP</b><br>55 mA<br>140 mA<br>2.4 V<br>660 nm               | MAX<br>70 mA<br>180 mA<br>2.8 V<br>665 nm                                                         |
|                                                        | <ul> <li>AlGaInP</li> <li>Single Lo</li> <li>ITEM#</li> <li>HL6548FG*</li> <li>*For quantities ove</li> <li>ITEM#</li> <li>HL6548FG**</li> </ul> | Structure<br>ingitudinal     | £*       5         5 PCS       137.31         12 call a local off         PRICE         6-10 PCC         \$189.05 | 1-5 PCS<br>€ 177,11<br>ice for pricing.<br>PRICE                                            | RMB*           1-5 PCS           ¥         1,679.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | StorageTemperature         Characteristics (T         CHARACTERISTIC         Threshold Current         Operation Current         Operation Voltage         Lasing Wavelength         Beam Divergence         (FWHM)         Monitor Current | $\begin{tabular}{ c c c c } \hline SYMBOL & I_{th} & \\ \hline I_{op} & & \\ \hline V_{op} & & \\ \hline & & & \\ \hline \\ \hline$ | <b>P = 90</b><br>MIN<br>-<br>-<br>654 nm<br>7°<br>15°<br>- | <b>TYP.</b><br>55 mA<br>140 mA<br>2.4 V<br>660 nm<br>10°       | MAX           70 mA           180 mA           2.8 V           665 nm           13°               |
|                                                        | <ul> <li>AlGaInP</li> <li>Single Lo</li> <li>ITEM#</li> <li>HL6548FG*</li> <li>*For quantities ove</li> <li>ITEM#</li> </ul>                     | Structure<br>ingitudinal     | £*       5         5 PCS       137.31         12 call a local off         PRICE         6-10 PCC         \$189.05 | 1-5 PCS         € 177,11         ice for pricing.         8         PRICE         11-20 PCS | RMB*         1-5 PCS         ¥       1,679.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | StorageTemperature Characteristics (T CHARACTERISTIC Threshold Current Operation Current Operation Voltage Lasing Wavelength Beam Divergence (FWHM)                                                                                         | $\begin{tabular}{ c c c c } \hline SYMBOL & I_{th} & \\ \hline I_{op} & & \\ \hline V_{op} & & \\ \hline & & & \\ \hline \\ \hline$ | <b>P = 90</b><br>MIN<br>-<br>-<br>654 nm<br>7°<br>15°<br>- | <b>TYP</b><br>55 mA<br>140 mA<br>2.4 V<br>660 nm<br>10°<br>17° | MAX           70 mA           180 mA           2.8 V           665 nm           13°           20° |

#### www.thorlabs.com



# $\lambda$ = 660 nm, P = 120 mW, Single Mode Hitachi HL6545MG

**Pin Description** 

no connection laser cathode

laser anode

∿₀≭ւ₀

OPEN PIN CODE

(Compatible with

Styles B & C)

ITEM#

HL6545MG

\*For quantities over 5 piec

PRICE

1-5 PCS

\$ 72.50

10

ITEM#

HL6545MG

#### Maximum Ratings (T<sub>c</sub> = 25 °C)

| CHARACTERISTIC                         | SYMBOL               | RATING        |
|----------------------------------------|----------------------|---------------|
| Optical Output Power (CW)              | Po                   | 130 mW        |
| Pulse Optical Output Power             | Po(pulse)            | 300 mW*       |
| LD Reverse Voltage                     | VR(LD)               | 2 V           |
| CW Operation Case Temperature          | T <sub>cw</sub>      | -10 to +75 °C |
| Pulse Operation Case Temperature       | T <sub>(pulse)</sub> | -10 to +75 °C |
| Storage Temperature                    | T <sub>stg</sub>     | -40 to +85 °C |
| *Note: Pulse width = 30 ns, duty = 35% |                      |               |

#### Characteristics (T<sub>c</sub> = 25 °C, P = 120 mW)

| CHARACTERISTIC                                                     | SYMBOL          | MIN    | TYP.   | MAX    |  |  |
|--------------------------------------------------------------------|-----------------|--------|--------|--------|--|--|
| Threshold Current                                                  | I <sub>th</sub> | -      | 55 mA  | 75 mA  |  |  |
| Operation Current                                                  | I <sub>OP</sub> | -      | 170 mA | 210 mA |  |  |
| Operation Voltage                                                  | Vop             | 2.45 V | 2.6 V  | 3.0 V  |  |  |
| Lasing Wavelength                                                  | $\lambda_p$     | 652 nm | 660 nm | 664 nm |  |  |
| Beam Divergence                                                    | θ//             | 7.5°   | 10°    | 12°    |  |  |
| (FWHM)                                                             | θ⊥              | 15°    | 17°    | 19°    |  |  |
| Astigmatism ( $P_0 = 5 \text{ mW}$ )                               | As              | -      | 1 µm   | -      |  |  |
| Note: All data is presented as typical unless otherwise specified. |                 |        |        |        |  |  |

# $\lambda$ = 670 nm, P = 5 mW, Single Mode Hitachi HL6724MG

| Maximum Ratings (T <sub>c</sub> = 25 °C)              |                  |              |  |  |
|-------------------------------------------------------|------------------|--------------|--|--|
| CHARACTERISTIC                                        | SYMBOL           | RATING       |  |  |
| Optical Output Power (CW)                             | Po               | 5 mW         |  |  |
| Optical Output Power (Pulse)                          | Po               | 6 mW*        |  |  |
| LD Reverse Voltage                                    | VR(LD)           | 2 V          |  |  |
| PD Reverse Voltage                                    | VR(PD)           | 30 V         |  |  |
| Operation Case Temperature                            | T <sub>C</sub>   | -10 to 50 °C |  |  |
| Storage Temperature                                   | T <sub>stg</sub> | -40 to 85 °C |  |  |
| *Note: Pulse width $\leq 1 \ \mu$ s, duty $\leq 50\%$ |                  |              |  |  |
| Characteristics (T <sub>c</sub> = 25 °C,              | P = 5 mW)        |              |  |  |

SYMBOL

Irh

Iop

Vop

λp

θ//

 $\theta \bot$ 

 $I_{m} \\$ 

Note: All data is presented as typical unless otherwise specified.

MIN

660 nm

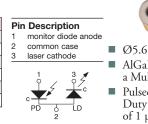
5°

22°

0.4 mA

TYP.

25 mA


35 mA

670 nm

89

30°

0.9 mA





EW

€\*

1-5 PCS

RMB\*

1-5 PCS

¥

DESCRIPTION

Hitachi 660 nm, 120 mW

611.90

product

Ø5.6 mm Package

£\*

1-5 PCS

£

PRICE

6-10 PCS

\$ 61.63 \$

50.03

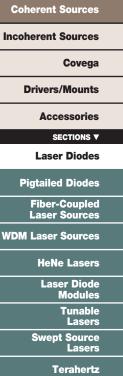
es, please call a local office for pricing

PRICE

11-20 PCS

50.75

1 μm Astigmatism @ 5 mW


■ 170 mA (Typ.) Operating Current

€ 64,53

PIN

| 2                          | of 1 μs @ 5 r              | nW                  |          |
|----------------------------|----------------------------|---------------------|----------|
| N CODE 5A                  | 5 μm Astigm                | atism @ 5 mW        |          |
| ITEM#                      | £*                         | €*                  | RMB*     |
|                            | 1-5 PCS                    | 1-5 PCS             | 1-5 PCS  |
| HL6724MG                   | £ 15.77                    | € 20,34             | ¥ 192.86 |
| *For quantities over 5 pie | ces, please call a local ( | office for pricing. |          |

| 680 nm | *For quantities over 5 pieces, please call a local office for pricing. |          |          |           |                      |  |  |
|--------|------------------------------------------------------------------------|----------|----------|-----------|----------------------|--|--|
| 11°    | PRICE PRICE PRICE                                                      |          |          |           |                      |  |  |
| 40°    | ITEM#                                                                  | 1-5 PCS  | 6-10 PCS | 11-20 PCS | DESCRIPTION          |  |  |
| 2 mA   | HL6724MG                                                               | \$ 22.85 | \$ 21.71 | \$ 19.43  | Hitachi 670 nm, 5 mW |  |  |



TECHNOLOGY V Light CHAPTERS V

All laser diodes are extremely electrostatic sensitive; see page 1244 for our selection of antistatic products.



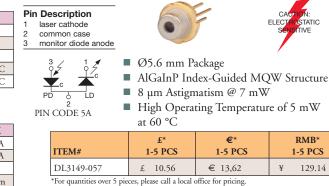
# $\lambda$ = 670 nm, P = 5 mW, Single Mode Sanyo DL3149-057

ITE DL

MAX

35 mA

50 mA


2.7 V

#### Absolute Maximum Ratings (T<sub>c</sub> = 25 °C)

| CHARACTERISTIC             | SYMBOL         | RATING       |
|----------------------------|----------------|--------------|
| Optical Output Power (CW)  | Po             | 7 mW         |
| LD Reverse Voltage         | VR(LD)         | 2 V          |
| PD Reverse Voltage         | VR(PD)         | 30 V         |
| Operation Case Temperature | T <sub>C</sub> | -10 to 60 °C |
| Storage Temperature        | Tstg           | -40 to 85 °C |

#### Characteristics (T<sub>c</sub> = 25 °C, P = 5 mW)

| Characteristic                       | SYMBOL            | MIN           | TYP.   | MAX    |
|--------------------------------------|-------------------|---------------|--------|--------|
| Threshold Current                    | I <sub>th</sub>   | -             | 25 mA  | 35 mA  |
| Operating Current                    | I <sub>op</sub>   | -             | 40 mA  | 45 mA  |
| Operating Voltage                    | V <sub>op</sub>   | -             | 2.3 V  | 2.6 V  |
| Lasing Wavelength                    | $\lambda_{\rm P}$ | 660 nm        | 670 nm | 678 nm |
| Beam Divergence                      | θ//               | 6.5°          | 8°     | 10°    |
| (FWHM)                               | $\theta \perp$    | 25°           | 30°    | 35°    |
| Monitor Current                      | Im                | 0.5 mA        | 1.5 mA | 2.0 mA |
| Note: All data is presented as typic | al unless otherwi | se specified. |        |        |



| E <b>M</b> # | PRICE<br>1-5 PCS | PRICE<br>6-10 PCS | PRICE<br>11-20 PCS | DESCRIPTION        |
|--------------|------------------|-------------------|--------------------|--------------------|
| .3149-057    | \$ 15.30         | \$ 13.47          | \$ 10.26           | Sanyo 670 nm, 5 mW |

CHARACTERISTIC

Threshold Current

Operation Current

Operation Voltage

Lasing Wavelength

Beam Divergence

Monitor Current

(FWHM)

#### Light

#### ▼ CHAPTERS **Coherent Sources**

**Incoherent Sources** 

Covega

- **Drivers/Mounts**
- Accessories
- ▼ SECTIONS
- Laser Diodes
- **Pigtailed Diodes**
- Fiber-Coupled Laser Sources
- **WDM Laser Sources**

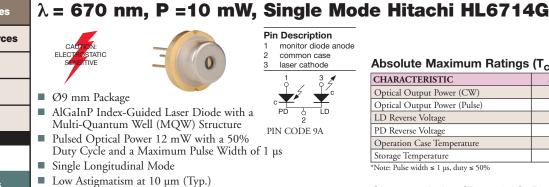
ITEM#

ITEM#

HL6714G

HL6714G

**HeNe Lasers** 


Laser Diode Modules

Tunable Lasers

Swept Source Lasers

Terahertz

All laser diodes are extremely electrostatic sensitive; see page 1244 for our selection of antistatic products.



€\*

1-5 PCS

PRICE

11-20 PCS

\$ 56.88

€ 63,28 Absolute Maximum Ratings (T<sub>c</sub> = 25 °C)

| CHARACTERISTIC               | SYMBOL         | RATING       |
|------------------------------|----------------|--------------|
| Optical Output Power (CW)    | Po             | 10 mW        |
| Optical Output Power (Pulse) | Po             | 12 mW*       |
| LD Reverse Voltage           | VR(LD)         | 2 V          |
| PD Reverse Voltage           | VR(PD)         | 30 V         |
| Operation Case Temperature   | T <sub>C</sub> | -10 to 50 °C |
| Storage Temperature          | Tstg           | -40 to 85 °C |

\*Note: Pulse width  $\leq 1$  us, duty  $\leq 50\%$ 

#### Characteristics (T<sub>c</sub> = 25 °C, P = 10 mW)

|              |                   | 0               | , .    | ,      |        |
|--------------|-------------------|-----------------|--------|--------|--------|
|              | CHARACTERISTIC    | SYMBOL          | MIN    | TYP.   | MAX    |
|              | Threshold Current | I <sub>th</sub> | 20 mA  | 35 mA  | 60 mA  |
| 9            | Operating Current | I <sub>op</sub> | -      | 55 mA  | 90 mA  |
|              | Lasing Wavelength | λρ              | 660 nm | 670 nm | 680 nm |
|              | Beam Divergence   | θ//             | 5°     | 8°     | 11°    |
| UPTION       | (FWHM)            | $\theta \perp$  | 18°    | 22°    | 30°    |
|              | Monitor Current   | Im              | 0.3 mA | 0.8 mA | 1.5 mA |
| 0  nm 10  mW |                   |                 |        |        |        |

Hitachi 670nm, 10mW Note: All data is presented as typical unless otherwise specified

# $\lambda$ = 690 nm, P = 35 mW, Single Mode Hitachi HL6738MG

RMB\*

1-5 PCS

600.09

DESCR

¥

#### Absolute Maximum Ratings (T<sub>c</sub> = 25 °C)

£\*

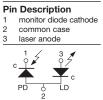
1-5 PCS

49.06

PRICE

6-10 PCS

\$ 63.99


£

1-5 PCS

\$ 71.10

\*For quantities over 5 pieces, please call a local office for pricing. PRICE

| CHARACTERISTIC                           | SYMBOL           | RATING       |
|------------------------------------------|------------------|--------------|
| Optical Output Power (CW)                | Po               | 35 mW        |
| Pulse Optical Output Power               | Po(pulse)        | 50 mW*       |
| LD Reverse Voltage                       | VR(LD)           | 2 V          |
| PD Reverse Voltage                       | VR(PD)           | 30 V         |
| Operation Case Temperature               | Tc               | -10 to 70 °C |
| Storage Temperature                      | T <sub>stg</sub> | -40 to 85 °C |
| *Pulse width = 100 ns, duty cycle = 50%. |                  |              |







- Ø5.6 mm Package
- AlGaInP Structure
- 6 µm Astigmatism @ 5 mW
- High Operating Temperature (70°C)

#### Characteristics ( $T_c = 25 \text{ °C}$ , P = 30 mW)

| SYMBOL          | MIN                                                                                                  | TYP.                                                                                     | MAX                                                    |
|-----------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------|
|                 | 141114                                                                                               | 111.                                                                                     | IVIAA                                                  |
| I <sub>th</sub> | 30 mA                                                                                                | 45 mA                                                                                    | 70 mA                                                  |
| I <sub>op</sub> | -                                                                                                    | 65 mA                                                                                    | 95 mA                                                  |
| V <sub>op</sub> | 2.1 V                                                                                                | 2.5 V                                                                                    | 2.8 V                                                  |
| λp              | 680 nm                                                                                               | 690 nm                                                                                   | 695 nm                                                 |
| θ//             | 7°                                                                                                   | 8.5°                                                                                     | 10.5°                                                  |
| $\theta \perp$  | 17°                                                                                                  | 19°                                                                                      | 23°                                                    |
| Im              | 0.02 mA                                                                                              | 0.1 mA                                                                                   | 0.45 mA                                                |
|                 | $ \begin{array}{c} I_{op} \\ V_{op} \\ \lambda p \\ \theta / / \\ \theta \bot \\ I_{m} \end{array} $ | Image         Image $V_{op}$ 2.1 V $\lambda p$ 680 nm $\theta / /$ 7° $\theta \perp$ 17° | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ |

|                                                                          |              |      |                  |   | (, )               |      |                   |
|--------------------------------------------------------------------------|--------------|------|------------------|---|--------------------|------|-------------------|
| П                                                                        | Έ <b>M</b> # |      | £*<br>1-5 PCS    |   | €*<br>1-5 PC       | S    | RMB*<br>1-5 PCS   |
| Н                                                                        | L6738MG      | £    | 38.02            |   | € 49,04            |      | ¥ 465.05          |
| *For quantities over 5 pieces, please call our local office for pricing. |              |      |                  |   |                    |      |                   |
| TEM#                                                                     | PRICE        |      | PRICE<br>-10 PCS | 1 | PRICE<br>11-20 PCS | I    | DESCRIPTION       |
| HL6738N                                                                  | IG \$ 55.10  | ) \$ | 48.49            | : | \$ 44.08           | Hita | chi 690 nm, 35 mW |

# $\lambda$ = 705 nm, P = 40 mW, Single Mode Hitachi HL7001MG

**Pin Description** monitor diode cathode common case laser anode

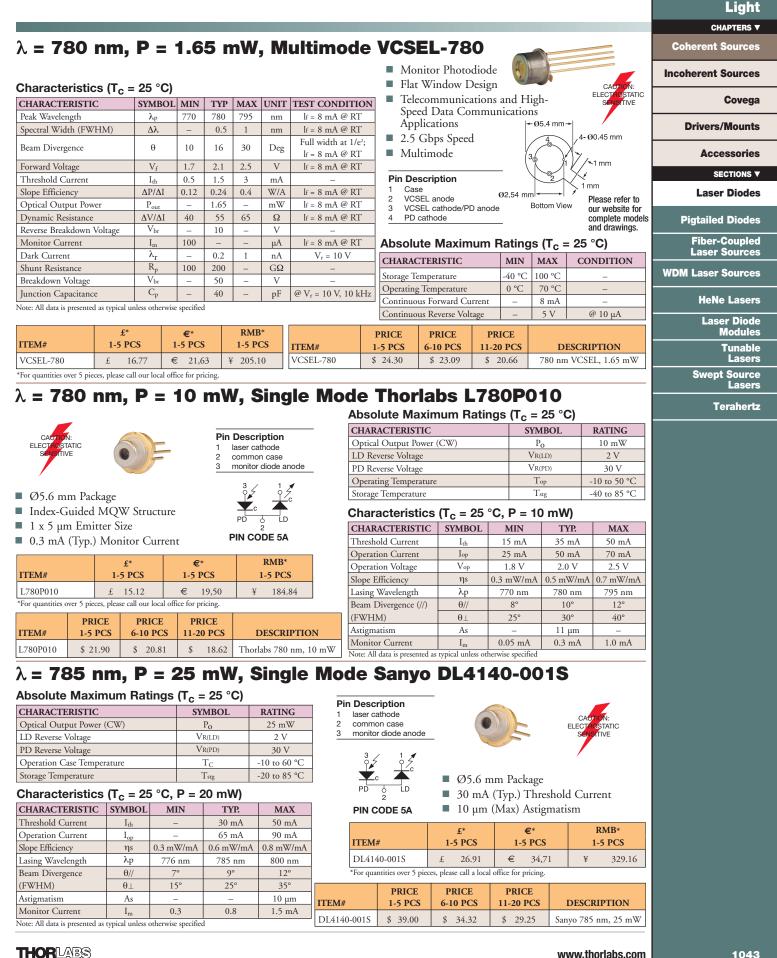
PIN CODE 5C



- Ø5.6 mm Package
- InGaAsP Structure
- Single Longitudinal Mode
- Suitable for Medical Sensor Applications

| ITEM#    | £*       | €*       | RMB*       |
|----------|----------|----------|------------|
|          | 1-5 PCS  | 1-5 PCS  | 1-5 PCS    |
| HL7001MG | £ 479.55 | € 618,55 | ¥ 5,865.80 |

| ITEM | #    | PRICE<br>1-5 PCS | PRICE<br>6-10 PCS | PRICE<br>11-20 PCS | DESCRIPTION           |
|------|------|------------------|-------------------|--------------------|-----------------------|
| HL70 | 01MG | \$695.00         | \$ 590.75         | \$486.50           | Hitachi 705 nm, 40 mW |


#### Absolute Maximum Ratings (T<sub>c</sub> = 25 °C)

|                            | ,                |              |
|----------------------------|------------------|--------------|
| CHARACTERISTIC             | SYMBOL           | RATING       |
| Optical Output Power (CW)  | Po               | 40 mW        |
| LD Reverse Voltage         | VR(LD)           | 2 V          |
| PD Reverse Voltage         | VR(PD)           | 30 V         |
| Operation Case Temperature | Tc               | -10 to 60 °C |
| Storage Temperature        | T <sub>stg</sub> | -40 to 85 °C |

#### Characteristics (T<sub>c</sub> = 25 °C, P = 40 mW)

| CHARACTERISTIC    | SYMBOL          | MIN     | TYP.    | MAX     |
|-------------------|-----------------|---------|---------|---------|
| Threshold Current | I <sub>th</sub> | -       | 30 mA   | 60 mA   |
| Operating Current | I <sub>op</sub> | -       | 75 mA   | 100 mA  |
| Operating Voltage | Vop             | -       | 2.5 V   | -       |
| Lasing Wavelength | λρ              | 695 nm  | 705 nm  | 715 nm  |
| Beam Divergence   | θ//             | 7°      | 9°      | 14°     |
| (FWHM)            | $\theta \perp$  | 14°     | 18°     | 25°     |
| Monitor Current   | Im              | 0.15 mA | 0.30 mA | 0.60 mA |

Note: All data is presented as typical unless otherwise specified

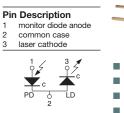


TECHNOLOGY V

#### Light ▼ CHAPTERS

#### **Coherent Sources**

# $\lambda$ = 785 nm, P = 50 mW, Single Mode Hitachi HL7851G


°C

°C

#### Incoherent Sources Absolute Maximum Batings (T<sub>a</sub> = 25 °C)

|                | Absolute Waximum Hatings $(T_c = 25 \text{ C})$                 |                    |           |  |  |
|----------------|-----------------------------------------------------------------|--------------------|-----------|--|--|
| •              | CHARACTERISTIC                                                  | SYMBOL             | RATING    |  |  |
| Covega         | Optical Output Power (CW)                                       | Po                 | 50 mW     |  |  |
|                | Pulsed Optical Output Power                                     | Po(pulse)          | 60 mW     |  |  |
| Drivers/Mounts | LD Reverse Voltage                                              | V <sub>R(LD)</sub> | 2 V       |  |  |
|                | PD Reverse Voltage                                              | V <sub>R(PD)</sub> | 30 V      |  |  |
| Accessories    | Operation Case Temperature                                      | T <sub>c</sub>     | -10 to 60 |  |  |
|                | Storage Temperature                                             | T <sub>stg</sub>   | -40 to 85 |  |  |
| ▼ SECTIONS     | *Pulse condition: Pulse width $\leq 1 \mu s$ , Duty $\leq 50\%$ | · · · · ·          |           |  |  |
| Laser Diodes   | Characteristics ( $T_c = 25$ °C.                                | P = 50 mW)         |           |  |  |

|       | •                                    | •                  | ,             |        |        |  |
|-------|--------------------------------------|--------------------|---------------|--------|--------|--|
| s     | CHARACTERISTIC                       | SYMBOL             | MIN           | TYP.   | MAX    |  |
|       | Threshold Current                    | Ith                | -             | 45 mA  | 70 mA  |  |
|       | Operation Current                    | Iop                | -             | 135 mA | 165 mA |  |
|       | Operation Voltage                    | Vop                | -             | 2.3 V  | 2.7 V  |  |
|       | Lasing Wavelength                    | λp                 | 775 nm        | 785 nm | 795 nm |  |
| irces | Beam Divergence                      | θ//                | 8°            | 9.5°   | 12°    |  |
|       | (FWHM)                               | $\theta \perp$     | 18°           | 23°    | 28°    |  |
|       | Monitor Current (P = 5 mW)           | Im                 | 30 µA         | 45 μA  | 150 μA |  |
|       | Note: All data is presented as typic | cal unless otherwi | se specified. |        |        |  |



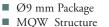
ITE

HL7

PRICE

1-5 PCS

\$ 86.70


PRICE

6-10 PCS

\$ 82.37







\*For quantities over 5 pieces, please call a local office for pricing.

PRICE

11-20 PCS

DESCRIPTION

\$ 76.30 Hitachi 785 nm, 50 mW Laser Diode

PIN CODE 9

ITEM#

HL7851G

| <ul> <li>A stigmatism @ 5 mv</li> <li>9.5:23 Beam Ellipticity</li> </ul> |               |               |                |  |  |
|--------------------------------------------------------------------------|---------------|---------------|----------------|--|--|
| M#                                                                       | £*<br>1-5 PCS | €*<br>1-5 PCS | RMB*<br>1-5 PC |  |  |
| 7851G                                                                    | £ 59.83       | € 77,17       | ¥ 731          |  |  |

WDM Laser Sou **HeNe Lasers** 

**Pigtailed Diodes** 

Fiber-Coupled Laser Sources

Laser Diode Modules

Tunable

Lasers

Swept Source Lasers

Terahertz

 $\lambda$  = 785 nm, P = 70 mW, Single Mode Sanyo DL7140-201S

#### Absolute Maximum Ratings (T<sub>c</sub> = 25 °C)

| •                                               |                    |              |
|-------------------------------------------------|--------------------|--------------|
| CHARACTERISTIC                                  | SYMBOL             | RATING       |
| Optical Output Power (CW)                       | Po                 | 80 mW        |
| Optical Output Power (Pulse)                    | Po                 | 85 mW*       |
| LD Reverse Voltage                              | V <sub>R(LD)</sub> | 2 V          |
| PD Reverse Voltage                              | V <sub>R(PD)</sub> | 30 V         |
| Operation Case Temperature                      | T <sub>C</sub>     | -10 to 60 °C |
| Storage Temperature                             | T <sub>stg</sub>   | -40 to 85 °C |
| *Pulse condition: Pulse width < 1 us Duty < 50% |                    |              |

#### Characteristics (T<sub>c</sub> = 25 °C, P= 70 mW)

| CHARACTERISTIC                       | SYMBOL                                                             | MIN    | TYP.    | MAX    |  |  |
|--------------------------------------|--------------------------------------------------------------------|--------|---------|--------|--|--|
| Threshold Current                    | I <sub>th</sub>                                                    | -      | 30 mA   | 50 mA  |  |  |
| Operation Current                    | I <sub>op</sub>                                                    | -      | 100 mA  | 140 mA |  |  |
| Operation Voltage                    | V <sub>op</sub>                                                    | -      | 2.0 V   | 2.8 V  |  |  |
| Lasing Wavelength                    | λp                                                                 | 775 nm | 785 nm  | 800 nm |  |  |
| Beam Divergence                      | θ//                                                                | 6°     | 8°      | 10°    |  |  |
| (FWHM)                               | $\theta \perp$                                                     | 15°    | 17°     | 20°    |  |  |
| Monitor Current                      | Im                                                                 | 0.1 mA | 0.25 mA | 0.6 mA |  |  |
| Note: All data is presented as typic | Note: All data is presented as typical unless otherwise specified. |        |         |        |  |  |

**Pin Description** monitor diode cathode common case 3 laser anode



Ø5.6 mm Package

Single Mode Index-Guided Structure

Operation Temperature of 60 °C @ 70 mW (CW)

10 µm Astigmatism @ 70 mW

|             | £*      | €*      | RMB*     |
|-------------|---------|---------|----------|
| ITEM#       | 1-5 PCS | 1-5 PCS | 1-5 PCS  |
| DL7140-201S | £ 27.26 | € 35,16 | ¥ 333.38 |

|             | PRICE    | PRICE    | PRICE     |                     |
|-------------|----------|----------|-----------|---------------------|
| ITEM#       | 1-5 PCS  | 6-10 PCS | 11-20 PCS | DESCRIPTION         |
| DL7140-201S | \$ 39.50 | \$ 33.58 | \$ 25.68  | Sanyo 785 nm, 70 mW |

# $\lambda$ = 785 nm, P = 100 mW, Multimode Thorlabs L785P100



100 mW (CW) or 220 mW

(Pulsed) Optical Output Power

**Pin Description** laser cathode common case monitor diode anode



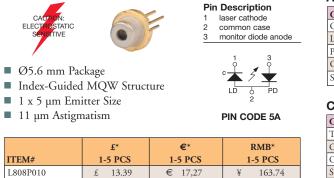
**PIN CODE 5A** 

|          | £*      | €*      | RMB*     |
|----------|---------|---------|----------|
| ITEM#    | 1-5 PCS | 1-5 PCS | 1-5 PCS  |
| L785P100 | £ 26.91 | € 34,71 | ¥ 329.16 |

PRICE PRICE PRICE 1-5 PCS 6-10 PCS 11-20 PCS DESCRIPTION ITEM# L785P100 \$ 39.00 \$ 35.10 \$ 30.42 Thorlabs 785 nm, 100 mW

#### Absolute Maximum Ratings (T<sub>c</sub> = 25 °C)

| 0                                                  | 10 1               |              |  |  |
|----------------------------------------------------|--------------------|--------------|--|--|
| CHARACTERISTIC                                     | SYMBOL             | RATING       |  |  |
| Optical Output Power (CW)                          | Po                 | 100 mW       |  |  |
| Optical Output Power (Pulse)*                      | Pop                | 220 mW       |  |  |
| LD Reverse Voltage                                 | V <sub>R(LD)</sub> | 2 V          |  |  |
| Operating Temperature                              | Тор                | -10 to 60 °C |  |  |
| Storage Temperature T <sub>sg</sub> -40 to 85 °C   |                    |              |  |  |
| *Pulse Condition: Pulse width = 0.5 µs, duty = 50% |                    | 1            |  |  |


#### Characteristics (T<sub>c</sub> = 25 °C, P = 90 mW)

| , , , , , , , , , , , , , , , , , , , , |                  |                    |           |           |  |  |
|-----------------------------------------|------------------|--------------------|-----------|-----------|--|--|
| CHARACTERISTIC                          | SYMBOL           | MIN                | TYP.      | MAX       |  |  |
| Threshold Current                       | I <sub>th</sub>  | 25 mA              | 35 mA     | 55 mA     |  |  |
| Operation Current                       | Iop              | 90 mA              | 115 mA    | 160 mA    |  |  |
| Operation Voltage                       | Vop              | 1.5 V              | 2.0 V     | 2.2 V     |  |  |
| Slope Efficiency                        | ηs               | 0.8 mW/mA          | 1.1 mW/mA | 1.3 mW/mA |  |  |
| Lasing Wavelength                       | λp               | 775 nm             | 785 nm    | 795 nm    |  |  |
| Beam Divergence                         | θ//              | 8°                 | 9°        | 10°       |  |  |
| (FWHM)                                  | $\theta \perp$   | 15°                | 17°       | 19°       |  |  |
| Monitor Current                         | Im               | 0.1 mA             | 0.5 mA    | 0.7 mA    |  |  |
| Note: All data is presented as t        | ypical unless or | herwise specified. |           |           |  |  |

Multimode



# $\lambda$ = 808 nm, P = 10 mW, Single Mode Thorlabs L808P010



| CHARACTERISTIC            | SYMBOL             | RATING      |
|---------------------------|--------------------|-------------|
| Optical Output Power (CW) | Po                 | 10 mW       |
| LD Reverse Voltage        | V <sub>R(LD)</sub> | 2 V         |
| PD Reverse Voltage        | V <sub>R(PD)</sub> | 30 V        |
| Operating Temperature     | Top                | -10 to 50 ° |
| Storage Temperature       | Tstg               | -40 to 85 ° |

#### Characteristics (T<sub>c</sub> = 25 °C, P = 10 mW)

| CHARACTERISTIC    | SYMBOL          | MIN       | TYP.      | MAX       |
|-------------------|-----------------|-----------|-----------|-----------|
| Threshold Current | I <sub>th</sub> | 10 mA     | 25 mA     | 40 mA     |
| Operation Current | Iop             | 25 mA     | 50 mA     | 70 mA     |
| Operation Voltage | Vop             | 1.8 V     | 2.0 V     | 2.5 V     |
| Slope Efficiency  | ηs              | 0.3 mW/mA | 0.5 mW/mA | 0.7 mW/mA |
| Lasing Wavelength | λp              | 795 nm    | 808 nm    | 815 nm    |
| Beam Divergence   | θ//             | 8°        | 10°       | 12°       |
| (FWHM)            | $\theta \bot$   | 25°       | 30°       | 40°       |
| Astigmatism       | As              | _         | 11 µm     | -         |
| Monitor Current   | Im              | 0.05 mA   | 0.3 mA    | 1.0 mA    |

#### PRICE PRICE PRICE ITEM# 1-5 PCS 6-10 PCS 11-20 PCS DESCRIPTION L808P010 \$ 19.40 \$ 18.43 \$ 16.49 Thorlabs 808 nm, 10 mW

\*For quantities over 5 pieces, please call a local office for pricing.

# $\lambda$ = 808 nm, P = 30 mW, Single Mode Thorlabs L808P030



- Ø5.6 mm Package
- Index-Guided MQW Structure
- 1 x 5 µm Emitter Size
- 11 μm Astigmatism





**PIN CODE 5A** 

|                            | £* €*                                                                    |         | RMB*     |  |  |  |
|----------------------------|--------------------------------------------------------------------------|---------|----------|--|--|--|
| ITEM#                      | 1-5 PCS                                                                  | 1-5 PCS | 1-5 PCS  |  |  |  |
| L808P030                   | £ 51.00                                                                  | € 65,78 | ¥ 623.72 |  |  |  |
| *For quantities over 5 pie | *For quantities over 5 pieces, please call our local office for pricing. |         |          |  |  |  |

|          | PRICE    | PRICE    | PRICE     |                        |
|----------|----------|----------|-----------|------------------------|
| ITEM#    | 1-5 PCS  | 6-10 PCS | 11-20 PCS | DESCRIPTION            |
| L808P030 | \$ 73.90 | \$ 70.21 | \$ 62.82  | Thorlabs 808 nm, 30 mW |

| Absolute Maximum Ratings ( | $1_{\rm C} = 23$ O) |
|----------------------------|---------------------|
| CHARACTERISTIC             | SYMBOL              |

| CHARACTERISTIC            | SYMBOL | RATING       |
|---------------------------|--------|--------------|
| Optical Output Power (CW) | Po     | 30 mW        |
| LD Reverse Voltage        | VR(LD) | 2 V          |
| PD Reverse Voltage        | VR(PD) | 30 V         |
| Operating Temperature     | Top    | -10 to 50 °C |
| Storage Temperature       | Tstg   | -40 to 85 °C |

#### Characteristics ( $T_c = 25 \text{ °C}$ , P = 30 mW)

| CHARACTERISTIC    | SYMBOL          | MIN       | TYP.      | MAX       |  |  |
|-------------------|-----------------|-----------|-----------|-----------|--|--|
| Threshold Current | I <sub>th</sub> | 30 mA     | 50 mA     | 70 mA     |  |  |
| Operation Current | I <sub>op</sub> | 40 mA     | 100 mA    | 150 mA    |  |  |
| Operation Voltage | V <sub>op</sub> | 1.8 V     | 2.0 V     | 2.5 V     |  |  |
| Slope Efficiency  | ηs              | 0.5 mW/mA | 0.7 mW/mA | 0.9 mW/mA |  |  |
| Lasing Wavelength | λp              | 795 nm    | 808 nm    | 820 nm    |  |  |
| Beam Divergence   | θ//             | 8°        | 10°       | 12°       |  |  |
| (FWHM)            | $\theta \bot$   | 25°       | 30°       | 40°       |  |  |
| Astigmatism       | As              | -         | 11 µm     | -         |  |  |
| Monitor Current   | Im              | 0.05 mA   | 0.3 mA    | 1 mA      |  |  |
|                   |                 |           |           |           |  |  |

**Coherent Sources Incoherent Sources** Covega **Drivers/Mounts** Accessories SECTIONS V Laser Diodes **Pigtailed Diodes** Fiber-Coupled Laser Sources WDM Laser Sources **HeNe Lasers** Laser Diode Modules Tunable Lasers Swept Source Lasers Terahertz

°C

TECHNOLOGY V Light CHAPTERS V

All laser diodes are extremely electrostatic sensitive; see page 1244 for our selection of antistatic products.



# $\lambda$ = 808 nm, P = 200 mW, Multimode Thorlabs L808P200

**PIN CODE 5A** 



Multimode

| ITEM# 1-   | £*<br>5 PCS | 1-5 I | PCS   | 1 | RMB*<br>-5 PCS |
|------------|-------------|-------|-------|---|----------------|
| L808P200 £ | 41.96       | € 5   | 54,12 | ¥ | 513.16         |

|          | PRICE    | PRICE    | PRICE     |                         |   |
|----------|----------|----------|-----------|-------------------------|---|
| ITEM#    | 1-5 PCS  | 6-10 PCS | 11-20 PCS | DESCRIPTION             | ( |
| L808P200 | \$ 60.80 | \$ 57.76 | \$ 51.68  | Thorlabs 808 nm, 200 mW | ] |

#### Absolute Maximum Ratings (T<sub>c</sub> = 25 °C)

| ¥                         |                  |              |
|---------------------------|------------------|--------------|
| CHARACTERISTIC            | SYMBOL           | RATING       |
| Optical Output Power (CW) | Po               | 200 mW       |
| LD Reverse Voltage        | VR(LD)           | 2 V          |
| PD Reverse Voltage        | VR(PD)           | 30 V         |
| Operating Temperature     | T <sub>op</sub>  | -10 to 50 °C |
| Storage Temperature       | T <sub>stg</sub> | -40 to 85 °C |

#### Characteristics (T<sub>c</sub> = 25 °C, P = 200 mW)

| $(1_{\rm C} - 2_{\rm C} - 2_{\rm C})$ |                 |           |           |           |  |
|---------------------------------------|-----------------|-----------|-----------|-----------|--|
| CHARACTERISTIC                        | SYMBOL          | MIN       | TYP.      | MAX       |  |
| Threshold Current                     | I <sub>th</sub> | 60 mA     | 80 mA     | 100 mA    |  |
| Operation Current                     | Iop             | 220 mA    | 260 mA    | 300 mA    |  |
| Operation Voltage                     | Vop             | 1.8 V     | 2.0 V     | 2.5 V     |  |
| Slope Efficiency                      | ηs              | 0.5 mW/mA | 0.7 mW/mA | 0.9 mW/mA |  |
| Lasing Wavelength                     | λp              | 805 nm    | 808 nm    | 811 nm    |  |
| Beam Divergence                       | θ//             | 8°        | 10°       | 12°       |  |
| (FWHM)                                | $\theta \bot$   | 25°       | 30°       | 40°       |  |
| Monitor Current                       | Im              | 0.5 mA    | 1.3 mA    | 2.0 mA    |  |
|                                       |                 |           |           |           |  |

**Coherent Sources** 

#### Light ▼ CHAPTERS

Covega

**Drivers/Mount** 

Accessories

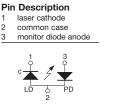
▼ SECTIONS

Laser Dio

Pigtailed

Fiber-Cou Laser Sou

WDM Las **HeNe Las** 


## $\lambda$ = 808 nm, P = 1 Watt, Multimode Thorlabs L808P1WJ

#### Absolute Maximum Ratings (T<sub>c</sub> = 25 °C) **Incoherent Sources**

|    | -                         |                    |              |
|----|---------------------------|--------------------|--------------|
|    | CHARACTERISTIC            | SYMBOL             | RATING       |
|    | Optical Output Power (CW) | Po                 | 1 W          |
|    | LD Reverse Voltage        | V <sub>R(LD)</sub> | 2 V          |
| ts | PD Reverse Voltage        | V <sub>R(PD)</sub> | 20 V         |
|    | Operating Temperature     | Тор                | -20 to 40 °C |
|    | Storage Temperature       | Tstg               | -40 to 80 °C |
|    |                           |                    |              |
|    |                           | D 4 140            |              |

#### Characteristics (T<sub>c</sub> = 25 °C, P = 1 W)

| odes           | CHARACTERISTIC                 | SYMBOL            | MIN                 | TYP.    | MAX    | PIN CC    | DE 9         |
|----------------|--------------------------------|-------------------|---------------------|---------|--------|-----------|--------------|
|                | Threshold Current              | Ith               | -                   | 1 A     | 1.2 A  |           |              |
| Diodes         | Operating Current              | Iop               | -                   | 1.9 A   | 2.5 A  |           |              |
|                | Operating Voltage              | Vop               | -                   | 1.65 V  | 2.0 V  | ITEM#     | <del>y</del> |
| upled<br>urces | Slope Efficiency               | ηs                | 0.8 W/A             | 1.2 W/A | _      | L808P     | 1WJ          |
|                | Lasing Wavelength              | λp                | 798 nm              | 808 nm  | 818 nm | *For quar | ntities c    |
| er Sources     | Beam Divergence                | θ//               | 5°                  | 8°      | 11°    |           |              |
|                | (FWHM)                         | θ⊥                | 30°                 | 35°     | 40°    |           | PR           |
| sers           | Monitor Current                | Im                | 0.1 mA              | _       | 10 mA  | ITEM#     | 1-5          |
|                | Note: All data is presented as | typical unless of | otherwise specified |         |        | L808P1WJ  | \$ 3         |



3





- Ø9 mm Package
- Single Emitter
  - 1 x 100 µm Emitter Size
- Patented Device Structure

Multimode

|      |           |                    | £*                  |             | €*              |             |        | RMB*      |  |  |
|------|-----------|--------------------|---------------------|-------------|-----------------|-------------|--------|-----------|--|--|
|      | ITEM#     | ŧ                  | 1-5 PCS             |             | 1-5 I           | PCS         |        | 1-5 PCS   |  |  |
|      | L808P     | 1WJ                | £ 250.20            |             | € 322           | 2,72        | ¥      | 3,060.40  |  |  |
|      | *For quar | ntities over 5 pie | ces, please call ou | ır loca     | al office for p | ricing.     |        |           |  |  |
|      |           | PRICE              | PRICE               | PRICE       |                 | PRICE       |        |           |  |  |
| ГЕМ  | [#        | 1-5 PCS            | 6-10 PCS            | CS 11-20 PC |                 | 1-20 PCS DE |        | SCRIPTION |  |  |
| 8081 | P1WJ      | \$ 362.60          | \$ 326.34           | \$          | 290.08          | Thorla      | ıbs 80 | 8 nm, 1 W |  |  |

# $\lambda$ = 830 nm, P = 30 mW, Single Mode Sanyo DL5032-001

Tunable Lasers Swept Source Lasers

Terahertz

Laser Diode **Modules** 

> Absolute Maximum Ratings (T<sub>c</sub> = 25 °C) **Pin Description** CHARACTERISTIC SYMBOL RATING laser cathode Light Output (CW)  $P_0$ 40 mW 2 common case 3 monitor diode anode LD Reverse Voltage V<sub>R(LD)</sub> 2 V PD Reverse Voltage V<sub>R(PD)</sub> 30 V Ø9 mm Package Operating Temperature -10 to +60 °C Topr 30 mA (Typ.) Threshold Current Storage Temperature Tstg -40 to +80 °C 30 mW Output Power PD Characteristics (T<sub>c</sub> = 25 °C, P = 30 mW) Single Transverse Mode **PIN CODE 9A** CHARACTERISTIC SYMBOL MIN TYP. MAX 10 µm Astigmatism Threshold Current 20 mA 30 mA 40 mA Irh RMB\* Operation Current 60 mA 90 mA £\* €\* Iop Vop Operation Voltage 1.9 V 2.5 V ITEM# 1-5 PCS 1-5 PCS 1-5 PCS λp 810 nm Wavelength 830 nm 840 nm ivergence θ// 5° 7.5°  $10^{\circ}$ θι 159 189 230 D.

| DL   | 5032-001     |           | t           | 66.4        | 24          | €         | 85,44   | Ť     | 810.24         |    | Lasing Wavel      |
|------|--------------|-----------|-------------|-------------|-------------|-----------|---------|-------|----------------|----|-------------------|
| *For | quantities o | ver 5 pie | eces, pleas | se call a l | ocal office | e for pri | cing.   |       |                | •  | Beam Diverg       |
|      |              | PRI       | CE          | PRI         | CE          | L         | PRICE   |       |                |    | (FWHM)            |
| ITE  | `M#          |           | PCS         |             | PCS         |           | -20 PCS | п     | ESCRIPTION     | J  | Monitor Cur       |
|      | 5032-001     | -         | 96.00       |             |             | ¢         |         |       |                | -  | Astigmatism       |
| DL   | 5052-001     | \$ 3      | 96.00       | \$ 2        | 31.60       | \$        | 62.40   | Sanyo | o 830 nm, 30 i | mw | Note: All data is |

| 1 lotigination                      | 1 15              |                |
|-------------------------------------|-------------------|----------------|
| Note: All data is presented as typi | cal unless otherw | ise specified. |

Current

# $\lambda$ = 830 nm, P = 40 mW, Single Mode Hitachi HL8325G

**Optical Power** Meters i do See Page 1265

- Pin Description monitor diode cathode common case laser anode **PIN CODE 9C**
- Ø9 mm Package GaAlAs Triple Quantum Well Structure
- Pulsed Optical Power 50 mW with a 50% Maximum Duty Cycle and a Maximum Pulse Width of 1µs
- Single Longitudinal Mode

|                      |       |              | £*      |            |             | 4  | £*     |             | RMB*           |      |         |  |
|----------------------|-------|--------------|---------|------------|-------------|----|--------|-------------|----------------|------|---------|--|
| ITEM#                |       | 1-5 PCS      |         | 1-5 PCS    |             | S  | 1      | -5          | PCS            |      | 1-5 PCS |  |
| HL8325G              |       | £            | 129     | 9.59       | €           |    | 167,15 | ¥           | 1,585.10       |      |         |  |
| *For quantities over | 5 pie | ces, pleas   | se call | a local of | fice for    | pr | icing. |             |                | -    |         |  |
|                      | PF    | NICE         | PI      | RICE       | ]           | PF | UCE    |             |                |      |         |  |
| ITEM#                | 1-5   | PCS 6-10 PCS |         | 0 PCS      | 5 11-20 PCS |    | 0 PCS  | DESCRIPTION |                |      |         |  |
| HL8325G              | \$ 1  | 87.80        | \$      | 159.63     | \$          | 1  | 31.46  | Hita        | achi 830 nm, 4 | 0 mW |         |  |

#### Absolute Maximum Ratings (T<sub>c</sub> = 25 °C)

Im

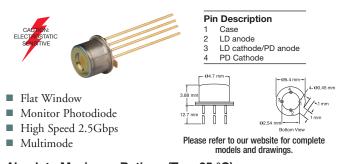
Δ

0.05 mA

0.1 mA

10 µm

| aboolato maximalii natinge  | (10 = = • •)     |              |
|-----------------------------|------------------|--------------|
| CHARACTERISTIC              | SYMBOL           | RATING       |
| Optical Output Power (CW)   | Po               | 40 mW        |
| Pulse Optical Output Power* | Po               | 50 mW        |
| LD Reverse Voltage          | VR(LD)           | 2 V          |
| PD Reverse Voltage          | VR(PD)           | 30 V         |
| Operation Case Temperature  | T <sub>c</sub>   | -10 to 60 °C |
| Storage Temperature         | T <sub>stg</sub> | -40 to 85 °C |
|                             |                  |              |


\*Pulse Condition: Pulse width = 1 µs, duty = 50%.

#### Characteristics (T<sub>c</sub> = 25 °C, P = 40 mW)

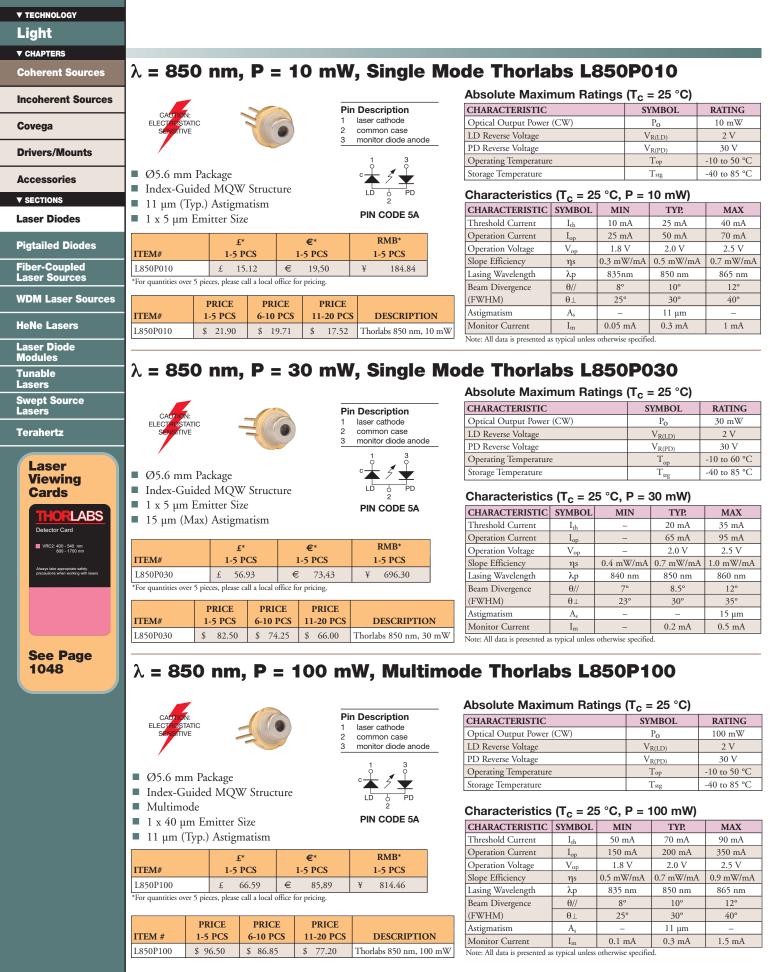
| CHARACTERISTIC                       | SYMBOL           | MIN             | TYP.      | MAX       |
|--------------------------------------|------------------|-----------------|-----------|-----------|
| Threshold Current                    | I <sub>th</sub>  | -               | 40 mA     | 70 mA     |
| Operation Current                    | I <sub>op</sub>  | -               | 120 mA    | -         |
| Slope Efficiency                     | ηs               | 0.4 mW/mA       | 0.5 mW/mA | 0.9 mW/mA |
| Lasing Wavelength                    | λρ               | 820 nm          | 830 nm    | 840 nm    |
| Beam Divergence                      | θ//              | 7°              | 10°       | 14°       |
| (FWHM)                               | $\theta \perp$   | 18°             | 22°       | 32°       |
| Monitor Current (P=4 mW)             | Im               | 20 µA           | 40 µA     | 130 µA    |
| Note: All data is presented as typic | al unless otherv | vise specified. |           |           |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                            |                                                                                            |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                        |                                                                                                                            | Ligh                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                            |                                                                                            |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                        |                                                                                                                            | CHAPTERS                                                                                 |
| . = 830 nn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n, P =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100 ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mW, S                                                                                                                                                                                                               | Singl                                                                                                                                      | e Ma                                                                                       | ode San                                                                                                                                                                                                                                                                                               | yo DL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -001                                                                                                   |                                                                                                                            | Coherent Source                                                                          |
| bsolute Maximu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m Rating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | s (T <sub>c</sub> = 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 °C)                                                                                                                                                                                                               |                                                                                                                                            |                                                                                            |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                        |                                                                                                                            | Incoherent Source                                                                        |
| CHARACTERISTIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SYMBO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                     | RATING                                                                                                                                     | Pin De                                                                                     | escription                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                        | CAUTION:                                                                                                                   |                                                                                          |
| Optical Output Power (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                     | 100 mW                                                                                                                                     | 1 lase                                                                                     | er cathode                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                        | SENSITIVE                                                                                                                  | Coveg                                                                                    |
| LD Reverse Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V <sub>R(LD)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                     | 2 V                                                                                                                                        |                                                                                            | mmon case<br>nitor diode anode                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                        |                                                                                                                            |                                                                                          |
| PD Reverse Voltage<br>Operation Case Temperatu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | V <sub>R(PD)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                     | 15 V<br>0 to 50 °C                                                                                                                         |                                                                                            |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                        |                                                                                                                            | Drivers/Mount                                                                            |
| Storage Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T <sub>stg</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                     | 0 to 30 °C                                                                                                                                 |                                                                                            | 1 3<br>0 0                                                                                                                                                                                                                                                                                            | ■ Ø9 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m Package                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |                                                                                                                            |                                                                                          |
| storage remperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 stg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -4(                                                                                                                                                                                                                 | J 10 8 J C                                                                                                                                 | l c-                                                                                       | ¥ ₹ ↓                                                                                                                                                                                                                                                                                                 | <ul> <li>Single</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Longitudi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nal Mode                                                                                               |                                                                                                                            | Accessorie                                                                               |
| Characteristics (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ∫ <sub>c</sub> = 25 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , P = 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mW)                                                                                                                                                                                                                 |                                                                                                                                            | -                                                                                          |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                        | Output Power                                                                                                               |                                                                                          |
| CHARACTERISTIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SYMBOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TYP.                                                                                                                                                                                                                | MAX                                                                                                                                        |                                                                                            | 2                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A (Typ.) C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                      | 1                                                                                                                          | SECTIONS                                                                                 |
| Threshold Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I <sub>th</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50 mA                                                                                                                                                                                                               | 70 mA                                                                                                                                      | P                                                                                          | IN CODE 9A                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Astigmati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        | Surrent                                                                                                                    | Laser Diode                                                                              |
| Operation Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I <sub>op</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 140 mA                                                                                                                                                                                                              | 180 mA                                                                                                                                     | l r                                                                                        |                                                                                                                                                                                                                                                                                                       | = 10 µm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | i ristigillati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5111                                                                                                   |                                                                                                                            |                                                                                          |
| Operating Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V <sub>op</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.9 V                                                                                                                                                                                                               | 2.4 V                                                                                                                                      |                                                                                            |                                                                                                                                                                                                                                                                                                       | £*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | €*                                                                                                     | RMB*                                                                                                                       | Pigtailed Diode                                                                          |
| Lasing Wavelength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | λp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 810 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 830 nm                                                                                                                                                                                                              | 840 nm                                                                                                                                     |                                                                                            | ITEM#                                                                                                                                                                                                                                                                                                 | 1-5 PCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 PCS                                                                                                  | 1-5 PCS                                                                                                                    |                                                                                          |
| Slope Efficiency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ηs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.6 mW/ mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 mW/mA                                                                                                                                                                                                             | 1.3 mW/ mA                                                                                                                                 |                                                                                            | DL7032-001                                                                                                                                                                                                                                                                                            | £ 210.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 271,01                                                                                                 | ¥ 2,569.98                                                                                                                 | Fiber-Couple<br>Laser Source                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | θ//                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7°                                                                                                                                                                                                                  | 11°                                                                                                                                        | *                                                                                          | For quantities over 5 pi                                                                                                                                                                                                                                                                              | ieces, please call a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | local office for p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | oricing.                                                                                               |                                                                                                                            | Laser Source                                                                             |
| Beam Divergence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0//                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e                                                                                                                                                                                                                   | 1 ** 1                                                                                                                                     |                                                                                            |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                        |                                                                                                                            |                                                                                          |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | θ//<br>θ⊥                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18°                                                                                                                                                                                                                 | 23°                                                                                                                                        |                                                                                            | PRICE                                                                                                                                                                                                                                                                                                 | PRICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PRICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                        |                                                                                                                            | WDM Laser Source                                                                         |
| (FWHM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                     |                                                                                                                                            | ITEM#                                                                                      | PRICE<br>1-5 PCS                                                                                                                                                                                                                                                                                      | PRICE<br>6-10 PCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PRICE<br>11-20 PCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DES                                                                                                    | CRIPTION                                                                                                                   | WDM Laser Source                                                                         |
| FWHM)<br>Monitor Current<br>Istigmatism<br>ote: All data is presented as typ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\theta_{\perp}$<br>$I_m$<br>$A_s$<br>$A_s$<br>$A_s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12°<br>0.05 mA<br>–<br><i>ise specified.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18°<br>0.3 mA<br>10 µm                                                                                                                                                                                              | 23°<br>-<br>-                                                                                                                              | DL7032                                                                                     | 1-5 PCS           -001         \$ 304.50                                                                                                                                                                                                                                                              | 6-10 PCS<br>\$ 258.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>11-20 PCS</b><br>\$ 213.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sanyo 8                                                                                                | CRIPTION<br>30 nm, 100 mW                                                                                                  | HeNe Lase                                                                                |
| (FWHM)<br>Monitor Current<br>Astigmatism<br>Jote: All data is presented as typ<br>A <b>= 830 nn</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12°<br>0.05 mA<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18°<br>0.3 mA<br>10 μm                                                                                                                                                                                              | 23°<br>-<br>-                                                                                                                              | DL7032                                                                                     | 1-5 PCS           -001         \$ 304.50                                                                                                                                                                                                                                                              | 6-10 PCS<br>\$ 258.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>11-20 PCS</b><br>\$ 213.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sanyo 8                                                                                                | 30 nm, 100 mW                                                                                                              | HeNe Lase<br>Laser Dioc<br>Module<br>Tunab                                               |
| (FWHM)<br>Monitor Current<br>Astigmatism<br>Note: All data is presented as typ<br>$\lambda = 830 \text{ nm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12°<br>0.05 mA<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18°<br>0.3 mA<br>10 μm                                                                                                                                                                                              | 23°<br>-<br>-                                                                                                                              | DL7032                                                                                     | 1-5 PCS           -001         \$ 304.50           Dde San                                                                                                                                                                                                                                            | 6-10 PCS<br>\$ 258.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>11-20 PCS</b><br>\$ 213.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sanyo 8                                                                                                | 30 nm, 100 mW                                                                                                              | HeNe Lase<br>Laser Dioc<br>Module<br>Tunab<br>Lase                                       |
| Beam Divergence<br>(FWHM)<br>Monitor Current<br>Astigmatism<br>Jore: All data is presented as typ<br>$\lambda = 830$ nm<br>Absolute Maximu<br>CHARACTERISTIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12°<br>0.05 mA<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18°<br>0.3 mA<br>10 μm<br><b>mW,</b>                                                                                                                                                                                | 23°<br>-<br>-                                                                                                                              | <b>e M</b> (<br><b>Pin De</b><br>1 lase                                                    | 1-5 PCS           -001         \$ 304.50           ODDE         San           escription         er anode                                                                                                                                                                                             | 6-10 PCS<br>\$ 258.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>11-20 PCS</b><br>\$ 213.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sanyo 8                                                                                                | 30 nm, 100 mW                                                                                                              | HeNe Laser<br>Laser Dioc<br>Module<br>Tunab<br>Laser<br>Swept Source                     |
| (FWHM)<br>Monitor Current<br>Astigmatism<br>Jore: All data is presented as typ<br>λ = 830 nn<br>Absolute Maximu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c c} \theta_{\perp} \\ \hline & \Pi_{m} \\ \hline & A_{s} \\ \hline & \text{sical unless otherw} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12°<br>0.05 mA<br><br>rise specified.<br><b>150</b><br>s (T <sub>c</sub> = 25<br><u>SYMB</u> e<br>Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18°       0.3 mA       10 μm <b>mW,</b> 5°C)       OL                                                                                                                                                               | 23°<br>-<br>Singl                                                                                                                          | <b>E M</b> (<br><b>Pin De</b><br>1 lase<br>2 cor                                           | 1-5 PCS<br>-001 \$ 304.50                                                                                                                                                                                                                                                                             | 6-10 PCS<br>\$ 258.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>11-20 PCS</b><br>\$ 213.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sanyo 8                                                                                                | 30 nm, 100 mW                                                                                                              | HeNe Lase<br>Laser Dioc<br>Module<br>Tunab<br>Lase                                       |
| (FWHM)<br>Monitor Current<br>Astigmatism<br>Note: All data is presented as typ<br>$\lambda = 830 \text{ nm}$<br>Absolute Maximu<br>CHARACTERISTIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c c} \theta_{\perp} \\ \hline & \Pi_{m} \\ \hline & A_{s} \\ \hline & \text{sical unless otherw} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12°<br>0.05 mA<br>-<br>ise specified.<br><b>150 I</b><br>s (T <sub>c</sub> = 25<br>SYMB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18°       0.3 mA       10 μm <b>mW,</b> 5°C)       OL                                                                                                                                                               | 23°<br>–<br>–<br>Single                                                                                                                    | <b>E M</b> (<br><b>Pin De</b><br>1 lase<br>2 cor                                           | 1-5 PCS           -001         \$ 304.50           ODDE         San           escription         er anode                                                                                                                                                                                             | 6-10 PCS<br>\$ 258.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>11-20 PCS</b><br>\$ 213.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sanyo 8                                                                                                | 30 nm, 100 mW                                                                                                              | HeNe Laser<br>Laser Dioc<br>Module<br>Tunab<br>Laser<br>Swept Source                     |
| (FWHM)<br>Monitor Current<br>Astigmatism<br>Jote: All data is presented as typ<br><b>A = 830 nn</b><br>Absolute Maximu<br>CHARACTERISTIC<br>Optical Output Power (C'<br>LD Reverse Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c c} \theta_{\perp} \\ \hline & \Pi_{m} \\ \hline & A_{s} \\ \hline & \text{sical unless otherw} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12°<br>0.05 mA<br><br>rise specified.<br><b>150</b><br>s (T <sub>c</sub> = 25<br><u>SYMB</u> e<br>Po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18°<br>0.3 mA<br>10 μm<br><b>mW, §</b><br>5 °C)<br>OL <b>β</b>                                                                                                                                                      | 23°<br>-<br>-<br>Single<br>RATING<br>180 mW<br>2 V<br>30 V                                                                                 | <b>E M</b> (<br><b>Pin De</b><br>1 lase<br>2 cor                                           | 1-5 PCS<br>-001 \$ 304.50                                                                                                                                                                                                                                                                             | 6-10 PCS<br>\$ 258.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>11-20 PCS</b><br>\$ 213.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sanyo 8                                                                                                | 30 nm, 100 mW                                                                                                              | HeNe Laser<br>Laser Dioc<br>Module<br>Tunab<br>Laser<br>Swept Sourc<br>Laser             |
| (FWHM)<br>Monitor Current<br>Astigmatism<br>Note: All data is presented as typ<br><b>A = 830 nn</b><br>Absolute Maximu<br>CHARACTERISTIC<br>Optical Output Power (C'<br>LD Reverse Voltage<br>PD Reverse Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | θ⊥           Im           As           oical unless otherw           n, P =           um Rating:           W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12°<br>0.05 mA<br>-<br><i>i</i> se specified.<br><b>150 I</b><br>s (T <sub>c</sub> = 25<br><u>SYMB</u><br>P <sub>o</sub><br>V <sub>R(LD)</sub><br>V <sub>R(PD)</sub><br>T <sub>C</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18°<br>0.3 mA<br>10 μm<br><b>mW, 5</b><br>5 °C)<br>OL F<br>-10                                                                                                                                                      | 23°<br>-<br>-<br>Single<br>RATING<br>180 mW<br>2 V<br>30 V<br>0 to 50 °C                                                                   | <b>E M</b> (<br><b>Pin De</b><br>1 lase<br>2 cor                                           | 1-5 PCS<br>-001 \$ 304.50                                                                                                                                                                                                                                                                             | 6-10 PCS<br>\$ 258.83<br><b>yo DL</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>11-20 PCS</b><br>\$ 213.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sanyo 8                                                                                                | 30 nm, 100 mW                                                                                                              | HeNe Laser<br>Laser Dioc<br>Module<br>Tunab<br>Laser<br>Swept Sourc<br>Laser             |
| (FWHM)<br>Monitor Current<br>Astigmatism<br>Note: All data is presented as typ<br><b>A = 830 nn</b><br>Absolute Maximu<br>CHARACTERISTIC<br>Optical Output Power (C'<br>LD Reverse Voltage<br>PD Reverse Voltage<br>Operation Case Temperatu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | θ⊥           Im           As           oical unless otherw           n, P =           um Rating:           W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12°<br>0.05 mA<br>-<br>rise specified.<br><b>150 I</b><br>s (T <sub>c</sub> = 25<br><u>SYMB</u><br>P <sub>o</sub><br>V <sub>R(LD)</sub><br>V <sub>R(PD)</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18°<br>0.3 mA<br>10 μm<br><b>mW, 5</b><br>5 °C)<br>OL F<br>-10                                                                                                                                                      | 23°<br>-<br>-<br>Single<br>RATING<br>180 mW<br>2 V<br>30 V                                                                                 | <b>E M</b> (<br><b>Pin De</b><br>1 lase<br>2 cor                                           | 1-5 PCS<br>-001 \$ 304.50                                                                                                                                                                                                                                                                             | 6-10 PCS<br>\$ 258.83<br><b>yo DL</b><br>•<br>•<br>•<br>Ø5.6 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11-20 PCS<br>\$ 213.15<br>.8142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sanyo 8<br>- <b>201</b><br>r                                                                           | 30 nm, 100 mW<br>CACHON:<br>ELECTROSTATIC<br>SENSITIVE                                                                     | HeNe Laser<br>Laser Dioc<br>Module<br>Tunab<br>Laser<br>Swept Sourc<br>Laser             |
| (FWHM)<br>Monitor Current<br>Astigmatism<br>Jote: All data is presented as typ<br><b>A = 830 nm</b><br>Absolute Maximu<br>CHARACTERISTIC<br>Optical Output Power (C'<br>LD Reverse Voltage<br>PD Reverse Voltage<br>Operation Case Temperatu<br>Storage Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | θ⊥           Im           As           oical unless otherw           m, P =           um Rating:           W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12°<br>0.05 mA<br>-<br><i>i</i> se specified.<br><b>150</b><br><b>s</b> (T <sub>c</sub> = 25<br><u>SYMB</u><br>P <sub>o</sub><br>V <sub>R(LD)</sub><br>V <sub>R(PD)</sub><br>T <sub>c</sub><br>T <sub>sg</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18°<br>0.3 mA<br>10 μm<br><b>mW, §</b><br>5 °C)<br>OL <b>F</b><br>-14                                                                                                                                               | 23°<br>-<br>-<br>Single<br>RATING<br>180 mW<br>2 V<br>30 V<br>0 to 50 °C                                                                   | <b>E M</b> (<br><b>Pin De</b><br>1 lase<br>2 cor                                           | 1-5 PCS<br>-001 \$ 304.50                                                                                                                                                                                                                                                                             | 6-10 PCS<br>\$ 258.83<br><b>YO DL</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11-20 PCS<br>\$ 213.15<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8                                                                                               | Sanyo 8<br>2-201<br>ge<br>C Power (                                                                    | 30 nm, 100 mW<br>CACHON:<br>ELECTROSTATIC<br>SENSITIVE                                                                     | HeNe Laser<br>Laser Dioo<br>Module<br>Tunab<br>Laser<br>Swept Source<br>Laser<br>Teraher |
| (FWHM)<br>Monitor Current<br>Astigmatism<br>Jote: All data is presented as typ<br><b>A = 830 nm</b><br>Absolute Maximu<br>CHARACTERISTIC<br>Optical Output Power (C'<br>LD Reverse Voltage<br>PD Reverse Voltage<br>Operation Case Temperatu<br>Storage Temperature<br>Characteristics (T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c c} \theta_{\perp} \\ I_{m} \\ A_{s} \\ \text{ical unless otherw} \\ \textbf{n, P =} \\ \textbf{m Rating:} \\ \textbf{W} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12°<br>0.05 mA<br><br>ise specified.<br><b>150</b><br>s (T <sub>c</sub> = 25<br><u>SYMB0</u><br>P <sub>o</sub><br>V <sub>R(LD)</sub><br>V <sub>R(PD)</sub><br>T <sub>c</sub><br>T <sub>stg</sub><br>c, P = 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18°<br>0.3 mA<br>10 μm<br><b>mW</b> , 9<br>5 °C)<br>OL F<br>-10<br>-40<br>mW)                                                                                                                                       | 23°<br>–<br>–<br>Single<br>RATING<br>180 mW<br>2 V<br>30 V<br>0 to 50 °C<br>0 to 85 °C                                                     | <b>Pin De</b><br>1 lass<br>2 cor<br>3 mo                                                   | 1-5 PCS<br>-001 \$ 304.50                                                                                                                                                                                                                                                                             | 6-10 PCS<br>\$ 258.83<br><b>yo DL</b><br>Ø5.6 4<br>150 m<br>< <150 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11-20 PCS<br>\$ 213.15<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8                                                                                               | Sanyo 8<br>2-201<br>ge<br>C Power (<br>Recomment                                                       | 30 nm, 100 mW<br>CACHON:<br>ELECTROSTATIC<br>SENSITIVE<br>Dutput<br>nded Usage                                             | HeNe Laser<br>Laser Dioo<br>Module<br>Tunab<br>Lase<br>Swept Source<br>Lase<br>Teraher   |
| (FWHM)<br>Monitor Current<br>Astigmatism<br>fore: All data is presented as typ<br><b>A = 830 mm</b><br>Absolute Maximu<br>CHARACTERISTIC<br>Optical Output Power (C'<br>LD Reverse Voltage<br>PD Reverse Voltage<br>PD Reverse Voltage<br>Operation Case Temperature<br>Storage Temperature<br>Characteristics (T<br>CHARACTERISTIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c c} \theta_{\perp} \\ I_{m} \\ A_{s} \\ \text{ical unless otherw} \\ \textbf{n, P =} \\ \textbf{m Rating:} \\ \textbf{W} \\ \hline \textbf{W} \\ \hline \textbf{C} = 25 ^{\circ} \textbf{C} \\ \hline \textbf{SYMBOL} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12°<br>0.05 mA<br>-<br><i>i</i> se specified.<br><b>150</b><br><b>s</b> (T <sub>c</sub> = 25<br><u>SYMB</u><br>P <sub>o</sub><br>V <sub>R(LD)</sub><br>V <sub>R(PD)</sub><br>T <sub>c</sub><br>T <sub>sg</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18°<br>0.3 mA<br>10 μm<br><b>mW</b> , 9<br>5°C)<br>OL <b>F</b><br>-10<br>-40<br><b>mW</b> )<br><b>TYP</b> .                                                                                                         | 23°<br>–<br>–<br>Single<br>RATING<br>180 mW<br>2 V<br>30 V<br>0 to 50 °C<br>0 to 85 °C<br>MAX                                              | <b>Pin De</b><br>1 lass<br>2 cor<br>3 mo                                                   | 1-5 PCS<br>-001 \$ 304.50<br>DCDE San<br>escription<br>er anode<br>mmon case<br>nitor diode cathode                                                                                                                                                                                                   | 6-10 PCS<br>\$ 258.83<br><b>yo DL</b><br>Ø5.6 4<br>150 m<br>< <150 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11-20 PCS<br>\$ 213.15<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8                                                                                               | Sanyo 8<br>2-201<br>ge<br>C Power (<br>Recommen<br>ureshold (                                          | 30 nm, 100 mW<br>CACHON:<br>ELECTROSTATIC<br>SENSTIVE<br>Dutput<br>nded Usage<br>Current                                   | HeNe Laser<br>Laser Dioo<br>Module<br>Tunab<br>Lase<br>Swept Source<br>Lase<br>Teraher   |
| FWHM)<br>Monitor Current<br>Astigmatism<br>ore: All data is presented as typ<br><b>A = 830 mm</b><br>Absolute Maximu<br>CHARACTERISTIC<br>Optical Output Power (C'<br>LD Reverse Voltage<br>PD Reverse Voltage<br>PD Reverse Voltage<br>Operation Case Temperature<br>Characteristics (T<br>CHARACTERISTIC<br>Threshold Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c c} \theta_{\perp} \\ I_{m} \\ A_{s} \\ \text{ical unless otherw} \\ \textbf{n, P =} \\ \textbf{m Rating:} \\ \textbf{W} \\ \hline \textbf{W} \\ \hline \textbf{C}_{c} = 25 \ ^{\circ}\textbf{C} \\ \hline \textbf{SYMBOL} \\ I_{th} \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12°<br>0.05 mA<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18°<br>0.3 mA<br>10 μm<br><b>mW</b> , 9<br>5 °C)<br>OL <b>F</b><br>-10<br>-40<br><b>mW</b> )<br><b>TYP</b> .<br>50 mA                                                                                               | 23°<br>–<br>–<br>Single<br>RATING<br>180 mW<br>2 V<br>30 V<br>0 to 50 °C<br>0 to 85 °C<br>MAX<br>70 mA                                     | <b>Pin De</b><br>1 lass<br>2 cor<br><u>3 mo</u><br><b>PI</b>                               | 1-5 PCS<br>-001 \$ 304.50<br>DCDE SCAN<br>escription<br>er anode<br>mitor diode cathode<br>1 3<br>↓ 2 PD<br>N CODE 5C                                                                                                                                                                                 | 6-10 PCS<br>\$ 258.83<br><b>yo DL</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11-20 PCS<br>\$ 213.15<br>.8142<br>.8142<br>.8142<br>.8142<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.8444<br>.844<br>.844<br>.844<br>.844 | Sanyo 8<br>2-201<br>ge<br>C Power (<br>Recomment<br>ureshold (<br>€*                                   | 30 nm, 100 mW<br>CACHON:<br>ELECTAOSTATIC<br>SENSTIVE<br>Output<br>nded Usage<br>Current<br>RMB*                           | HeNe Laser<br>Laser Dioo<br>Module<br>Tunab<br>Lase<br>Swept Source<br>Lase<br>Teraher   |
| FWHM)<br>Monitor Current<br>Astigmatism<br>ote: All data is presented as typ<br><b>a = 830 mm</b><br>Absolute Maximu<br>Characteristic<br>D Reverse Voltage<br>PD Reverse Voltage<br>PD Reverse Voltage<br>Deration Case Temperature<br>Characteristics (T<br>CHARACTERISTIC<br>Threshold Current<br>Operation Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c c} & \theta_{\perp} \\ & I_{m} \\ & A_{s} \\ & \text{ical unless otherw} \\ \hline n, P = \\ & \text{im Rating:} \\ \hline \\ & \text{im Rating:} \\ \hline \\ & \text{w} \\ \\ & \text{w} \\ \hline \\ & \text{w} \\ \\ & \text{w} \\ \hline \\ \\ & \text{w} \\ \hline \\ & \text{w} \\ \hline \\ \\ & \text{w} \\ \\ \\ & $ | 12°<br>0.05 mA<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18°<br>0.3 mA<br>10 μm<br><b>mW</b> , 9<br>5°C)<br>OL <b>F</b><br>-10<br>-40<br><b>mW</b> )<br><b>TYP</b> .                                                                                                         | 23°<br>–<br>–<br>Single<br>RATING<br>180 mW<br>2 V<br>30 V<br>0 to 50 °C<br>0 to 85 °C<br>MAX                                              | <b>Pin De</b><br>2 cor<br>3 mo                                                             | 1-5 PCS<br>-001 \$ 304.50<br>DCDE San<br>escription<br>er anode<br>mmon case<br>nitor diode cathode                                                                                                                                                                                                   | 6-10 PCS<br>\$ 258.83<br><b>yo DL</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11-20 PCS<br>\$ 213.15<br>.8142<br>.8142<br>.8142<br>.8142<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.842<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.844<br>.8444<br>.844<br>.844<br>.844<br>.844 | Sanyo 8<br>2-201<br>ge<br>C Power (<br>Recommen<br>ureshold (                                          | 30 nm, 100 mW<br>CACHON:<br>ELECTROSTATIC<br>SENSTIVE<br>Dutput<br>nded Usage<br>Current                                   | HeNe Laser<br>Laser Dioo<br>Module<br>Tunab<br>Lase<br>Swept Source<br>Lase<br>Teraher   |
| FWHM)<br>Monitor Current<br>Astigmatism<br>ote: All data is presented as typ<br>and a structure and a structure<br>Astronomic and a structure<br>Astronomic and a structure<br>Definition and a structure<br>Characteristics (The astronomic and a<br>Characteristics (The astronomic and a structure astronomic and a structure astronomic astro | $\begin{array}{c c} & \theta_{\perp} \\ & \theta_{\perp} \\ & I_m \\ & A_s \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12°           0.05 mA           -           rise specified. <b>150</b> s (T <sub>c</sub> = 25)           SYMBO           Po           V <sub>R(LD)</sub> V <sub>R(PD)</sub> T <sub>c</sub> T <sub>ssg</sub> C, P = 150           MIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18°<br>0.3 mA<br>10 μm<br><b>mW</b> , 9<br>5°C)<br>OL <b>F</b><br>10<br>-10<br>-40<br><b>mW</b> )<br><b>TYP</b><br>50 mA<br>200 mA                                                                                  | 23°<br>–<br>–<br>Single<br>RATING<br>180 mW<br>2 V<br>30 V<br>0 to 50 °C<br>0 to 85 °C<br>MAX<br>70 mA<br>250 mA                           | <b>Pin De</b><br>3 mo                                                                      | 1-5 PCS<br>-001 \$ 304.50<br>DCDE SCAN<br>escription<br>er anode<br>mitor diode cathode<br>1 3<br>↓ 2 PD<br>N CODE 5C                                                                                                                                                                                 | 6-10 PCS<br>\$ 258.83<br><b>yo DL</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11-20 PCS<br>\$ 213.15<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8                                                                                               | Sanyo 8<br>2-201<br>ge<br>C Power (<br>Recomment<br>ureshold (<br>€*                                   | 30 nm, 100 mW<br>CACHON:<br>ELECTAOSTATIC<br>SENSTIVE<br>Output<br>nded Usage<br>Current<br>RMB*                           | HeNe Laser<br>Laser Dioo<br>Module<br>Tunab<br>Lase<br>Swept Source<br>Lase<br>Teraher   |
| FWHM)<br>Monitor Current<br>Astigmatism<br>ote: All data is presented as typ<br><b>A = 830 nm</b><br>Absolute Maximu<br>CHARACTERISTIC<br>Optical Output Power (C'<br>LD Reverse Voltage<br>PD Reverse Voltage<br>PD Reverse Voltage<br>Operation Case Temperature<br>Characteristics (T<br>CHARACTERISTIC<br>Threshold Current<br>Operation Current<br>Operation Current<br>Operation Current<br>Operation Voltage<br>Lasing Wavelength                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c c} & \theta_{\perp} \\ & I_{m} \\ & A_{s} \\ & \text{ical unless otherw} \\ \hline n, P = \\ & \text{im Rating:} \\ \hline \\ & \text{im Rating:} \\ \hline \\ & \text{w} \\ \\ & \text{w} \\ \hline \\ & \text{w} \\ \\ & \text{w} \\ \hline \\ \\ & \text{w} \\ \hline \\ & \text{w} \\ \hline \\ \\ & \text{w} \\ \\ \\ & $ | 12°<br>0.05 mA<br>-<br>ise specified.<br><b>150 I</b><br><b>s (T<sub>c</sub> = 25</b><br><b>SYMB</b><br>P <sub>o</sub><br>V <sub>R(LD)</sub><br>V <sub>R(PD)</sub><br>T <sub>c</sub><br>T <sub>stg</sub><br><b>c, P = 150</b><br><u>MIN</u><br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18°         0.3 mA         10 μm         mW, S         5 °C)         OL         F         -10         -40         mW)         TYP.         50 mA         200 mA         1.9 V                                       | 23°<br>–<br>–<br>Single<br>RATING<br>180 mW<br>2 V<br>30 V<br>0 to 50 °C<br>0 to 85 °C<br>MAX<br>70 mA<br>250 mA<br>2.2 V                  | <b>Pin De</b><br>3 mo                                                                      | 1-5 PCS         -001       \$ 304.50         ODCLE       Same         escription         er anode         mmon case         nitor diode cathode         1       3         LD       PD         N CODE 5C         ITEM#                                                                                 | 6-10 PCS<br>\$ 258.83<br><b>yo DL</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11-20 PCS<br>\$ 213.15<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142                                                                                                     | Sanyo 8<br>Sanyo 8<br>S-201<br>F<br>C Power (<br>Recomment<br>ureshold (<br>€*<br>5 PCS<br>295,50      | 30 nm, 100 mW                                                                                                              | HeNe Laser<br>Laser Dioo<br>Module<br>Tunab<br>Lase<br>Swept Source<br>Lase<br>Teraher   |
| (FWHM)<br>Monitor Current<br>Astigmatism<br>fore: All data is presented as typ<br><b>A = 830 nm</b><br>Absolute Maximu<br>CHARACTERISTIC<br>Optical Output Power (C'<br>LD Reverse Voltage<br>PD Reverse Voltage<br>PD Reverse Voltage<br>Operation Case Temperature<br>Characteristics (T<br>CHARACTERISTIC<br>Threshold Current<br>Operation Current<br>Operation Current<br>Operation Voltage<br>Lasing Wavelength<br>Beam Divergence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c c} & \theta_{\perp} \\ & I_{m} \\ & A_{s} \\ & \text{ical unless otherw} \\ \\ \textbf{m, P =} \\ \\ \textbf{m Rating:} \\ \\ \textbf{m Rating:} \\ \\ \textbf{w} \\ \\ \\ \textbf{w} \\ \\ \\ \textbf{w} \\ \\ \\ \textbf{w} \\ \\ \\ \textbf{m re} \\ \\ \hline \\ \textbf{re} \\ \hline \\ \hline \\ \hline \\ \textbf{re} \\ \hline \\ \hline \\ \hline \\ \textbf{re} \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12°<br>0.05 mA<br>-<br><i>ise</i> specified.<br><b>150</b> I<br><b>S</b> (T <sub>c</sub> = 25<br><b>SYMB</b><br>P <sub>o</sub><br>V <sub>R(DD)</sub><br>V <sub>R(PD)</sub><br>T <sub>c</sub><br>T <sub>srg</sub><br><b>C</b><br><b>F</b> = 150<br><u>MIN</u><br>-<br>-<br>815 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18°         0.3 mA         10 μm         mW, S         5 °C)         OL         G         -10         -40         mW)         TYP.         50 mA         200 mA         1.9 V         830 nm                        | 23°<br>–<br>–<br>Single<br>RATING<br>180 mW<br>2 V<br>30 V<br>0 to 50 °C<br>0 to 85 °C<br>MAX<br>70 mA<br>250 mA<br>2.2 V<br>840 nm        | <b>Pin De</b><br>3 mo                                                                      | 1-5 PCS $-001  $  304.50$ <b>Dde San escription</b> er anode mmon case mitor diode cathode $1  3$ $LD  b  PD$ <b>N CODE 5C ITEM#</b> DL8142-201 For quantities over 5 pi                                                                                                                              | 6-10 PCS<br>\$ 258.83<br><b>yo DL</b><br><b>(</b><br><b>(</b><br><b>(</b><br><b>(</b> )<br><b>(</b> ) | 11-20 PCS<br>\$ 213.15<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142                                                                                                     | Sanyo 8<br>Sanyo 8<br>S-201<br>F<br>C Power (<br>Recomment<br>ureshold (<br>€*<br>5 PCS<br>295,50      | 30 nm, 100 mW                                                                                                              | HeNe Laser<br>Laser Dioo<br>Module<br>Tunab<br>Lase<br>Swept Source<br>Lase<br>Teraher   |
| (FWHM)<br>Monitor Current<br>Astigmatism<br>lote: All data is presented as typ<br><b>A = 830 nm</b><br>Absolute Maximu<br>CHARACTERISTIC<br>Optical Output Power (C'<br>LD Reverse Voltage<br>PD Reverse Voltage<br>Operation Case Temperature<br>Characteristics (T<br>CHARACTERISTIC<br>Threshold Current<br>Operation Current<br>Operation Current<br>Operation Current<br>Operation Voltage<br>Lasing Wavelength<br>Beam Divergence<br>(FWHM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c c} \theta_{\perp} \\ \hline & \theta_{\perp} \\ \hline & I_m \\ A_s \\ \hline & A_s \\ \hline & n, P = \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c c} 12^{\circ} \\ 0.05 \text{ mA} \\ - \\ \hline \\ 150 \text{ mA} \\ - \\ \hline \\ 150 \text{ mA} \\ \hline 150 \text{ mA} \\ \hline \\ 150 \text{ mA} \\ \hline \\ 150 \text{ mA} \\ \hline \\ 150 \text{ mA} \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18°         0.3 mA         10 μm         mW, 5         5 °C)         OL         6         -10         -40         mW)         TYP.         50 mA         200 mA         1.9 V         830 nm         8°         16° | 23°<br>–<br>–<br>Single<br>RATING<br>180 mW<br>2 V<br>30 V<br>0 to 50 °C<br>0 to 85 °C<br>MAX<br>70 mA<br>250 mA<br>2.2 V<br>840 nm<br>11° | DL7032     E Mc     Pin De     1 lass     2 cor     3 mo     c      Pl     Pl     Pl     C | 1-5 PCS         -001       \$ 304.50         DCDCE       San         cscription       eranode         mmon case       nitor dide cathode         nitor dide cathode $3$ LD $2$ PD       PD         N CODE 5C       ITEEM#         D18142-201       For quantities over 5 pi         PRICE       PRICE | 6-10 PCS<br>\$ 258.83<br><b>yo DL</b><br><b>(</b><br><b>(</b><br><b>(</b><br><b>(</b> )<br><b>(</b> ) | 11-20 PCS<br>\$ 213.15<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142                                                                                                     | Sanyo 8<br>Sanyo 8<br>S-201<br>Power (<br>Recomment<br>treshold (<br>€*<br>5 PCS<br>295,50<br>rricing. | 30 nm, 100 mW<br>CACTON:<br>ELECTROSTATIC<br>SEPOTTIVE<br>Dutput<br>nded Usage<br>Current<br>RMB*<br>1-5 PCS<br>¥ 2,802.10 | HeNe Laser<br>Laser Dioo<br>Module<br>Tunab<br>Lase<br>Swept Source<br>Lase<br>Teraher   |
| (FWHM)<br>Monitor Current<br>Astigmatism<br>Jote: All data is presented as typ<br>λ = 830 nm<br>Absolute Maximu<br>CHARACTERISTIC<br>Optical Output Power (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c c} & \theta_{\perp} \\ & \theta_{\perp} \\ & I_m \\ & A_s \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12°<br>0.05 mA<br>-<br><i>ise</i> specified.<br><b>150</b> I<br><b>50</b> I<br><b>5</b> | 18°         0.3 mA         10 μm         mW, 5         5 °C)         OL         6         -10         -40         mW)         TYP.         50 mA         200 mA         1.9 V         830 nm         8°         16° | 23°<br>–<br>–<br>Single<br>RATING<br>180 mW<br>2 V<br>30 V<br>0 to 50 °C<br>0 to 85 °C<br>MAX<br>70 mA<br>250 mA<br>2.2 V<br>840 nm<br>11° | <b>Pin De</b><br>3 mo                                                                      | 1-5 PCS       -001     \$ 304.50       DCC     San       escription       er anode       mmon case       nitor diode cathode       1 $3$ $LD$ $2$ PD       N CODE 5C       ITEM#       DL8142-201       'For quantities over 5 pi       PRICE       1-5 PCS                                           | 6-10 PCS<br>\$ 258.83<br><b>yo DL</b><br><b>(</b><br><b>(</b><br><b>(</b><br><b>(</b> )<br><b>(</b> ) | 11-20 PCS<br>\$ 213.15<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142<br>.8142                                                                                                     | Sanyo 8<br>Sanyo 8<br>S-201<br>Power (<br>Recomment<br>treshold (<br>€*<br>5 PCS<br>295,50<br>rricing. | 30 nm, 100 mW                                                                                                              | HeNe Laser<br>Laser Dioo<br>Module<br>Tunab<br>Lase<br>Swept Source<br>Lase<br>Teraher   |

#### $\lambda$ = 845 nm, P = 1.85 mW, Multimode VCSEL-850 Characteristics ( $T_c = 25$ °C)

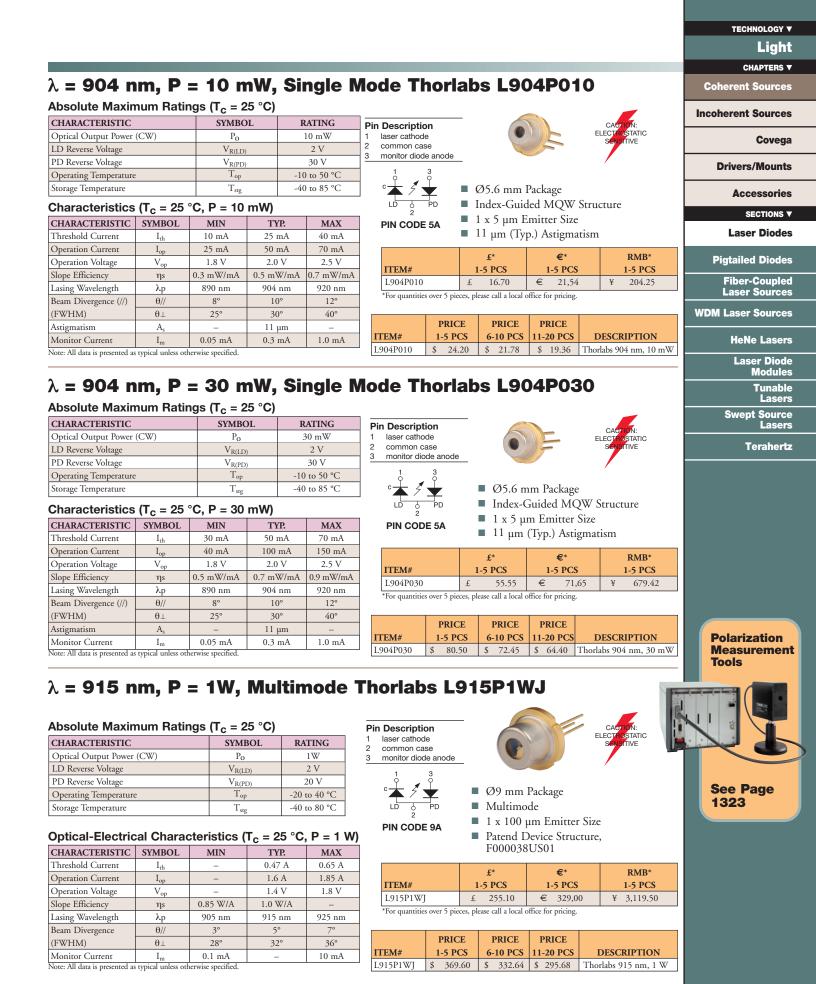


| Absolute Maximum Ratings (T <sub>c</sub> = 25 °C) |     |     |      |           |  |  |
|---------------------------------------------------|-----|-----|------|-----------|--|--|
| CHARACTERISTIC                                    | MIN | MAX | UNIT | CONDITION |  |  |
| Storage Temperature                               | -40 | 100 | °C   | -         |  |  |
|                                                   | -   |     |      |           |  |  |


| -40 | 100                | °C                                                                                  | -       |
|-----|--------------------|-------------------------------------------------------------------------------------|---------|
| 0   | 85                 | °C                                                                                  | -       |
| -   | 10                 | mA                                                                                  | -       |
| -   | 5                  | V                                                                                   | @ 10 A  |
|     | -40<br>0<br>-<br>- | -40         100           0         85           -         10           -         5 | 0 85 °C |

| ITEM#     | PRICE<br>1-5 PCS | PRICE<br>6-10 PCS | PRICE<br>11-20 PCS | DESCRIPTION           |
|-----------|------------------|-------------------|--------------------|-----------------------|
| VCSEL-850 | \$ 28.90         | \$ 27.46          | \$ 26.01           | 845 nm VCSEL, 1.85 mW |

| CHARACTERISTIC                                | SYMBOL                          | MIN  | ТҮР  | MAX  | UNIT |
|-----------------------------------------------|---------------------------------|------|------|------|------|
| Peak Wavelength*                              | λp                              | 830  | 845  | 860  | nm   |
| Spectral Width (RMS)*                         | Δλ                              | _    | _    | 0.85 | nm   |
| Beam Divergence                               | θ                               | -    | 25   | 30   | Deg  |
| Forward Voltage*                              | $V_{\rm f}$                     | 1.7  | 1.9  | 2.2  | V    |
| Threshold Current                             | I <sub>th</sub>                 | _    | 2.2  | 3    | mA   |
| Slope Efficiency*                             | ηs                              | 0.12 | 0.32 | 0.4  | W/A  |
| Optical Output Power*                         | Pout                            | -    | 1.85 | -    | mW   |
| Dynamic Resistance*                           | $\Delta V / \Delta I$           | 20   | 40   | 65   | Ω    |
| Rise / Fall Time                              | t <sub>r</sub> / t <sub>f</sub> | -    | 50   | 100  | ps   |
| Operating Temp. Range                         | T <sub>op</sub>                 | -5   | 25   | 80   | °C   |
| Monitor Current                               | Im                              | 100  | -    | -    | mA   |
| Dark Current (V <sub>r</sub> = 10 V)          | I <sub>r</sub>                  | _    | 0.2  | 1    | nA   |
| Shunt Resistance                              | Pp                              | 100  | 200  | -    | GΩ   |
| Breakdown Voltage                             | Vbr                             | _    | 50   | -    | V    |
| Junction Capacitance<br>(@ Vr = 10 V, 10 kHz) | Ср                              | -    | 40   | -    | pF   |


| ITEM#                                                                  | 1 | 1-5 PCS |   | I-5 PCS | : | 1-5 PCS |  |
|------------------------------------------------------------------------|---|---------|---|---------|---|---------|--|
| VCSEL-850                                                              | £ | 19.95   | € | 25,73   | ¥ | 243.92  |  |
| *For quantities over 5 pieces, please call a local office for pricing. |   |         |   |         |   |         |  |

RMB\*



THORLABS

1048



THORLABS

www.thorlabs.com

#### Light ▼ CHAPTERS

Covega

**Drivers/Moun** 

Accessories

▼ SECTIONS

HeNe L Laser Diode

Modules Tunable

Lasers Swept Source Lasers

Terahertz

All laser

diodes are

extremely

electrostatic

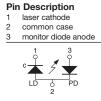
sensitive; see

page 1244 for

our selection

of antistatic

products.


### **Coherent Sources**

# $\lambda$ = 975 nm, P = 1 W, Multimode Thorlabs L975P1WJ

#### Absolute Maximum Ratings (T<sub>c</sub> = 25 °C) **Incoherent Sources**

|     | CHARACTERISTIC                                    | SYMBOL             | RATING       |  |  |  |  |
|-----|---------------------------------------------------|--------------------|--------------|--|--|--|--|
|     | Optical Output Power (CW)                         | Po                 | 1 W          |  |  |  |  |
|     | LD Reverse Voltage                                | V <sub>R(LD)</sub> | 2 V          |  |  |  |  |
| nts | PD Reverse Voltage                                | V <sub>R(PD)</sub> | 20 V         |  |  |  |  |
|     | Operating Temperature                             | Top                | -20 to 40 °C |  |  |  |  |
|     | Storage Temperature                               | T <sub>stg</sub>   | -40 to 80 °C |  |  |  |  |
|     | Characteristics (T <sub>c</sub> = 25 °C, P = 1 W) |                    |              |  |  |  |  |
|     | CHARACTERISTIC SYMBOL M                           | IIN TYP.           | MAX          |  |  |  |  |

| Laser Diodes      | CHARACTERISTIC                 | SYMBOL           | MIN                | I YP.     | MAX    |
|-------------------|--------------------------------|------------------|--------------------|-----------|--------|
| Laser Dioues      | Threshold Current              | I <sub>th</sub>  | -                  | 0.35 A    | 0.45 A |
| Distailed Diadea  | Operation Current              | I <sub>op</sub>  | -                  | 1.5 A     | 1.8 A  |
| Pigtailed Diodes  | Operation Voltage              | V <sub>op</sub>  | -                  | 1.4 V     | 2.0 V  |
| Fiber-Coupled     | Slope Efficiency               | ηs               | 0.75 mW/A          | 0.85 mW/A | -      |
| Laser Sources     | Lasing Wavelength              | λp               | 965 nm             | 975 nm    | 985 nm |
|                   | Beam Divergence                | θ//              | 2°                 | 5°        | 8°     |
| WDM Laser Sources | (FWHM)                         | θ⊥               | 30°                | 35°       | 40°    |
|                   | Monitor Current                | Im               | 0.1 mA             | _         | 10 mA  |
| HeNe Lasers       | Note: All data is presented as | s typical unless | otherwise specifie | d.        |        |



**PIN CODE 9A** 

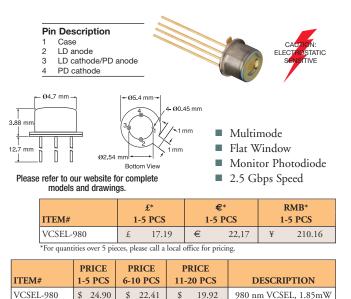
| -                             | CAUT<br>ELECTRO<br>SENSI |
|-------------------------------|--------------------------|
| Ø9 mm Package                 |                          |
| <ul> <li>Multimode</li> </ul> |                          |

1 x 100 μm Emitter Size Patented Device Structure,

F000038US01

|          | £*       | €*       | RMB*       |
|----------|----------|----------|------------|
| ITEM#    | 1-5 PCS  | 1-5 PCS  | 1-5 PCS    |
| L975P1WJ | £ 260.48 | € 335,98 | ¥ 3,186.10 |

| ITEM#    | PRICE<br>1-5 PCS | PRICE<br>6-10 PCS | PRICE<br>11-20 PCS | DESCRIPTION          |
|----------|------------------|-------------------|--------------------|----------------------|
| L975P1WJ | \$377.50         | \$ 339.75         | \$ 302.00          | Thorlabs 975 nm, 1 W |


# $\lambda$ = 980 nm, P = 1.85 mW, Multimode VCSEL-980

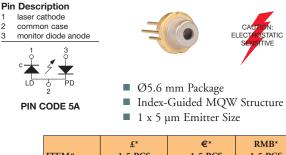
#### **Absolute Maximum Ratings**

| i. | CHARACTERISTIC             | MIN | MAX | UNIT | CONDITION |
|----|----------------------------|-----|-----|------|-----------|
| L  | Storage Temperature        | -40 | 100 | °C   | -         |
| ł. | Operating Temperature      | 0   | 85  | °C   | _         |
| L  | Continuous Forward Current | -   | 10  | mA   | -         |
|    | Continuous Reverse Voltage | -   | 5   | V    | @ 10 A    |

### Characteristics (T<sub>c</sub> = 25 °C, I<sub>f</sub> = 8 mA)

| PARAMETER                  | SYMBOL                          | MIN      | ТҮР        | MAX     |
|----------------------------|---------------------------------|----------|------------|---------|
| Peak Wavelength            | λp                              | 970 nm   | 980 nm     | 990 nr  |
| Spectral Width (RMS)       | Δλ                              | -        | -          | 0.85 ni |
| Beam Divergence            | θ                               | -        | 25°        | 30°     |
| Forward Voltage            | Vf                              | 1.7 V    | 1.9 V      | 2.2 V   |
| Threshold Current          | I <sub>th</sub>                 | _        | 2.2 mA     | 3 mA    |
| Slope Efficiency           | $\Delta P / \Delta I$           | 0.12 W/A | 0.32W/A    | 0.4 W/  |
| Optical Output Power       | Po                              | -        | 1.85 mW    | -       |
| Dynamic Resistance         | dV/dI                           | 20 Ω     | 40 Ω       | 65 Ω    |
| Rise / Fall Time           | t <sub>r</sub> / t <sub>f</sub> | -        | 50 ps      | 100 p   |
| Jitter p-p                 | ti                              | -        | 35 ps      | -       |
| λp Temperature Coefficient | Δλρ/ΔΤ                          | _        | 0.06 nm/°C | _       |
| Operating Temp. Range      | T <sub>op</sub>                 | −5 °C    | 25 °C      | 80 °C   |
| Monitor Current            | Im                              | 100 µA   | _          | -       |




 $\lambda$  = 980 nm, P = 10 mW, Single Mode Thorlabs L980P010

#### Absolute Maximum Ratings (T<sub>c</sub> = 25 °C)

| CHARACTERISTIC            | SYMBOL             | RATING       |
|---------------------------|--------------------|--------------|
| Optical Output Power (CW) | Po                 | 10 mW        |
| LD Reverse Voltage        | V <sub>R(LD)</sub> | 2 V          |
| PD Reverse Voltage        | V <sub>R(PD)</sub> | 30 V         |
| Operating Temperature     | T <sub>op</sub>    | -10 to 50 °C |
| Storage Temperature       | T <sub>stg</sub>   | -40 to 85 °C |

#### Characteristics ( $T_c = 25 \degree C$ , P = 10 mW)

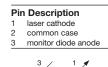
|                   | ··· /           |           |           |           |
|-------------------|-----------------|-----------|-----------|-----------|
| CHARACTERISTIC    | SYMBOL          | MIN       | TYP.      | MAX       |
| Threshold Current | I <sub>th</sub> | 10 mA     | 25 mA     | 40 mA     |
| Operation Current | Iop             | 25 mA     | 50 mA     | 70 mA     |
| Operation Voltage | V <sub>op</sub> | 1.8 V     | 2.0 V     | 2.5 V     |
| Slope Efficiency  | ηs              | 0.3 mW/mA | 0.5 mW/mA | 0.7 mW/mA |
| Lasing Wavelength | λp              | 965 nm    | 980 nm    | 995 nm    |
| Beam Divergence   | θ//             | 8°        | 10°       | 12°       |
| (FWHM)            | $\theta \bot$   | 25°       | 30°       | 40°       |
| Astigmatism       | As              | -         | 11 µm     | _         |
| Monitor Current   | Im              | 0.05 mA   | 0.3 mA    | 1 mA      |
|                   |                 | 1 1 1     |           |           |



|                    | £*                                                                     | €*      | RMB*     |  |  |  |  |  |
|--------------------|------------------------------------------------------------------------|---------|----------|--|--|--|--|--|
| ITEM#              | 1-5 PCS                                                                | 1-5 PCS | 1-5 PCS  |  |  |  |  |  |
| L980P010           | £ 17.53                                                                | € 22,61 | ¥ 214.38 |  |  |  |  |  |
| *For quantities ov | *For quantities over 5 pieces, please call a local office for pricing. |         |          |  |  |  |  |  |

| ITEM#    | PRICE<br>1-5 PCS | PRICE<br>6-10 PCS | PRICE<br>11-20 PCS | DESCRIPTION            |
|----------|------------------|-------------------|--------------------|------------------------|
| L980P010 | \$ 25.40         | \$ 24.13          | \$ 21.59           | Thorlabs 980 nm, 10 mW |

Note: All data is presented as typical unless otherwise specified.




|                                                                     |                                                   |                                                                                                                                 |                                                                                                          |                                                   |                                                                                                                                                     |                                                                                                                                         |                                                                                                                                       |                                                                                                                                         |                                                               | CHAPTERS V                                                                              |
|---------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| l = 98                                                              | 80 n                                              | m, P =                                                                                                                          | : 30 m\                                                                                                  | W, Single I                                       | Node Thor                                                                                                                                           | labs                                                                                                                                    | L980P                                                                                                                                 | 030                                                                                                                                     |                                                               | Coherent Sources                                                                        |
|                                                                     |                                                   |                                                                                                                                 | _                                                                                                        |                                                   | Absolute Maxir                                                                                                                                      | num Ra                                                                                                                                  | tings (T <sub>c</sub> =                                                                                                               | 25 °C)                                                                                                                                  |                                                               | Incoherent Sources                                                                      |
| CAUTIO                                                              | N:                                                | 6                                                                                                                               | Р Р                                                                                                      | Pin Description                                   | CHARACTERISTIC                                                                                                                                      |                                                                                                                                         | S                                                                                                                                     | YMBOL                                                                                                                                   | RATING                                                        |                                                                                         |
| ELECTROST                                                           |                                                   |                                                                                                                                 |                                                                                                          | laser cathode                                     | Optical Output Power                                                                                                                                | (CW)                                                                                                                                    |                                                                                                                                       | Po                                                                                                                                      | 30 mW                                                         | Covega                                                                                  |
| <u>ULL</u>                                                          |                                                   |                                                                                                                                 | 23                                                                                                       | common case<br>monitor diode anode                | LD Reverse Voltage                                                                                                                                  |                                                                                                                                         |                                                                                                                                       | V <sub>R(LD)</sub>                                                                                                                      | 2 V                                                           |                                                                                         |
|                                                                     |                                                   |                                                                                                                                 | -                                                                                                        |                                                   | PD Reverse Voltage                                                                                                                                  |                                                                                                                                         |                                                                                                                                       | V <sub>R(PD)</sub>                                                                                                                      | 30 V                                                          | Drivers/Mounts                                                                          |
|                                                                     |                                                   |                                                                                                                                 |                                                                                                          |                                                   | Operating Temperature                                                                                                                               | e                                                                                                                                       |                                                                                                                                       | Top                                                                                                                                     | -10 to 50 °C                                                  |                                                                                         |
| OF (                                                                | D 1                                               |                                                                                                                                 |                                                                                                          | ° 📥 🖌 🕁                                           | Storage Temperature                                                                                                                                 |                                                                                                                                         |                                                                                                                                       | T <sub>stg</sub>                                                                                                                        | -40 to 85 °C                                                  | Accessories                                                                             |
|                                                                     | nm Pack                                           | 0                                                                                                                               |                                                                                                          |                                                   |                                                                                                                                                     |                                                                                                                                         |                                                                                                                                       |                                                                                                                                         |                                                               |                                                                                         |
|                                                                     |                                                   |                                                                                                                                 |                                                                                                          |                                                   |                                                                                                                                                     |                                                                                                                                         |                                                                                                                                       |                                                                                                                                         |                                                               |                                                                                         |
|                                                                     |                                                   | MQW Struct                                                                                                                      | ture                                                                                                     | LD 0 PD<br>2                                      | • • • • •                                                                                                                                           | <i>—</i>                                                                                                                                |                                                                                                                                       |                                                                                                                                         |                                                               | SECTIONS V                                                                              |
|                                                                     |                                                   | ~                                                                                                                               | ture                                                                                                     |                                                   | Characteristics                                                                                                                                     | s (T <sub>c</sub> = 2                                                                                                                   | 5 °C, P = 3                                                                                                                           | 0 mW)                                                                                                                                   |                                                               |                                                                                         |
|                                                                     |                                                   | ~                                                                                                                               | ture                                                                                                     | PIN CODE 5A                                       | Characteristics<br>CHARACTERISTIC                                                                                                                   |                                                                                                                                         | 5 °C, P = 3                                                                                                                           | 0 mW)                                                                                                                                   | MAX                                                           |                                                                                         |
|                                                                     |                                                   | ~                                                                                                                               | ture<br>€*                                                                                               | PIN CODE 5A                                       |                                                                                                                                                     |                                                                                                                                         | -                                                                                                                                     | -                                                                                                                                       | MAX<br>70 mA                                                  | Laser Diodes                                                                            |
| 1x5µ                                                                |                                                   | er Size                                                                                                                         |                                                                                                          |                                                   | CHARACTERISTIC                                                                                                                                      | SYMBOL<br>I <sub>th</sub><br>I <sub>op</sub>                                                                                            | MIN                                                                                                                                   | TYP.                                                                                                                                    |                                                               | SECTIONS V<br>Laser Diodes<br>Pigtailed Diodes                                          |
| □1 x 5 µ<br>ТЕМ#                                                    |                                                   | er Size<br>£*<br>1-5 PCS                                                                                                        | €*                                                                                                       | RMB*                                              | CHARACTERISTIC<br>Threshold Current                                                                                                                 | SYMBOL<br>Ith                                                                                                                           | MIN<br>30 mA                                                                                                                          | <b>TYP.</b><br>50 mA                                                                                                                    | 70 mA                                                         | Laser Diodes<br>Pigtailed Diodes                                                        |
| 1 x 5 μ<br>Γ <b>ΕΜ#</b><br>980P030*                                 | m Emitt                                           | £*           1-5 PCS           56.93                                                                                            | €*<br>1-5 PCS<br>€ 73,43                                                                                 | RMB*<br>1-5 PCS                                   | CHARACTERISTIC<br>Threshold Current<br>Operation Current                                                                                            | SYMBOL<br>I <sub>th</sub><br>I <sub>op</sub>                                                                                            | MIN<br>30 mA<br>40 mA                                                                                                                 | TYP.           50 mA           100 mA                                                                                                   | 70 mA<br>150 mA                                               | Laser Diodes<br>Pigtailed Diodes<br>Fiber-Coupled                                       |
| 1 x 5 μ<br>Γ <b>ΕΜ#</b><br>980P030*                                 | m Emitt                                           | er Size<br>£*<br>1-5 PCS                                                                                                        | €*<br>1-5 PCS<br>€ 73,43                                                                                 | RMB*<br>1-5 PCS                                   | CHARACTERISTIC<br>Threshold Current<br>Operation Current<br>Operation Voltage                                                                       | SYMBOL<br>I <sub>th</sub><br>I <sub>op</sub><br>V <sub>op</sub>                                                                         | MIN<br>30 mA<br>40 mA<br>1.8 V                                                                                                        | TYP.           50 mA           100 mA           2.0 V                                                                                   | 70 mA<br>150 mA<br>2.5 V                                      | Laser Diodes<br>Pigtailed Diodes<br>Fiber-Coupled<br>Laser Sources                      |
| 1 x 5 μ<br><b>ΈΜ#</b><br>280P030*                                   | m Emitt<br>£<br>over 5 pieces,                    | £*       1-5 PCS       56.93       please call a local of                                                                       | €*<br><u>1-5 PCS</u><br>€ 73,43<br>office for pricing.                                                   | RMB*<br>1-5 PCS                                   | CHARACTERISTIC<br>Threshold Current<br>Operation Current<br>Operation Voltage<br>Slope Efficiency                                                   | SYMBOL<br>I <sub>th</sub><br>I <sub>op</sub><br>V <sub>op</sub><br>ηs                                                                   | MIN<br>30 mA<br>40 mA<br>1.8 V<br>0.5 mW/mA                                                                                           | TYP.           50 mA           100 mA           2.0 V           0.7 mW/mA                                                               | 70 mA<br>150 mA<br>2.5 V<br>0.9 mW/mA                         | Laser Diodes<br>Pigtailed Diodes<br>Fiber-Coupled<br>Laser Sources                      |
| 1 x 5 μ<br><b>ΈΜ#</b><br>280P030*<br>or quantities of               | m Emitt<br>£<br>over 5 pieces,<br>PRICE           | £*       1-5 PCS       56.93       please call a local of       PRICE                                                           | €*<br>1-5 PCS<br>€ 73,43<br>office for pricing.<br>PRICE                                                 | RMB*           1-5 PCS           ¥         696.30 | CHARACTERISTIC<br>Threshold Current<br>Operation Current<br>Operation Voltage<br>Slope Efficiency<br>Lasing Wavelength                              | SYMBOL           I <sub>th</sub> I <sub>op</sub> V <sub>op</sub> ηs           λp                                                        | MIN<br>30 mA<br>40 mA<br>1.8 V<br>0.5 mW/mA<br>965 nm                                                                                 | TYP.           50 mA           100 mA           2.0 V           0.7 mW/mA           980 nm                                              | 70 mA<br>150 mA<br>2.5 V<br>0.9 mW/mA<br>995 nm               | Laser Diodes<br>Pigtailed Diodes<br>Fiber-Coupled<br>Laser Sources<br>WDM Laser Sources |
| 1 x 5 μ<br><b>ΈΜ#</b><br>280P030*<br>or quantities of<br><b>ΈΜ#</b> | m Emitt<br>£<br>over 5 pieces,<br>PRICE<br>1-5 PC | £*           1-5 PCS           56.93           please call a local c           2           PRICE           S           6-10 PCS | €*           1-5 PCS           € 73,43           office for pricing.           PRICE           11-20 PCS | RMB*           1-5 PCS           ¥         696.30 | CHARACTERISTIC<br>Threshold Current<br>Operation Current<br>Operation Voltage<br>Slope Efficiency<br>Lasing Wavelength<br>Beam Divergence           |                                                                                                                                         | MIN<br>30 mA<br>40 mA<br>1.8 V<br>0.5 mW/mA<br>965 nm<br>8°                                                                           | <b>TYP.</b><br>50 mA<br>100 mA<br>2.0 V<br>0.7 mW/mA<br>980 nm<br>10°                                                                   | 70 mA<br>150 mA<br>2.5 V<br>0.9 mW/mA<br>995 nm<br>12°        | Laser Diodes                                                                            |
| ■ 1 x 5 μ<br><b>ΓΕΜ#</b><br>980P030*                                | m Emitt<br>£<br>over 5 pieces,<br>PRICE           | £*           1-5 PCS           56.93           please call a local c           2           PRICE           S           6-10 PCS | €*           1-5 PCS           € 73,43           office for pricing.           PRICE           11-20 PCS | RMB*           1-5 PCS           ¥         696.30 | CHARACTERISTIC<br>Threshold Current<br>Operation Current<br>Operation Voltage<br>Slope Efficiency<br>Lasing Wavelength<br>Beam Divergence<br>(FWHM) | $\begin{array}{c} \textbf{SYMBOL} \\ I_{th} \\ I_{op} \\ V_{op} \\ \eta s \\ \lambda p \\ \theta / / \\ \theta \bot \\ I_m \end{array}$ | MIN           30 mA           40 mA           1.8 V           0.5 mW/mA           965 nm           8°           25°           0.05 mA | TYP.           50 mA           100 mA           2.0 V           0.7 mW/mA           980 nm           10°           30°           0.3 mA | 70 mA<br>150 mA<br>2.5 V<br>0.9 mW/mA<br>995 nm<br>12°<br>40° | Laser Diodes<br>Pigtailed Diodes<br>Fiber-Coupled<br>Laser Sources<br>WDM Laser Sources |

# $\lambda$ = 980 nm, P = 50 mW, Single Mode Thorlabs L9805E2P5



- Ø5.6 mm Package
- 980 nm (Typ.) Lasing Wavelength
- 50 mW Output Power (CW)
- Index-Guided Structure
- Single Transverse Mode



LD

**PIN CODE 5A** 

| ITEM#                       | £*<br>1-5 PCS              | €*<br>1-5 PCS      | RMB*<br>1-5 PCS |
|-----------------------------|----------------------------|--------------------|-----------------|
| L9805E2P5                   | £ 154.08                   | € 198,74           | ¥ 1,884.66      |
| *For quantities over 5 piec | es, please call a local of | ffice for pricing. |                 |

| ITEM#     | PRICE<br>1-5 PCS | PRICE<br>6-10 PCS | PRICE<br>11-20 PCS | DESCRIPTION            |
|-----------|------------------|-------------------|--------------------|------------------------|
| L9805E2P5 | \$ 223.30        | \$ 200.97         | \$ 178.64          | Thorlabs 980 nm, 50 mW |

| Absolute Maximum Ratings (T <sub>c</sub> = 25 °C) |        |   |  |  |
|---------------------------------------------------|--------|---|--|--|
| CHARACTERISTIC                                    | SYMBOL | Ī |  |  |
| Optical Output Power (CW)                         | P.,    |   |  |  |

| CHARACTERISTIC             | SYMBOL             | RATING        |
|----------------------------|--------------------|---------------|
| Optical Output Power (CW)  | Po                 | 50 mW         |
| LD Reverse Voltage         | V <sub>R(LD)</sub> | 2 V           |
| PD Reverse Voltage         | V <sub>R(PD)</sub> | 30 V          |
| Operation Case Temperature | T <sub>C</sub>     | -10 to +60 °C |
| Storage Temperature        | T <sub>stg</sub>   | -40 to +85 °C |

#### Characteristics ( $T_c = 25 \degree C$ , P = 50 mW)

| CHARACTERISTIC    | SYMBOL          | MIN       | TYP.      | MAX     |  |  |  |  |
|-------------------|-----------------|-----------|-----------|---------|--|--|--|--|
| Threshold Current | I <sub>th</sub> | 10 mA     | 15 mA     | 30 mA   |  |  |  |  |
| Operation Current | I <sub>op</sub> | _         | 95 mA     | 120 mA  |  |  |  |  |
| Operation Voltage | V <sub>op</sub> | _         | 1.5 V     | 1.7 V   |  |  |  |  |
| Lasing Wavelength | λp              | 970 nm    | 980 nm    | 983 nm  |  |  |  |  |
| Slope Efficiency  | hs              | 0.5 mW/mA | 0.7 mW/mA | 1 mW/mA |  |  |  |  |
| Beam Divergence   | θ//             | 7°        | 8°        | 12°     |  |  |  |  |
| (FWHM)            | $\theta \bot$   | 30°       | 33°       | 38°     |  |  |  |  |
| Monitor Current   | Im              | -         | 0.75 mA   | 1.0 mA  |  |  |  |  |
|                   |                 | 1 10 1    |           |         |  |  |  |  |

Note: All data is presented as typical unless otherwise specified.

# $\lambda$ = 980 nm, P = 100 mW, Multimode Thorlabs L980P100



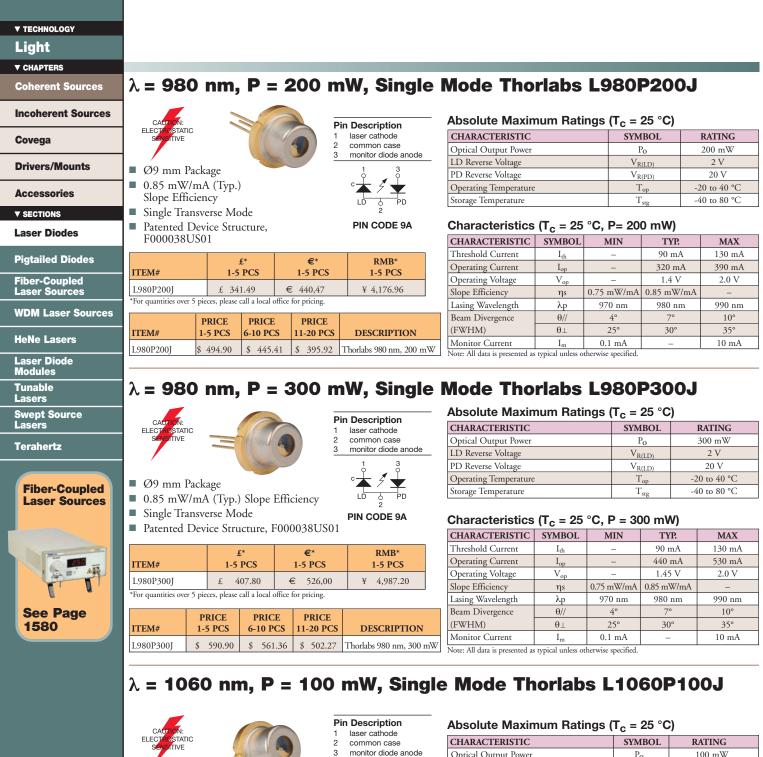
| ITEM#    | £*      | €*      | RMB*     |
|----------|---------|---------|----------|
|          | 1-5 PCS | 1-5 PCS | 1-5 PCS  |
| L980P100 | £ 68.38 | € 88,20 | ¥ 836.41 |

| ITEM#    | PRICE<br>1-5 PCS | PRICE<br>6-10 PCS | PRICE<br>11-20 PCS | DESCRIPTION             |
|----------|------------------|-------------------|--------------------|-------------------------|
| L980P100 | \$ 99.10         | \$ 89.19          | \$ 79.28           | Thorlabs 980 nm, 100 mW |

Absolute Maximum Ratings (T = 25 °C)

| Absolute Maximum Hatings ( $T_c = 25$ C) |                    |              |  |  |  |
|------------------------------------------|--------------------|--------------|--|--|--|
| CHARACTERISTIC                           | SYMBOL             | RATING       |  |  |  |
| Optical Output Power (CW)                | Po                 | 100 mW       |  |  |  |
| LD Reverse Voltage                       | V <sub>R(LD)</sub> | 2 V          |  |  |  |
| PD Reverse Voltage                       | V <sub>R(PD)</sub> | 30 V         |  |  |  |
| Operating Temperature                    | T <sub>op</sub>    | -10 to 50 °C |  |  |  |
| Storage Temperature                      | T <sub>stg</sub>   | -40 to 85 °C |  |  |  |

#### Characteristics ( $T_c = 25 \degree C$ , P = 100 mW)


| onaraotonotio                  |                         |                                        |           |           |  |  |  |  |
|--------------------------------|-------------------------|----------------------------------------|-----------|-----------|--|--|--|--|
| CHARACTERISTIC                 | SYMBOL                  | MIN                                    | TYP.      | MAX       |  |  |  |  |
| Threshold Current              | I <sub>th</sub>         | 35 mA                                  | 50 mA     | 70 mA     |  |  |  |  |
| Operation Current              | I <sub>op</sub>         | 100 mA                                 | 200 mA    | 300 mA    |  |  |  |  |
| Operation Voltage              | V <sub>op</sub>         | 1.8 V                                  | 2.0 V     | 2.5 V     |  |  |  |  |
| Slope Efficiency               | ηs                      | 0.5 mW/mA                              | 0.7 mW/mA | 0.9 mW/mA |  |  |  |  |
| Lasing Wavelength              | λp                      | 965 nm                                 | 980 nm    | 995 nm    |  |  |  |  |
| Beam Divergence                | θ//                     | 8°                                     | 10°       | 12°       |  |  |  |  |
| (FWHM)                         | $\theta \perp$          | 25°                                    | 30°       | 40°       |  |  |  |  |
| Astigmatism                    | As                      | _                                      | 11 µm     | -         |  |  |  |  |
| Monitor Current                | Im                      | 0.5 mA                                 | 2 mA      | 3 mA      |  |  |  |  |
| NTerry All deep to museumend a | e en l'est sur less set | ······································ |           |           |  |  |  |  |

Note: All data is presented as typical unless otherwise specified.

TECHNOLOGY V Light

Tunable Lasers Swept Source Lasers

Terahertz



'PD

**PIN CODE 9A** 

| Ø9 | mm | Pacl | kaş | ge |  |
|----|----|------|-----|----|--|
|    |    |      |     |    |  |

- 0.85 mW/mA (Typ.) Slope Efficiency
- Single Transverse Mode

| ITEM#               |                   | £*         €*         RMB*           1-5 PCS         1-5 PCS         1-5 PCS |                   |                 |            |  |
|---------------------|-------------------|------------------------------------------------------------------------------|-------------------|-----------------|------------|--|
| L1060P100J          |                   | £ 525.30                                                                     | € 67              | 7,56            | ¥ 6,425.38 |  |
| *For quantities ove | er 5 pieces,      | please call a local o                                                        | office for pricin | ce for pricing. |            |  |
|                     | PRICE PRICE PRICE |                                                                              |                   |                 |            |  |
| ITEM#               | 1-5 PC            | S 6-10 PCS                                                                   | 11-20 PCS         | DESCRIPTION     |            |  |
| I 10/0D100I         | ¢ 7(1)            | 0 ¢ (05.17                                                                   | ¢ (00.04          | 771 1           | 1 10/0 100 |  |

| CHARACTERISTIC        | SYMBOL             | RATING       |
|-----------------------|--------------------|--------------|
| Optical Output Power  | Po                 | 100 mW       |
| LD Reverse Voltage    | V <sub>R(LD)</sub> | 2 V          |
| PD Reverse Voltage    | V <sub>R(LD)</sub> | 20 V         |
| Operating Temperature | T <sub>op</sub>    | -20 to 40 °C |
| Storage Temperature   | T <sub>stg</sub>   | -40 to 80 °C |

#### Characteristics (T<sub>c</sub> = 25 °C, P = 100 mW)

| Patented Device Structure, F000038US01 |             |                     |                    |                 |                     |                  | CHARACTERISTIC                   | SYMBOL              | MIN             | TYP.    | MAX     |
|----------------------------------------|-------------|---------------------|--------------------|-----------------|---------------------|------------------|----------------------------------|---------------------|-----------------|---------|---------|
|                                        |             |                     |                    |                 |                     |                  | Threshold Current                | I <sub>th</sub>     | -               | 50 mA   | 80 mA   |
|                                        |             | £*                  | €*                 | ¢               | RMB*                |                  | Operating Current                | I <sub>op</sub>     | -               | 165 mA  | 200 mA  |
| ITEM#                                  |             | 1-5 PCS             | 1-5 P              | CS              | 1-5 PCS             |                  | Operating Voltage                | V <sub>op</sub>     | -               | 1.35 V  | 2.0 V   |
| L1060P100J                             |             | £ 525.30            | € 67               | 7,56 ¥ 6,425.38 |                     | Slope Efficiency | ηs                               | 0.7 mW/mA           | 0.85 mW/mA      | -       |         |
| *For quantities over                   | r 5 pieces, | please call a local | office for pricing | 3.              |                     |                  | Lasing Wavelength                | λp                  | 1040 nm         | 1060 nm | 1080 nm |
|                                        | PRICE       | PRICE               | PRICE              |                 |                     |                  | Beam Divergence                  | θ//                 | 4°              | 7°      | 10°     |
| ITEM#                                  | 1-5 PC      |                     | 11-20 PCS          |                 | DESCRIPTION         |                  | (FWHM)                           | θ⊥                  | 25°             | 30°     | 35°     |
|                                        |             |                     |                    |                 |                     | 7                | Monitor Current                  | Im                  | 0.1 mA          | _       | 10 mA   |
| L1060P100J                             | \$ 761.3    | 60 \$ 685.17        | \$ 609.04          | I norla         | abs 1060 nm, 100 mW | /                | Note: All data is presented as t | ypical unless other | wise specified. |         |         |

#### www.thorlabs.com

|                                                                          |                                                             |                     |                                       |                                          |                                                                                          |                         |                                                                 |                  |                                    | Light              |
|--------------------------------------------------------------------------|-------------------------------------------------------------|---------------------|---------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------|------------------|------------------------------------|--------------------|
|                                                                          |                                                             |                     |                                       |                                          |                                                                                          |                         |                                                                 |                  |                                    | CHAPTERS V         |
| <b>1310</b>                                                              | nm, P                                                       | ' = <b>10</b>       | mW D                                  | FB, Mit                                  | subishi ML                                                                               | 725B1                   | 1F                                                              |                  |                                    | Coherent Sources   |
| CAUTION:<br>ELECTROSTATIC                                                |                                                             |                     |                                       |                                          | Aboolute Movie                                                                           | um Doting               | а (Т. О                                                         | E °O             |                                    | Incoherent Sources |
| SENSTTIVE                                                                |                                                             |                     | Pin Descrip<br>1 laser cath           | node                                     | Absolute Maxim<br>CHARACTERISTIC                                                         |                         | $S(T_C = Z)$                                                    |                  | RATING                             | Covega             |
| Ø5.6 mm Pack                                                             | age                                                         |                     | 3 case/lase                           | liode anode<br>er anode<br>diode cathode | Optical Output Power (<br>LD Reverse Voltage                                             | CW)                     | Po<br>V <sub>R(LD</sub>                                         | )                | 10 mW<br>2 V                       | Drivers/Mounts     |
| Well Suited as I<br>Long-Distance                                        |                                                             |                     | 4                                     | 3<br>• <i>×</i>                          | PD Reverse Voltage<br>Operation Case Tempera                                             | ature                   | V <sub>R(PD</sub><br>T <sub>C</sub>                             | )                | 20 V<br>0 to +85 °C                | Accessories        |
| Systems                                                                  | -                                                           |                     |                                       |                                          | Storage Temperature                                                                      |                         | T <sub>stg</sub>                                                |                  | 0 to +100 °C                       | SECTIONS V         |
| Hermetically Se                                                          |                                                             |                     | PD                                    |                                          | Characteristics                                                                          | (T 25 °C                | <b>P</b> – 5 m                                                  | ۰W/۱             |                                    | Laser Diodes       |
| High Side Mod<br>(40 dB Typ.)                                            | le Suppressio                                               | on Ratio            |                                       | DDE 5D                                   | CHARACTERISTIC                                                                           | SYMBOL                  |                                                                 | TYP.             | MAX                                |                    |
| DFB (Distribut                                                           | ed Feedback                                                 | <)                  |                                       |                                          | Threshold Current                                                                        | Ith                     | -                                                               | 6 mA             | 12 mA                              | Pigtailed Diodes   |
|                                                                          |                                                             | ,                   |                                       |                                          | Operation Current                                                                        | I <sub>op</sub>         | -                                                               | 16 mA            | 30 mA                              | Fiber-Coupled      |
|                                                                          | £*                                                          | €*                  | RM<br>1-5                             |                                          | Operation Voltage                                                                        | V <sub>op</sub>         | -                                                               | 1.1 V            | 1.5 V                              | Laser Sources      |
| 2725B11F                                                                 | <b>1-5 PCS</b><br>£ 167.19                                  | 1-5 PCS<br>€ 215,65 |                                       |                                          | Lasing Wavelength<br>Beam Divergence                                                     | <u>λp</u><br>θ//        | 1290 nm                                                         | 1310 nm<br>25°   | 1330 nm<br>35°                     | WDM Laser Sources  |
| quantities over 5 pieces                                                 |                                                             |                     | т 2,0                                 | 19.10                                    | (FWHM)                                                                                   | θ⊥                      | -                                                               | 30°              | 40°                                |                    |
| PRICI                                                                    | E PRICE                                                     | PRICE               |                                       |                                          | Monitor Current                                                                          | Im                      | 0.05 mA                                                         | 0.2 mA           | -                                  | HeNe Lasers        |
| EM# 1-5 PC                                                               | CS 6-10 PCS                                                 | 11-20 PCS           |                                       | RIPTION                                  | Side Mode<br>Suppression Ratio                                                           | SMSR                    | 35 dB                                                           | 40 dB            | _                                  | Laser Diode        |
| .725B11F \$ 242.3                                                        | 30 \$ 218.07                                                | \$ 193.84 N         | Aitsubishi 1310                       | nm, 10 mW, DFB                           | Note: All data is presented as                                                           | ypical unless otherw    | ise specified.                                                  |                  |                                    | Module             |
| - 4660                                                                   |                                                             | - 6                 |                                       |                                          | ada Mitauk                                                                               | iohi MI                 | 005                                                             |                  | 1                                  | Tunable<br>Laser   |
| = 1550                                                                   | nm, P                                                       |                     | Description                           |                                          | ode Mitsub                                                                               |                         | L9251                                                           | <b>D4</b> эг     |                                    | Swept Source       |
| Ø5.6 mm Pack                                                             | U                                                           |                     | laser cathode                         |                                          |                                                                                          | I:<br>ATIC              | 51                                                              |                  |                                    |                    |
| MQW Active L<br>10 mA (Typ.) T                                           |                                                             | 3                   | monitor diode ar<br>case/laser anod   |                                          |                                                                                          | E                       |                                                                 |                  |                                    | Terahert           |
| reshold Current<br>peration Current<br>peration Voltage<br>pe Efficiency | I <sub>th</sub><br>I <sub>op</sub><br>V <sub>op</sub><br>ηs | 3 mA<br>10 mA<br>-  | 10 mA<br>30 mA<br>1.1 V<br>0.25 mW/mA | 20 mA<br>50 mA<br>1.5 V                  | LD Reverse Voltage<br>PD Reverse Voltage<br>PD Forward Current<br>Operation Case Tempera | ature                   | V <sub>R(LD</sub><br>VR(PD<br>I <sub>FD</sub><br>T <sub>C</sub> | .)               | 2 V<br>20 V<br>2 mA<br>40 to 85 °C |                    |
| ing Wavelength                                                           | λρ                                                          | 1520 nm             | 1550 nm                               | 1580 nm                                  | Storage Temperature                                                                      |                         | T <sub>stg</sub>                                                | -4               | 0 to 100 °C                        |                    |
| ctral Width(RMS)                                                         | Δλ                                                          | -                   | 1.5 nm                                | 3 nm                                     |                                                                                          | £*                      | €*                                                              | 1                | RMB*                               |                    |
| m Divergence (//)                                                        | θ//                                                         | -                   | 25°                                   | -                                        | ITEM#                                                                                    | 1-5 PCS                 | 1-5 PCS                                                         |                  | -5 PCS                             |                    |
| m Divergence (⊥)<br>e and Fall Time                                      | θ⊥<br>tr / tf                                               | -                   | 30°<br>0.3 ns                         | - 0.7 ns                                 |                                                                                          | 31.74                   | € 40,94                                                         | έ¥               | 388.24                             |                    |
| nitoring Output                                                          | Im                                                          | 0.1 mA              | 0.5 mA                                | 1 mA                                     | *For quantities over 5 pieces,                                                           |                         |                                                                 |                  |                                    | Laser              |
| Dark Current                                                             | ID                                                          | -                   | -                                     | 0.1 μΑ                                   | ITEM# PRICE                                                                              |                         | RICE<br>20 PCS                                                  | DESCRIF          | TION                               | Diode              |
| Capacitance<br>:: All data is presented as                               | C <sub>t</sub>                                              | -                   | 10 pF                                 | 20 pF                                    | ML925B45F \$ 46.00                                                                       |                         |                                                                 |                  | 0 nm, 6 mW                         | Banks              |
|                                                                          |                                                             |                     | mW D                                  | FB, Mit                                  | subishi ML                                                                               | 925B1                   | 1F                                                              |                  | Į.                                 |                    |
| CAUTION:                                                                 |                                                             |                     | Dia Di                                | a vintia n                               | Absolute Maxim                                                                           | um Rating               | s (T <sub>c</sub> = 2                                           | 5 °C)            |                                    |                    |
| LECTROSTATIC<br>SENSITIVE                                                | 1                                                           |                     | Pin Dese<br>1 laser                   | cription<br>cathode                      | CHARACTERISTIC                                                                           |                         | SYMB                                                            | BOL              | RATING                             | See Page<br>1068   |
|                                                                          |                                                             |                     |                                       | or diode anode<br>laser anode            | Optical Output Power (                                                                   | CW)                     | Po                                                              |                  | 10 mW                              |                    |
| Ø5.6 mm Pack                                                             | age                                                         |                     |                                       | or diode cathode                         | LD Reverse Voltage<br>PD Reverse Voltage                                                 |                         | V <sub>R(LD</sub><br>V <sub>R(PD</sub>                          |                  | 2 V<br>20 V                        |                    |
| InGaAsP MQW                                                              | V, DFB (Mu                                                  |                     | um 4                                  | 3                                        | Operation Case Tempera                                                                   | ature                   | T <sub>C</sub>                                                  | -4               | 40 to 85 °C                        |                    |
| Well Distribute                                                          | d Feedback)                                                 | Structure           | M C                                   |                                          | Storage Temperature                                                                      |                         | T <sub>stg</sub>                                                | -4               | 0 to 100 °C                        |                    |
| Fast Response 7                                                          |                                                             |                     | PD                                    |                                          | Characteristics                                                                          | (T <sub>c</sub> = 25 °C | , P = 5 m                                                       | nW)              |                                    |                    |
| Risetime, 0.2 n<br>Side Mode Sup                                         |                                                             |                     | 2                                     | 1                                        | CHARACTERISTIC                                                                           | SYMBOL                  | MIN                                                             | TYP.             | MAX                                |                    |
| Side Mode Sup<br>(35 dB Min) @                                           |                                                             | .10 40 aB ( Iy      | P.) PIN                               | CODE 5D                                  | Threshold Current                                                                        | I <sub>th</sub>         | -                                                               | 8 mA             | 15 mA                              |                    |
|                                                                          | -                                                           |                     |                                       | (D)                                      | Operation Current                                                                        | I <sub>op</sub>         | -                                                               | 25 mA            | 40 mA                              |                    |
| EM#                                                                      | £*<br>1-5 PCS                                               | €*<br>1-5 PCS       | RM<br>1-5                             |                                          | Operation Voltage<br>Lasing Wavelength                                                   | <br>λp                  |                                                                 | 1.1 V<br>1550 nm | 1.5 V<br>1570 nm                   |                    |
| L925B11F                                                                 | £ 171.81                                                    | € 221,61            | ¥ 2,10                                |                                          | Beam Divergence                                                                          | θ//                     | -                                                               | 25°              | 35°                                |                    |
| r quantities over 5 pieces                                               |                                                             |                     | 1 2,1                                 |                                          | (FWHM)                                                                                   | θ⊥                      | -                                                               | 35°              | 45°                                |                    |
| PRI                                                                      |                                                             |                     |                                       |                                          | Monitor Current                                                                          | Im                      | 0.05 mA                                                         | 0.2 mA           | -                                  |                    |
| INI                                                                      |                                                             | TRUCE               |                                       |                                          | Side Mode                                                                                | 1                       | 1                                                               | 1                |                                    |                    |

PRICE PRICE PRICE ITEM# 1-5 PCS 6-10 PCS 11-20 PCS DESCRIPTION ML925B11F \$ 249.00 \$ 211.65 \$ 174.30 Mitsubishi 1550 nm, 10 mW

Suppression Ratio Note: All data is presented as typical unless otherwise specified.

SMSR

35 dB

Side Mode

THORLABS

 $40 \ \mathrm{dB}$ 

\_

TECHNOLOGY **V** 

#### Light

▼ CHAPTERS

**Coherent Sources** 

**Incoherent Sources** 

#### Covega

**Drivers/Mounts** 

Accessories

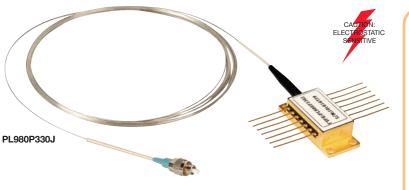
Laser Diodes

**Pigtailed Diodes** 

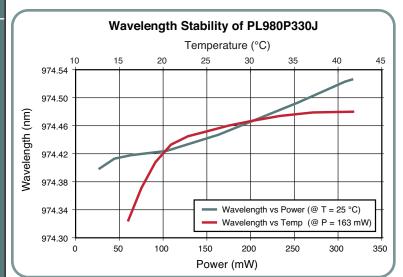
Fiber-Coupled Laser Sources

WDM Laser Sources

HeNe Lasers


Laser Diode

Modules Tunable Lasers


Swept Source Lasers

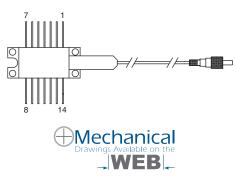
Terahertz

# 980 nm, Fiber Bragg Grating-Stabilized, 330 mW Pump Laser (Page 1 of 2)

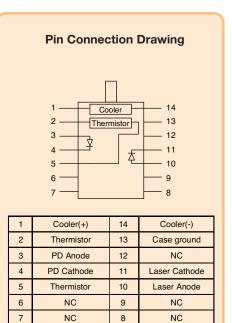


The PL980P330J consists of a field-proven, 980 nm, patented quantum-well laser chip in a 14-pin butterfly package with an integrated thermoelectric cooler and monitor photodiode. The compact design includes a fiber Bragg grating (FBG) that provides reliable wavelength-stabilized operation. The laser is coupled into a single mode Fiber Pigtail with an FC/APC connector.




| ABSOLUTE MAXIMUM RATINGS           | MIN    | MAX    |
|------------------------------------|--------|--------|
| Storage Temperature                | -40 °C | 85 °C  |
| Operating Case Temperature         | -20 °C | 70 °C  |
| Soldering Temperature. (10 s, Max) | -      | 260 °C |
| LD Forward Current                 | -      | 800 mA |
| LD Reverse Voltage                 | -      | 2 V    |
| Monitor Forward Current            | -      | 5 mA   |
| Monitor Reverse Current            | -      | 20 V   |
| ESD Damage                         | -      | 500 V  |
| Fiber Pigtail Bend Radius          | 25 mm  | -      |

#### Features


- 330 mW at Fiber Output
- Fiber Bragg Grating Wavelength Stabilized
- Internal Thermoelectric Cooler and Photodiode Monitor
- Compact, Low-Profile 14-Pin Butterfly Package
- Patented Device Structure: F000038US01
- Telecordia GR-468-CORE Qualified

#### Applications

- Fiber Laser Pump
- EDFAs



Compatible with LM14S2 Butterfly Mount Using Type 1 Adapter Card (See Page 1216)



# 980 nm, Fiber Bragg Grating-Stabilized, 330 mW Pump Laser (Page 2 of 2)

|                                      |                        |        |        |            | inconerent sources     |
|--------------------------------------|------------------------|--------|--------|------------|------------------------|
| PARAMETER                            | CONDITION              | MIN    | ТҮР    | MAX        | Covega                 |
| Operating Power (POP)                | _                      | -      | _      | 330 mW     | Duine us /Manuala      |
| Operating Current (I <sub>OP</sub> ) | -                      | -      | -      | 720 mA     | Drivers/Mounts         |
| Free Power (Pk)                      | -                      | -      | -      | >363 mW    | Accessories            |
| Kink Free Current (Ik)               | -                      | -      | -      | >792 mA    | SECTIONS V             |
| ELECTRICAL/OPTICAL CHARACTERISTI     | CS                     |        |        |            | Laser Diodes           |
| Threshold Current                    | -                      | -      | 75 mA  | 90 mA      |                        |
| Forward Voltage                      | at I <sub>op</sub>     | -      | 1.7 V  | 1.9 V      | Pigtailed Diodes       |
| Peak Wavelength                      | as Specified ±1 nm     | -      | 975 nm | -          | Fiber-Coupled          |
| Spectral Width (95% power)           | at Pop with FBG        |        |        | 2.0 nm     | Laser Sources          |
| Spectral Shift with Temperature      | FBG Temp               | -      | -      | 0.02 nm/°C | WDM Laser Sources      |
| Side Mode Suppression                | at Pop with FBG        | -13 dB | -      | -          |                        |
| Monitor Responsivity                 | -                      | 1 A/mW | 3 A/mW | 20 A/mW    | HeNe Lasers            |
| TEC Current                          | Chip 25 °C, Case 70 °C | -      | _      | 1.8 A      | Laser Diode<br>Modules |
| TEC Voltage                          | Chip 25 °C, Case 70 °C | -      | -      | 3.0 V      | Tunable                |
| Thermistor Resistance                | T= 25 °C               | -      | 10 kΩ  | -          | Lasers                 |
| Thermistor Constant                  | -                      | -      | 3892 K | -          | Swept Source           |
| Fiber Type                           | HI1060, Single Mode    | -      | -      | -          | Lasers                 |
|                                      | 1                      | 1      | 1      |            | Terahertz              |

| ITEM#      | \$          | £          | €          | RMB         | DESCRIPTION                                  |
|------------|-------------|------------|------------|-------------|----------------------------------------------|
| PL980P330J | \$ 1,600.00 | £ 1,109.00 | € 1.420,50 | ¥ 13,511.00 | 980 nm FBG Stabilized Pump Laser, P = 330 mW |



TECHNOLOGY 🔻

Liaht

CHAPTERS V

**Coherent Sources** 

**Incoherent Sources** 

#### Light

#### **V** CHAPTERS

**Coherent Sources** 

**Incoherent Sources** 

Covega

#### **Drivers/Mounts**

Accessories

▼ SECTIONS Laser Diodes

#### **Pigtailed Diodes**

- Fiber-Coupled Laser Sources
- **WDM Laser Sources**

**HeNe Lasers** 

Laser Diode Modules Tunable Lasers

Swept Source Lasers

Terahertz

## **Fiber Pigtailed Laser Diodes**

#### Features

- Choice of Single Mode or Multimode Fibers
- Assorted Wavelengths from Visible to Near IR
- Minimized Noise and Maximum Coupling Efficiency
- FC/PC and SMA Fiber Connectors (Custom Connectors Available Upon Request)
- High-Power Pigtails Available (>25 mW)
- Pigtailing Service of Customer-Supplied Diodes



Thorlabs offers a full line of fiber pigtailed laser diodes using either single mode or multimode fibers. Our

high-quality alignment process includes multiple test and inspection points that ensure that the coupling efficiency is maximized. In addition, the input end of the fiber is cleaved at an 8° angle in order to minimize back reflections that can cause the output intensity to fluctuate. Single mode pigtails provide coherent fiber-coupled output from a laser diode. Multimode pigtails deliver higher power from the diode than single mode pigtails, but coherence is not maintained.

|                  |                | LASER RADIATION<br>AVOID DIRECT EYE EXPOSURE<br>CLASS 3R LASER PRODUCT<br>543-700m <5mw<br>IEC 60825-1 EDITION 1.2 2001-08           | LASER RADIATION<br>DO NOT VIEW DIRECTLY WITH<br>CILLANS TRUMENTS<br>CLASS 11M LASER PRODUCT<br>1500-2500m - 50mw<br>IEC 60825-1 EDITION 1.2 2001-08 |
|------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
|                  |                | INVISIBLE LASER RADIATION<br>AVIOL EXPOSURE TO BEAM<br>CLASS 38 LASER PRODUCT<br>700-8000m <200mW<br>IEC 60826-1 EDITION 1,2 2001-08 | INVISIBLE LASER RADIATION<br>AVOID EXPOSURE TO BEAM<br>CLASS 3B LASER PRODUCT<br>1200-1600 nm <500mW<br>JEC 60825-1 EDITION 1,2 2001-08             |
| Single Mode Beam | Multimode Beam |                                                                                                                                      |                                                                                                                                                     |

| Single | Mode | Beam |
|--------|------|------|
|--------|------|------|

| ITEM #       | λ       | \$         | £        | €         | RMB        | MODE | P (Min) | Р (Тур) | P (Max) | PIN CODE |
|--------------|---------|------------|----------|-----------|------------|------|---------|---------|---------|----------|
| LPS-406-FC   | 406 nm  | \$ 595.00  | £ 412.50 | € 528,30  | ¥ 5,024.20 | SM   | 4.0 mW  | 5.0 mW  | 7.0 mW  | 5B       |
| LPS-635-FC   | 635 nm  | \$ 446.00  | £ 309.20 | € 396,00  | ¥ 3,766.10 | SM   | 2.0 mW  | 2.5 mW  | 3.5 mW  | 9A       |
| LPM-635-SMA  | 635 nm  | \$ 394.00  | £ 273.20 | € 349,80  | ¥ 3,327.00 | MM   | 6.0 mW  | 7.5 mW  | 8.5 mW  | 9A       |
| LPS-660-FC   | 660 nm  | \$ 446.00  | £ 309.20 | € 396,00  | ¥ 3,766.10 | SM   | 6.0 mW  | 7.5 mW  | 9.0 mW  | 5C       |
| LPM-660-SMA  | 660 nm  | \$ 359.00  | £ 248.90 | € 318,80  | ¥ 3,031.50 | MM   | 18.0 mW | 22.5 mW | 25.5 mW | 5C       |
| LPS-675-FC   | 675 nm  | \$ 446.00  | £ 309.20 | € 396,00  | ¥ 3,766.10 | SM   | 2.0 mW  | 2.5 mW  | 3.5 mW  | 9A       |
| LPS-785-FC   | 785 nm  | \$ 419.00  | £ 290.50 | € 372,00  | ¥ 3,538.10 | SM   | 5.0 mW  | 6.25 mW | 7.5 mW  | 5A       |
| LPS-830-FC   | 830 nm  | \$ 494.00  | £ 342.50 | € 438,60  | ¥ 4,171.40 | SM   | 8.0 mW  | 10.0 mW | 12.0 mW | 9C       |
| LPS-1060-FC  | 1060 nm | \$1,200.00 | £ 831.90 | €1.065,40 | ¥10,133.00 | SM   | 15.0 mW | 20.0 mW | -       | 9A       |
| LPS-1310-FC  | 1310 nm | \$ 446.00  | £ 309.20 | € 396,00  | ¥ 3,766.10 | SM   | 2.0 mW  | 2.5 mW  | 3.0 mW  | 5D       |
| LPSC-1310-FC | 1310 nm | \$ 621.00  | £ 430.50 | € 551,40  | ¥ 5,243.80 | SM   | 60 mW   | 80 mW   | 100 mW  | 5E       |
| LPS-1550-FC  | 1550 nm | \$ 534.00  | £ 370.20 | € 474,10  | ¥ 4,509.20 | SM   | 1.2 mW  | 1.5 mW  | 1.8 mW  | 5D       |
| LPSC-1550-FC | 1550 nm | \$ 685.00  | £ 474.90 | € 608,20  | ¥ 5,784.20 | SM   | 40 mW   | 50 mW   | 60 mW   | 5E       |
| LPSC-1625-FC | 1625 nm | \$ 685.00  | £ 474.90 | € 608,20  | ¥ 5,784.20 | SM   | 40 mW   | 50 mW   | 60 mW   | 5E       |

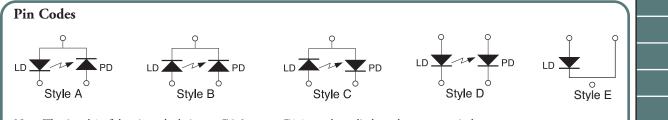
#### Features

- Convenient Diode Mounting
- SR9 ESD Protection and Strain Relief Cable Compatible



The LPS and LPM Series of pigtailed lasers featured above may be conveniently mounted to a breadboard or a TR post using a PTLB1 Fiber Pigtail Bracket. The universal design allows the Lbracket to be used with both imperial and metric components. The PTLB1 has a 13/30-40 tap through the center of the mounting area, allowing the end user to plug the pigtail into an SR9 (ESD protection and strain relief cable).

|       | ,        |         |         |          |                         |
|-------|----------|---------|---------|----------|-------------------------|
| ITEM# | \$       | £       | €       | RMB      | DESCRIPTION             |
| PTLB1 | \$ 22.00 | £ 15.30 | € 19,60 | ¥ 185.80 | Fiber Pigtail L-Bracket |




# Fiber-Pigtailed Laser Diode, Polarization-Maintaining Fiber

#### Features

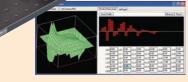
- Slow Axis of PM Fiber Aligned to Connector Key
- FC/PC Connector
- Internal 8° Angle-Cleaved Fiber Minimizes Intensity Noise

PM fiber-pigtailed laser diodes couple the light emitted from the diode into the slow axis of a polarization-maintaining fiber. Our high-quality alignment process includes multiple test and inspection points that ensure that the power coupling efficency and extinction ratio are maximized. In addition, the input end of the fiber is cleaved at an 8° angle in order to minimize back reflections that can cause the output intensity to fluctuate.



**NEW** products

Note: The 5 and 9 of the pin code designate Ø5.6 mm or Ø9.0 mm laser diode packages, respectively


| ITEM #        | λ       | \$        | £        | €        | RMB        | P (Min) | Р (Тур) | P (Max) | PIN CODE | ER     | Fiber     | LD ITEM#    |
|---------------|---------|-----------|----------|----------|------------|---------|---------|---------|----------|--------|-----------|-------------|
| LPS-PM635-FC  | 635 nm  | \$ 887.30 | £ 615.10 | € 787,80 | ¥ 7,492.40 | 2.0 mW  | 2.5 mW  | 3.5 mW  | 9A       | >20 dB | PM630-HP  | HL6320G     |
| LPS-PM785-FC  | 785 nm  | \$ 822.80 | £ 570.40 | € 730,50 | ¥ 6,947.80 | 5.0 mW  | 6.25 mW | 7.5 mW  | 5A       | >20 dB | PM780-HP  | DL4140-001S |
| LPS-PM830-FC  | 830 nm  | \$ 854.00 | £ 592.10 | € 758,20 | ¥ 7,211.20 | 8.0 mW  | 10.0 mW | 12.0 mW | 9C       | >20 dB | PM830-HP  | HL8325G     |
| LPS-PM1310-FC | 1310 nm | \$ 804.40 | £ 557.70 | € 714,20 | ¥ 6,792.40 | 2.0 mW  | 2.5 mW  | 3.0 mW  | 5D       | >23 dB | PM1300-HP | ML725B8F    |
| LPS-PM1550-FC | 1550 nm | \$ 856.40 | £ 593.70 | € 760,40 | ¥ 7,231.50 | 1.2 mW  | 1.5 mW  | 1.8 mW  | 5D       | >23 dB | PM1550-HP | ML925B45F   |

# **Adaptive Optics Toolkit**

#### **Features**

- Out-of-the-Box Functionality for Real-Time, High-Precision Wavefront Control
- MEMS-Based DM Achieves High Spatial Resolution Due to High Actuator Count and Low Inter-Actuator Coupling
- Shack-Hartmann Wavefront Sensor with High Resolution CCD Camera and High-Quality Microlens Array
- Includes Light Source, Imaging Optics, and Associated Mounting Hardware

Thorlabs' new Adaptive Optics (AO) Toolkits remove the barrier for entry into adaptive optics, making this real-time wavefront-correcting technology accessible to researchers and OEM users alike. The kit includes Boston Micromachines Corporation's state of-the-art, 140-element, 3.5 micron stroke, MEMSbased deformable mirror. Also included is a Thorlabs' WFS150-5C Shack-Hartmann wavefront sensor, all necessary imaging optics and mounting hardware, fully functional standalone control software for immediate control of the system, and a low-level support library to assist with tailored applications authored by the end user. In addition, since the kit ships as three pre-aligned optomechanical sections that only need to be arranged on a usersupplied breadboard, our adaptive optics toolkits provide a near out-of-the-box solution for real-time wavefront compensation.



## See Pages 1406-1411

CHAPTERS V

TECHNOLOGY **T** Liaht

Coherent Sources

Incoherent Sources

Covega

**Drivers/Mounts** 

Accessories

SECTIONS V

Laser Diodes

**Pigtailed Diodes** 

Fiber-Coupled Laser Sources

WDM Laser Sources

HeNe Lasers

Laser Diode Modules

> Tunable Lasers

Swept Source

Lasers

Terahertz

#### Light

▼ CHAPTERS

#### **Coherent Sources**

#### **Incoherent Sources**

Covega

**Drivers/Mounts** 

Accessories

- ▼ SECTIONS
- Laser Diodes
- **Pigtailed Diodes**

**Fiber-Coupled** Laser Sources

WDM Laser Sources

**HeNe Lasers** 

Laser Diode Modules

Tunable Lasers Swept Source Lasers

Terahertz



**Fiber-Coupled Laser Sources** 



- Single Mode FC/PC Fiber Interface
- Low Noise, Highly Stable Output
- 9 Standard Models from 635 to
- 1550 nm Custom Wavelengths Available (Call for Details)
- Angle-Cleaved Fiber Minimizes Back Reflections at the Laser



The S1FC Series of Fiber-Coupled Laser Sources utilize internally pigtailed laser diodes that are connected to the front panel FC feedthrough via single mode fiber. By providing a fiber-to-fiber connection at the output, these devices typically deliver more useful optical power than systems that use a receptacle with embedded optics. All of our fiber pigtailed lasers utilize an angled fiber ferrule at the internal laser/fiber launch point to minimize reflections back into the laser diode, thereby increasing the overall stability.

| ITEM#    | \$          |   | £      |   | €        |   | RMB       | DESCRIPTION*.**                                             |  |
|----------|-------------|---|--------|---|----------|---|-----------|-------------------------------------------------------------|--|
| S1FC635  | \$ 1,222.00 | £ | 847.20 | € | 1.084,90 | ¥ | 10,319.00 | FC/PC Fiber-Coupled Laser Source, 635 nm, 2.5 mW, Class 3R  |  |
| S1FC675  | \$ 1,203.60 | £ | 834.40 | € | 1.068,60 | ¥ | 10,164.00 | FC/PC Fiber-Coupled Laser Source, 675 nm, 2.5 mW, Class 3R  |  |
| S1FC780  | \$ 1,234.20 | £ | 855.60 | € | 1.095,80 | ¥ | 10,422.00 | FC/PC Fiber-Coupled Laser Source, 780 nm, 2.5 mW, Class 3B  |  |
| S1FC1310 | \$ 1,324.00 | £ | 917.90 | € | 1.175,50 | ¥ | 11,180.00 | FC/PC Fiber-Coupled Laser Source, 1310 nm, 1.5 mW, Class 1M |  |
| S1FC1550 | \$ 1,376.00 | £ | 953.90 | € | 1.221,70 | ¥ | 11,619.00 | FC/PC Fiber-Coupled Laser Source, 1550 nm, 1.5 mW, Class 1M |  |
|          |             |   |        |   |          |   |           |                                                             |  |

\*Nominal wavelength, actual wavelength may vary by ±15 nm

\*\*Minimum power available at the output connector, the actual power may be greater.

RES 0.1 nm

|     | ITEM#                                                             |    | \$       |   | £        |   | €        |   | RMB                                                                         | DESCRIPTION***                                                  |
|-----|-------------------------------------------------------------------|----|----------|---|----------|---|----------|---|-----------------------------------------------------------------------------|-----------------------------------------------------------------|
| NEW | S1FC635PM                                                         | \$ | 1,560.00 | £ | 1,081.50 | € | 1.385,00 | ¥ | 13,173.00                                                                   | FC/PC Fiber-Coupled Laser Source 635 nm, 2.5 mW, PM, Class 3R   |
| NEW | S1FC780PM                                                         | \$ | 1,600.00 | £ | 1,109.00 | € | 1.420,50 | ¥ | 13,511.00                                                                   | FC/PC Fiber-Coupled Laser Source, 780 nm, 2.5 mW, PM, Class 3B  |
| NEW | S1FC1310PM                                                        | \$ | 1,650.00 | £ | 1,144.00 | € | 1.465,00 | ¥ | 13,933.00                                                                   | FC/PC Fiber-Coupled Laser Source, 1310 nm, 1.5 mW, PM, Class 1M |
| NEW | S1FC1550PM                                                        | \$ | 1,650.00 | £ | 1,144.00 | € | 1.465,00 | ¥ | 13,933.00                                                                   | FC/PC Fiber-Coupled Laser Source, 1550 nm, 1.5 mW, PM, Class 1M |
|     | *Nominal wavelength, actual wavelength may vary by ±15 nm **Minim |    |          |   |          |   |          |   | um power available at the output connector, the actual power may be greater |                                                                 |

# **DFB Fiber-Coupled Laser Sources**

The S3FC Series includes two Fibe Coupled Laser Sources that feature linewidth DFB laser diode and a 40 optical isolator to eliminate back re and frequency jitter.

Additionally, the S3FC Series incor an integrated temperature control s increased wavelength and power sta The diode temperature can be adju using the front panel potentiometer allowing limited wavelength tuning

| er-                                                                                              |                                                                                                                                                        |                           | PARAMAT                                      | SER COUPLED DPE LABER S | DURCE SPCING |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------|-------------------------|--------------|
| e a narrow<br>60 dB<br>eflections                                                                | <ul> <li>S3FC DFB Series Feature</li> <li>Narrow Spectral Linewidth Less than 0.6 nm</li> <li>Thermoelectric Temperature Stabilization</li> </ul>      | s of                      | 79                                           | <u>150</u><br>•• • 23   |              |
| rporates<br>system for<br>cability.<br>usted<br>er,<br>g.                                        | <ul> <li>Active Power Stabilization</li> <li>40 dB Optical Isolation</li> <li>Adjustable Temperature<br/>Setpoint</li> <li>Adjustable Power</li> </ul> | SPECTRUM<br>0 5 dE<br>dBm | S3FC1550 (Typ)                               |                         |              |
| ER RADIATION<br>IRECT EYE EXPOSURE<br>3R LASER PRODUCT<br>700nm <5mw<br>55-1 EDITION 1.2 2001-08 | INVISIBLE LASER RADIATION<br>AVOID EXPOSURE TO BEAM<br>CLASS 38 LASER PRODUCT<br>7004000 mm <300 mw<br>IECO 60867 + EDTION 12 2001-08                  | -20<br>-40<br>1.5435      | <u>і</u> ііі<br>іііі<br>іііі<br>іііі<br>іііі | 5485                    | 1.5535       |

S3FC1550 Actively Stabilized Power and Temperature

| ITEM#     | \$          | £          | €          | RMB         | DESCRIPTION***                                                  |
|-----------|-------------|------------|------------|-------------|-----------------------------------------------------------------|
| \$3FC1310 | \$ 2,550.00 | £ 1,767.50 | € 2.264,00 | ¥ 21,533.00 | FC/PC DFB Fiber-Coupled Laser Source, 1310 nm, 1.5 mW, Class 1M |
| S3FC1550  | \$ 2,652.00 | £ 1,838.50 | € 2.354,50 | ¥ 22,394.00 | FC/PC DFB Fiber-Coupled Laser Source, 1550 nm, 1.5 mW, Class 1M |

\*\*Minimum power available at the output connector, the actual power may be greater

LASE



LASER RADIATION

1 nm/dir

# **S3FC Series of Fabry-Perot Laser Sources**

Features

Thermoelectric Temperature Stabilization

- Adjustable Temperature Setpoint
- Adjustable Power
- Standard Wavelengths of 405, 473, and 488 nm

Thorlabs offers a selection of Benchtop Fiber Pigtailed Laser Sources that are ideal for fiber-based applications requiring output at 405, 473, or 488 nm. These S3FC lasers come with a pigtailed Fabry-Perot Laser diode with single mode fiber behind an FC/PC bulkhead connector. They also feature keylock power switches and remote interlock inputs, as well as an input for a 0 to 5 V analog signal for low frequency modulation or remote power adjustments. The laser has a built-in TEC and TEC current controller, allowing the user to adjust the temperature for stable output.

| ITEM#      | \$          | £          | €          | RMB         | DESCRIPTION                                                 |
|------------|-------------|------------|------------|-------------|-------------------------------------------------------------|
| S3FC405    | \$ 3,160.00 | £ 2,190.50 | € 2.805,50 | ¥ 26,684.00 | FC/PC Fiber-Coupled Laser Source, 405 nm,* 1 mW,** Class 3B |
| \$3FC473   | \$ 8,375.00 | £ 5,806.00 | € 7.436,00 | ¥ 70,719.00 | FC/PC Fiber-Coupled Laser Source, 473 nm,* 5 mW,** Class 3B |
| S3FC488    | \$ 7,825.00 | £ 5,425.00 | € 6.948,00 | ¥ 66,075.00 | FC/PC Fiber-Coupled Laser Source, 488 nm,* 5 mW,** Class 3B |
| *3.7 * 1 1 |             | 1 15       |            |             |                                                             |

\*Nominal wavelength, actual wavelength may vary by ±15 nm \*\*Minimum power available at the output connector, the actual power may be greater.

**TLS001** 



INVISIBLE LASER RADIATION CLASS 1 LASER PRODUCT 1550 nm <10 mW IEC 60825-1 EDITION 1.2 2001

Measuring only 4.8" x 2.4" x 1.8" (120 mm x 60 mm x 47 mm), the TLS001 T-Cube Laser Source is a fully functional, highly compact laser source. The device, which is available in both 635 nm and 1550 nm variants, incorporates driver electronics and a

pigtailed Fabry-Perot laser diode, thereby increasing the total available output power compared to an air-to-fiber version. It can be controlled by a manual or USB interface. The output laser power is monitored continuously, and a feedback circuit adjusts the laser power to achieve a constant output power.

Multiple T-Cube units can be connected to a single PC via standard USB hub technology or by using the T-Cube Controller Hub (TCH002) for multi-function control applications.

#### Features

- FC/PC Single Mode Fiber Interface
- Manual- or PC-Controlled Operation via USB Interface
- Safety Enable Key Switch and Laser Safety Interlock Jack
- Software Compatible with Other apt<sup>TM</sup> Controllers



| ITEM#       | \$          | £        | €        | RMB        | DESCRIPTION                                      |
|-------------|-------------|----------|----------|------------|--------------------------------------------------|
| TLS001-635  | \$ 995.00   | £ 689.80 | € 883,40 | ¥ 8,401.90 | T-Cube™ Laser Source, 635 nm Output, Class 3R    |
| TLS001-1550 | \$ 1,075.00 | £ 745.30 | € 954,40 | ¥ 9,077.40 | T-Cube™ Laser Source, 1550 nm Output, Class 1M   |
| TPS101      | \$ 25.00    | £ 17.40  | € 22,20  | ¥ 211.20   | 5 V Power Supply Unit for a Single T-Cube, 1.6 A |
| TCH002      | \$ 726.90   | £ 504.00 | € 645,40 | ¥ 6,138.00 | T-Cube™ Controller Hub and Power Supply Unit     |

| Dutput Power                                  | SN: 8<br>Output | 6000001: V1.0.16(1.0.1)<br>Laser Current     |
|-----------------------------------------------|-----------------|----------------------------------------------|
| e mW e dBm                                    | Enable          | C Key Switch                                 |
| ver: TLS001 Laser Source<br>avelength: 635 nm |                 | Current: 100.0 mA<br>htrol: Pot (+ Software) |
| IORLAES) I                                    | dent 🛛 🔵 E      | Error Settings                               |

S3FC405

Actively Stabilized

Power and Temperature

VISIBLE LASER RADIATION AVOID EXPOSURE TO BEAM CLASS 3B LASER PRODUCT

<500 mW

| <b>Drivers/Mounts</b>          |            |
|--------------------------------|------------|
| Accessories                    |            |
| SECTIONS V                     |            |
| Laser Diodes                   |            |
| Pigtailed Diodes               |            |
| Fiber-Coupled<br>Laser Sources |            |
| WDM Laser Sources              | W          |
| HeNe Lasers                    |            |
| Laser Diode<br>Modules         |            |
|                                | IEW<br>IEW |
|                                | IEW        |
|                                |            |

Terahertz

www.thorlabs.com

### 

## Light

Covega

CHAPTERS V

**Coherent Sources** 

**Incoherent Sources** 

#### Light

**V** CHAPTERS

#### **Coherent Sources**

Incoherent Sources

Covega

**Drivers/Mounts** 

Accessories

▼ SECTIONS

Laser Diodes

Pigtailed Diodes

Fiber-Coupled Laser Sources

WDM Laser Sources

**HeNe Lasers** 

Laser Diode Modules Tunable Lasers

Swept Source Lasers

Terahertz



Fiber-Coupled SLD Benchtop Sources

The S5FC Series of Benchtop SLD Sources contain a broadband SLD pigtailed to a single mode fiber. The SLD is driven with a high-precision, low-noise constant current source, and the temperature of the SLD is independently controlled with an internal TEC element.

The front panel LCD display and controls allow the user to view and set the current and temperature parameters. While the SLD is enabled, the display will show the wavelength (not measured), operating power (calculated from the SLD monitoring diode), and the actual temperature of the SLD. The system's microcontroller actively regulates the drive current and temperature



Thorlabs' extensive line of Superluminescent Diodes (SLDs) in butterfly and DIL (Dual In-Line) packages are excellent high-power broadband light sources.

See Page 1156

Integrated TEC and Thermistor

#### Features

- Superluminescent Diodes (SLDs) with Broadband Emissions Centered at 1310 or 1550 nm
- Single SLD Output Channel
- FC/APC Bulkhead Connector
- TEC Temperature Stabilized
- Low Noise Output
- USB 2.0 Interface
- SOA and BOA Compatible

of the SLD as well as monitors the system for fault conditions. The microcontroller has a USB interface that allows for remote adjustment of the output power and temperature of the SLD as well as the enabling of the SLD output.

An analog input is provided on the rear panel; it allows the user to modulate the output of the SLD using an external signal. To prevent damage, the microcontroller will disable the output if the analog input plus the internal setpoint exceeds the SLDs limits. There is an interlock located on the rear panel that can be used to disable the SLD output when an unsafe condition exists. The interlock must be shorted in order for the SLD output to be enabled. The SLD output can be easily amplified thereby increasing the output power using a benchtop semiconductor optical amplifier (SOA), as shown in the picture below.

| Controller Characteristics   |                                                  |  |  |  |  |
|------------------------------|--------------------------------------------------|--|--|--|--|
| Setpoint Resolution          | 0.01 A                                           |  |  |  |  |
| Adjustment Range             | ~0 - Full Power                                  |  |  |  |  |
|                              |                                                  |  |  |  |  |
| AC Input                     | 100 - 240 VAC 50 - 60 Hz                         |  |  |  |  |
| Modulation Input             | 0 - 5 V Scaled to Current Limit                  |  |  |  |  |
| Modulation Bandwidth         | 500 kHz                                          |  |  |  |  |
|                              |                                                  |  |  |  |  |
| Temperature Control          | Integrated TEC                                   |  |  |  |  |
| Temperature Stability        | <0.01 °C                                         |  |  |  |  |
| Temperature Adjustment Range | 20 - 30 °C                                       |  |  |  |  |
|                              |                                                  |  |  |  |  |
| Connector Type               | FC/APC                                           |  |  |  |  |
| Dimensions (L x W x H)       | 5.8" x 11.4" x 2.6"<br>(146 mm x 290 mm x 66 mm) |  |  |  |  |
|                              |                                                  |  |  |  |  |

| ITEM#                          | \$5FC1021\$ |      |      | S    | S5FC1108S |      |      | S5FC1018S |      |      | S5FC1005S |      |  |
|--------------------------------|-------------|------|------|------|-----------|------|------|-----------|------|------|-----------|------|--|
| <b>Optical Characteristics</b> | Min         | Тур  | Max  | Min  | Тур       | Max  | Min  | Тур       | Max  | Min  | Тур       | Max  |  |
| Wavelength (nm)                | -           | 1310 | -    | 1290 | 1310      | 1330 | 1530 | 1550      | 1570 | 1530 | 1550      | 1570 |  |
| Output Power (mW)              | 10          | 12.5 | -    | 22   | 30        | -    | 2.0  | 2.5       | -    | 2.0  | 22        | -    |  |
| Optical Bandwidth (nm)         | 80          | 85   | -    | 40   | 45        | -    | 85   | 95        | -    | 45   | 50        | -    |  |
| RMS Gain Ripple (dB)           | _           | 0.1  | 0.35 | _    | 0.1       | 0.35 | _    | -         | 0.25 | -    | 0.2       | 0.35 |  |

| ITEM#                          | \$                     | £               | €          | RMB         | DESCRIPTION*                               |
|--------------------------------|------------------------|-----------------|------------|-------------|--------------------------------------------|
| S5FC1005S                      | \$ 2,566.00            | £ 1,779.00      | € 2.278,00 | ¥ 21,668.00 | Fiber-Coupled SLD Source, 1550 nm, 22 mW   |
| S5FC1018S                      | \$ 2,954.00            | £ 2,048.00      | € 2.622,50 | ¥ 24,944.00 | Fiber-Coupled SLD Source, 1310 nm, 30 mW   |
| S5FC1021S                      | \$ 2,704.00            | £ 1,874.50      | € 2.400,50 | ¥ 22,833.00 | Fiber-Coupled SLD Source, 1310 nm, 12.5 mW |
| S5FC1108S                      | \$ 2,384.00            | £ 1,652.50      | € 2.116,50 | ¥ 20,131.00 | Fiber-Coupled SLD Source, 1550 nm, 2.5 mW  |
| *Typical values, see the speci | fications table for mo | re information. |            |             |                                            |

"Typical values, see the specificaitons table for more information

|                                                                                                                                                                                                                                                                                        | TECHNOLOGY <b>V</b>            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|                                                                                                                                                                                                                                                                                        | Light                          |
|                                                                                                                                                                                                                                                                                        | CHAPTERS V                     |
| Fiber-Coupled SOA and BOA Benchtop Sources                                                                                                                                                                                                                                             | Coherent Sources               |
|                                                                                                                                                                                                                                                                                        | Incoherent Sources             |
| Features Semiconductor Optical Amplifiers with High                                                                                                                                                                                                                                    | Covega                         |
| Saturation Power, Large Gain, and Low Noise<br>Single SOA or BOA and Amplifier Channel                                                                                                                                                                                                 | Drivers/Mounts                 |
| FC/APC Input and Output Bulkhead Connectors<br>TEC Temperature Stabilized                                                                                                                                                                                                              | Accessories                    |
| Central Wavelengths: 1300, 1550*, 1590, and                                                                                                                                                                                                                                            | SECTIONS V                     |
| S9FC1080P 1625 nm<br>USB2.0 Interface                                                                                                                                                                                                                                                  | Laser Diodes                   |
| S7FC1013S *Polarization-Insensitive (SOA) and Polarization-Maintaining (BOA) Models                                                                                                                                                                                                    | Pigtailed Diodes               |
| Thorlabs' Polarization-Maintaining (S9FC Series) and Polarization-Insensitive (S7FC Series) Semiconductor Optical Amplifiers integrate                                                                                                                                                 | Fiber-Coupled<br>Laser Sources |
| a fiber-coupled optical amplifier into an easy-to-use benchtop platform with FC/APC input and output bulkhead connectors. Input                                                                                                                                                        | WDM Laser Sources              |
| parameters for the microcontroller regulating the temperature and drive current of the amplifier can be set via the front panel interface<br>or remotely via a USB interface. The LCD display shows the operating wavelength (not measured), drive current, actual temperature of      | HeNe Lasers                    |
| the amplifier, and whether the unit is a SOA (polarization-insensitive optical amplifier) or BOA (polarization-maintaining optical amplifier). The rear panel has an analog input to allow the drive current of the amplifier to be modulated. To prevent damage, the                  | Laser Diode<br>Modules         |
| microcontroller will disable the output if the analog input plus the internal setpoint exceeds the set limits. There is an interlock input on<br>the rear panel that can be used to disable the output of the amplifier when unsafe conditions exist. The interlock must be shorted in | Tunable<br>Lasers              |
| order to enable the amplifier.                                                                                                                                                                                                                                                         | Swept Source<br>Lasers         |
| When using the SOA-based S7FC1013S benchtop optical amplifier, the input polarization is not important since the optical amplifier is insensitive to the polarization of the light (i.e., all polarizations are amplified). The BOA-based benchtop optical amplifiers will only        | Terahertz                      |
| amplify light with a polarization axis defined by the device. As a result, the BOA has                                                                                                                                                                                                 |                                |

amplify light with a polarization axis defined by the device. As a result, the BOA has PM fiber pigtails where the slow axis of the fiber is aligned to the FC/APC bulkhead connector. The light coupled into the slow axis of the PM fiber is amplified. In order to use a BOA amplifier with the SLD sources on the previous page or some other source with an unknown polarization axis, consider using a passive polarization controller (see pages 968-970).

| Controller Characteristics |                                                  |  |  |  |  |  |  |
|----------------------------|--------------------------------------------------|--|--|--|--|--|--|
| Setpoint Resolution        | 0.01 A                                           |  |  |  |  |  |  |
| AC Input                   | 100-240 VAC, 50-60 Hz                            |  |  |  |  |  |  |
| Temperature Control        | Integrated TEC                                   |  |  |  |  |  |  |
| Temperature Stability      | <0.01 °C                                         |  |  |  |  |  |  |
| Temperature Adj. Range     | 20 - 30 °C                                       |  |  |  |  |  |  |
| Connector Type             | 2 FC/PC Bulkhead Connector                       |  |  |  |  |  |  |
| Dimensions (L x W x H)     | 5.8" x 11.4" x 2.6"<br>(146 mm x 290 mm x 66 mm) |  |  |  |  |  |  |

#### **Booster and Semiconductor Optical Amplifiers**

Thorlabs' extensive line of BOAs and SOAs are single-pass, traveling-wave amplifiers that perform well with both monochromatic and multi-wavelength signals.

See Page 1147

Compact Design in a Butterfly Package

| ITEM#                                     | 5    | S7FC1013S |      |  |  |  |  |
|-------------------------------------------|------|-----------|------|--|--|--|--|
| SOA Optical Characteristics               | Min  | Тур       | Max  |  |  |  |  |
| Wavelength (nm)                           | 1528 | 1550      | 1562 |  |  |  |  |
| Saturation Output Power<br>(@ -3 dB) (mW) | 12   | 14        | -    |  |  |  |  |
| Optical Bandwidth (nm)                    | 70   | 74        | -    |  |  |  |  |
| Small Signal Gain (dB)                    | 10   | 13        | -    |  |  |  |  |
| RMS Gain Ripple (dB)                      | -    | 0.1       | 0.5  |  |  |  |  |
| Noise Figure (dB)                         | -    | 8         | 9.5  |  |  |  |  |

| ITEM#                                     | S9FC1132P |      |      | S9FC1004P |      |      | S9FC1080P |      |      | S9FC1082P |      |      |
|-------------------------------------------|-----------|------|------|-----------|------|------|-----------|------|------|-----------|------|------|
| <b>BOA Optical Characteristics</b>        | Min       | Тур  | Max  |
| Wavelength (nm)                           | 1290      | 1300 | 1315 | 1530      | 1550 | 1570 | 1570      | 1590 | 1610 | 1600      | 1625 | 1650 |
| Saturation Output Power<br>(@ -3 dB) (mW) | 13        | 15   | -    | 90        | 100  | -    | 12        | 15   | -    | 10        | 13   | -    |
| Optical Bandwidth (nm)                    | 80        | 87   | -    | 90        | 100  | -    | 80        | 90   | -    | 70        | 80   | -    |
| Small Signal Gain (dB)                    | 27        | 30   | -    | 25        | 28   | -    | 20        | 25   | -    | 14        | 18   | -    |
| RMS Gain Ripple (dB)                      | -         | 0.2  | 0.3  | -         | 0.1  | 0.2  | -         | 0.05 | 0.2  | -         | 0.05 | 0.3  |
| Noise Figure (dB)                         | -         | 7.0  | 9.0  | -         | 7.0  | 9.0  | -         | 7.0  | 9.0  | -         | 7.0  | 9.0  |

| ITEM#     | \$          | £          | €          | RMB         | DESCRIPTION                                                        |
|-----------|-------------|------------|------------|-------------|--------------------------------------------------------------------|
| S7FC1013S | \$ 2,572.00 | £ 1,783.00 | € 2.283,50 | ¥ 21,719.00 | Semiconductor Optical Amplifier, 1550 nm, Polarization Insensitive |
| S9FC1132P | \$ 3,048.00 | £ 2,113.00 | € 2.706,00 | ¥ 25,738.00 | Semiconductor Optical Amplifier, 1300 nm, Polarization Maintaining |
| S9FC1004P | \$ 2,836.00 | £ 1,966.00 | € 2.518,00 | ¥ 23,948.00 | Semiconductor Optical Amplifier, 1550 nm, Polarization Maintaining |
| S9FC1080P | \$ 2,996.00 | £ 2,077.00 | € 2.660,00 | ¥ 25,299.00 | Semiconductor Optical Amplifier, 1590 nm, Polarization Maintaining |
| S9FC1082P | \$ 3,236.00 | £ 2,243.50 | € 2.873,00 | ¥ 27,325.00 | Semiconductor Optical Amplifier, 1625 nm, Polarization Maintaining |

#### Light

▼ CHAPTERS

**Coherent Sources** 

**Incoherent Sources** 

Covega

#### **Drivers/Mounts**

Accessories

▼ SECTIONS

Laser Diodes

**Pigtailed Diodes** 

Fiber-Coupled Laser Sources

WDM Laser Sources

**HeNe Lasers** 

Laser Diode Modules Tunable Lasers

Swept Source Lasers

Terahertz





#### Features

- Four Laser Output Channels with FC/PC Connectors
- Independent Temperature Control Leads to High Temperature Stability
- Low Noise Output
- USB Interface
- Low-Profile Package
- Choose Any 4 of 13 Available Source Wavelengths

Thorlabs' 4-Channel, Fiber-Coupled, Customizable Laser Source provides simple control of laser-diode-driven fiber optics. The laser source is configured to accept any combination of four fiber-pigtailed laser diodes; choose from the following wavelengths: 406, 473, 488, 635, 658, 670, 785, 808, 850, 904, 980, 1310, and 1550 nm.

Each laser diode is operated from an independent, high-precision, low-noise, constant-current source and temperature control unit. An intuitive LCD interface allows the user to view and set the laser current and temperature control independently for each fiber-coupled laser. The display indicates the channel number selected, the output wavelength of the source, the operating power calculated from the laser diode monitor diode, and the actual temperature of the laser diode.

This device comes equipped with a microcontroller to monitor the system for fault conditions and to fully control the laser's optical power

#### **FC Fiber Patch Cables**

Thorlabs' extensive line of patch cables and connectors includes standard and custom lengths with FC/PC or FC/APC terminations.



Off-Axis Parabolic Collimators

Thorlabs offers a line of collimators that use an off-axis parabolic mirror to provide diffraction-limited performance across the entire 400 to 2000 nm wavelength range without needing to adjust the collimator.

SM05 Threading

See Page 934

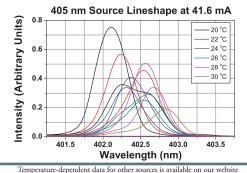
and temperature. The laser source includes a USB connection that allows remote adjustment of power and temperature as well as the enabling of the SLD output. On the rear panel, analog inputs are available to modulate the lasers with an external signal. To prevent damage, the microcontroller will disable the output if the analog input plus the internal setpoint exceeds the laser limits.

| GENERAL SPECIFICATIONS     | MCLS1                                          |  |  |  |  |  |
|----------------------------|------------------------------------------------|--|--|--|--|--|
| AC Input                   | 100-240 VAC, 50-60 Hz                          |  |  |  |  |  |
| Fuse Ratings               | 250 mA                                         |  |  |  |  |  |
| Fuse Type                  | IEC60127-2/III, (250 V, Slow Blow Type 'T')    |  |  |  |  |  |
| Fuse Size                  | 5 mm x 20 mm                                   |  |  |  |  |  |
| Dimensions (W x H x D)     | 12.6" x 2.5" x 10.6" (320 mm x 64 mm x 269 mm) |  |  |  |  |  |
| Weight                     | 8.5 lbs                                        |  |  |  |  |  |
| Operating Temperature      | 15 to 35 °C                                    |  |  |  |  |  |
| Storage Temperature        | 0 to 50 °C                                     |  |  |  |  |  |
| Connections and Controls   |                                                |  |  |  |  |  |
| Interface Control          | Optical Encoder with Push Button               |  |  |  |  |  |
| Enable and Laser Select    | Keypad Switch Enable with LED indication       |  |  |  |  |  |
| Power On                   | Key Switch                                     |  |  |  |  |  |
| Fiber Ports                | FC/PC                                          |  |  |  |  |  |
| Display                    | LCD, 16 x 2 Alphanumeric Characters            |  |  |  |  |  |
| Input Power Connection     | IEC Connector                                  |  |  |  |  |  |
| Modulation Input Connector | BNC (Referenced to Chassis)                    |  |  |  |  |  |
| Interlock                  | 2.5 mm Mono Phono Jack                         |  |  |  |  |  |
| Communications             |                                                |  |  |  |  |  |
| Communications Port        | USB 2.0                                        |  |  |  |  |  |
| COM Connection             | USB Type B Connector                           |  |  |  |  |  |
| Required Cable             | 2 m USB Type A to Type B Cable                 |  |  |  |  |  |
| required Cable             | (Replacement Part Number USB-A-79)             |  |  |  |  |  |

#### www.thorlabs.com

## 4-Channel, Fiber-Coupled Laser Source (Page 2 of 2)

#### Safety


While most output sources fall within the class 3R laser rating, the system was fully designed to meet laser class 3B requirements. There is an interlock located on the rear panel that must be shorted in order for any laser output to be enabled. This can easily be configured to be triggered by doors to disable the lasers. The power switch is a keylock system to prevent accidental or unwanted use. Each source has its own enable button allowing the user to choose the light source or sources they wish to be active as well as a master enable that must also be set. Each channel includes a green LED indicator to easily determine its current state. There is a three second delay before the lasers turn on, and the user is warned of the imminent light output by the rapidly blinking LED.

|                             |                                  | . |  |  |  |
|-----------------------------|----------------------------------|---|--|--|--|
| PERFORMANCE SPECIFICATIONS  |                                  |   |  |  |  |
| Display Power Accuracy      | ±10%                             |   |  |  |  |
| Current Setpoint Resolution | 0.01 mA                          |   |  |  |  |
| Temperature Adjust Range    | 20.00 to 30.00 °C                |   |  |  |  |
| Temp Setpoint Resolution    | ±0.01 °C                         |   |  |  |  |
| Noise                       | <0.5% Typical (Source Dependent) |   |  |  |  |
| Rise/Fall Time              | <5 µs                            |   |  |  |  |
| Modulation Input            | 0-5 V = 0 - Full Power           |   |  |  |  |
| Modulation Bandwidth        | 80 kHz Full Depth of Modulation  |   |  |  |  |
|                             |                                  |   |  |  |  |

#### In the Box

The MCLS1 includes a universal power that allows the unit to be plugged into any 100-240 VAC outlet without the need for selecting the line voltage. The fuse access is conveniently located on the rear panel. This unit is supplied with a US line cord, a standard European line cord, the pre-configured MCLS1 with all selected lasers installed, and the manual.





**Configuring a 4-Channel Source** 

The table below lists the 13 available output wavelengths for our 4-Channel Source. Choose any combination and add the individual source cost to the MCLS1 base unit price.

Example: MCLS1 with fiber-pigtailed laser diodes providing output at 406 nm, 635 nm, 658 nm, and 670 nm costs \$3499.00 + \$649.00 + \$410.00 + \$306.00 + \$342.00 = \$5206.00.

| ITEM#        | λ       | MINIMUM<br>POWER | LASER<br>TYPE | FIBER         | \$             | £         | €         | RMB        |
|--------------|---------|------------------|---------------|---------------|----------------|-----------|-----------|------------|
| MCLS-406     | 406 nm  | 3.0 mW           | Fabry-Perot   | S405-HP       | \$<br>649.00   | £ 449.90  | € 576,20  | ¥ 5,480.20 |
| MCLS-473     | 473 nm  | 4.0 mW           | Fabry-Perot   | S460-HP       | \$<br>5,200.00 | £3,605.00 | €4.617,00 | ¥43,909.00 |
| MCLS-488     | 488 nm  | 4.5 mW           | Fabry-Perot   | S460-HP       | \$<br>4,800.00 | £3,328.00 | €4.262,00 | ¥40,532.00 |
| MCLS-635     | 635 nm  | 2.5 mW           | Fabry-Perot   | SM600         | \$<br>410.00   | £ 284.30  | € 364,10  | ¥ 3,462.10 |
| MCLS-658     | 658 nm  | 6.0 mW           | Fabry-Perot   | SM600         | \$<br>306.00   | £ 212.20  | € 271,70  | ¥ 2,583.90 |
| MCLS-670     | 670 nm  | 1.5 mW           | Fabry-Perot   | SM600         | \$<br>342.00   | £ 237.10  | € 303,70  | ¥ 2,887.90 |
| MCLS-785     | 785 nm  | 4.0 mW           | Fabry-Perot   | SM800-5.6-125 | \$<br>320.00   | £ 221.90  | € 284,10  | ¥ 2,702.10 |
| MCLS-808     | 808 nm  | 4.5 mW           | Fabry-Perot   | SM800-5.6-125 | \$<br>360.00   | £ 249.60  | € 319,70  | ¥ 3,039.90 |
| MCLS-850     | 850 nm  | 4.5 mW           | Fabry-Perot   | SM800-5.6-125 | \$<br>385.00   | £ 266.90  | € 341,90  | ¥ 3,251.00 |
| MCLS-904     | 904 nm  | 4.5 mW           | Fabry-Perot   | SM800-5.6-125 | \$<br>369.00   | £ 255.80  | € 327,70  | ¥ 3,115.90 |
| MCLS-980     | 980 nm  | 4.5 mW           | Fabry-Perot   | 980HP         | \$<br>380.00   | £ 263.50  | € 337,40  | ¥ 3,208.80 |
| MCLS-1310    | 1310 nm | 1.5 mW           | Fabry-Perot   | SMF-28e       | \$<br>305.00   | £ 211.50  | € 270,80  | ¥ 2,575.50 |
| MCLS-1550    | 1550 nm | 1.0 mW           | Fabry-Perot   | SMF-28e       | \$<br>320.00   | £ 221.90  | € 284,10  | ¥ 2,702.10 |
| MCLS-1550DFB | 1550 nm | 1.5 mW           | DFB           | SMF-28e       | \$<br>908.00   | £ 629.50  | € 806,20  | ¥ 7,667.20 |

| ITEM#                        | \$*                     | £*         | €*         | RMB*        | DESCRIPTION                                                  |
|------------------------------|-------------------------|------------|------------|-------------|--------------------------------------------------------------|
| MCLS1                        | \$ 3,499.00             | £ 2,425.50 | € 3.106,50 | ¥ 29,546.00 | 4-Channel Laser Source, TEC Stabilized, USB, Controller Only |
| * Price listed is for base s | vstem, excluding source | s          |            |             |                                                              |

TECHNOLOGY V

Liaht

Covega

CHAPTERS V

**Coherent Sources** 

**Incoherent Sources** 

**Drivers/Mounts** 

Accessories

Laser Diodes

**Pigtailed Diodes** 

**Fiber-Coupled** 

Laser Sources

**HeNe Lasers** 

Laser Diode

Swept Source

Modules Tunable

Lasers

Lasers

Terahertz

WDM Laser Sources

SECTIONS V

# Rack Systems: WDM Laser Source Overview (1530 – 1610 nm)

# **Modular Platform Solutions**

For multiple wavelength systems with simultaneous control capabilities, Thorlabs offers two modular platform solutions: the PRO8 system (with local control for stand-alone operation and remote IEEE-488 or RS-232 control) and the TXP5000 platform (with remote TCP/IP and USB control).

Two types of mainframes are available for the PRO8 system. The PRO800 accommodates two single modules, while the PRO8000 can operate up to eight modules. In addition to the DWDM laser modules (listed below), this platform offers a host of laser diode drivers, optical switches, TEC controllers, and photodiode amplifiers. The PRO8 has been the mainstay for many laser diode manufacturing and test facilities. The TXP5000 system also includes two types of mainframes: the TXP5004 with USB control for up to four TXP modules and the 19" rack unit TXP5016 with Ethernet control for up to 16 modules. TXP5001AD is an easy-to-use USB adapter for single TXP cards. The TXP platform features high versatility and is the base for Thorlabs' complex Test and Measurement Systems.

PRO8000 Modular Laser System



Our PRO8000 system provides an outstanding platform for eight-channel DWDM laser sources; it has a number of preconfigured offerings and a complete range of laser source modules from which to choose. Together these modules cover the full C- and L- Bands of the 100 GHz ITU Grid\* (1530.33 -1611.79 nm). \*Subject to DFB Laser Availability, 50 GHz and 25 GHz grid upon request.



The PRO8000 DWDM laser modules offer precise tunability, long-term wavelength and power stability, and adjustable coherence control, making them ideal for both active and passive DWDM component testing as well as multiwavelength transmission experiments. These features are possible by combining the sophisticated laser diode control circuit designed by our experienced instrumentation group with high performance DFB lasers.

#### **TXP5000 Modular Laser System**



The TXP5000 system is available as a multichannel laser source platform with the addition of our LS5000 series of DWDM laser source modules. Populating a TXP5016 chassis with up to sixteen DWDM DFB laser source modules produces a versatile and easy-to-use multichannel laser source system when combined with the outstanding features of our TXP platform.



- The LS5000 DWDM laser modules for the TXP5000 Series systems offer precise tunability, as well as long-term wavelength and power stability. Adjustable coherence control makes them ideal for both active and passive DWDM component testing as well as multiwavelength transmission experiments.
- These WDM laser modules are ideally suited for all DWDM applications, ranging from test systems for fiber optic DWDM components and EDFA production to multi-laser optical sources for DWDM transmission experiments.



# **WDM Laser Banks Selection Guide**

#### Pages 1065-1073





The PRO8 Modular System Platform and Laser Modules are a scalable system for component testing and multi-wavelength transmission measurements in the C- and L-Bands. In addition to laser modules, the platform supports optical switch, TEC controller, current controller, and sensor modules with plug-and-play compatibility. The control parameters are accessible from the front panel and higher level commands are available when the system is run through the IEEE-488.2 interface via the included divers.

#### **PRO8 Modular WDM System Platform**

- Foundation for WDM Laser Diode Plug-In Modules
- Additional Modules Include Optical Switches and Sensors
- Sophisticated Control Features

## See Pages 1066-1067

#### **DWDM Laser Modules for the PRO8 Series**

- Cover the Full C- and L- Bands (1530.33 1611.79 nm)
- Provide Precise Tunability, High Wavelength, and Power Stability
- Feature Adjustable Coherence Control and Internal Modulation
- Ideal for Component Testing and Multi-Wavelength Transmission Experiments

## See Pages 1068-1071



The TXP5000 Modular Laser Platform is a scalable platform with a configuration that allows modules to be swapped out without interrupting the function of the remaining modules. In addition, all of the DWDM series laser modules provide an adjustable coherence length control, which makes the TXP5000 platform ideal for testing active and passive DWDM components.

#### LS5000 DWDM Laser Sources for TXP5000 Series

- Offers Precise Tunability as well as Long-Term Wavelength and Power Stability
- Adjustable Coherence Control
- Ideal for Active and Passive DWDM Component Testing and Multiwavelength Transmission Experiments

## See Pages 1070-1073

#### Light

▼ CHAPTERS Coherent Sources

Incoherent Sources

#### Covega

**Drivers/Mounts** 

Accessories

▼ SECTIONS

Laser Diodes

**Pigtailed Diodes** 

Fiber-Coupled Laser Sources

```
WDM Laser Sources
```

| HeNe Lasers            |
|------------------------|
| Laser Diode<br>Modules |
| Tunable<br>Lasers      |
| Swept Source<br>Lasers |
| Terahertz              |

|   | 1            |
|---|--------------|
|   |              |
|   |              |
|   |              |
|   |              |
| e |              |
|   |              |
| - |              |
|   |              |
|   |              |
|   |              |
|   |              |
|   |              |
|   |              |
|   |              |
|   |              |
|   | REALARS STR. |
|   |              |
|   |              |
|   |              |

# Multichannel WDM Source Platform – PRO8 Series (Page 1 of 2)



WDM and DFB Laser Module

#### Introduction

The PRO8000 Chassis serves as a multi-wavelength test system when populated with DWDM laser modules (see page 986 for specifications). In addition to these DFB laser sources, DFB laser sources for our TXP platform (see page 994) and a series of PRO8 series optical switches (see pages 991-992) are available.

The modular design of the PRO8000 chassis can accept up to eight WDM laser sources per chassis. We support the 100 GHz spacing ITU wavelengths across the C- and L-bands with 20 mW output power.\* Many of the laser modules are available directly from stock.

All PRO8 WDM laser modules utilize telecom-rated laser diodes housed in butterfly packages; each DFB laser contains a temperature sensor and a Peltier element for optimal long-term stability. Standard optical output is a PM fiber that is terminated with an unaligned FC/APC connector. Other output connector options are available by

special order.

#### **PRO8000 Series Highlights**

- Modular Chassis has a Vacuum-Fluorescence Display with Bright 4 x 20 Characters
- Universal Platform with Interchangeable Modules that Include Laser Diode Current Controllers, TEC Controllers, WDM Sources, and Optical Switches
- Fast IEEE-488.2 and RS-232C Interfaces Standard
- Instrument Drivers for LabVIEW<sup>TM</sup> and LabWindows<sup>TM</sup>/CVI Included

#### Precise Wavelength Calibration and Control

Using the front panel controls of the PRO8000, the wavelength of each laser source module can be tuned by ±.85 nm (approximately ±100 GHz) while retaining strict control of the output power because of the comprehensive factory calibration (wavelength dependence on both the temperature and the drive current) of each laser module; the calibration data is stored in nonvolatile memory within each laser module. This calibration data, coupled with our high-performance electronics, allows extremely precise control of the laser wavelength. See page 986 for full details.

#### **IEEE-488 Computer Control of Multiple PRO8000s**

The PRO8000 chassis is equipped with a fast IEEE-488.2 interface supported by the various LabVIEW<sup>™</sup> and LabWindows<sup>™</sup>/CVI drivers provided. The PRO8000 can source up to 16 A, which is sufficient to power eight of our WDM laser modules. All

\*Subject to DFB Laser Availability, 50 GHz and 25 GHz grid upon request

## PRO8000 Series

- **Compatible Modules**
- Laser Diode Controllers: Pages 978-979
- Multichannel Laser Diode Controllers: Pages 980-981
- Temperature Controllers: Pages 982-983
- Combination LD and TEC Controllers: Pages 984-985
- **DFB Laser Sources and DWDM:** Pages 986-989
- Photodiode Amplifier: Page 990
- Optical Switches: Pages 991-992

PRO8 Series chassis are also equipped with an RS-232C interface. Utilizing IEEE-488.2 compliant commands allows complete control of each individual laser within the software environment.

#### **User-Friendly Operation**

The PRO8000 Series offers user-friendly menus to configure and operate the various modules that can be driven (laser modules, optical detectors, optical switches, and a large variety of electrical modules – see page 975). The PRO800, a two-slot chassis, is offered for the research laboratory. This compact version supports all the modules available for the larger PRO8000 chassis. With the exception of the size differences and power supply, both chassis utilize the same electrical interface and operating system.

Since each plug-in module automatically identifies itself to the processor in the chassis, configuring a system is as simple as inserting the desired modules and setting the control parameters via the front panel. A brightly lit display with 4 x 20 characters allows the user to scroll through and select any of the installed modules. With the desired module selected, all of its control parameters are accessible from the front panel.

Higher-level commands are available when operating the system via the IEEE-488.2 interface. For example, there is a command to tune the wavelength of a laser module, which facilitates the measurement of crosstalk in adjacent channels of a DWDM component.

## Choose from Multiple Families of Laser Modules

Details on the standard DWDM laser modules for the PRO8 platform, as well as solutions with customer-supplied lasers, are presented on the following pages. Contact Thorlabs for details.

## Multichannel WDM Source Platform - PRO8 Series (Page 2 of 2)

|                                  | PRO800                                               | PRO8000                       | PRO8000-4                 |  |  |  |  |
|----------------------------------|------------------------------------------------------|-------------------------------|---------------------------|--|--|--|--|
| Slots                            | 2                                                    | 8                             | 8                         |  |  |  |  |
| Max Output Current for All Cards | 8 A                                                  | 16 A                          | 32 A                      |  |  |  |  |
| Max Power Consumption            | 220 VA                                               | 500 VA                        | 800 VA                    |  |  |  |  |
| Display                          | Alphanı                                              | umeric Display with 4 x 20 Ch | aracters                  |  |  |  |  |
| Operation                        |                                                      | Menu-Driven                   |                           |  |  |  |  |
| Setting                          | F                                                    | unction Keys and Rotary Knol  | 0                         |  |  |  |  |
| Protection Features              |                                                      | Key-Operated Power Switch     |                           |  |  |  |  |
| TTL Modulation Frequency Range   | DC to 10 kHz (Synchronous for all Lasers in Chassis) |                               |                           |  |  |  |  |
| TTL Duty Cycle                   | Selectable (Synchronous for all Lasers in Chassis)   |                               |                           |  |  |  |  |
| TTL Modulation Input             | BNC                                                  |                               |                           |  |  |  |  |
| TTL Trigger Output               | BNC                                                  |                               |                           |  |  |  |  |
| IEEE-488.2 Interface             | 24-Pin IEEE Jack (Rear Panel)                        |                               |                           |  |  |  |  |
| RS-232C Interface                |                                                      | 9-Pin D-Sub Plug (Rear Panel) |                           |  |  |  |  |
| Chassis Ground                   |                                                      | 4 mm Banana (Rear Panel)      |                           |  |  |  |  |
| Line Voltage                     | 100 V.                                               | AC, 115 VAC, and 230 VAC =    | ± 10%                     |  |  |  |  |
| Line Frequency                   |                                                      | 50 to 60 Hz                   |                           |  |  |  |  |
| Operating Temperature            |                                                      | 0 to 40 °C                    |                           |  |  |  |  |
| Storage Temperature              |                                                      | -40 to 70 °C                  |                           |  |  |  |  |
| Relative Humidity                | <80% up to 30°, decreasing to 50% at 40 °C           |                               |                           |  |  |  |  |
| Dimensions (W x H x D)           | 232 mm x 147 mm x 396 mm                             | 449 mm x 147 mm x 396 mm      | 449 mm x 177 mm x 456 m   |  |  |  |  |
|                                  | (9.13" x 5.78" x 15.59")                             | (17.68" x 5.78" x 15.95")     | (17.68" x 6.97" x 17.95") |  |  |  |  |
|                                  |                                                      |                               |                           |  |  |  |  |

| LOUNDEDGI                      |
|--------------------------------|
| Light                          |
| CHAPTERS V                     |
| Coherent Sources               |
| Incoherent Sources             |
| Covega                         |
| <b>Drivers/Mounts</b>          |
| Accessories                    |
| SECTIONS V                     |
| Laser Diodes                   |
| Pigtailed Diodes               |
| Fiber-Coupled<br>Laser Sources |
| WDM Laser Sources              |
| HeNe Lasers                    |
| Laser Diode<br>Modules         |
| Tunable<br>Lasers              |
| Swept Source<br>Lasers         |
| Torobortz                      |

TECHNOLOGY V

Terahertz

| ITEM#       | \$          | £          | €          | RMB         | DESCRIPTION                               |
|-------------|-------------|------------|------------|-------------|-------------------------------------------|
| PRO800      | \$ 1,798.80 | £ 1,247.00 | € 1.597,00 | ¥ 15,190.00 | 2-Slot Modular Benchtop Chassis           |
| PRO8000     | \$ 2,470.80 | £ 1,713.00 | € 2.193,50 | ¥ 20,864.00 | 8-Slot Modular Rack Chassis               |
| PRO8000-4   | \$ 3,336.00 | £ 2,312.50 | € 2.961,50 | ¥ 28,170.00 | 8-Slot High-Power Modular Rack Chassis    |
| PRO8000-R32 | \$ 64.30    | £ 44.60    | € 57,10    | ¥ 543.00    | 19" Mounting Kit for PRO8000              |
| PRO8000-R42 | \$ 89.00    | £ 61.70    | € 79,10    | ¥ 751.60    | 19" Mounting Kit for PRO8000-4            |
| PRO8000-C   | \$ 24.80    | £ 17.20    | € 22,10    | ¥ 209.50    | PRO8000 Blind Cover Plate for Empty Slots |



THORLAES

#### Light

▼ CHAPTERS

#### **Coherent Sources**

#### **Incoherent Sources**

### Covega

**Drivers/Mounts** 

Accessories

▼ SECTIONS Laser Diodes

**Pigtailed Diodes** 

Fiber-Coupled Laser Sources

**WDM Laser Sources** 

**HeNe Lasers** 

Laser Diode Modules Tunable Lasers Swept Source Lasers

Terahertz

## DWDM Laser Sources – PRO8 Series (Page 1 of 2)

ITU Coverage: We are committed to providing quick delivery of any of the 100 lasers (on a 100 GHz grid) that comprise the DWDM C- and L-bands.\* When ordering, please refer to the tables presented on pages 1070 and 1071, which are organized based on 100 GHz channel spacings. Pricing and ordering codes can also be found there. Our order codes are a combination of the band designator (C or L), the 100 GHz channel number (01 through 50), and an additional character (A, B, C, or D) that indicates the frequency offset from the base channel.

\*Subject to Laser Diode Availability, 50 GHz and 25 GHz grid upon request

#### Introduction - DWDM Laser Modules

The PRO8 DWDM laser modules offer precise tunability as well as long-term wavelength and power stability. Provided with adjustable coherence control, these laser modules are ideally suited for all DWDM applications such as test systems for fiber optic DWDM components, EDFA manufacturing, and multi-laser optical sources for DWDM transmission experiments.

#### Stability, Accuracy, and Dependability

This DWDM laser platform is the ideal choice for demanding DWDM test and measurement applications with laser linewidths of less than 10 MHz, center wavelength stability of better than 0.002 nm per 24 hours, and wavelength accuracy of better than ±0.025 nm.

We use only telecom-rated, butterfly packaged DFB lasers with integrated TEC elements, optical isolators, and low back-reflection fiber pigtails. When combined with our sophisticated drive circuits, the result is an extremely stable, low-noise laser source that exhibits optical power stability better than 0.005 dB per 15 minutes and a relative intensity noise (RIN) figure of -145 dB/Hz (Typ.).

Our laser sources are supplied with a PM fiber and a non-orientated FC/APC connector. As a custom option, Thorlabs can also offer an option to align the slow axis to an orientated FC/APC connector. Additionally, Thorlabs can incorporate user-supplied lasers into our modules. Please contact Thorlabs for details.

#### Features

- Center Wavelengths on 100 GHz ITU-T Grid\*
- Wavelengths in C- and L-Bands\*
- Wavelength Stability of <0.002 nm (24 Hours)
- Extremely Stable Output Power of <0.01 dB (24 Hours)
- Precise Wavelength Tuning Over ±0.85 nm
- Direct Display of Wavelength During Tuning
- Precise Power Tunning Over >6 dB (Typical 10 dB)
- Variable Coherence Control, Linewidths up to 1 GHz
- Synchronous Modulation of All Laser Sources via Common External TTL Signal
- Instrument Drivers for LabVIEW<sup>TM</sup> and LabWindows<sup>TM</sup>/CVI Included
- FC/APC Connector

\*Subject to Laser Diode Availability, 50 GHz and 25 GHz grid upon request



# **Putting it all**

#### **PRO8000 Optical Switch Modules:**

The OSW8000 optical switch modules facilitate distribution of test signals in complex test setups for cost-efficient use of laser sources. The modularity of 1 x 2, 1 x 4, 1 x 8, and 2 x 2 switches allows flexible routing paths.



For more details, see page 991.

**DWDM Sources in PRO8000 Chassis** 



## SEL O ON e ERR MOD IN CLASS 1M PRODUCT FC/APC 1540.56 10mW

VDM SOURC

.

## **DWDM Laser Sources - PRO8 Series (Page 2 of 2)**

#### **Coherence Control, Internal Modulation**

For high-precision power measurements, the narrow linewidth of a DFB laser can lead to interference effects caused by reflections from the multiple surfaces that are present in most optical systems. These multiple reflections, while extremely small, can accumulate due to the long coherence length of the laser light. Brillouin scattering is another effect that can lead to significant errors when making optical power measurements in fiber-based systems.

#### Specifications

#### Wavelength

- Options: 100 Wavelengths on the 100 GHz ITU Grid, (C- and L-Band)\*
- Tuning Range: ±0.85 nm
- Accuracy: ±0.025 nm, Typical< ±0.01 nm
- **Stability:** <0.002 nm over 24 Hours (Typ.)
- Resolution: 1 pm
- Laser Linewidth: <10 MHz

#### **Output Power**

- Optical Power: 20 mW
- Accuracy (abs/rel): 0.6 dB/0.4 dB
- Stability: <0.002 dB over 15 s, <0.005 dB Over 15 min, <0.01 dB Over 24 hrs</p>
- Attenuation: >6 dB, 10 dB (Typ.)
- Resolution: 0.01 dB
- Side Mode Suppression Ratio at Max Power: >40 dB (Typ.), >36 dB (Min.)
- Relative Intensity Noise (RIN): -145 dB/Hz (Typ.)
- Optical Isolation: >35 dB

#### **Coherence Control**

#### (Standard Feature, All Models)

- Linewidth: Up to 1 GHz (Adjustable)
- Shape: Noise, Sine, and Square (Triangle Upon Request)
- Frequency: 0.02 to up to 50 kHz
- Modulation Depth: 0.1 to 100%

#### Modulation

- Synchronous TTL: DC 10 kHz (All Lasers via BNC Input)
- Analog LF Modulation: DC-50 kHz (Option via SMA Input)

#### General Data

- Optical Output: FC/APC Connector\*\*
- Fiber: PMF (Connector Key Aligned to Slow Axis upon Request)
- Operating Temperature: 0 to 35 °C Non-Condensing
- **Storing Temperature:** -40 to 60 °C
- Warm-Up Time: 15 min for Rated Accuracy
- Laser Module Width: 1 Slot
- Laser Safety Class: 1 M

#### All Data Valid at 23 $\pm 5~^\circ\mathrm{C}\,$ and 45 $\pm$ 15% Relative Humidity.

\* Subject to Laser Diode Availability, 50 GHz and 25 Ghz Grid upon request \*\* Other Connector Styles, (i.e., SC, E2000) and Non-Angled (PC) Ferrule upon request.



**DWDM Sources in PRO800 Chassis** 

The magnitude of these effects can be significantly reduced by increasing the linewidths of the source. Therefore, all the DWDM-series laser sources provide an adjustable coherence length control. Here a small signal modulation on the laser current is used to broaden the DFB laser linewidth from a few MHz up to 1 GHz. The PRO8 provides continuous adjustment of the linewidth over this entire range. An internal broadband noise source or an internal, freely running, sine wave/square wave generator is used to modulate the laser current. The modulation frequency range of the function generator is 20 Hz to 50 kHz with up to 100% modulation depths. Using these features, an ideal non-discrete Gaussian-shaped distribution or a discrete spectral distribution is generated.

#### External Digital Modulation, DC to 10 kHz

All laser modules within a chassis can be modulated synchronously by an external TTL signal. The modulation bandwidth ranges from DC to 10 kHz. The modulation signal input is on the back panel of the chassis and operates simultaneously on all laser modules of the chassis.

#### External Analog Low Frequency (LF) Modulation, DC to 50 kHz (Optional)

For applications where a precise LF modulation up to 50 kHz is required, the DWDM modules are available with an LF modulation option. With this option, the output power can be modulated via an optional SMA input. The laser remains fully protected due to a precise limit circuit located inside the module.

#### Precision Wavelength Tuning

The wavelength is displayed with a resolution of 0.001 nm on the PRO8000 front panel or can be read through the IEEE-488 interface and has a resolution of 0.001 nm. By precisely controlling the temperature of the laser chip, the emitted wavelength can be tuned over a range of  $\pm 0.85$  nm (approximately  $\pm 100$  GHz). This range allows the central wavelength of the source to be shifted from one transmission channel to either of the adjacent channels for dense WDM systems with 100 GHz channel spacing or tuning over up to 8 channels for systems with 25 GHz channel spacing. This feature is useful for simulating crosstalk between channels. It can also be used to measure the profile of narrow band DWDM filters.

Manual polarization controllers can be supplied as accessories for laser modules. They can be used to adapt the state of polarization in the fiber to polarizationdependant external modulators. Please contact your local Tech Support for ordering information.

See next page for pricing and order codes for laser modules.

Light CHAPTERS V

TECHNOLOGY V

### Coherent Sources

Incoherent Sources

Covega

**Drivers/Mounts** 

#### Accessories

SECTIONS **V** 

Laser Diodes

Pigtailed Diodes

Fiber-Coupled Laser Sources

WDM Laser Sources

HeNe Lasers

Laser Diode Modules Tunable Lasers Swept Source Lasers

Terahertz

### Light

▼ CHAPTERS

**Coherent Sources** 

Incoherent Sources

\_\_\_\_\_

Covega

**Drivers/Mounts** 

Accessories

▼ SECTIONS

Laser Diodes

**Pigtailed Diodes** 

Fiber-Coupled Laser Sources

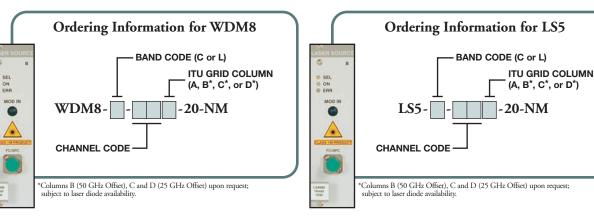
WDM Laser Sources

HeNe Lasers

Laser Diode Modules Tunable Lasers

Swept Source Lasers

Terahertz


#### Part # DWDM820

Buy 8 DWDM Models

Get the PRO8000 Chassis FREE! **DWDM Laser Sources Ordering Guide** 

The Thorlabs DWDM laser sources cover 100 lasers from the C-, and L-bands with a 100 GHz spacing. They are organized based on the ITU 100 GHz Grid in column A shown in the table on the next page. Sources from the 50 GHz and 25 GHz grid (i.e., sources from columns B, C, and D) are available upon request. For all sources the lead times are subject to laser diode availability.

To get the correct item name when ordering the sources, please read the appropriate codes for Band, Channel, and Column from the ITU Grid on the right and fill them into the item name template in the Ordering and Price Information box below.



#### **REF** Ordering Examples:

If you want to order a laser source for 1561.42 nm (192.00 THz), which is from the C-Band, you'll find it under C-Band, Column A, Channel 11. The item name therefore is: WDM8-C-11A-20-NM.

To order a source for 1590.20 nm (188.525 THz) the codes are L-Band , Column C, Channel 26, and the order code is WDM8-L-26C-20-NM.

If you order 8 DWDM sources you get the PRO8000 Chassis for free! In this case please use DWDM820 for the item number in your order and our Tech-Support team will contact you for the details about the individual laser sources.

Item# DWDM820 -Buy 8 DWDM Models, Get the PRO8000 Chassis FREE!

#### Lead times depend on the wavelengths of our laser sources. Please contact our technical support team for more information.

| ITEM#            | \$           | £          | €           |             | RMB        | DESCRIPTION                                                       |  |                                                           |
|------------------|--------------|------------|-------------|-------------|------------|-------------------------------------------------------------------|--|-----------------------------------------------------------|
| WDM8-X-XXX-20-NM | \$ 2,856.00  | £ 1,980.00 | € 2.535,50  | ¥ 24,117.00 |            | ¥ 24,117.00 Single PRO8 WDM Laser Source, 20 mW, No Direct M      |  | Single PRO8 WDM Laser Source, 20 mW, No Direct Modulation |
| DWDM820          | \$ 22,848.00 | £15,839.00 | € 20.285,00 | ¥           | 192,930.00 | WDM Laser Sources, 20 mW, No Direct Modulation w/ PRO8000 Chassis |  |                                                           |
| PRO800           | \$ 1,798.80  | £ 1,247.00 | € 1.597,00  | ¥           | 15,190.00  | 2-Slot Modular Benchtop Chassis                                   |  |                                                           |
| PRO8000          | \$ 2,470.80  | £ 1,713.00 | € 2.193,50  | ¥           | 20,864.00  | 8-Slot Modular Rack Chassis                                       |  |                                                           |
| PRO8000-4        | \$ 3,336.00  | £ 2,312.50 | € 2.961,50  | ¥ 28,170.00 |            | 8-Slot High-Power Modular Rack Chassis                            |  |                                                           |



## **ITU Grid Ordering Guide**

|     | 1            | C P                            | 1 (1520 75          | 15(0.50                                    |                               | 61       | LD                                                      | Incoherent Sources                                      |                                                           |                                                            |                        |
|-----|--------------|--------------------------------|---------------------|--------------------------------------------|-------------------------------|----------|---------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|------------------------|
|     | Channel      | С-В<br>100 GHz Gric            |                     | <b>nm - 1569.59 r</b><br>et -25 GHz Offset | +25 GHz Offset                | Channel  | L-Ban<br>100 GHz Grid                                   |                                                         | <b>m - 1611.79 n</b><br>-25 GHz Offset                    | <b>m)</b><br>+25 GHz Offset                                | Covega                 |
|     | Ch           | 0.80 nm<br>THz nm              | 0.40 nm<br>THz nm   | 0.20 nm<br>THz nm                          | 0.20 nm<br>THz nm             | Ch       | 0.80 nm<br>THz nm                                       | 0.40 nm<br>THz nm                                       | 0.20 nm<br>THz nm                                         | 0.20 nm<br>THz nm                                          | Drivers/Mounts         |
|     |              | Column<br>A                    | Column<br>B*        | Column<br>C*                               | Column<br>D*                  |          | Column<br>A                                             | Column<br>B*                                            | Column<br>C*                                              | Column<br>D*                                               | Accessories            |
|     | 01           | 191.00 1569.5                  | _                   |                                            | _                             | 01       | 186.00 1611.79                                          | 186.05 1611.35                                          | 186.025 1611.57                                           | 186.075 1611.14                                            | SECTIONS V             |
|     | 02           | 191.10 1568.7                  | 77 191.15 1568.3    | 6 191.125 1568.57                          | 191.175 1568.16               | 02       | 186.10 1610.92                                          | 186.15 1610.49                                          | 186.125 1610.70                                           | 186.175 1610.27                                            | Laser Diodes           |
|     | 03           | 191.20 1567.9                  |                     |                                            | 191.275 1567.34               | 03       | 186.20 1610.06                                          | 186.25 1609.62                                          | 186.225 1609.84                                           | 186.275 1609.41                                            |                        |
|     | 04           | 191.30 1567.1                  |                     |                                            | 191.375 1566.52               | 04       | 186.30 1609.19                                          | 186.35 1608.76                                          | 186.325 1608.98                                           | 186.375 1608.54                                            | Pigtailed Diodes       |
|     | 05<br>06     | 191.40 1566.3<br>191.50 1565.5 |                     |                                            | 191.4751565.70191.5751564.88  | 05       | 186.40         1608.33           186.50         1607.47 | 186.45         1607.90           186.55         1607.04 | 186.425         1608.11           186.525         1607.25 | 186.475         1607.68           186.575         1606.820 | Fiber-Coupled          |
|     | 07           | 191.60 1564.0                  |                     |                                            | 191.675 1564.07               | 00       | 186.60 1606.60                                          | 186.65 1606.17                                          | 186.625 1606.39                                           | 186.675 1605.96                                            | Laser Sources          |
|     | 08           | 191.70 1563.8                  |                     |                                            |                               | 08       | 186.70 1605.74                                          | 186.75 1605.31                                          | 186.725 1605.53                                           | 186.775 1605.10                                            | WDM Laser Sources      |
|     | 09           | 191.80 1563.0                  |                     |                                            | 191.875 1562.44               | 09       | 186.80 1604.88                                          | 186.85 1604.46                                          | 186.825 1604.67                                           | 186.875 1604.24                                            |                        |
|     | 10           | 191.90 1562.2                  | 23 191.95 1561.8    | 3 191.925 1562.03                          | 191.975 1561.62               | 10       | 186.90 1604.03                                          | 186.95 1603.60                                          | 186.925 1603.81                                           | 186.975 1603.38                                            | HeNe Lasers            |
| REF | > 11         | 192.00 1561.4                  | 42 192.05 1561.0    | 1 192.025 1561.22                          | 192.075 1560.81               |          | 105.00 1/00 15                                          |                                                         | 107.005 1600.05                                           |                                                            | Laser Diode            |
| KEF | 12           | 192.10 1560.0                  |                     |                                            | 192.075 1560.00               | 11       | 187.00         1603.17           187.10         1602.31 | 187.05         1602.74           187.15         1601.88 | 187.025         1602.95           187.125         1602.10 | 187.075         1602.53           187.175         1601.67  | Modules                |
|     | 13           | 192.20 1559.7                  |                     |                                            | 192.275 1559.19               | 12       | 187.20 1601.46                                          | 187.25 1601.03                                          | 187.225 1601.24                                           | 187.275 1600.81                                            | Tunable                |
|     | 14           | 192.30 1558.9                  |                     |                                            | 192.375 1558.38               | 14       | 187.30 1600.60                                          | 187.35 1600.17                                          | 187.325 1600.39                                           | 187.375 1599.96                                            | Lasers                 |
|     | 15           | 192.40 1558.1                  | 17 192.45 1557.7    | 7 192.425 1557.97                          | 192.475 1557.57               | 15       | 187.40 1599.75                                          | 187.45 1599.32                                          | 187.425 1599.53                                           | 187.475 1599.11                                            | Swept Source<br>Lasers |
|     | 16           | 192.50 1557.3                  | 36 192.55 1556.9    | 6 192.525 1557.16                          | 192.575 1556.76               | 16       | 187.50 1598.89                                          | 187.55 1598.47                                          | 187.525 1598.68                                           | 187.575 1598.25                                            |                        |
|     | 17           | 192.60 1556.5                  |                     |                                            | 192.675 1555.95               | 17       | 187.60 1598.04                                          | 187.65 1597.62                                          | 187.625 1597.83                                           | 187.675 1597.40                                            | Terahertz              |
|     | 18           | 192.70 1555.7                  |                     |                                            | 192.775 1555.14               | 18       | 187.70 1597.19                                          | 187.75 1596.76                                          | 187.725 1596.98                                           | 187.775 1596.55                                            |                        |
|     | 19           | 192.80 1554.9                  |                     |                                            | 192.875 1554.34               | 19       | 187.80 1596.34                                          | 187.85 1595.91                                          | 187.825 1596.13                                           | 187.875 1595.70                                            | Part #                 |
|     | 20           | 192.90 1554.1                  | 13 192.95 1553.7    | 3 192.925 1553.93                          | 192.975 1553.53               | 20       | 187.90 1595.49                                          | 187.95 1595.06                                          | 187.925 1595.28                                           | 187.975 1594.85                                            |                        |
|     | 21           | 193.00 1553.3                  | 33 193.05 1552.9    | 3 193.025 1553.13                          | 193.075 1552.73               | 21       | 188.00 1594.64                                          | 188.05 1594.22                                          | 188.025 1594.43                                           | 188.075 1594.00                                            | DWDM820                |
|     | 22           | 193.10 1552.5                  | 52 193.15 1552.1    | 2 193.125 1552.32                          | 193.175 1551.92               | 22       | 188.10 1593.79                                          | 188.15 1593.37                                          | 188.125 1593.58                                           | 188.175 1593.16                                            | Buy 8 DWDM             |
|     | 23           | 193.20 1551.7                  | 72 193.25 1551.3    | 2 193.225 1551.52                          | 193.275 1551.12               | 23       | 188.20 1592.95                                          | 188.25 1592.52                                          | 188.225 1592.73                                           | 188.275 1592.31                                            | Models                 |
|     | 24           | 193.30 1550.9                  | 92 193.35 1550.5    | 2 193.325 1550.72                          | 193.375 1550.32               | 24       | 188.30 1592.10                                          | 188.35 1591.68                                          | 188.325 1591.89                                           | 188.375 1591.47                                            |                        |
|     | 25           | 193.40 1550.1                  |                     |                                            | 193.475 1549.52               | 25       | 188.40 1591.26                                          | 188.45 1590.83                                          | 188.425 1591.04                                           | 188.475 1590.62                                            | Get the                |
| REF | > 26         | 193.50 1549.3                  |                     |                                            | 193.575 1548.71               | 26       | 188.50 1590.41                                          | 188.55 1589.99                                          | 188.525 1590.20                                           | 188.575 1589.78                                            | PRO8000                |
|     | 27<br>28     | 193.60 1548.5<br>193.70 1547.7 |                     |                                            | 193.6751547.92193.7751547.12  | 27       | 188.60 1589.57                                          | 188.65 1589.15                                          | 188.625 1589.36                                           | 188.675 1588.94                                            | Chassis                |
|     | 20           | 193.80 1546.9                  |                     |                                            | 193.875 1546.32               | 28<br>29 | 188.701588.73188.801587.88                              | 188.751588.30188.851587.46                              | 188.725         1588.51           188.825         1587.67 | 188.7751588.09188.8751587.25                               |                        |
|     | 30           | 193.90 1546.1                  |                     |                                            | 193.975 1545.52               | 30       | 188.90 1587.04                                          | 188.95 1586.62                                          | 188.925 1586.83                                           | 188.975 1586.41                                            | FREE!                  |
|     |              |                                |                     |                                            |                               |          | 100.90 1907.04                                          | 100.99 1900.02                                          | 100.929 1900.09                                           | 100.77 1900.41                                             |                        |
|     | 31           | 194.00 1545.3                  |                     |                                            | -                             | 31       | 189.00 1586.20                                          | 189.05 1585.78                                          | 189.025 1585.99                                           | 189.075 1585.57                                            |                        |
|     | 32           | 194.10 1544.5                  |                     |                                            |                               | 32       | 189.10 1585.36                                          |                                                         | 189.125 1585.16                                           |                                                            |                        |
|     | 33           | 194.20 1543.7                  |                     |                                            |                               | 33       | 189.20 1584.53                                          |                                                         |                                                           |                                                            |                        |
|     | 34<br>35     | 194.30 1542.9<br>194.40 1542.1 |                     |                                            |                               | 34       | 189.30 1583.69                                          |                                                         |                                                           | 189.375 1583.06                                            |                        |
|     | 36           | 194.50 1541.3                  |                     |                                            |                               | 35       | 189.40 1582.85                                          | 189.45         1582.44           189.55         1581.60 | 189.425 1582.64                                           | 189.475 1582.23                                            |                        |
|     | 37           | 194.60 1540.5                  |                     |                                            |                               | 36       | 189.50         1582.02           189.60         1581.18 |                                                         | 189.625 1580.98                                           | 189.575         1581.39           189.675         1580.56  |                        |
|     | 38           | 194.70 1539.7                  | 77 194.75 1539.3    | 7 194.725 1539.57                          | 194.775 1539.17               | 38       | 189.70 1580.35                                          |                                                         | 189.725 1580.14                                           |                                                            |                        |
|     | 39           | 194.80 1538.9                  | 08 194.85 1538.5    | 8 194.825 1538.78                          | 194.875 1538.38               | 39       | 189.80 1579.52                                          |                                                         | 189.825 1579.31                                           | 189.875 1578.89                                            |                        |
|     | 40           | 194.90 1538.1                  | 19 194.95 1537.7    | 9 194.925 1537.99                          | 194.975 1537.59               | 40       | 189.90 1578.69                                          | 189.95 1578.27                                          | 189.925 1578.48                                           | 189.975 1578.06                                            |                        |
|     | 61           | 105.00 1527                    | 105.05 1527.0       | 105 025 1527 20                            | 105.075 152( 01               |          |                                                         |                                                         |                                                           |                                                            |                        |
|     | 41<br>42     | 195.00 1537.4<br>195.10 1536.0 |                     |                                            |                               | 41       | 190.00 1577.86                                          |                                                         |                                                           |                                                            |                        |
|     | 43           | 195.20 1535.8                  |                     |                                            |                               | 42       | 190.101577.03190.201576.20                              |                                                         |                                                           | 190.175 1576.40                                            |                        |
|     | 44           | 195.30 1535.0                  |                     |                                            |                               | 43       | 190.20 1376.20<br>190.30 1575.37                        |                                                         | 190.223 1373.99<br>190.325 1575.16                        |                                                            |                        |
|     | 45           | 195.40 1534.2                  |                     |                                            |                               | 45       | 190.40 1574.54                                          |                                                         |                                                           |                                                            |                        |
|     | 46           | 195.50 1533.4                  | 47 195.55 1533.0    | 7 195.525 1533.27                          | 195.575 1532.88               | 46       | 190.50 1573.71                                          | 190.55 1573.30                                          | 190.525 1573.51                                           |                                                            |                        |
|     | 47           | 195.60 1532.0                  |                     |                                            |                               | 47       | 190.60 1572.89                                          |                                                         |                                                           |                                                            |                        |
|     | 48           | 195.70 1531.9                  |                     |                                            |                               | 48       | 190.70 1572.06                                          | 190.75 1571.65                                          | 190.725 1571.86                                           | 190.775 1571.45                                            |                        |
|     | 49           | 195.80 1531.1                  |                     |                                            |                               | 49       | 190.80 1571.24                                          |                                                         | 190.825 1571.03                                           |                                                            |                        |
|     | 50<br>*Colum | 195.90 1530.3                  |                     |                                            |                               | 50       | 190.90 1570.42                                          | 190.95 1570.01                                          | 190.925 1570.21                                           | 190.975 1569.80                                            |                        |
|     | Colum        | IIIS D (JU GHZ Offse           | , C and D (2) GHz O | ffset) upon request; subject               | to laser thouge availability. |          |                                                         |                                                         |                                                           |                                                            |                        |

Light

CHAPTERS V

**Coherent Sources** 

Light

▼ CHAPTERS

**Coherent Sources** 

**Incoherent Sources** 

Covega

**Drivers/Mounts** 

Accessories

Laser Diodes

**Pigtailed Diodes** 

Fiber-Coupled Laser Sources

WDM Laser Sources

#### HeNe Lasers

Laser Diode Modules Tunable Lasers Swept Source Lasers

Terahertz

## **DWDM** Laser Sources for TXP5000 – LS5000 Series (Page 1 of 2)

**ITU Coverage:** We are committed to providing quick delivery of any of the 100 lasers (on a 100 GHz grid) that comprise the DWDM C- and L-bands\*. When ordering, please refer to the tables presented on the previous page which are organized based on 100 GHz channel spacings. Pricing and ordering codes can also be found there. Our order codes are a combination of the band designator (C or L), the 100 GHz channel number (01 through 50), and an additional character (A, B, C, or D) that indicates the frequency offset from the base channel.

\*Subject to Laser Diode Availability, 50 GHz and 25 GHz grid upon request.

#### Introduction - LS5000 DWDM Laser Modules

The LS5000 DWDM laser modules for the TXP5000 Series Test and Measurement Platform offer precise tunability as well as long-term wavelength and power stability. Adjustable coherence control makes them ideal for both active and passive DWDM component testing as well as multi-wavelength transmission experiments.

The WDM laser modules are ideally suited for all DWDM applications, ranging from test systems for fiber optic DWDM components and EDFA production to multi-laser optical sources for DWDM transmission experiments.

#### Stability, Accuracy, and Dependability

This DWDM laser platform is the ideal choice for demanding DWDM test and measurement applications with laser linewidths of less than 10 MHz, center wavelength stability of better than 0.005 nm per 24 hours, and wavelength accuracy of better than ±0.025 nm. We use only telecom-rated, butterfly-packaged DFB lasers with integrated TEC elements, optical isolators, and low back-reflection fiber pigtails. When combined with our sophisticated drive circuits, the result is an extremely stable, low-noise laser source that exhibits optical power stability that is better than 0.005 dB per 60 minutes and a relative intensity noise RIN figure of 145 dB/Hz (Typ.). All Thorlabs' instruments are backed by an extensive two-year warranty on materials and workmanship.

#### **Extensive Inventories**

Thorlabs' DWDM sources covet the ITU grid containing wavelenghts (100 GHz channels) spanning the C- and L-Bands. Wavelengths on the 50 GHz and 25 GHz grid are available upon request.

For manufacturers of laser diodes, Thorlabs also offers the service of incorporating user-supplied lasers into our modules. Please contact technical support for details. The LS5000 Sources for the TXP Test and Measurement Platform offer more general test and measurement applications than the WDM8 sources. The TXP platform consists of a combined laser diode current and TEC controller to drive the LS5000 sources, modules for polarization analysis and control (see Pages 1326-1336), and a tunable



laser module (See Page 1086). It offers TCP/IP or USB interfaces to allow to enable very flexible setups.

#### Features

- 100 Wavelengths on 100 GHz ITU Grid\*
- Wavelengths in C- and L-Bands\*
- Wavelength Stability <0.005 nm (24 Hours)
- Output Power Stability <0.01 dB (24 Hours)</li>
- Precise Wavelength Tuning Over ±0.85 nm
- Direct Display of Wavelength During Tuning
- Precise Power Tuning Over >6 dB (10 dB Typ.)
- Variable Coherence Control, Linewidths up to 1 GHz
- Instrument Drivers for LabVIEW<sup>TM</sup> and LabWindows<sup>TM</sup>/CVI Included
- FC/APC Connector

\* Subject to Laser Diode Availability, 50 GHz and 25 GHz grid upon request.

| TXP5000 Series Specifica  | tions See P                                                    | See Pages 993-1007 for Details. |                         |  |  |  |  |  |  |
|---------------------------|----------------------------------------------------------------|---------------------------------|-------------------------|--|--|--|--|--|--|
|                           | TXP5016                                                        | TXP5004                         | TXP5001AD               |  |  |  |  |  |  |
| Maximum Power Consumption | 300 W                                                          | 100 W                           | 36 W                    |  |  |  |  |  |  |
| Number of Slots           | 16 Slots                                                       | 4 Slots                         | 1 Slot                  |  |  |  |  |  |  |
| Operation                 | GUI on Rem PC                                                  |                                 |                         |  |  |  |  |  |  |
| Remote Interface          | Ethernet 10Base-T                                              | USB 2.0                         | USB 2.0                 |  |  |  |  |  |  |
| Remote Drivers            | LabVIEW <sup>TM</sup> , LabWindows/CVI <sup>TM</sup> , and C++ |                                 |                         |  |  |  |  |  |  |
| Chassis Ground            | 4 mm                                                           | Banana                          | 4.8 mm Fast-On          |  |  |  |  |  |  |
| Line Voltage              |                                                                | 100 to 240 VAC ±10%             |                         |  |  |  |  |  |  |
| Line Frequency            |                                                                | 50 to 60 Hz ± 5%                |                         |  |  |  |  |  |  |
| Operating Temperature     |                                                                | 0 to 40 °C                      |                         |  |  |  |  |  |  |
| Storage Temperature       | -40 to 70 °C                                                   |                                 |                         |  |  |  |  |  |  |
| Dimensions                | 449 mm x 148 mm x 435 mm                                       | 168 mm x 148 mm x 315 mm        | 124 mm x 23 mm x 112 mm |  |  |  |  |  |  |
| Weight (w/o Modules)      | 7 kg (15.41lb)                                                 | 3 kg (6.61lb)                   | 0.2 kg (0.44lb)         |  |  |  |  |  |  |

1072

## DWDM Laser Sources for TXP5000 - LS5000 Series (Page 2 of 2)

#### **Coherence Control**

All the DWDM series laser modules provide an adjustable coherence length control. For highprecision power measurement, the narrow linewidth of a DFB laser can lead to coherent interference effects due to reflections from the multiple surfaces that are present in most optical systems.

#### Specifications Wavelength

- **Options:** 100 Wavelengths on the 100 GHz ITU Grid (C- and L-Bands)
- **Tuning Range:** ±0.85 nm
- Accuracy: ± 0.025 nm, < ±0.01 nm (Typical)
- Stability: < 0.005 nm over 24 Hours (Typical)
- Resolution: 1 pm
- Laser Linewidth: < 10 MHz

#### **Output Power**

- Optical Power: 20 mW
- Accuracy (Abs/Rel): 0.6 dB/0.4 dB
- Stability: < 0.002 dB over 15 s, < 0.005 dB Over 1 hr, < 0.01 dB over 24 hrs</p>
- Attenuation: >6 dB, 10 dB (Typical) (Continuously Variable)
- **Resolution:** 0.01 dB
- Side Mode Suppression Ratio: >40 dB (Typical), >36 dB Min (at Max Power)
- Relative Intensity Noise (RIN): -145 dB/Hz (Typical)
- Optical Isolation: >35 dB

#### **Coherence Control**

#### (Standard Feature, All Models)

- Linewidth: up to 1 GHz (Adjustable)
- **Shape:** Sine, Square, and Triangle
- **Frequency:** 0.02 up to 20 kHz
- Modulation Depth: 0.1 to 100%

#### Modulation

 Analog LF Modulation: DC - 50 kHz (Optional via SMA Input)

#### **General Data**

- Optical Output: FC/APC Connector\*\*
- Fiber: PMF (Connector Key Aligned to Slow Axis upon Request)
- Operating temperature: 0 to 35 °C Non Condensing
- Storing temperature: -40 to 60 °C
- Warm-up Time: 15 min for Rated Accuracy
- Laser Module Width: 1 Slot

#### Laser Safety Class: 1M

\*Subject to Laser Diode Availability, 50 GHz and 25 GHz grid upon request.

\*\*Other Connector Styles, (i.e., SC, E2000) and Non-Angled (PC) Ferrule upon request.

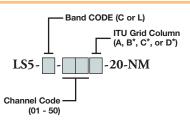


TXP5016 Chassis with LS5000 Modules

#### Interference Effects

For high-precision power measurements, the narrow linewidth of a DFB laser can lead to interference effects caused by reflections from the multiple surfaces that are present in most optical systems. These multiple reflections, while extremely small, can accumulate due to the long coherence length. Brillouin scattering is another effect that can lead to significant errors when making optical power measurements in fiber-based systems. The magnitude of these effects can be significantly reduced by increasing the linewidths of the source. Therefore, all the LS5000 series laser sources provide a control to adjust the coherence length; a small signal modulation on the laser current is used to broaden the DFB laser linewidth from a few MHz up to more than 1 GHz. The LS5000 modules provide continuous adjustment of the linewidth over this entire range. An internal freely running sine/square/triangle wave generator is used to modulate the laser current. The modulation frequency range of the function generator is 20 Hz to 50 kHz with up to 100% modulation depths. Using these features, an ideal non-discrete, Gaussianshaped or a discrete spectral distribution is generated.

## External Analog Low Frequency (LF) Modulation DC to 50 kHz (Optional)


For applications where a precise LF modulation up to 50 kHz is required, the LS5000 modules are available with an LF modulation option. With this option, the output power can be modulated via an optional SMA input. The laser remains fully protected due to a precise limit circuit located inside the module.

#### Precision Wavelength Tuning

The wavelength is displayed with a resolution of 0.001 nm. By precisely controlling the temperature of the laser chip, the emitted wavelength can be tuned over a range of  $\pm 0.85$  nm (approximately  $\pm 100$  GHz). This range allows the central wavelength of the source to be shifted from one transmission channel to the adjacent channels in dense WDM systems with 100 GHz channel spacing, and a tuning over up to 8 channels in systems with 25 GHz channel spacing. This feature is useful for simulating crosstalk between channels and can also be used to measure the profile of narrow band DWDM filters.

#### **Ordering Information**

The item name for the order of your laser source can be obtained from the ITU Grid on page 1071 in the same way as for the WDM8 sources. Just replace WDM8 by LS5.



\*Columns B, C, and D Upon Request

| ITEM#           | \$          | £          | €          | RMB         | DESCRIPTION                                              |
|-----------------|-------------|------------|------------|-------------|----------------------------------------------------------|
| LS5-X-XXX-20-NM | \$ 2,754.00 | £ 1,909.00 | € 2.445,00 | ¥ 23,255.00 | Single TXP WDM Laser Source, 20 mW, No Direct Modulation |
| TXP5004         | \$ 1,222.80 | £ 847.70   | € 1.085,70 | ¥ 10,326.00 | TXP Test and Measurement, 4 Slot with USB Control        |
| TXP5016         | \$ 3,549.60 | £ 2,460.50 | € 3.151,50 | ¥ 29,973.00 | TXP Test and Measurement, 16 Slot with Ethernet Control  |

#### TECHNOLOGY 🔻

## Light

CHAPTERS V

Coherent Sources

Incoherent Sources

#### Covega

Drivers/Mounts

Accessories

SECTIONS V

Laser Diodes

**Pigtailed Diodes** 

**Fiber-Coupled** 

Laser Sources

**HeNe Lasers** 

Laser Diode Modules

Swept Source

Tunable

Lasers

Lasers

Terahertz

**WDM Laser Sources** 

#### Light

▼ CHAPTERS

**Coherent Sources** 

**Incoherent Sources** 

Covega

**Drivers/Mounts** 

Accessories

▼ SECTIONS

**Laser Diodes** 

**Pigtailed Diodes** 

Fiber-Coupled Laser Sources

**WDM Laser Sources** 

#### **HeNe Lasers**

Laser Diode Modules Tunable Lasers Swept Source Lasers

Terahertz



INVISIBLE LASER RADIATION AVOID EXPOSURE TO BEAM CLASS 3B LASER PRODUCT <500mW

LASER RADIATION VIEW DIRECTLY WIT CAL INSTRUMENTS! 1M LASER PRODUCT im <50mw

## **HeNe Lasers Selection Gui**

Pages 1074-1078

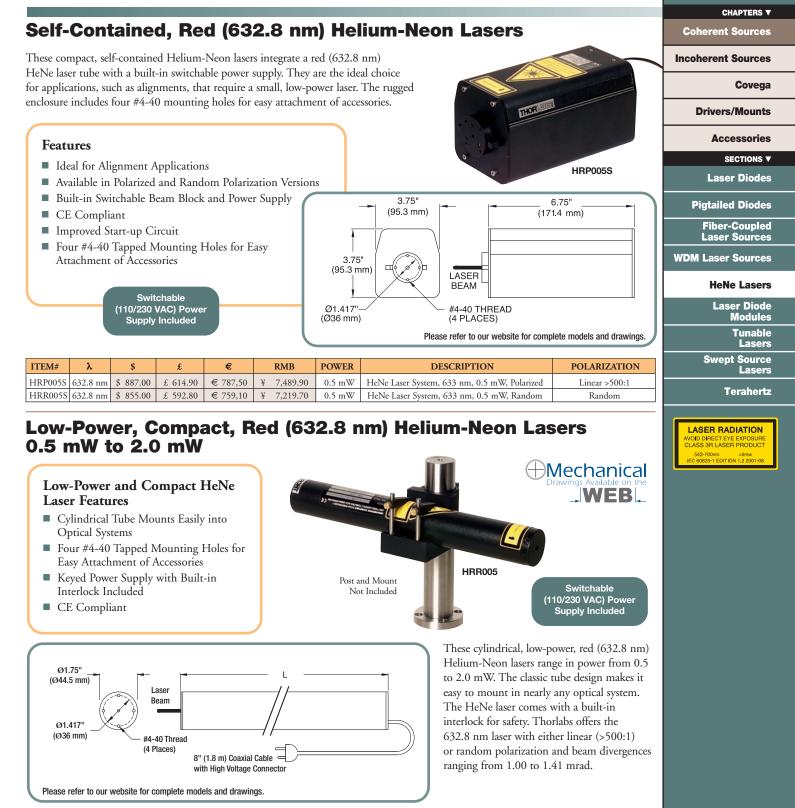
## Wavelengths at 543, 594, 604, 612, 633, 1523, and 3392 nm



35 mW as stock items. Wavelengths of 543, 594, 604, 612, 633, 1523, and 3392 nm are available in various package styles and with two different output polarizations. The most commonly used HeNe lasers are at 633 nm and have become common components in a

Post and Mount Not Included

variety of applications in both research and industry. Thorlabs also offers a wavelength-selectable HeNe laser that can be tuned to 633, 612, 604, 594, or 543 nm by adjusting a screw on the back of the unit. Tuning is achieved by incorporating a low-loss plasma tube with one sealed Brewster window and an external, adjustable Littrow prism all within the laser's case.


All Thorlabs HeNe lasers are CE compliant and include separate or integrated power supplies.

#### HeNe Laser Selection Guide

| Hene Laser                 |                            |                                           |                              |                                       |                         |                                    |                       |         |      |
|----------------------------|----------------------------|-------------------------------------------|------------------------------|---------------------------------------|-------------------------|------------------------------------|-----------------------|---------|------|
| WAVELENGTH<br>(nm)         | CW OUTPUT<br>POWER<br>(mW) | 1/e <sup>2</sup> BEAM<br>DIAMETER<br>(mm) | BEAM<br>DIVERGENCE<br>(mrad) | LONGITUDINAL<br>MODE SPACING<br>(MHz) | MODE<br>STRUCTURE       | LASER HEAD<br>LENGTH*<br>(inch/mm) | POLARIZATION<br>RATIO | ITEM#   | PAGE |
| 543                        | 0.5                        | 0.72                                      | 0.96                         | 416                                   | TEM <sub>00</sub> >99%  | 16.75/425.5                        | 500:1                 | HGP005  | 1077 |
| 543                        | 0.5                        | 0.64                                      | 1.07                         | 566                                   | $TEM_{00} > 99\%$       | 13/330.2                           | Random                | HGR005  | 1077 |
| 543                        | 2.0                        | 0.83                                      | 0.84                         | 303                                   | $TEM_{00} > 99\%$       | 21/533.4                           | Random                | HGR020  | 1077 |
| 594                        | 2.0                        | 0.74                                      | 1.03                         | 416                                   | $TEM_{00} > 99\%$       | 16.75/425.5                        | 500:1                 | HYP020  | 1077 |
| 633                        | 0.5                        | 0.57                                      | 1.41                         | 416                                   | $TEM_{00} > 99\%$       | 6.75/171.4**                       | Random                | HRR005S | 1075 |
| 633                        | 0.5                        | 0.57                                      | 1.41                         | 416                                   | $TEM_{00} > 99\%$       | 6.75/171.4**                       | 500:1                 | HRP005S | 1075 |
| 633                        | 0.5                        | 0.57                                      | 1.41                         | 1082                                  | $TEM_{00} > 99\%$       | 7.0/177.8                          | Random                | HRR005  | 1075 |
| 633                        | 0.8                        | 0.57                                      | 1.41                         | 1082                                  | $TEM_{00} > 99\%$       | 7.0/177.8                          | 500:1                 | HRP008  | 1075 |
| 633                        | 1.5                        | 0.64                                      | 1.25                         | 714                                   | $TEM_{00} > 99\%$       | 9.5/241.3                          | 500:1                 | HRP015  | 1075 |
| 633                        | 1.5                        | 0.57                                      | 1.41                         | 1082                                  | $TEM_{00} > 99\%$       | 7.0/177.8                          | Random                | HRR015  | 1075 |
| 633                        | 2.0                        | 0.81                                      | 1.00                         | 566                                   | $TEM_{00} > 99\%$       | 13/330.2                           | 500:1                 | HRP020  | 1075 |
| 633                        | 2.0                        | 0.81                                      | 1.00                         | 566                                   | $TEM_{00} > 99\%$       | 13/330.2                           | Random                | HRR020  | 1075 |
| 633                        | 5.0                        | 0.80                                      | 1.01                         | 441                                   | $TEM_{00} > 99\%$       | 16.75/425.5                        | 500:1                 | HRP050  | 1076 |
| 633                        | 5.0                        | 0.80                                      | 1.01                         | 441                                   | $TEM_{00} > 99\%$       | 16.75/425.5                        | Random                | HRR050  | 1076 |
| 633                        | 12.0                       | 0.88                                      | 0.92                         | 316                                   | $TEM_{00} > 99\%$       | 21/533.2                           | 500:1                 | HRP120  | 1076 |
| 633                        | 12.0                       | 0.88                                      | 0.92                         | 316                                   | $TEM_{00} > 99\%$       | 21/533.2                           | Random                | HRR120  | 1076 |
| 633                        | 17.0                       | 0.98                                      | 0.82                         | 252                                   | TEM <sub>00</sub> > 99% | 26/660.4                           | 500:1                 | HRP170  | 1076 |
| 633                        | 17.0                       | 0.98                                      | 0.82                         | 252                                   | $TEM_{00} > 99\%$       | 26/660.4                           | Random                | HRR170  | 1076 |
| 633                        | 35.0                       | 1.22                                      | 0.66                         | 163                                   | $TEM_{00} > 99\%$       | 3.75/95                            | 500:1                 | HRP350  | 1076 |
| 1523                       | 1.0                        | 1.36                                      | 1.43                         | 316                                   | $TEM_{00} > 99\%$       | 21/533.4                           | 500:1                 | H152P1  | 1077 |
| 3392                       | 2.0                        | 2.02                                      | 2.13                         | 316                                   | $TEM_{00} > 99\%$       | 21/533.4                           | 500:1                 | H339P2  | 1077 |
| *All laser bodies are cyli | indrical except HRP3       | 50, which is squar                        | e. ** Lei                    | ngth of self-contained units          | 3                       |                                    |                       |         |      |

#### Wavelength-Selectable HeNe Laser - See Page 1077

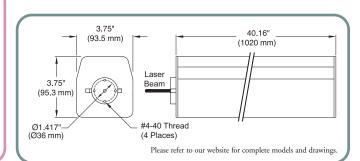
| WAVELENGTH<br>(nm) | MODE<br>STRUCTURE | MINIMUM<br>POWER (mW) | BEAM DIAMETER<br>(mm) | DIVERGENCE<br>(mrad) | POLARIZATION<br>RATIO | LONGITUDINAL MODE<br>SPACING (MHz) |
|--------------------|-------------------|-----------------------|-----------------------|----------------------|-----------------------|------------------------------------|
| 633                | $TEM_{00} > 99\%$ | 4.0                   | 0.77                  | 1.05                 | 500:1                 | 428                                |
| 612                | $TEM_{00} > 99\%$ | 2.5                   | 0.76                  | 1.03                 | 500:1                 | 428                                |
| 604                | $TEM_{00} > 99\%$ | 0.5                   | 0.75                  | 1.02                 | 500:1                 | 428                                |
| 594                | $TEM_{00} > 99\%$ | 0.6                   | 0.74                  | 1.02                 | 500:1                 | 428                                |
| 543                | $TEM_{00} > 99\%$ | 0.3                   | 0.71                  | 0.97                 | 500.1                 | 428                                |



| ITEM#  | POWER  | POLARIZATION  | L      | \$          | £        | €        | RMB        | 1/e <sup>2</sup> BEAM<br>DIAMETER | BEAM<br>DIVERGENCE | LONGITUDINAL<br>MODE SPACING |
|--------|--------|---------------|--------|-------------|----------|----------|------------|-----------------------------------|--------------------|------------------------------|
| HRR005 | 0.5 mW | Random        | 7.00"  | \$ 948.00   | £ 657.20 | € 841,70 | ¥ 8,005.00 | 0.57 mm                           | 1.41 mrad          | 1082 MHz                     |
| HRP008 | 0.8 mW | Linear >500:1 | 7.00"  | \$ 1,018.00 | £ 705.70 | € 903,80 | ¥ 8,596.10 | 0.57 mm                           | 1.41 mrad          | 1082 MHz                     |
| HRP015 | 1.5 mW | Linear >500:1 | 9.50"  | \$ 1,038.00 | £ 719.60 | € 921,60 | ¥ 8,764.90 | 0.64 mm                           | 1.25 mrad          | 714 MHz                      |
| HRR015 | 1.5 mW | Random        | 7.00"  | \$ 998.00   | £ 691.90 | € 886,10 | ¥ 8,427.20 | 0.57 mm                           | 1.41 mrad          | 1082 MHz                     |
| HRP020 | 2.0 mW | Linear >500:1 | 13.00" | \$ 996.00   | £ 690.50 | € 884,30 | ¥ 8,410.30 | 0.81 mm                           | 1.00 mrad          | 566 MHz                      |
| HRR020 | 2.0 mW | Random        | 13.00" | \$ 950.00   | £ 658.60 | € 843,50 | ¥ 8,021.90 | 0.81 mm                           | 1.00 mrad          | 566 MHz                      |

TECHNOLOGY **TECHNOLOGY** 

| ▼ TECHNOLOGY           |                  |            |                                                |                                 |             |            |                                 |                      |                          |                                               |              |
|------------------------|------------------|------------|------------------------------------------------|---------------------------------|-------------|------------|---------------------------------|----------------------|--------------------------|-----------------------------------------------|--------------|
| Light                  |                  |            |                                                |                                 |             |            |                                 |                      |                          |                                               |              |
| ▼ CHAPTERS             |                  |            |                                                |                                 |             |            |                                 |                      |                          |                                               |              |
| Coherent Sources       | High             | -Pov       | ver, Red                                       | 632                             | .8 nn       | n) Heli    | um-N                            | eon La               | asers,                   | 5 mW t                                        | o 17 mW      |
| Incoherent Sources     |                  | 0 1        | , red (632.8 nm), I                            |                                 |             |            | 0                               |                      |                          |                                               | E            |
| Covega                 |                  |            | rmance with powe<br>1r #4-40 holes loca        |                                 |             | mW. This c | lassic tube                     |                      |                          |                                               |              |
| Drivers/Mounts         |                  |            | ; of accessories. Plea<br>rlabs.com) for the l |                                 | our         | -          |                                 |                      | -                        | HRI                                           | 2120         |
| Accessories            | accessori        |            | , <b>(10</b> )                                 |                                 |             |            |                                 |                      | 3                        |                                               |              |
| ▼ SECTIONS             |                  | Switchable |                                                |                                 |             |            |                                 |                      |                          |                                               |              |
| Laser Diodes           | Specifications   |            |                                                | Operating Storage               |             |            | – Post                          | and Mount            |                          | (110/230 V/                                   |              |
|                        | Temperature (°C) |            |                                                | -20 to 70 -40 to 80 Not Include |             |            |                                 |                      | Supply I                 | ncluded                                       |              |
| Pigtailed Diodes       |                  | ude (m)    |                                                | 0 to 3                          |             | 0 to 6000  |                                 |                      |                          |                                               |              |
| Fiber-Coupled          | Hum              | idity      |                                                | ≤80                             |             | ≤95%       | Ø1.7                            |                      |                          | L _                                           |              |
| Laser Sources          | Shoc             | k          |                                                | 15 g for 11 ms                  |             | (Ø44.5     | mm)                             | Laser                | //                       |                                               |              |
| WDM Laser Sources      | Start            | -up Volta  | ıge                                            | <10 kVDC                        |             | <10 kVDC   |                                 | ( e )                | Beam                     | //                                            |              |
|                        | Bean             | 1 Drift    |                                                |                                 |             |            |                                 |                      |                          | //                                            |              |
| HeNe Lasers            | (Afte            | r 20 min   | Warm-up)                                       | <0.2 n                          |             |            | (800)                           | , – 1                | 4-40 Thread<br>4 Places) |                                               |              |
| Laser Diode            | Long             | g-Term B   | eam Drift                                      | <0.05 1                         | nrad        |            | -                               |                      |                          | n) Coaxial Cable 🚽 🦯 —<br>h Voltage Connector |              |
| Modules                | Nois             | e (30 Hz   | to 10 MHz)                                     | <1% F                           | RMS         |            | Directory and the second second |                      | ite for complete m       | odels and drawings.                           | J            |
| Tunable                |                  |            |                                                |                                 |             |            |                                 | se refer to our webs | site for complete m      | odeis and drawnigs.                           |              |
| Lasers                 |                  |            |                                                |                                 |             |            |                                 |                      | 1/e <sup>2</sup> BEAM    | BEAM                                          | LONGITUDINAL |
| Swept Source<br>Lasers | ITEM#            | POWER      | POLARIZATION                                   | L                               | \$          | £          | €                               | RMB                  | DIAMETER                 | DIVERGENCE                                    | MODE SPACING |
|                        | HRP050           | 5.0 mW     | Linear >500:1                                  | 16.75"                          | \$ 1,127.00 |            | € 1.000,60                      | ¥ 9,516.50           | 0.80 mm                  | 1.01 mrad                                     | 441 MHz      |
| Terahertz              | HRR050           | 5.0 mW     | Random                                         | 16.75"                          | \$ 1,150.00 | -          | € 1.021,00                      | ¥ 9,710.70           | 0.80 mm                  | 1.01 mrad                                     | 441 MHz      |
|                        | HRP120           | 12.0 mW    | Linear >500:1                                  | 21.00"                          | \$ 1,978.00 |            | € 1.756,00                      | ¥ 16,703.00          | 0.88 mm                  | 0.92 mrad                                     | 316 MHz      |
|                        | HRR120           |            | Random                                         | 21.00"                          | \$ 1,620.00 |            | € 1.438,00                      | ¥ 13,680.00          | 0.88 mm                  | 0.92 mrad                                     | 316 MHz      |
|                        | HRP170           |            | Linear >500:1                                  | 26.00"                          | \$ 2,450.00 |            | € 2.175,00                      | ¥ 20,688.00          | 0.98 mm                  | 0.82 mrad                                     | 252 MHz      |
|                        | HRR170           | 17.0 mW    | Random                                         | 26.00"                          | \$ 2,370.00 | £ 1,643.00 | € 2.104,00                      | ¥ 20,013.00          | 0.98 mm                  | 0.8 mrad                                      | 252 MHz      |


## 35 mW, Red (632.8 nm) Helium-Neon Lasers

The HRP350 and HRP350-EC Helium-Neon Lasers are based on a novel extension of the hard-seal technology used in the cylindrical HeNe lasers. These lasers bring the same reliable, long-life operation to high-power applications as their lower power counterparts. The innovative construction of this system includes a rigid outer housing, which maintains mirror alignment and leads to a much lighter laser that is less susceptible to misalignment during shipment and installation than other designs.

#### Features

- 35 mW of Output Power
- Complete System with Power Supply
- Novel Design for Long Life and Extreme Stability
- External Power Supply Provided
  - HRP350 for 110 VAC Nominal Input
  - HRP350-EC for 230 VAC Nominal Input

| Specifications          | Operating      | Storage   |
|-------------------------|----------------|-----------|
| Temperature (°C)        | -20 to 70      | -40 to 80 |
| Altitude (m)            | 0 to 3000      | 0 to 6000 |
| Humidity                | ≤80%           | ≤95%      |
| Shock                   | 15 g for 11 ms |           |
| Startup Voltage         | <10 kVDC       |           |
| Beam Drift              |                |           |
| (After 20 min Warm-up)  | <0.2 mrad      |           |
| Long-Term Beam Drift    | <0.05 mrad     |           |
| Noise (30 Hz to 10 MHz) | <1% RMS        |           |
|                         |                |           |



| ITEM#               | POWER          | POLARIZATION        | \$              | £              | €          |   | RMB       | 1/e <sup>2</sup> BEAM<br>DIAMETER | BEAM<br>DIVERGENCE | LONGITUDINAL<br>MODE SPACING |
|---------------------|----------------|---------------------|-----------------|----------------|------------|---|-----------|-----------------------------------|--------------------|------------------------------|
| HRP350*             | 35.0 mW        | Linear >500:1       | \$ 6,320.00     | £ 4,382.00     | € 5.611,00 | ¥ | 53,367.00 | 1.22 mm                           | 0.66 mrad          | 163 MHz                      |
| HRP350-EC**         | 35.0 mW        | Linear >500:1       | \$ 6,320.00     | £ 4,382.00     | € 5.611,00 | ¥ | 53,367.00 | 1.22 mm                           | 0.66 mrad          | 163 MHz                      |
| *110 VAC External F | Power Supply I | ncluded **230 VAC E | xternal Power S | upply Included |            |   |           |                                   |                    |                              |

LASER RADIATION

AVOID DIRECT EYE EXPOSURE CLASS 3R LASER PRODUCT

543-700nm <5mw

|        |           |            |        |             |           |           |             | Precision N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Metrology  |                                |     |
|--------|-----------|------------|--------|-------------|-----------|-----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------|-----|
|        | ications  |            |        | perating    |           | 0         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | J                              |     |
| Temp   | erature I | Range (°C) | -      | 20 to 70    | -40 to    | 80        | (Star       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                |     |
| Maxir  | num Alt   | itude (m)  | 0      | to 3000     | 0 to 60   | 000       | 5           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                |     |
| Humi   | Humidity  |            |        | ≤80%        | ≤959      | %         |             | D) The second se |            |                                |     |
| Shock  | :         |            | 15     | g for 11 n  | 15        |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | No. of Concession, Name        | Pig |
| Startu | p Voltag  | je         | <1     | 0 kV DC     | r l       |           | I           | HGP005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | - (-                           | F   |
| Beam   | Drift     |            |        |             |           |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                |     |
| (After | 20 min    | Warm-up)   | <      | 0.2 mrad    |           |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                |     |
| Long-  | Term Be   | am Drift   | <(     | 0.05 mrad   |           |           |             | chable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                                |     |
| Noise  | (30 Hz    | to 10 MHz) | <      | 1% RMS      |           | — J       |             | AC) Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -          | Post and Mount<br>Not Included |     |
|        |           |            |        |             |           |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                |     |
|        |           |            |        |             |           |           |             | 1/e <sup>2</sup> BEAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BEAM       |                                |     |
| ITEM#  | POWER     | WAVELENGTH | L      | \$          | £         | €         | RMB         | DIAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DIVERGENCE | POLARIZATION                   |     |
| HGP005 | 0.5 mW    | 543 nm     | 16.75" | \$ 1,487.00 | £1,031.00 | €1.320,00 | ¥ 12,557.00 | 0.72 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.96 mrad  | Linear >500:1                  |     |
| HGR005 | 0.5 mW    | 543 nm     | 13.00" | \$ 1,265.00 | £ 877.00  | €1.123,10 | ¥ 10,682.00 | 0.64 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.07 mrad  | Random                         |     |
| HGR020 | 2.0 mW    | 543 nm     | 21.00" | \$ 1,995.00 | £1,383.00 | €1.771,00 | ¥ 16,846.00 | 0.83 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.84 mrad  | Random                         |     |
|        |           |            |        |             |           |           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                |     |

¥ 17,556.00

¥ 21,094.00

¥ 25,628.00

0.74 mm

1.36 mm

2.02 mm

Features

Long Lifetimes

Output at 543, 594, 1523, or 3392 nm

Ideal for Alignment Applications and

1.03 mrad

1.43 mrad

2.13 mrad

Linear >500:1

Linear >500:1

Linear >500:1

HTPS

## Wavelength-Selectable Helium-Neon Laser

21.00"

21.00"

Green, Yellow, and IR Helium-Neon Lasers

Thorlabs offers a selection of HeNe lasers with output at 543 nm, 594 nm,

1523 nm, or 3392 nm. These HeNe Lasers have power levels ranging from

models, whereas the HGR005 and HGR020 exhibit random polarization.

0.5 to 2.0 mW. The HGP005, HYP020, H152P1, and H339P2 are polarized

Output at 633, 612, 604, 594, or 543 nm

594 nm

1523 nm

3392 nm

H152P1

H339P2

HYP020 2.0 mW

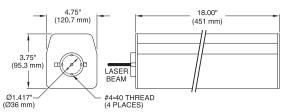
1.0 mW

2.0 mW

Excellent Power, Beam Pointing, and Thermal Stability

Thorlabs offers a line of selectable-wavelength, five-color, HeNe laser systems that can switch between all of the main visible neon laser transitions (543 nm, 594 nm, 604 nm, 612 nm, and 633 nm), making the system a versatile and economical research tool.

16.75" \$ 2,079.00 £ 1,441.00 €1.846,00


\$ 2,498.00 £ 1,731.50 €2.217,50

\$ 3,035.00 £ 2,104.00 €2.694,50

| WAVELENGTH<br>(nm) | MODE<br>STRUCTURE      | MINIMUM<br>POWER (mW) | BEAM DIAMETER<br>(mm) | DIVERGENCE<br>(mrad) | POLARIZATION<br>RATIO | LONGITUDINAL MODE<br>SPACING (MHz) |
|--------------------|------------------------|-----------------------|-----------------------|----------------------|-----------------------|------------------------------------|
| 543                | TEM <sub>00</sub> >99% | 0.3                   | 0.71                  | 0.97                 | Linear >500:1         | 428                                |
| 594                | TEM <sub>00</sub> >99% | 0.6                   | 0.74                  | 1.02                 | Linear >500:1         | 428                                |
| 604                | TEM <sub>00</sub> >99% | 0.5                   | 0.75                  | 1.02                 | Linear >500:1         | 428                                |
| 612                | TEM <sub>00</sub> >99% | 2.5                   | 0.76                  | 1.03                 | Linear >500:1         | 428                                |
| 633                | TEM <sub>00</sub> >99% | 4.0                   | 0.77                  | 1.05                 | Linear >500:1         | 428                                |

The HTPS and HTPS-EC HeNe Lasers incorporate a low-loss plasma tube with one sealed Brewster Window and an external Littrow Prism. By adjusting the angle of the Littrow Prism using the micrometer adjustments on the rear panel, the user can select among the

visible neon laser transitions. A power supply is housed internally in the laser, making the unit completely self-contained. Choose the HTPS for 110 V operation and the HTPS-EC for 230 V operation.



Please refer to our website for complete models and drawings

| Specifications          | Operating      | Storage   |
|-------------------------|----------------|-----------|
| Temperature Range (°C)  | -20 to 70      | -40 to 80 |
| Maximum Altitude (m)    | 0 to 3000      | 0 to 6000 |
| Humidity                | ≤80%           | ≤95%      |
| Shock                   | 15 g for 11 ms |           |
| Startup Voltage         | <10 kVDC       |           |
| Beam Drift              |                |           |
| (After 20 min Warm-up)  | <0.2 mrad      |           |
| Long-Term Beam Drift    | <0.05 mrad     |           |
| Noise (30 Hz to 10 MHz) | <1% RMS        |           |

| ITEM#   | λ(nm)   | \$          | £          | €          | € RMB PC    |            | DESCRIPTION                                           | POLARIZATION  |
|---------|---------|-------------|------------|------------|-------------|------------|-------------------------------------------------------|---------------|
| HTPS    | 543-633 | \$ 5,678.00 | £ 3,937.00 | € 5.041,00 | ¥ 47,946.00 | 0.3-4.0 mW | Wavelength-Selectable, Five-Color HeNe Laser, 110 VAC | Linear >500:1 |
| HTPS-EC | 543-633 | \$ 5,678.00 | £ 3,937.00 | € 5.041,00 | ¥ 47,946.00 | 0.3-4.0 mW | Wavelength-Selectable, Five-Color HeNe Laser, 230 VAC | Linear >500:1 |

www.thorlabs.com

TECHNOLOGY V Light CHAPTERS V

Covega

**Coherent Sources** 

**Incoherent Sources** 

**Drivers/Mounts** 

Accessories

Laser Diodes

tailed Diodes

iber-Coupled

aser Sources

aser Sources

**HeNe Lasers** Laser Diode Modules Tunable

Lasers

Lasers

wept Source

Terahertz

LASER RADIATION CLASS 3R LASER PRODUC

LASER RADIATION

SECTIONS V

#### Light

#### ▼ CHAPTERS

**Coherent Sources** 

Incoherent Sources

Covega

#### **Drivers/Mounts**

Accessories

## 

Laser Diodes

**Pigtailed Diodes** 

Fiber-Coupled Laser Sources

Laser Jources

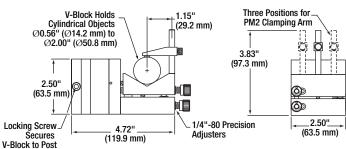
WDM Laser Sources

#### HeNe Lasers

Laser Diode Modules Tunable Lasers Swept Source Lasers

#### Terahertz

## FiberPort Collimators




## Fine Adjustment Helium-Neon Laser Mount

#### Features

- Pitch and Yaw Adjustment for Easy Beam Pointing
- Kinematic Design Provides Stability
- Ø2" (Ø50.8 mm) Maximum Clamping Diameter
- Ø0.56" (Ø14 mm) Minimum Clamping Diameter
- Compatible with Standard Ø1.5" Mounting Posts

The C1503 is a kinematic cylindrical laser mount that provides two axes of precision angular adjustment. The angular adjustments provide control of the beam point, while the vertical height can be set by moving the unit along the support post. A series of hardened chromium steel balls and ball seats form a true kinematic mechanism that works with gravity to provide long-term stability.



Please refer to our website for complete models and drawings.

| ITEM#      | METRIC<br>ITEM#                      | \$       | £       | €        | RMB        | DESCRIPTION           |  |  |  |
|------------|--------------------------------------|----------|---------|----------|------------|-----------------------|--|--|--|
| C1503*     | C1503/M*                             | \$221.00 | £153.30 | € 196,30 | ¥ 1,866.20 | Kinematic Laser Mount |  |  |  |
| PM2        | PM2/M                                | \$ 14.70 | £ 10.20 | € 13,10  | ¥ 124.20   | Extra Clamping Arm    |  |  |  |
| *One PM2(/ | One PM2(/M) included with each unit. |          |         |          |            |                       |  |  |  |



## FiberPort Mounts

#### Features

- HeNe Industry Standard Four Bolt Pattern
- Includes #4-40 Cap Screws for Attaching to HeNe Laser
- Includes #2-56 Cap Screws for Attaching to FiberPort
- Features Internal C-Mount Threading



The HCL adapter allows a FiberPort to be attached directly to the front of a HeNe laser utilizing a HeNe industry standard four bolt pattern. This adapter includes the necessary #4-40 cap screws for attaching to a HeNe as well as four cap screws to attach a FiberPort. For added mounting options, the HCL features internal C-Mount threading, which is utilized on some lasers. See pages 907-909 for FiberPort details.

|   | ITEM# | \$       | £       | €      | RMB     | DESCRIPTION                      |
|---|-------|----------|---------|--------|---------|----------------------------------|
| l | HCL   | \$ 30.60 | £ 21.30 | €27,20 | ¥258.40 | HeNe Laser to Fiber Port Adapter |



www.thorlabs.com



S2011 Power Supply: 110/120 VAC, 50-60 Hz
 S2011-EC Power Supply: 220/240 VAC, 50-60 Hz

| ITEM# | METRIC ITEM# | \$        | £        | €        | RMB        | DESCRIPTION                    |
|-------|--------------|-----------|----------|----------|------------|--------------------------------|
| S2011 | S2011-EC     | \$ 334.60 | £ 232.00 | € 297,10 | ¥ 2,825.40 | 635 nm, 4.5 mW Laser Diode Kit |

TECHNOLOGY V Light CHAPTERS V

#### Light

▼ CHAPTERS

**Coherent Sources** 

#### **Incoherent Sources**

Covega

#### **Drivers/Mounts**

Accessories

#### ▼ SECTIONS

**Laser Diodes** 

**Pigtailed Diodes** 

Fiber-Coupled Laser Sources

**WDM Laser Sources** 

**HeNe Lasers** 

#### Laser Diode Modules

Tunable Lasers Swept Source Lasers

Terahertz



See Page 305 and 220

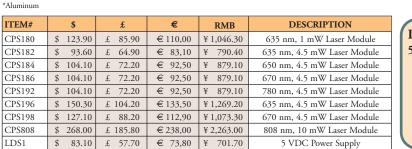
## CPS Series of Laser Modules ( $\lambda$ = 635 – 808 nm)

#### Features

- Designed to Handle Large Temperature Variations
- Small Package, Lightweight
- 5 VDC Power Supply

The CPS Series of Laser Diode Modules are designed for demanding industrial applications. These laser modules feature welded stainless steel construction or lightweight aluminum packages engineered to withstand large temperature variations. Most modules maintain optical to mechanical alignment of better than 15 mrad. All modules are compatible with our LDS1 Regulated 5 VDC Power Supply as well as our AD8F and AD11F Kinematic Mount Adapters.

Mating Plug Included


**CPS182** 

| ITEM#                      | <b>CPS180</b> | CPS182       | CPS184       | CPS186       | CPS192       | CPS808       |
|----------------------------|---------------|--------------|--------------|--------------|--------------|--------------|
| Wavelength                 | 635 nm        | 635 nm       | 650 nm       | 670 nm       | 780 nm       | 808 nm       |
| Power                      | 1.0 mW        | 4.5 mW       | 4.5 mW       | 4.5 mW       | 4.5 mW       | 10.0 mW      |
| Housing Material           | Welded SS*    | Al**         | Al**         | Al**         | Al**         | Welded SS*   |
| Housing Dimensions (mm)    | Ø11.0 x 55    | Ø11.0 x 42   | Ø8.0 x 42    | Ø8.0 x 42    | Ø8.0 x 42    | Ø11 x 50     |
| Beam Diameter (mm)         | 4.0 x 4.0     | 4.0 x 0.6    | 4.4 x 1.2    | 4.4 x 1.2    | 4.4 x 1.7    | 4.5 x 3.0    |
| Axis Deviation (Max)       | 10 mrad       | 15 mrad      | 15 mrad      | 15 mrad      | 15 mrad      | 20 mrad      |
| Beam Divergence $(\bot)$   | 0.3 mrad      | 0.6 mrad     | 0.6 mrad     | 0.6 mrad     | 0.6 mrad     | 0.8 mrad     |
| Beam Divergence (//)       | 0.3 mrad      | 1.8 mrad     | 1.8 mrad     | 1.8 mrad     | 1.8 mrad     | 0.4 mrad     |
| Operating Temperature (°C) | -10 to 50 °C  | -10 to 60 °C | -10 to 60 °C | -10 to 60 °C | -10 to 60 °C | -10 to 50 °C |
| Operating Current (Typ)    | 60 mA         | 55 mA        | 55 mA        | 55 mA        | 45 mA        | 140 mA       |
| DC Operating Voltage (Typ) | -5 V          | -5 V         | -5 V         | -5 V         | -5 V         | -5 V         |
| Safety Class               | Class 3R      | Class 3R     | Class 3R     | Class 3R     | Class 3B     | Class 3B     |
|                            |               |              |              |              |              |              |

\*Stainless Steel. \*\*Aluminum

#### **Focusable Laser Modules**

| ITEM#                      | CPS196         | CPS198         |
|----------------------------|----------------|----------------|
| Wavelength                 | 635 nm         | 670 nm         |
| Power                      | 4.5 mW         | 4.5 mW         |
| Housing Material           | Al*            | Al*            |
| Housing Dimensions (mm)    | Ø11.0 x 46.0   | Ø11.0 x 46.0   |
| Focal Range (mm)           | 50 to infinity | 50 to infinity |
| Axis Deviation (Max)       | 15 mrad        | 15 mrad        |
| Beam Divergence (⊥)        | 0.6 mrad       | 0.6 mrad       |
| Beam Divergence (//)       | 1.8 mrad       | 1.8 mrad       |
| Operating Temperature      | -10 to 40 °C   | -10 to 40 °C   |
| Operating Current (Typ)    | 55 mA          | 55 mA          |
| DC Operating Voltage (Typ) | -5 V           | -5 V           |
| Safety Class               | Class 3R       | Class 3R       |







THORLABS

m <5 mw EDITION 1.2 2001

## **Tunable Laser Selection Guide**

#### Pages 1081-1089

Thorlabs' INTUN<sup>TM</sup> family of narrowband, CW lasers are designed for demanding



applications such as microscopy and spectroscopy. Sixteen models span the 770 - 1650 nm range and provide output power up to 20 mW. Custom center wavelengths (780 nm -1100 nm and 1200 nm - 1650 nm) are available upon request.

#### INTUN™ Free-Space Tunable Lasers

■ Wavelength Ranges from 770 to 1650 nm

Up to 20 mW of Output Power

Instantaneous Linewidth of 120 kHz

## See Pages 1084-1085

Thorlab's narrowband PICO D Series of lasers are ideal for fiber optic test and measurement applications, providing mode-hop free tuning and more than 5 dBm of output power.



#### PICO D Series Continuously Tunable S, C, and L Bands

- Low-Noise, High-Power Lasers
- Ideal for Integration into High-End Optical Test Instruments
- Tuning Range from 1519 to 1630 nm

## See Page 1086

The ECL5000D is an external cavity laser module for the TXP Platform that utilizes Thorlabs' patented ECL

Technology to provide high stability, high output power, and smooth, continuous tuning over the 1519 - 1630 nm range.



#### ECL5000DT — USB Benchtop Linear Tunable Laser

- Versatile Benchtop Tunable Laser
- 110 nm Continuous Tuning Range
- Also Available for use with PMD5000

## See Page 1087

Thorlabs' SL1325-P55 tunable laser is based on an external cavity semiconductor laser that has been specifically optimized for SS-OCT applications. The compact design, robust alignment, high repetition rate, and central

wavelengths available make this system ideal for many biological and material science applications.



#### **Rapidly Swept Tunable Lasers**

- Designed for Swept Source OCT Applications
- Operates at over 55 kHz Sweep Rate
- Offers 6 mm Coherence Length Capability
- Tuning Range Exceeds 130 nm in the 1300 nm Wavelength Region

#### See Pages 1088-1089

THORLAES

Light

#### ▼ CHAPTERS

**Coherent Sources** 

Incoherent Sources

Covega

Drivers/Mounts

Accessories

▼ SECTIONS

Laser Diodes

**Pigtailed Diodes** 

Fiber-Coupled Laser Sources

WDM Laser Sources

**HeNe Lasers** 

Laser Diode Modules

Tunable

Lasers

Swept Source Lasers

Terahertz





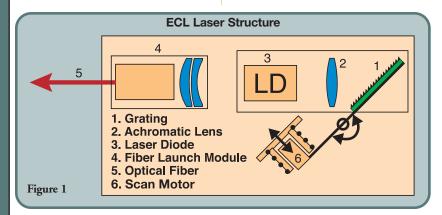
**Tunable Lasers: Overview** 





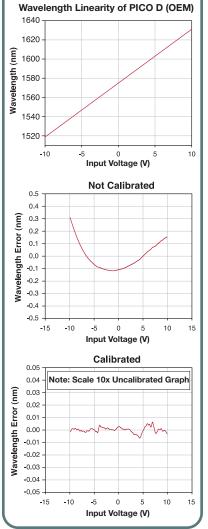
## **Benchtop Systems • TXP Modules • OEM Modules**

horlabs' tunable lasers are all based on external cavity tunable laser technology with tuning ranges up to 150 nm. Since they are able to continuously tune or step between ITU grid wavelengths, Thorlabs' tunable lasers are ideal for both test and measurement as well as for research and development applications. Using our proprietary technology, all models exhibit mode-hopfree tuning with 0.1 pm of wavelength resolution and absolute wavelength accuracy within ±10 pm. The highly stable output and quick tuning speed of our continuous tuning models allow the units to tune over their entire range in less than a second. The low source spontaneous emission (SSE) makes them an ideal source for testing fiber-optic components, spectroscopy, or basic research applications. Our tunable lasers cover wavelengths ranging from 770 nm to 1650 nm and are available with fiber output or with free-space collimated beams. The various models offer different features from benchtop units to OEM modules for integrating into larger applications.


#### ECL Technology

Thorlabs' models are based on external cavity lasers (ECL), which are capable of delivering very high output powers in combination with a wide tuning range.

In addition, ECL technology has the advantage of continuous, mode-hop-free tuning. ECL lasers are comprised of a laser diode with high gain and a separate grating that is mounted on a pivoting arm to form the cavity (see fig. 1). To tune the laser's wavelength, the angle of the grating is changed by turning the arm with an actuator. The positioning and alignment of the grating assembly and the actuator design are critical to optimal scanning performance.


#### **Scanning Capabilities**

The patented inductive motor design of our continuously tunable models enables a smooth and quick sweep over the full wavelength range in both directions with perfect repeatability. Optional step mode operation and true continuous linear tuning without any ripple result from this unique design.



These lasers provide excellent sweep performance while being robust and reliable at the same time.

The waveforms below show the excellent linearity of the ECL across the entire tuning range.

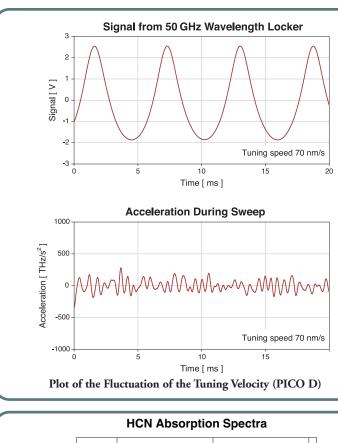


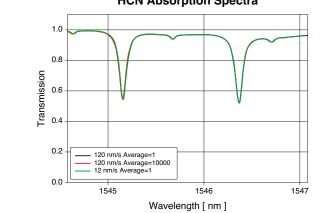
## **Applications**

#### Heterodyne Interferometry

Optical Heterodyne Interferometry is an important measurement technique that benefits from Thorlabs' continuously tunable lasers.

Laser requirements for this high-precision measurement include smooth continuous tuning, high accuracy measurement, control of the wavelength, low noise, and narrow linewidth.


Our patented motor design enables a highly constant tuning speed. The constant sweep speed (low acceleration) makes these lasers suitable for interferometric and heterodyne measurements.


The acceleration during sweep (variation in the tuning speed) is measured using a wavelength locker (low finesse etalon). The wavelength locker signal provides evenly spaced peaks (clock) in the frequency space (k-space). There are several methods to acquire data, which enable the calculation of the tuning speed and the acceleration. One method is to use the k-space clock to determine the time fluctuations of the tuning speed (acceleration). In the figure to the right, we have used (in addition to the k-space clock) the knowledge of the finesse of the etalon to improve the time resolution of the measurement. When using the knowledge of the finesse, the time resolution of the tuning speeds and the measurement of the acceleration is limited to the sampling frequency rather than the k-space clock.

#### **Spectral Monitoring**

The ECL tunable lasers provide an outstanding building block in spectral measuring and monitoring. The waveform shows an HCN (Hydrogen Cyanide) scan using Thorlabs' ECL technology. See pages 824-829 for our gas cell products.

The impressive scan-to-scan repeatability allows the user to average spectral features without smearing (see figure to the right).





| WAVELENGTH (nm) | TUNING RANGE (nm) | POWER (mW) | FIBER OUTPUT | MODEL         |
|-----------------|-------------------|------------|--------------|---------------|
| 780             | 15                | >5         | -            | INTUN         |
| 980             | 25                | 20         | -            | INTUN         |
| 1320            | >110              | >20        | _            | INTUN         |
| 1560            | >130              | >20        | Yes          | INTUN. PICO D |
| 1,000           | >150              | >20        | 105          | ECL5000       |

| LASER SELECTION TABLE         | PICO D    | ECL5000DT   | INTUN-B    |  |  |
|-------------------------------|-----------|-------------|------------|--|--|
| Mode-Hop-Free Tuning          | ***       | ***         | ***        |  |  |
| Fiber Output                  | ***       | ***         | **         |  |  |
| Swept Wavelength Applications | ***       | ***         | *          |  |  |
| Step and Measurement          | *         | *           | ***        |  |  |
| Digital Interface             |           | ***         | ***        |  |  |
|                               |           |             |            |  |  |
|                               |           |             |            |  |  |
| Legend *** Best               | ** Select | Models Only | * Standard |  |  |

| TECHNOLOGY <b>V</b>            |
|--------------------------------|
| Light                          |
| CHAPTERS V                     |
| Coherent Sources               |
| Incoherent Sources             |
| Covega                         |
| <b>Drivers/Mounts</b>          |
| Accessories                    |
| SECTIONS V                     |
| Laser Diodes                   |
| Pigtailed Diodes               |
| Fiber-Coupled<br>Laser Sources |
| WDM Laser Sources              |
| HeNe Lasers                    |
| Laser Diode<br>Modules         |
| Tunable<br>Lasers              |
| Swept Source<br>Lasers         |
| Terahertz                      |
|                                |

THORLABS

#### Light

▼ CHAPTERS

**Coherent Sources** 

**Incoherent Sources** 

Covega

**Drivers/Mounts** 

Accessories

▼ SECTIONS

Laser Diodes

**Pigtailed Diodes** 

Fiber-Coupled Laser Sources

**WDM Laser Sources** 

**HeNe Lasers** 

Laser Diode Modules

Tunable Lasers

Swept Source Lasers

Terahertz

## **INTUN™** Continuously Tunable Lasers (Page 1 of 2)

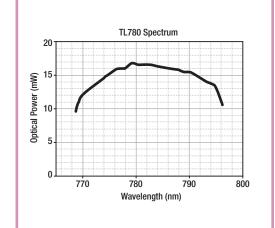
#### Features

- Wavelength Ranges from 770 1650 nm
- 4 Models with Output Powers
- Ranging from >5 to >20 mW
- Instantaneous Linewidth of 120 kHz (Minimum)

Thorlabs offers a family of tunable lasers designed for demanding applications such as spectroscopy. With four models spanning the wavelength range from 770 nm to 1650 nm, this family covers the widest spectral range of any of our tunable products. The heart of the INTUN system is based on the same technology used in the high-performance PICO D tunable laser featured on pages 1086-1087.

All lasers in the INTUN family have reduced spontaneous emission to further improve the laser performance. The INTUN has an SM1-compatible thread on the output port and mounting holes for our 30 mm cage system to allow ease of use with our optomechanical equipment. The output is a collimated free-space beam.

The INTUN-B has the means to lock the wavelength to an external wavelength reference such as a gas cell or a frequency comb. Contact techsupport@thorlabs.com for more information on this application (see pages 824-829 for our selection of gas cells).


The INTUN-B model comes with a simple LabVIEW<sup>TM</sup> software interface that enables the user to control the laser via a computer.

All communication with the laser is done via a convenient USB interface.



#### Applications

- Characterization of Optical Components
- Spectroscopy
- Polarization Measurements
- Real-Time Process Monitoring
- General R&D



Plot of TL780 INTUN Laser Showing Optical Power as a Function of Wavelength

| DC Input                    | 48 V/20 W               |
|-----------------------------|-------------------------|
| Analog Modulation Input     | 2 V <sub>p-p</sub>      |
| Analog Wavelength Output    | 0 - 4 V                 |
| Electrical Connectors       | ·                       |
| DC Input Voltage            | Rear Panel Socket       |
| Digital Status              | 0 - 5 V                 |
| Interlock                   | DB9                     |
| Communications              | USB 2.0                 |
| Analog Inputs               | BNC                     |
| Operating Temperature Range | 15 - 30 °C              |
| Dimensions                  | 242 mm x 87 mm x 142 mm |



## **INTUN™** Continuously Tunable Lasers (Page 2 of 2)



SM1-Compatible Thread on the Output Port and Mounting Holes for Cage Systems

| Coherent Sources  |
|-------------------|
| ncoherent Sources |
| Covega            |
| Drivers/Mounts    |

Incohere

TECHNOLOGY V Light CHAPTERS V

Accessories

SECTIONS V

Laser Diodes

**Pigtailed Diodes** 

Fiber-Coupled Laser Sources

**WDM Laser Sources** 

**HeNe Lasers** 

Laser Diode Modules

#### Tunable Lasers

Swept Source Lasers

Terahertz

| Wavelength Resolution              | 0.1 pm                   |
|------------------------------------|--------------------------|
| Wavelength Repeatability           | 1 pm                     |
| Absolute Wavelength Accuracy       | ±50 pm                   |
| Wavelength Stability (1h/24hr)     | ±2 pm/±10 pm             |
| Power Resolution                   | 25 µW                    |
| Spectral Linewidth                 | 150 kHz Max <sup>a</sup> |
| Effective Linewidth                | 1.5 MHz                  |
| Coherence Control                  | 1 GHz or 2 GHz           |
| Side Mode Suppression Ratio (SMSR) | 45 dBc (Min)             |
| Signal to Source Spontaneous       |                          |
| Emission Ratio (SSE)               | 70 dB/nm <sup>b</sup>    |
| Signal to Total Source Spontaneous | (* 17)                   |
| Emission Ratio (STSSER)            | 65 dB                    |
| Optical Power Output               | >5 mW to >20 mW          |
| Relative Intensity Noise (RIN)     | -140 (dB/Hz)             |
| Continuous Tuning Speed            |                          |
| TL780                              | 0 - 15 nm/s              |
| TL980                              | 0 - 15 nm/s              |
| TL1300                             | 0 - 50 nm/s              |
| TL1550                             | 0 - 50 nm/s              |
| Optical Output                     | Collimated               |
|                                    | Free-Space Beam          |

The B series has a USB interface, providing remote digital functionality. Also, LabVIEW<sup>TM</sup> drivers are available for integration into customer software.



| ITEM#    | CENTER<br>λ | TUNING RANGE | PIEZO TUNING<br>RANGE | OPTICAL POWER<br>TYPICAL | \$           | £           | €           |   | RMB        |
|----------|-------------|--------------|-----------------------|--------------------------|--------------|-------------|-------------|---|------------|
| TL780-B  | 780 nm      | 15 nm        | 300 GHz               | >5 mW                    | \$ 21,924.00 | £ 15,199.00 | € 19.465,00 | ¥ | 185,127.00 |
| TL980-B  | 980 nm      | 25 nm        | 200 GHz               | >20 mW                   | \$ 21,924.00 | £ 15,199.00 | € 19.465,00 | ¥ | 185,127.00 |
| TL1300-B | 1320 nm     | >110 nm      | 200 GHz               | >20 mW                   | \$ 21,924.00 | £ 15,199.00 | € 19.465,00 | ¥ | 185,127.00 |
| TL1550-B | 1550 nm     | >150 nm      | 175 GHz               | >20 mW                   | \$ 21,924.00 | £ 15,199.00 | € 19.465,00 | ¥ | 185,127.00 |

Light

▼ CHAPTERS

Coherent Sources

**Incoherent Sources** 

Covega

**Drivers/Mounts** 

Accessories

Laser Diodes

**Pigtailed Diodes** 

Fiber-Coupled Laser Sources

WDM Laser Sources

**HeNe Lasers** 

Laser Diode Modules

Tunable

Lasers

Swept Source Lasers

Terahertz

LASER RADIATION DO NOT VIEW DIRECTLY WITH OPTICAL INSTRUMENTS! CLASS 1M LASER PRODUCT 1454-1650 nm <50 mw IEC 60825-1 EDITION 1.2 2001-08

## PICO D Series Continuously Tunable OEM Lasers (1519-1630 nm)



Thorlabs' PICO D family of OEM tunable ECLs allows for integration into larger or custom environments. The PICO D family is specially designed for swept wavelength applications and interferometric measurements. The laser has an outstanding tuning smoothness, which is a necessity in applications such as interferometric optical component testing and highresolution fiber sensing.

The PICO D features analog tuning and continuous mode-hop free tuning across more than 100 nm in the C- and L-bands (1519-1630 nm). The standard product offers a typical output power of >5 dBm across the tuning range. The PICO D offers low SSE, providing a Signal to Total Source Spontaneous Emission Ratio (STSSER) of >65 dB. This makes the PICO D an ideal source for testing optical components.

The PICO series is ideal for fiber sensor-based temperature and pressure monitoring in petrochemical facilities, refineries, oil wells, power plants, and bridges.

| Optical Specifications                      |                |  |  |  |  |
|---------------------------------------------|----------------|--|--|--|--|
| Parameter                                   | Typical        |  |  |  |  |
| Tuning Range*                               |                |  |  |  |  |
| PICO D (C- and L-Bands)                     | 1519 - 1630 nm |  |  |  |  |
| Mode Hops                                   | 0              |  |  |  |  |
| Continuous Tuning Speed                     | 0 - 130 nm/s   |  |  |  |  |
| Tuning Speed                                |                |  |  |  |  |
| 1 nm                                        | 30 ms          |  |  |  |  |
| 10 nm                                       | 100 ms         |  |  |  |  |
| 100 nm Step                                 | 800 ms         |  |  |  |  |
| Wavelength Resolution                       | 0.6 pm         |  |  |  |  |
| Wavelength Repeatability                    | 1 pm           |  |  |  |  |
| Absolute Wavelength Accuracy                | ±10 pm         |  |  |  |  |
| Wavelength Stability pm (1hr)               | ±2 pm          |  |  |  |  |
| (24hr)                                      | ±10 pm         |  |  |  |  |
| Optical Peak Power                          | >6 dBm         |  |  |  |  |
| Optical Power Over Entire Tuning Range      | >2 dBm         |  |  |  |  |
| Power Resolution                            | 0.1 μW         |  |  |  |  |
| Spectral Linewidth                          | 150 kHz Max**  |  |  |  |  |
| Coherence Control                           | Optional       |  |  |  |  |
| Side Mode Suppression Ratio (SMSR)          | 45 dBc         |  |  |  |  |
| Signal to Source Spontaneous Emission (SSE) | 70 dBm/nm      |  |  |  |  |
| Signal to Total Source Spontaneous          |                |  |  |  |  |
| Emission Ratio (STSSER)                     | 65 dB          |  |  |  |  |
| Optical Isolation                           | 60 dB          |  |  |  |  |
| Relative Intensity Noise (RIN)              | -140 (dB/Hz)   |  |  |  |  |

\* Standard product, other wavelengths available upon request. \*\*Measurement time <1ms.

#### Features

- Tuning without Mode-Hop
- Models Covering C and L Bands Available
- Peak Power >6 dBm (Typical)
- Low SSE >70 dB/ nm
- Other Wavelengths Available by Request

#### Electrical and Interface Specifications

- Operating Temperature Range: 15 - 40 °C
- Optical Connector: FC/APC
- **DC Power:** +5 V and ±15 V
- Wavelength Set Voltage: ±10 V
- Output Power Set Voltage: -1 V to 10 V
- Digital Control and Status: 0 5 V
- Electrical Connectors:
   6-Pin Power Rear Panel
   60 Pin Electrical Page Pro
  - 40-Pin Electrical Rear Panel
- Physical Size (W x H x L): 49 mm x 93 mm x 273 mm

| ITEM#    | \$           | £           | €           |   | RMB        | DESCRIPTION                                       |
|----------|--------------|-------------|-------------|---|------------|---------------------------------------------------|
| PICOD-SM | \$ 20,790.00 | £ 14,413.00 | € 18.458,00 | ¥ | 175,552.00 | Continuously Tunable Laser, 1519-1630 nm SM Fiber |
| PICOD-PM | \$ 21,420.00 | £ 14,849.00 | € 19.017,00 | ¥ | 180,871.00 | Continuously Tunable Laser, 1519-1630 nm PM Fiber |

## ECL5000 Continuously Tunable, PC-Controlled Laser, 1519 - 1630 nm

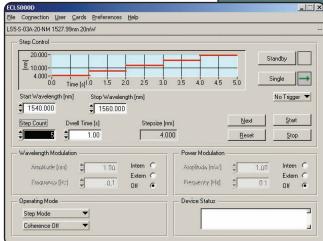


| Specifications             |                             |
|----------------------------|-----------------------------|
| Parameter                  | Typical Data                |
| Wavelength Range           | 1519 - 1630 nm <sup>a</sup> |
| Mode Hops                  | 0                           |
| Tuning Speed Continuous    | 0 - 130 nm/s                |
| Tuning Speed Step          | 1 nm: <50 ms                |
| (Includes Settling Time)   | 10 nm: <100 ms              |
|                            | 100 nm: <800 ms             |
| Wavelength Resolution      | 1 pm                        |
| Wavelength Repeatability   | ±5 pm (1 Hour)              |
| Wavelength Accuracy        | ±15 pm                      |
| Wavelength Stability       | ±5 pm <sup>b</sup> (1 Hour) |
| Wavelength                 |                             |
| Modulation Bandwidth       | 100 Hz                      |
| Power Repeatability        | ±0.1 dB (1 hour)            |
| Optical Power              |                             |
| Modulation Bandwidth       | >100 kHz                    |
| Optical Peak Power         | 9 dBm                       |
| Optical Output Power       | Peak: 9 dBm                 |
|                            | 50 nm: 6 dBm                |
|                            | Full Range: 3 dBm           |
| Spectral Linewidth FWHM    | <150 kHz <sup>c</sup>       |
| SMSR                       | >50 dBc                     |
| STSSER                     | 65 dB                       |
| Optical Isolation          | 60 dB <sup>d</sup>          |
| RIN                        | -140 dB/√Hz                 |
| Optical Interface          | FC/APC                      |
| Analog Input Voltage Range | ±10 V                       |
| Input Power                | 100-240 VAC 50-60 Hz        |
| Dimensions ECL5000DT (mm)  | 168 x 133 x 315             |
|                            |                             |

 <sup>a</sup> Standard product, other wavelengths available upon request.
 <sup>b</sup> ΔT ±0.5 °C <sup>c</sup> Measurement time 1ns. <sup>d</sup> Peak isolation

ECL5000D TXP MODULE

The PMD5000, a versatile PMD and polarization analysis system, is an application example of an ECL5000D in a complex TXP-based test and measurement system (see pages 993-1007).


# Comes Complete with Laptop and Installed Software!

The ECL5000DT benchtop tunable laser utilizes Thorlabs' patented ECL technology, providing high stability, high output power, and smooth continuous tuning over the 110 nm tuning range. The benchtop unit is comprised of a Thorlabs PICO D Series Tunable Laser packaged in a rugged TXP5004 chassis. The

microprocessor-controlled unit provides both digital and analog modes of controlling the unit. In the analog mode, the wavelength and power can be controlled by applying a voltage to the front input connectors. This can be a DC voltage for step control or a modulated signal for sweeping either the wavelength, the power, or both. The digital control is achieved through the USB interface. The easy-to-use interactive GUI (Graphical User Interface) allows direct tuning, step tuning, and selectable sweep operation. The laser is ready for use as soon as the USB cable, included with the unit, is plugged in.

LabVIEW<sup>TM</sup> and LabWindows<sup>TM</sup>/CVI drivers are provided for those who need to integrate the programming of the tunable laser with other equipment. These two methods of tuning

provide the powerful, flexible control necessary to meet the most demanding testing applications to synchronize with external events. The ECL5000DT also provides triggerin and trigger-out connectors. The output voltage at the analog out jack is proportional to the optical wavelength.



## Highlights

- Mode-Hop Free Tuning
- Internal and External Wavelength and Power Modulation
- Smooth and Continuous Tuning
- 1519 1630 nm Tuning Range
- Continuous Sweep and Step Mode Operation
- High Output Power
- USB with Intuitive Graphical Interface

| ITEM#     | \$          | £           | €           | RMB          | DESCRIPTION                                             |
|-----------|-------------|-------------|-------------|--------------|---------------------------------------------------------|
| ECL5000DT | \$26,000.00 | £ 18,024.00 | € 23.083,00 | ¥ 219,545.00 | Complete Benchtop Linear Tunable Laser Including Laptop |

CHAPTERS V **Coherent Sources Incoherent Sources** Covega **Drivers/Mounts** Accessories SECTIONS V Laser Diodes **Pigtailed Diodes Fiber-Coupled** Laser Sources WDM Laser Sources **HeNe Lasers** Laser Diode Modules Tunable Lasers Swept Source Lasers Terahertz

TECHNOLOGY **T** Liaht

#### Light CHAPTERS

Coherent Sources

Incoherent Sources

#### Covega

**Drivers/Mounts** 

#### Accessories

▼ SECTIONS

Laser Diodes

**Pigtailed Diodes** 

Fiber-Coupled Laser Sources

WDM Laser Sources

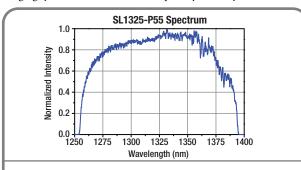
**HeNe Lasers** 

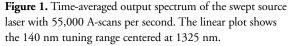
Laser Diode Modules

Tunable Lasers

Swept Source Lasers

Terahertz


## Frequency Swept Laser Sources (Page 1 of 2)

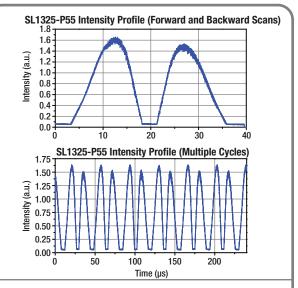



Thorlabs is pleased to offer new high-speed swept source lasers optimized for OCT imaging applications. The swept source laser employs novel tunable filter technology with highly efficient laser cavity design to achieve broad wavelength tuning (>130 nm @ 1325 nm) at a high sweep rate (55,000 A-scans per second). Excellent coherence length (>6 mm) is maintained during the highspeed tuning of the swept source laser, which supports reasonable OCT imaging depth inside biological tissue or other industrial samples. To generate high-quality OCT images, the laser cavity design has been optimized for good output power and bandwidth with minimized intensity noise.

The swept source laser consists of a high-performance semiconductor gain chip at 1325 nm and a high-speed tunable filter in the cavity. The tunable filter temporarily sweeps the wavelength band to rapidly vary the output frequencies of the laser. The measured output spectrum of the swept source laser, averaged over a few scanning iterations, is shown in Fig. 1. The averaged laser output power is above 20 mW with peak power above 40 mW. The high power density for every laser sweep is essential for sensitive detection of weak reflections from samples at very high speed.

As an estimation of the averaged dynamic instantaneous linewidth of the swept source laser, the coherence length of the laser is measured experimentally. The coherence length value is defined as the path length difference in an external Mach-Zehnder interferometer where the interference fringe contrast amplitude drops to 50% (3 dB) of the original contrast amplitude at zero delay. The longer the coherence length, the slower the sensitivity roll-off of the OCT imaging system and the better the capability of the system to resolve






#### Features

- 1050 and 1325 nm Available Wavelengths
- 55 kHz Sweep Rate
- FWHM Bandwidth: >100 nm (SL1050-P55) >130 nm (SL1325-P55)
- Fiber Coupled Power: >10 mW (SL1050-P55)
  - >20 mW (SL1325-P55)
- >6.0 mm Coherence Length Capability

reflections from deeper regions of the sample. The displayed depth of OCT images is usually half of the coherence length due to the double-pass optical delay in the sample arm reflections of standard OCT systems. For many conventional biological tissue samples like the skin, the light can hardly penetrate more than 1-2 mm into the tissue. Therefore for many similar imaging applications, the 3 mm displayed imaging depth allowed by the 6 mm coherence length of the laser is considered sufficient. For demanding imaging applications requiring larger coherence lengths, the laser can be customized to support coherence lengths in excess of 6 mm.

The swept source laser has a built-in MZI clock module with intensity profile and frequency monitoring (MZI clock) signals available. The intensity profile can be used to diagnose the intensity noise of the swept source laser. The MZI clock signals are from a Mach-Zehnder interferometer with a fixed 3 mm delay, generating interference fringes with 100 GHz spacing. A wide band (DC-200 MHz) balanced detector is used to record the MZI clock signals with maximum fringe contrast (Fig. 3). The peaks and zero-crossings in the MZI clock signals are equally spaced in optical frequency domain and can be used as the frequency reference to calibrate the real OCT interference signals from detailed sample structures.



**Figure 2.** (Top) Transient temporal intensity profile of the swept source laser with 55,000 A-scans per second. One complete scan cycle of the laser contains one forward scan (from short to long wavelength) and one backward scan (from long to short wavelength). (Bottom) The Intensity profile of multiple scan cycles showing the identical scan-to-scan repeatability.

TECHNOLOGY V Liaht CHAPTERS V Frequency Swept Laser Sources (Page 2 of 2) **Coherent Sources Incoherent Sources Key Features:** Mach-Zehnder Clock Signal INVISIBLE LASER RADIATION Wavelength Versions: 2.0 OPTICAL INSTRUME Covega 1.5 1050 nm or 1325 nm 1.0 ε Wavelength Sweep Rate: 0.5 **Drivers/Mounts** Intensity 55 kHz 0.0 Output: Single Mode Fiber -0.5 Accessories -1.0 Compact Housing: -1.5 12.4" x 11.6" x 5.8" (315 mm x 295 mm x 146 mm) SECTIONS V -2.0 10 15 0 Laser Diodes Mach-Zehnder Clock Signal (Zoom In) 1.5 **Pigtailed Diodes** 1.0 Intensity (V) **Fiber-Coupled** 0.5 Laser Sources Rear Panel of Swept Source Laser 0.0 WDM Laser Sources -0.5 0 MZI OUT -1.0 **HeNe Lasers** -1.5 8.5 9.0 9.5 8.0 10.0 Laser Diode Modules Time (µm) Tunable Lasers Figure 3. (Top) MZI clock signals of the forward scan of the laser with 55,000 A-scans per second. The MZI clock signals Swept Source are acquired from a Mach-Zehnder interferometer with fixed Lasers 3 mm delay. (Bottom) The zoom-in view of the MZI clock

315 mm x 295 mm x 146 mm (W x D x H)

The rear panel provides connections for the power

monitor signal, the MZI clock, the sweep trigger, and

Terahertz

| OCT Swept Laser Source Specifications  |                           |                          |  |  |  |  |
|----------------------------------------|---------------------------|--------------------------|--|--|--|--|
| PARAMETER*                             | SL1050-P55                | SL1325-P55               |  |  |  |  |
| Center Wavelength (Typical)            | 1050 nm                   | 1325 nm                  |  |  |  |  |
| Spectral Bandwith (10 dB)              | >100 nm                   | >130 nm                  |  |  |  |  |
| Axial Scan Rate                        | 55 kHz                    |                          |  |  |  |  |
| Coherence Length**                     | >5.0 mm                   | >6.0 mm                  |  |  |  |  |
| Average Output Power                   | >10 mW                    | >20 mW                   |  |  |  |  |
| Duty Cycle                             | 85%                       | - 90%                    |  |  |  |  |
| Optical Power Stability                | ±0                        | .5 dB                    |  |  |  |  |
| Operating Temperature                  | 10 -                      | 10 - 40 °C               |  |  |  |  |
| Physical Size (Width x Depth x Height) | 12.4" x 11.6" x 5.8" (315 | mm x 295 mm x 146 mm)    |  |  |  |  |
| Input Voltage                          | 100 - 240 V               | AC 50 - 60 Hz            |  |  |  |  |
| Optical Output                         | SMF-28 Sin                | SMF-28 Single Mode Fiber |  |  |  |  |
| Output Connector                       | FC                        | FC/APC                   |  |  |  |  |
| Electrical Output Connectors           | В                         | BNC                      |  |  |  |  |

#### able of >6 mm coherence length. Please call for more details

signals acquired at the peak scanning speed of the same swept source laser. The MZI clock signals with clear fringe contrast

visibility can be used as the frequency (k-clock) reference signals of the laser to calibrate the OCT interference signals into

optical frequency domain prior to the Fourier transformation

operations. The dots in the signal trace are the actual sampled

## Please See Page 1354 for Details on Complete OCT Systems.

| ITEM#      | \$           | £           | €           | RMB          | DESCRIPTION                                   |
|------------|--------------|-------------|-------------|--------------|-----------------------------------------------|
| SL1050-P55 | \$ 25,000.00 | £ 17,331.00 | € 22.196,00 | ¥ 211,101.00 | 55 kHz Frequency Swept Laser Source @ 1050 nm |
| SL1325-P55 | \$ 25,000.00 | £ 17,331.00 | € 22.196,00 | ¥ 211,101.00 | 55 kHz Frequency Swept Laser Source @ 1325 nm |

| V | T | EC | HN | 10 | L0 | GY |
|---|---|----|----|----|----|----|
|   |   |    |    |    |    |    |

#### Light

▼ CHAPTERS

**Coherent Sources Incoherent Sources** Covega

#### **Drivers/Mounts**

Accessories

#### ▼ SECTIONS

Laser Diodes

**Pigtailed Diodes** 

Fiber-Coupled Laser Sources

**WDM Laser Sources** 

**HeNe Lasers** 

Laser Diode Modules

Tunable Lasers

Swept Source

Terahertz

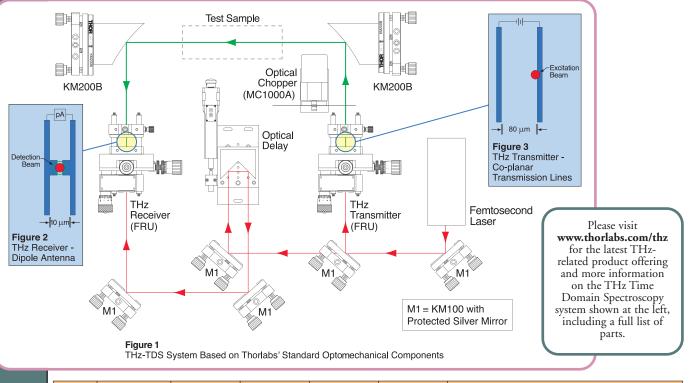
## **Terahertz Transmitter/Receiver Mounting Module**

Research interest in the terahertz (THz) region of the electromagnetic spectra has been substantially increasing. This region is defined as the spectral region between the infrared and microwave spectral bands and ranges from 100 µm to 1000 µm (300 GHz to 3 THz). In this region, the photon energies range from 1.2 to 12.4 eV and the equivalent black body temperature ranges from 14 K to 140 K, which is below the earth's ambient background.

The Ultrafast Terahertz Research Group at Oklahoma State University (OSU) in Stillwater has put together a THz Time Domain Spectroscopy (THz-TDS) system based on Thorlabs' optomechanical components, as shown in Figure 1. Their system includes two FRU modules; one houses a transmitter and the other houses a receiver. A femtosecond laser is used to illuminate the THz transmitter, biased coplanar transmission lines fabricated on high-resistivity GaAs that has geometry similar to that shown in Figure 3. The laser is focused on the edge of the positively biased line and generates a very large number of photo-induced charge carriers in the high electric field region, creating synchronous bursts of THz radiation. Their receiver FRU includes a receiver chip that has antennae structures fabricated on an ion-implanted silicon-on-sapphire (SOS) wafer. The antennae structures have geometries similar to that shown in Figure 2.

The pulsed THz radiation is focused between the gap of an antenna and induces a transient bias voltage. The portion of the femtosecond laser beam that is directed into the receiver is also focused onto the antenna, inducing a transient photocurrent that synchronously gates the receiver. One can consider this detection process a sub-picosecond boxcar integrator.

With this system, OSU's Ultrafast Terahertz Research Group has scanned out past 5 THz. Their system generates THz radiation with ~10 nW average power with a signal-to-noise ratio of 10,000:1. The generated and detected THz radiation is coherent, and the resulting receiver sensitivity is ~1000 times more sensitive than an incoherent liquid heliumcooled bolometer. The receiver module of the THz-TDS system uses the same optomechanical components as the receiver module. Thorlabs stocks this kit (part number FRU), which includes all the optomechanical parts needed to mount a transmitter or receiver module to a silica lens. See page 1258 for terahertz transmitters and antennaes from Menlo Systems.


FRU

#### **Terahertz Kit**

- THz Transmitter/Receiver Mount Module Using Thorlabs Catalog Components
- Free-Space Coupled
- Fiber Coupling by Request
- Highly Stable

#### Applications

- THz-TDS: Terahertz Time Domain Spectroscopy
- THz-DTDS: Terahertz Differential Time Domain Spectroscopy
- Interferometry



| ITEM # | METRIC ITEM# | \$        | £        | €        | RMB        | DESCRIPTION                              |
|--------|--------------|-----------|----------|----------|------------|------------------------------------------|
| FRU    | FRU/M        | \$ 950.30 | £ 658.80 | € 843,70 | ¥ 8,024.40 | THz Transmitter/Receiver Mounting Module |

## **Incoherent Sources Selection Guide**

#### Pages 1091-1131















#### **Mounted LEDs**

- Available with or without Collimation Optics
- Collimated Versions are Microscope Compatible
- Center Wavelengths from 365 nm to 850 nm and White Light
- LED Arrays Available

## See Pages 1092-1103

#### **Mounted LED Drivers**

- T-Cube and new DC Series Available
- Pulsed or CW Operation
- Four-Channel Driver and Hub Offered

## See Pages 1104-1105

#### **Four-Color LED Source and Driver**

- Combines Four Wavelengths into One Beam
- Wavelengths from 385 nm to 660 nm
- Microscope Adapters Available

## See Pages 1106-1107

#### Fluorescence Lifetime Imaging Microscopy LED Source

- Ideal for Frequency Domain FLIM
- Center Wavelengths from 365 nm to 630 nm

## See Pages 1108-1111

#### **Unmounted LEDs**

- Wavelength from 260 nm to 4500 nm Including RGB and White
- Powers up to 22 mW

See Pages 1112-1124

#### **Superluminescent Diodes**

- Wavelengths from 1280 nm to 1550 nm
- Broad Bandwidths Exceeding 100 nm

## See Pages 1125-1128

#### **High-Power Light Sources**

- ASE Source for C and L Bands
- Solid State Source for 350 nm to 700 nm
- Halogen Lamp

## See Pages 1129-1131

**NOTE:** The products on pages 1091-1128 are designated for use solely as components and are not sold as a finished product. The purchaser assumes responsibility to comply with US 21 CFR 1040.10 and 1040.11 or IEC 60825-1 with regard to the safe use of these components in a laboratory environment or their introduction into commerce.

#### Light ▼ CHAPTERS

**Coherent Sources** 

## **Incoherent Sources**

Covega

Accessories

**Drivers/Mounts** 

▼ SECTIONS

**Mounted LEDs** 

**Unmounted LEDs** 

SLDs

**ASE Sources** 

Lamps

### 1.0 0.8 **Normalized Power** 0.6 0.4 0.2 0.0 340 360 380 400 Wavelength (nm)



#### Mounted LED, P = 350 mW

- Uncollimated, Lambertian Radiation Pattern
- Internally SM1 Threaded



#### Collimated LED, P = 83 - 100 mW

- Closely Collimated Beam
- High Power Density
- Adjustable Focus
- Designed to Integrate into Standard Microscopes

| ITEM#  | MICROSCOPE              | POWER  | BEAM   | BEAM AREA            |
|--------|-------------------------|--------|--------|----------------------|
| LEDC33 | Olympus BX/IX           | 100 mW | Ø50 mm | 1963 mm <sup>2</sup> |
| LEDC34 | Leica DMI               | 83 mW  | Ø37 mm | 1075 mm <sup>2</sup> |
| LEDC35 | Nikon Eclipse (F Mount) | 88 mW  | Ø43 mm | 1452 mm <sup>2</sup> |
| LEDC36 | Zeiss Axioskop          | 88 mW  | Ø44 mm | 1521 mm <sup>2</sup> |

High-Power LED

365 nm Mounted or Mounted and Collimated LEDs



Mounted on Heatsink

Average Lifetime of 500 Hours



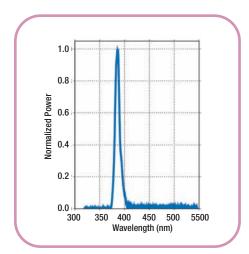


Compatible with Many of Our LED Controllers (See Pages 1223-1228)

| CHARACTERISTIC ( $T_a = 25 \text{ °C}$ ) | MIN    | ТҮР     | MAX    |
|------------------------------------------|--------|---------|--------|
| Peak Wavelength                          | 360 nm | 365 nm  | 370 nm |
| Spectral Full Width                      | -      | 15 nm   | -      |
| Forward Current                          | _      | _       | 700 mA |
| Peak Pulsed Forward Current              | -      | 1000 mA | -      |
| Forward Voltage                          | _      | 4.4 V   | -      |
| Operating Temperature                    | -40 °C | -       | 120 °C |
| Storage Temperature                      | -40 °C | _       | 120 °C |
| Lifetime                                 | _      | 500 hrs | -      |

Thorlabs offers 365 nm mounted LEDs with or without collimation optics. Both types of units use the same LED with EEPROM, which is housed in an internally SM1-threaded housing. The mounted LED can be easily incorporated into lens tube or cage systems via the SM1 threading. The collimated versions house an optic in a microscope-compatible adapter that can be easily installed into the epi-illumination port of many microscopes made by Leica, Nikon, Zeiss, or Olympus.

#### Drivers


We recommend using either the LEDD1A T-Cube driver or the DC2100 LED driver to control the LED. The T-Cube version is compact and offers basic controls for current and toggling between CW or pulsed operation. When pulsing the LED, an external trigger must be connected to the T-Cube's BNC connection. Please note that a power supply is not included with our T-Cubes, but the TPS001 single-channel power supply is available below.

The DC2100 is a more sophisticated controller that is capable of CW or pulsed operation up to 10 kHz. If an external trigger is used, pulse frequency can be increased up to 100 kHz. Additionally, the DC2100 can read the LED's EEPROM, which contains operating parameters, such as the maximum current that help to prolong the life of the LED. Please see pages 1223-1228 for more details on these drivers as well as other compatible drivers.



| ITEM#               | \$                       | £             | €          | RMB         | DESCRIPTION                                                  |
|---------------------|--------------------------|---------------|------------|-------------|--------------------------------------------------------------|
| M365L1              | \$ 395.00                | £ 273.90      | € 350,70   | ¥ 3,335.40  | 365 nm, 350 mW, Mounted LED                                  |
| LEDC33              | \$ 660.00                | £ 457.60      | € 586,00   | ¥ 5,573.10  | 365 nm, 100 mW, Collimated LED for Olympus BX/IX Microscopes |
| LEDC34              | \$ 660.00                | £ 457.60      | € 586,00   | ¥ 5,573.10  | 365 nm, 83 mW, Collimated LED for Leica DMI Microscopes      |
| LEDC35              | \$ 660.00                | £ 457.60      | € 586,00   | ¥ 5,573.10  | 365 nm, 88 mW, Collimated LED for Nikon Eclipse              |
| LEDC36              | \$ 660.00                | £ 457.60      | € 586,00   | ¥ 5,573.10  | 365 nm, 88 mW, Collimated LED for Zeiss Axioskop Microscopes |
| LEDD1A*             | \$ 269.00                | £ 186.50      | € 238,90   | ¥ 2,271.50  | T-Cube LED Driver, 1000 mA                                   |
| TPS001              | \$ 25.00                 | £ 17.40       | € 22,20    | ¥ 211.20    | T-Cube Power Supply                                          |
| DC2100              | \$ 1,750.00              | £ 1,213.00    | € 1.553,50 | ¥ 14,778.00 | High-Power LED Driver with Modulation, 2000 mA               |
| * Power supply sold | d separately, see TPS001 | or page 1104. |            |             | ·                                                            |

## **385 nm Mounted or Mounted and Collimated LEDs**



- High-Power LED
- Average Lifetime of 500 Hours
- Mounted on Heatsink
- Compatible with Many of Our LED Controllers (See Pages 1223-1228)

| CHARACTERISTIC (T <sub>a</sub> = 25 °C) | MIN    | ТҮР     | MAX    |
|-----------------------------------------|--------|---------|--------|
| Peak Wavelength                         | 380 nm | 385 nm  | 390 nm |
| Spectral Full Width                     | -      | 20 nm   | -      |
| Forward Current                         | -      | -       | 700 mA |
| Peak Pulsed Forward Current             | -      | 1000 mA | -      |
| Forward Voltage                         | -      | 4.3 V   | -      |
| Operating Temperature                   | -40 °C | -       | 120 °C |
| Storage Temperature                     | -40 °C | -       | 120 °C |
| Lifetime                                | -      | 500 hrs | -      |

**NEW** products

Typical Emitter

Thorlabs offers 385 nm mounted LEDs with or without collimation optics. Both types of units use the same LED with EEPROM, which is housed in an internally SM1-threaded housing. The mounted LED can be easily incorporated into lens tube or cage systems via the SM1 threading. The collimated versions house an optic in a microscope-compatible adapter that can be easily installed into the epi-illumination port of many microscopes made by Leica, Nikon, Zeiss, or Olympus.

#### Drivers

We recommend using either the LEDD1A T-Cube driver or the DC2100 LED driver to control the LED. The T-Cube version is compact and offers basic controls for current and toggling between CW or pulsed operation. When pulsing the LED, an external trigger must be connected to the T-Cube's BNC connection. Please note that a power supply is not included with our T-Cubes, but the TPS001 single-channel power supply is available below.

The DC2100 is a more sophisticated controller that is capable of CW or pulsed operation up to 10 kHz. If an external trigger is used, pulse frequency can be increased up to 100 kHz. Additionally, the DC2100 can read the LED's EEPROM, which contains operating parameters, such as the maximum current that help to prolong the life of the LED. Please see pages 1223-1228 for more details on these drivers as well as other compatible drivers.



| Pin | Description   |
|-----|---------------|
| 1   | LED +Ve       |
| 2   | LED -Ve       |
| 3   | Not Connected |
| 4   | Not Connected |
|     | 1 2           |



#### Mounted LED, P = 450 mW

- Uncollimated, Lambertian Radiation Pattern
- Internally SM1 Threaded



#### Collimated LED, P = 111 - 135 mW

- Closely Collimated Beam
- High Power Density
- Adjustable Focus
- Designed to Integrate into Standard Microscopes

| ITEM#  | MICROSCOPE              | POWER  | BEAM   | BEAM AREA            |
|--------|-------------------------|--------|--------|----------------------|
| LEDC37 | Olympus BX/IX           | 135 mW | Ø50 mm | 1963 mm <sup>2</sup> |
| LEDC38 | Leica DMI               | 111 mW | Ø37 mm | 1075 mm <sup>2</sup> |
| LEDC39 | Nikon Eclipse (F Mount) | 118 mW | Ø43 mm | 1452 mm <sup>2</sup> |
| LEDC40 | Zeiss Axioskop          | 119 mW | Ø44 mm | 1521 mm <sup>2</sup> |

| \$          | £                                                                                                                                                                                      | €                                                                                                                                                                                                                                                                                                                                                                | RMB                                                                                                                                                                                                                                                                                                            | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| \$ 395.00   | £ 273.90                                                                                                                                                                               | € 350,70                                                                                                                                                                                                                                                                                                                                                         | ¥ 3,335.40                                                                                                                                                                                                                                                                                                     | 385 nm, 450 mW, Mounted LED                                                                                                                                                                                                                                                                                                                                                                                                       |
| \$ 660.00   | £ 457.60                                                                                                                                                                               | € 586,00                                                                                                                                                                                                                                                                                                                                                         | ¥ 5,573.10                                                                                                                                                                                                                                                                                                     | 385 nm, 135 mW, Collimated LED for Olympus BX/IX Microscopes                                                                                                                                                                                                                                                                                                                                                                      |
| \$ 660.00   | £ 457.60                                                                                                                                                                               | € 586,00                                                                                                                                                                                                                                                                                                                                                         | ¥ 5,573.10                                                                                                                                                                                                                                                                                                     | 385 nm, 111 mW, Collimated LED for Leica DMI Microscopes                                                                                                                                                                                                                                                                                                                                                                          |
| \$ 660.00   | £ 457.60                                                                                                                                                                               | € 586,00                                                                                                                                                                                                                                                                                                                                                         | ¥ 5,573.10                                                                                                                                                                                                                                                                                                     | 385 nm, 118 mW, Collimated LED for Nikon Eclipse                                                                                                                                                                                                                                                                                                                                                                                  |
| \$ 660.00   | £ 457.60                                                                                                                                                                               | € 586,00                                                                                                                                                                                                                                                                                                                                                         | ¥ 5,573.10                                                                                                                                                                                                                                                                                                     | 385 nm, 119 mW, Collimated LED for Zeiss Axioskop Microscopes                                                                                                                                                                                                                                                                                                                                                                     |
| \$ 269.00   | £ 186.50                                                                                                                                                                               | € 238,90                                                                                                                                                                                                                                                                                                                                                         | ¥ 2,271.50                                                                                                                                                                                                                                                                                                     | T-Cube LED Driver, 1000 mA                                                                                                                                                                                                                                                                                                                                                                                                        |
| \$ 25.00    | £ 17.40                                                                                                                                                                                | € 22,20                                                                                                                                                                                                                                                                                                                                                          | ¥ 211.20                                                                                                                                                                                                                                                                                                       | T-Cube Power Supply                                                                                                                                                                                                                                                                                                                                                                                                               |
| \$ 1,750.00 | £ 1,213.00                                                                                                                                                                             | € 1.553,50                                                                                                                                                                                                                                                                                                                                                       | ¥ 14,778.00                                                                                                                                                                                                                                                                                                    | High-Power LED Driver with Modulation, 2000 mA                                                                                                                                                                                                                                                                                                                                                                                    |
|             | \$       395.00         \$       660.00         \$       660.00         \$       660.00         \$       660.00         \$       660.00         \$       269.00         \$       25.00 | \$ 395.00       £ 273.90         \$ 660.00       £ 457.60         \$ 660.00       £ 457.60         \$ 660.00       £ 457.60         \$ 660.00       £ 457.60         \$ 660.00       £ 457.60         \$ 660.00       £ 457.60         \$ 660.00       £ 457.60         \$ 660.00       £ 457.60         \$ 269.00       £ 186.50         \$ 25.00       £ 17.40 | \$ $395.00$ £ $273.90$ € $350.70$ \$ $660.00$ £ $457.60$ € $586,00$ \$ $660.00$ £ $457.60$ € $586,00$ \$ $660.00$ £ $457.60$ € $586,00$ \$ $660.00$ £ $457.60$ € $586,00$ \$ $660.00$ £ $457.60$ € $586,00$ \$ $660.00$ £ $457.60$ € $586,00$ \$ $269.00$ £ $186.50$ € $238,90$ \$ $25.00$ £ $17.40$ € $22,20$ | \$ $395.00$ £ $273.90$ € $350.70$ ¥ $3.335.40$ \$ $660.00$ £ $457.60$ € $586,00$ ¥ $5.573.10$ \$ $660.00$ £ $457.60$ € $586,00$ ¥ $5.573.10$ \$ $660.00$ £ $457.60$ € $586,00$ ¥ $5.573.10$ \$ $660.00$ £ $457.60$ € $586,00$ ¥ $5.573.10$ \$ $660.00$ £ $457.60$ € $586,00$ ¥ $5.573.10$ \$ $660.00$ £ $457.60$ € $586,00$ ¥ $5.573.10$ \$ $269.00$ £ $186.50$ € $238,90$ ¥ $2.271.50$ \$ $25.00$ £ $17.40$ € $22,20$ ¥ $211.20$ |

\* Power supply sold separately, see TPS001 or page 1104.



## Light

CHAPTERS ▼

**Coherent Sources** 

Incoherent Sources

Covega

Drivers/Mounts

Accessories

SECTIONS V

Mounted LEDs

Unmounted LEDs

SLDs

ASE Sources

Lamps

#### Light ▼ CHAPTERS

**Coherent Sources** 

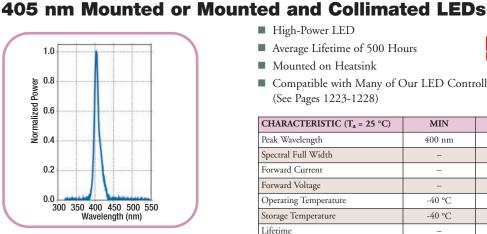
## **Incoherent Sources**

Covega

#### **Drivers/Mounts**

Accessories

## ▼ SECTIONS


**Mounted LEDs** 

**Unmounted LEDs** 

SLDs

**ASE Sources** 

Lamps





#### Mounted LED, P = 670 mW

- Uncollimated, Lambertian Radiation Pattern
- Internally SM1 Threaded



#### Collimated LED, P = 325 - 394 mW

- Closely Collimated Beam
- High Power Density
- Adjustable Focus
- Designed to Integrate into Standard Microscopes

| ITEM#  | MICROSCOPE              | POWER  | BEAM   | BEAM AREA            |
|--------|-------------------------|--------|--------|----------------------|
| LEDC41 | Olympus BX/IX           | 394 mW | Ø50 mm | 1963 mm <sup>2</sup> |
| LEDC42 | Leica DMI               | 325 mW | Ø37 mm | 1075 mm <sup>2</sup> |
| LEDC43 | Nikon Eclipse (F Mount) | 345 mW | Ø43 mm | 1452 mm <sup>2</sup> |
| LEDC44 | Zeiss Axioskop          | 347 mW | Ø44 mm | 1521 mm <sup>2</sup> |

- High-Power LED
- Average Lifetime of 500 Hours

Mounted on Heatsink



Compatible with Many of Our LED Controllers (See Pages 1223-1228)



Typical Emitter

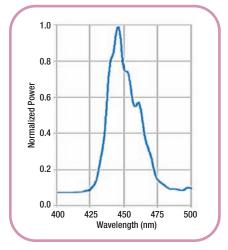
| CHARACTERISTIC ( $T_a = 25 \text{ °C}$ ) | MIN    | ТҮР     | MAX     |
|------------------------------------------|--------|---------|---------|
| Peak Wavelength                          | 400 nm | 405 nm  | 410 nm  |
| Spectral Full Width                      | -      | 25.4 nm | -       |
| Forward Current                          | -      | -       | 1000 mA |
| Forward Voltage                          | -      | 4.64 V  | -       |
| Operating Temperature                    | -40 °C | -       | 120 °C  |
| Storage Temperature                      | -40 °C | -       | 120 °C  |
| Lifetime                                 | _      | 500 hrs | -       |

Mounted LEDs that provide light output at 405 nm are available with or without collimation optics. Both types of units use the same LED with EEPROM, which is housed in an internally SM1threaded housing. The mounted LED can be easily incorporated into lens tube or cage systems via the SM1 threading. The collimated versions house an optic in a microscope-compatible adapter that can be easily installed into the epi-illumination port of many microscopes made by Leica, Nikon, Zeiss, or Olympus.

#### Drivers

We recommend using either the LEDD1A T-Cube driver or the DC2100 LED driver to control the LED. The T-Cube version is compact and offers basic controls for current and toggling between CW or pulsed operation. When pulsing the LED, an external trigger must be connected to the T-Cube's BNC connection. Please note that a power supply is not included with our T-Cubes, but the TPS001 single-channel power supply is available below.

The DC2100 is a more sophisticated controller that is capable of CW or pulsed operation up to 10 kHz. If an external trigger is used, pulse frequency can be increased up to 100 kHz. Additionally, the DC2100 can read the LED's EEPROM, which contains operating parameters, such as the maximum current that help to prolong the life of the LED. Please see pages 1223-1228 for more details on these drivers as well as other compatible drivers.




| ITEM#                                                    | \$          | £          | €          | RMB         | DESCRIPTION                                                   |  |  |
|----------------------------------------------------------|-------------|------------|------------|-------------|---------------------------------------------------------------|--|--|
| M405L1                                                   | \$ 127.50   | £ 88.40    | € 113,20   | ¥ 1,076.70  | 405 nm, 670 mW, Mounted LED                                   |  |  |
| LEDC41                                                   | \$ 420.00   | £ 291.20   | € 372,90   | ¥ 3,546.50  | 405 nm, 394 mW, Collimated LED for Olympus BX/IX Microscopes  |  |  |
| LEDC42                                                   | \$ 420.00   | £ 291.20   | € 372,90   | ¥ 3,546.50  | 405 nm, 325 mW, Collimated LED for Leica DMI Microscopes      |  |  |
| LEDC43                                                   | \$ 420.00   | £ 291.20   | € 372,90   | ¥ 3,546.50  | 405 nm, 345 mW, Collimated LED for Nikon Eclipse              |  |  |
| LEDC44                                                   | \$ 420.00   | £ 291.20   | € 372,90   | ¥ 3,546.50  | 405 nm, 347 mW, Collimated LED for Zeiss Axioskop Microscopes |  |  |
| LEDD1A*                                                  | \$ 269.00   | £ 186.50   | € 238,90   | ¥ 2,271.50  | T-Cube LED Driver, 1000 mA                                    |  |  |
| TPS001                                                   | \$ 25.00    | £ 17.40    | € 22,20    | ¥ 211.20    | T-Cube Power Supply                                           |  |  |
| DC2100                                                   | \$ 1,750.00 | £ 1,213.00 | € 1.553,50 | ¥ 14,778.00 | High-Power LED Driver with Modulation, 2000 mA                |  |  |
| * Power supply sold separately, see TPS001 or page 1104. |             |            |            |             |                                                               |  |  |



DC2100

## 455 nm Mounted or Mounted and Collimated LEDs



- High-Power LED
- Average Lifetime: 100,000 Hours
- Mounted on Heatsink
- Compatible with Many of Our LED Controllers (See Pages 1223-1228)

| CHARACTERISTIC (T <sub>a</sub> = 25 °C) | MIN    | ТҮР         | MAX      |  |
|-----------------------------------------|--------|-------------|----------|--|
| Peak Wavelength                         | 440 nm | 455 nm      | 460 nm   |  |
| Spectral Full Width                     | -      | 38 nm       | -        |  |
| Forward Current                         | -      | -           | 700 mA   |  |
| Peak Pulsed Forward Current             | -      | -           | 1,000 mA |  |
| Forward Voltage                         | 5.43 V | 6.8 V       | 8.31 V   |  |
| Operating Temperature                   | -40 °C | -           | 120 °C   |  |
| Storage Temperature                     | -40 °C | -           | 120 °C   |  |
| Lifetime                                | -      | 100,000 hrs | -        |  |

**NEW** products

Typical Emitter

Mounted LEDs that provide light output at 455 nm are available with or without collimation optics. Both types of units use the same LED with EEPROM, which is housed in an internally SM1threaded housing. The mounted LED can be easily incorporated into lens tube or cage systems via the SM1 threading. The collimated versions house an optic in a microscope-compatible adapter that can be easily installed into the epi-illumination port of many microscopes made by Leica, Nikon, Zeiss, or Olympus.

#### Drivers

We recommend using either the LEDD1A T-Cube driver or the DC2100 LED driver to control the LED. The T-Cube version is compact and offers basic controls for current and toggling between CW or pulsed operation. When pulsing the LED, an external trigger must be connected to the T-Cube's BNC connection. Please note that a power supply is not included with our T-Cubes, but the TPS001 single-channel power supply is available below.

The DC2100 is a more sophisticated controller that is capable of CW or pulsed operation up to 10 kHz. If an external trigger is used, pulse frequency can be increased up to 100 kHz. Additionally, the DC2100 can read the LED's EEPROM, which contains operating parameters, such as the maximum current that help to prolong the life of the LED. Please see pages 1223-1228 for more details on these drivers as well as other compatible drivers.



| Pin | Description   |
|-----|---------------|
| 1   | LED +Ve       |
| 2   | LED -Ve       |
| 3   | Not Connected |
| 4   | Not Connected |



#### Mounted LED, P = 730 mW

- Uncollimated, Lambertian Radiation Pattern
- Internally SM1 Threaded



#### Collimated LED, P = 132 - 160 mW

- Closely Collimated Beam
- High Power Density
- Adjustable Focus
- Designed to Integrate into Standard Microscopes

| ITEM# | MICROSCOPE              | POWER  | BEAM   | BEAM AREA            |
|-------|-------------------------|--------|--------|----------------------|
| LEDC1 | Olympus BX/IX           | 160 mW | Ø50 mm | 1963 mm <sup>2</sup> |
| LEDC2 | Leica DMI               | 132 mW | Ø37 mm | 1075 mm <sup>2</sup> |
| LEDC3 | Nikon Eclipse (F Mount) | 140 mW | Ø43 mm | 1452 mm <sup>2</sup> |
| LEDC4 | Zeiss Axioskop          | 141 mW | Ø44 mm | 1521 mm <sup>2</sup> |

| ITEM#   | \$             |   | £        |   | € RMB    |   | RMB       | DESCRIPTION                                                               |
|---------|----------------|---|----------|---|----------|---|-----------|---------------------------------------------------------------------------|
| M455L1  | \$<br>127.50   | £ | 88.40    | € | 113,20   | ¥ | 1,076.70  | 455 nm, 730 mW, Mounted LED                                               |
| LEDC1   | \$<br>331.50   | £ | 229.90   | € | 294,40   | ¥ | 2,799.20  | 455 nm, 160 mW, Collimated LED for Olympus BX/IX Microscopes              |
| LEDC2   | \$<br>331.50   | £ | 229.90   | € | 294,40   | ¥ | 2,799.20  | 455 nm, 132 mW, Collimated LED for Leica DMI Microscopes                  |
| LEDC3   | \$<br>331.50   | £ | 229.90   | € | 294,40   | ¥ | 2,799.20  | 455 nm, 140 mW, Collimated LED for Nikon Eclipse<br>(F Mount) Microscopes |
| LEDC4   | \$<br>331.50   | £ | 229.90   | € | 294,40   | ¥ | 2,799.20  | 455 nm, 141 mW, Collimated LED for Zeiss Axioskop Microscopes             |
| LEDD1A* | \$<br>269.00   | £ | 186.50   | € | 238,90   | ¥ | 2,271.50  | T-Cube LED Driver, 1000 mA                                                |
| TPS001  | \$<br>25.00    | £ | 17.40    | € | 22,20    | ¥ | 211.20    | T-Cube Power Supply                                                       |
| DC2100  | \$<br>1,750.00 | £ | 1,213.00 | € | 1.553,50 | ¥ | 14,778.00 | High-Power LED Driver with Modulation, 2000 mA                            |

## TECHNOLOGY V

Liaht

Covega

CHAPTERS V

**Coherent Sources** 

**Drivers/Mounts** 

Unmounted LEDs

**ASE Sources** 

**SLDs** 

Lamps

Accessories SECTIONS V Mounted LEDs

**Incoherent Sources** 

#### Light ▼ CHAPTERS

**Coherent Sources** 

## **Incoherent Sources**

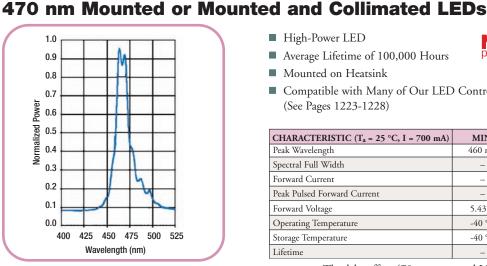
Covega

#### **Drivers/Mounts**

Accessories

#### ▼ SECTIONS

**Mounted LEDs** 


**Unmounted LEDs** 

SLDs

**ASE Sources** 

Lamps

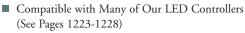
1096





#### Mounted LED, P = 625 mW

- Uncollimated, Lambertian Radiation Pattern
- Internally SM1 Threaded




#### Collimated LED, P = 161 - 195 mW

- Closely Collimated Beam
- High Power Density
- Adjustable Focus
- Designed to Integrate into Standard Microscopes

| MICROSCOPE              | POWER                                | BEAM                                                                      | BEAM AREA                                                                                               |
|-------------------------|--------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Olympus BX/IX           | 195 mW                               | Ø50 mm                                                                    | 1963 mm <sup>2</sup>                                                                                    |
| Leica DMI               | 161 mW                               | Ø37 mm                                                                    | 1075 mm <sup>2</sup>                                                                                    |
| Nikon Eclipse (F Mount) | 171 mW                               | Ø43 mm                                                                    | 1452 mm <sup>2</sup>                                                                                    |
| Zeiss Axioskop          | 172 mW                               | Ø44 mm                                                                    | 1521 mm <sup>2</sup>                                                                                    |
|                         | Leica DMI<br>Nikon Eclipse (F Mount) | Leica DMI         161 mW           Nikon Eclipse (F Mount)         171 mW | Leica DMI         161 mW         Ø37 mm           Nikon Eclipse (F Mount)         171 mW         Ø43 mm |

- High-Power LED
- Average Lifetime of 100,000 Hours
- Mounted on Heatsink



| CHARACTERISTIC (T <sub>a</sub> = 25 °C, I = 700 mA) | MIN    | ТҮР         | MAX     |
|-----------------------------------------------------|--------|-------------|---------|
| Peak Wavelength                                     | 460 nm | 470 nm      | 490 nm  |
| Spectral Full Width                                 | -      | 48.8 nm     | -       |
| Forward Current                                     | -      | -           | 700 mA  |
| Peak Pulsed Forward Current                         | -      | -           | 1000 mA |
| Forward Voltage                                     | 5.43 V | 6.84 V      | 8.31 V  |
| Operating Temperature                               | -40 °C | _           | 120 °C  |
| Storage Temperature                                 | -40 °C | -           | 120 °C  |
| Lifetime                                            | _      | 100,000 hrs | _       |

NEW

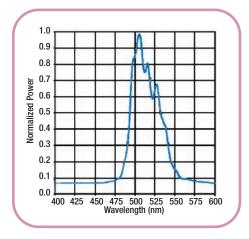
Typical Emitter

Thorlabs offers 470 nm mounted LEDs with or without collimation optics. Both types of units use the same LED with EEPROM, which is housed in an internally SM1-threaded housing. The mounted LED can be easily incorporated into lens tube or cage systems via the SM1 threading. The collimated versions house an optic in a microscope-compatible adapter that can be easily installed into the epi-illumination port of many microscopes made by Leica, Nikon, Zeiss, or Olympus.

#### Drivers

We recommend using either the LEDD1A T-Cube driver or the DC2100 LED driver to control the LED. The T-Cube version is compact and offers basic controls for current and toggling between CW or pulsed operation. When pulsing the LED, an external trigger must be connected to the T-Cube's BNC connection. Please note that a power supply is not included with our T-Cubes, but the TPS001 single-channel power supply is available below.

The DC2100 is a more sophisticated controller that is capable of CW or pulsed operation up to 10 kHz. If an external trigger is used, pulse frequency can be increased up to 100 kHz. Additionally, the DC2100 can read the LED's EEPROM, which contains operating parameters, such as the maximum current that help to prolong the life of the LED. Please see pages 1223-1228 for more details on these drivers as well as other compatible drivers.






|     | ITEM#   | \$          | £          | €          | RMB         | DESCRIPTION                                                               |
|-----|---------|-------------|------------|------------|-------------|---------------------------------------------------------------------------|
| NEW | M470L1  | \$ 127.50   | £ 88.40    | € 113,20   | ¥ 1,076.70  | 470 nm, 625 mW, Mounted LED                                               |
|     | LEDC5   | \$ 331.50   | £ 229.90   | € 294,40   | ¥ 2,799.20  | 470 nm, 195 mW, Collimated LED for Olympus BX/IX Microscopes              |
|     | LEDC6   | \$ 331.50   | £ 229.90   | € 294,40   | ¥ 2,799.20  | 470 nm, 161 mW, Collimated LED for Leica DMI Microscopes                  |
|     | LEDC7   | \$ 331.50   | £ 229.90   | € 294,40   | ¥ 2,799.20  | 470 nm, 171 mW, Collimated LED for Nikon Eclipse<br>(F Mount) Microscopes |
|     | LEDC8   | \$ 331.50   | £ 229.90   | € 294,40   | ¥ 2,799.20  | 470 nm, 172 mW, Collimated LED for Zeiss Axioskop Microscopes             |
|     | LEDD1A* | \$ 269.00   | £ 186.50   | € 238,90   | ¥ 2,271.50  | T-Cube LED Driver, 1000 mA                                                |
|     | TPS001  | \$ 25.00    | £ 17.40    | € 22,20    | ¥ 211.20    | T-Cube Power Supply                                                       |
| NEW | DC2100  | \$ 1,750.00 | £ 1,213.00 | € 1.553,50 | ¥ 14,778.00 | High-Power LED Driver with Modulation, 2000 mA                            |
|     | * D 1 1 | 1 1 TDC001  | 110/       |            |             |                                                                           |

\* Power supply sold separately, see TPS001 or page 1104.

## **505 nm Mounted or Mounted and Collimated LEDs**



- High-Power LED
- Average Lifetime of 100,000 Hours
- Mounted on Heatsink
- Compatible with Many of Our LED Controllers (See Pages 1223-1228)

| CHARACTERISTIC (T <sub>a</sub> = 25 °C, I = 700 mA) | MIN    | ТҮР         | MAX      |
|-----------------------------------------------------|--------|-------------|----------|
| Peak Wavelength                                     | 490 nm | 505 nm      | 520 nm   |
| Spectral Full Width                                 | _      | 58.6 nm     | -        |
| Forward Current                                     | _      | -           | 700 mA   |
| Peak Pulsed Forward Current                         | _      | -           | 1,000 mA |
| Forward Voltage                                     | 5.43 V | 6.84 V      | 8.31 V   |
| Operating Temperature                               | -40 °C | -           | 120 °C   |
| Storage Temperature                                 | -40 °C | -           | 120 °C   |
| Lifetime                                            | -      | 100,000 hrs | _        |

**NEW** products

Typical Emitter

Thorlabs offers 505 nm mounted LEDs with or without collimation optics. Both types of units use the same LED with EEPROM, which is housed in an internally SM1-threaded housing. The mounted LED can be easily incorporated into lens tube or cage systems via the SM1 threading. The collimated versions house an optic in a microscope-compatible adapter that can be easily installed into the epi-illumination port of many microscopes made by Leica, Nikon, Zeiss, or Olympus.

#### Drivers

We recommend using either the LEDD1A T-Cube driver or the DC2100 LED driver to control the LED. The T-Cube version is compact and offers basic controls for current and toggling between CW or pulsed operation. When pulsing the LED, an external trigger must be connected to the T-Cube's BNC connection. Please note that a power supply is not included with our T-Cubes, but the TPS001 single-channel power supply is available below.

The DC2100 is a more sophisticated controller that is capable of CW or pulsed operation up to 10 kHz. If an external trigger is used, pulse frequency can be increased up to 100 kHz. Additionally, the DC2100 can read the LED's EEPROM, which contains operating parameters, such as the maximum current that help to prolong the life of the LED. Please see pages 1223-1228 for more details on these drivers as well as other compatible drivers.



| Pin | Description   |
|-----|---------------|
| 1   | LED +Ve       |
| 2   | LED -Ve       |
| 3   | Not Connected |
| 4   | Not Connected |

|--|--|

#### Mounted LED, P = 420 mW

- Uncollimated, Lambertian Radiation Pattern
- Internally SM1 Threaded



- Closely Collimated Beam
- High Power Density
- Adjustable Focus
- Designed to Integrate into Standard Microscopes

| ITEM#  | MICROSCOPE              | POWER  | BEAM   | BEAM AREA            |
|--------|-------------------------|--------|--------|----------------------|
| LEDC9  | Olympus BX/IX           | 115 mW | Ø50 mm | 1963 mm <sup>2</sup> |
| LEDC10 | Leica DMI               | 115 mW | Ø37 mm | 1075 mm <sup>2</sup> |
| LEDC11 | Nikon Eclipse (F Mount) | 101 mW | Ø43 mm | 1452 mm <sup>2</sup> |
| LEDC12 | Zeiss Axioskop          | 101 mW | Ø44 mm | 1521 mm <sup>2</sup> |

| ITEM#              |    | \$       |   | £        |   | €        |   | RMB       | DESCRIPTION                                                               |  |
|--------------------|----|----------|---|----------|---|----------|---|-----------|---------------------------------------------------------------------------|--|
| M505L1             | \$ | 127.50   | £ | 88.40    | € | 113,20   | ¥ | 1,076.70  | 505 nm, 420 mW, Mounted LED                                               |  |
| LEDC9              | \$ | 331.50   | £ | 229.90   | € | 294,40   | ¥ | 2,799.20  | 505 nm, 115 mW, Collimated LED for Olympus BX/IX Microscopes              |  |
| LEDC10             | \$ | 331.50   | £ | 229.90   | € | 294,40   | ¥ | 2,799.20  | 505 nm, 115 mW, Collimated LED for Leica DMI Microscopes                  |  |
| LEDC11             | \$ | 331.50   | £ | 229.90   | € | 294,40   | ¥ | 2,799.20  | 505 nm, 101 mW, Collimated LED for Nikon Eclipse<br>(F Mount) Microscopes |  |
| LEDC12             | \$ | 331.50   | £ | 229.90   | € | 294,40   | ¥ | 2,799.20  | 505 nm, 101 mW, Collimated LED for Zeiss Axioskop Microscopes             |  |
| LEDD1A*            | \$ | 269.00   | £ | 186.50   | € | 238,90   | ¥ | 2,271.50  | T-Cube LED Driver, 1000 mA                                                |  |
| TPS001             | \$ | 25.00    | £ | 17.40    | € | 22,20    | ¥ | 211.20    | T-Cube Power Supply                                                       |  |
| DC2100             | \$ | 1,750.00 | £ | 1,213.00 | € | 1.553,50 | ¥ | 14,778.00 | High-Power LED Driver with Modulation, 2000 mA                            |  |
| Downer our plu col | 1  | TDC001   |   | 1104     |   |          |   |           |                                                                           |  |

\* Power supply sold separately, see TPS001 or page 1104.

TECHNOLOGY V Light CHAPTERS V

Covega

**Coherent Sources** 

**Incoherent Sources** 

**Drivers/Mounts** 

Accessories

Mounted LEDs

**ASE Sources** 

**Unmounted LEDs** 

SECTIONS V

**SLDs** 

Lamps

#### Light ▼ CHAPTERS

**Coherent Sources** 

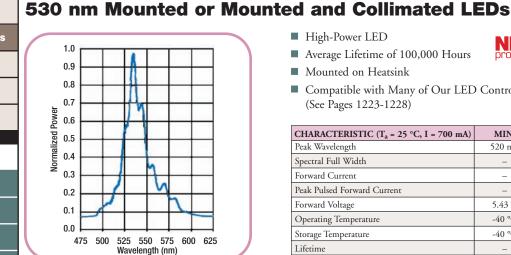
## **Incoherent Sources**



#### **Drivers/Mounts**

Accessories

#### ▼ SECTIONS


**Mounted LEDs** 

**Unmounted LEDs** 

SLDs

**ASE Sources** 

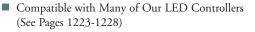
Lamps





#### Mounted LED, P = 275 mW

- Uncollimated, Lambertian Radiation Pattern.
- Internally SM1 Threaded




#### Collimated LED, P = 55 - 67 mW

- Closely Collimated Beam
- High Power Density
- Adjustable Focus
- Designed to Integrate Into Standard Microscopes

| ITEM#  | MICROSCOPE              | POWER | BEAM   | BEAM AREA            |
|--------|-------------------------|-------|--------|----------------------|
| LEDC13 | Olympus BX/IX           | 67 mW | Ø50 mm | 1963 mm <sup>2</sup> |
| LEDC14 | Leica DMI               | 55 mW | Ø37 mm | 1075 mm <sup>2</sup> |
| LEDC15 | Nikon Eclipse (F Mount) | 59 mW | Ø43 mm | 1452 mm <sup>2</sup> |
| LEDC16 | Zeiss Axioskop          | 59 mW | Ø44 mm | 1521 mm <sup>2</sup> |

- High-Power LED
- Average Lifetime of 100,000 Hours
- Mounted on Heatsink





Typical Emitter

| CHARACTERISTIC (T <sub>a</sub> = 25 °C, I = 700 mA) | MIN    | ТҮР         | MAX     |
|-----------------------------------------------------|--------|-------------|---------|
| Peak Wavelength                                     | 520 nm | 530 nm      | 550 nm  |
| Spectral Full Width                                 | -      | 60.8 nm     | -       |
| Forward Current                                     | -      | -           | 700 mA  |
| Peak Pulsed Forward Current                         | _      | -           | 1000 mA |
| Forward Voltage                                     | 5.43 V | 6.84 V      | 8.31 V  |
| Operating Temperature                               | -40 °C | -           | 120 °C  |
| Storage Temperature                                 | -40 °C | -           | 120 °C  |
| Lifetime                                            | -      | 100,000 hrs | -       |

Mounted LEDs that provide light output at 530 nm are available with or without collimation optics. Both types of units use the same LED with EEPROM, which is housed in an internally SM1threaded housing. The mounted LED can be easily incorporated into lens tube or cage systems via the SM1 threading. The collimated versions house an optic in a microscope-compatible adapter that can be easily installed into the epi-illumination port of many microscopes made by Leica, Nikon, Zeiss, or Olympus.

**NEW** products

#### Drivers

We recommend using either the LEDD1A T-Cube driver or the DC2100 LED driver to control the LED. The T-Cube version is compact and offers basic controls for current and toggling between CW or pulsed operation. When pulsing the LED, an external trigger must be connected to the T-Cube's BNC connection. Please note that a power supply is not included with our T-Cubes, but the TPS001 single-channel power supply is available below.

The DC2100 is a more sophisticated controller that is capable of CW or pulsed operation up to 10 kHz. If an external trigger is used, pulse frequency can be increased up to 100 kHz. Additionally, the DC2100 can read the LED's EEPROM, which contains operating parameters, such as the maximum current that help to prolong the life of the LED. Please see pages 1223-1228 for more details on these drivers as well as other compatible drivers.





|     | ITEM#                                                    | \$          | £          | €          | RMB         | DESCRIPTION                                                              |  |  |  |  |  |
|-----|----------------------------------------------------------|-------------|------------|------------|-------------|--------------------------------------------------------------------------|--|--|--|--|--|
| NEW | M530L1                                                   | \$ 127.50   | £ 88.40    | € 113,20   | ¥ 1,076.70  | 530 nm, 275 mW, Mounted LED                                              |  |  |  |  |  |
|     | LEDC13                                                   | \$ 331.50   | £ 229.90   | € 294,40   | ¥ 2,799.20  | 530 nm, 67 mW, Collimated LED for Olympus BX/IX Microscopes              |  |  |  |  |  |
|     | LEDC14                                                   | \$ 331.50   | £ 229.90   | € 294,40   | ¥ 2,799.20  | 530 nm, 55 mW, Collimated LED for Leica DMI Microscopes                  |  |  |  |  |  |
|     | LEDC15                                                   | \$ 331.50   | £ 229.90   | € 294,40   | ¥ 2,799.20  | 530 nm, 59 mW, Collimated LED for Nikon Eclipse<br>(F Mount) Microscopes |  |  |  |  |  |
|     | LEDC16                                                   | \$ 331.50   | £ 229.90   | € 294,40   | ¥ 2,799.20  | 530 nm, 59 mW, Collimated for Zeiss Axioskop Microscopes                 |  |  |  |  |  |
|     | LEDD1A*                                                  | \$ 269.00   | £ 186.50   | € 238,90   | ¥ 2,271.50  | T-Cube LED Driver, 1000 mA                                               |  |  |  |  |  |
|     | TPS001                                                   | \$ 25.00    | £ 17.40    | € 22,20    | ¥ 211.20    | T-Cube Power Supply                                                      |  |  |  |  |  |
| NEW | DC2100                                                   | \$ 1,750.00 | £ 1,213.00 | € 1.553,50 | ¥ 14,778.00 | High-Power LED Driver with Modulation, 2000 mA                           |  |  |  |  |  |
|     | * Power supply sold separately, see TPS001 or page 1104. |             |            |            |             |                                                                          |  |  |  |  |  |



## **590 nm Mounted or Mounted and Collimated LEDs**

Typical Emitter

- High-Power LED
- Average Lifetime of 100,000 Hours
- Mounted on Heatsink
- Compatible with Our DC2100 LED Controller (See Page 1105)

| CHARACTERISTIC (T <sub>a</sub> = 25 °C) | MIN    | ТҮР         | MAX     |
|-----------------------------------------|--------|-------------|---------|
| Peak Wavelength                         | 584 nm | 590 nm      | 597 nm  |
| Spectral Full Width                     | -      | 28.8 nm     | -       |
| Forward Current                         | -      | -           | 1540 mA |
| Peak Pulsed Forward Current             | -      | 2,200 mA    | -       |
| Forward Voltage                         | -      | 3.5 V       | -       |
| Operating Temperature                   | -40 °C | -           | 120 °C  |
| Storage Temperature                     | -40 °C | _           | 120 °C  |
| Lifetime                                | -      | 100,000 hrs | -       |

Mounted LEDs that provide light output at 590 nm are available with or without collimation optics. Both types of units use the same LED with EEPROM, which is housed in an internally SM1threaded housing. The mounted LED can be easily incorporated into lens tube or cage systems via the SM1 threading. The collimated versions house an optic in a microscope-compatible adapter that can be easily installed into the epi-illumination port of many microscopes made by Leica, Nikon, Zeiss, or Olympus.

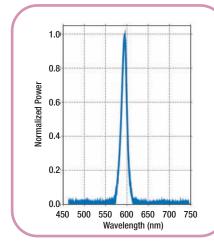
#### Drivers

We recommend using the LEDD1A T-Cube driver or the DC2100 LED driver to control these LEDs. The DC2100 is a sophisticated controller that is capable of CW or pulsed operation up to 10 kHz. If an external trigger is used, pulse frequency can be increased up to 100 kHz. Additionally, the DC2100 can read the LED's EEPROM, which contains operating parameters, such as the maximum current, that help to prolong the life of the LED. Please see page 1105 for more details on the DC2100.



| 3  |
|----|
| IJ |

 Pin
 Description


 1
 LED +Ve

 2
 LED -Ve

 3
 Not Connected

 4
 Not Connected







#### Mounted LED, P = 150 mW

- Uncollimated, Lambertian Radiation Pattern
- Internally SM1 Threaded



#### Collimated LED, P = 30 - 36 mW

- Closely Collimated Beam
- High Power Density
- Adjustable Focus
- Designed to Integrate Into Standard Microscopes

| ITEM#  | MICROSCOPE              | POWER | BEAM DIA. | BEAM AREA            |
|--------|-------------------------|-------|-----------|----------------------|
| LEDC21 | Olympus BX/IX           | 36 mW | 50 mm     | 1963 mm <sup>2</sup> |
| LEDC22 | Leica DMI               | 30 mW | 37 mm     | 1075 mm <sup>2</sup> |
| LEDC23 | Nikon Eclipse (F Mount) | 32 mW | 43 mm     | 1452 mm <sup>2</sup> |
| LEDC24 | Zeiss Axioskop          | 32 mW | 44 mm     | 1521 mm <sup>2</sup> |

| ITEM#  | \$       |     |   | £        |   | €        | RMB |           | DESCRIPTION                                                              |
|--------|----------|-----|---|----------|---|----------|-----|-----------|--------------------------------------------------------------------------|
| M590L1 | \$ 127   | .50 | £ | 88.40    | € | 113,20   | ¥   | 1,076.70  | 590 nm, 150 mW, Mounted LED                                              |
| LEDC21 | \$ 331   | .50 | £ | 229.90   | € | 294,40   | ¥   | 2,799.20  | 590 nm, 36 mW for Olympus BX/IX Microscopes, Collimated LED              |
| LEDC22 | \$ 331   | .50 | £ | 229.90   | € | 294,40   | ¥   | 2,799.20  | 590 nm, 30 mW for Leica DMI Microscopes, Collimated LED                  |
| LEDC23 | \$ 331   | .50 | £ | 229.90   | € | 294,40   | ¥   | 2,799.20  | 590 nm, 32 mW, Collimated LED for Nikon Eclipse<br>(F Mount) Microscopes |
| LEDC24 | \$ 331   | .50 | £ | 229.90   | € | 294,40   | ¥   | 2,799.20  | 590 nm, 32 mW, Collimated LED for Zeiss Axioskop Microscopes             |
| DC2100 | \$ 1,750 | .00 | £ | 1,213.00 | € | 1.553,50 | ¥   | 14,778.00 | High-Power LED Driver with Modulation, 2000 mA                           |

Coherent Sources
Incoherent Sources
Covega
Drivers/Mounts
Covega

## TECHNOLOGY **T**Light

#### Light ▼ CHAPTERS

- **Coherent Sources**
- **Incoherent Sources**
- Covega
- **Drivers/Mounts**
- Accessories
- ▼ SECTIONS
- **Mounted LEDs**
- **Unmounted LEDs**
- SLDs
- **ASE Sources**
- Lamps

#### 627 nm Mounted or Mounted and Collimated LEDs 1.0 0.8 Normalized Power Compatible with Our DC2100 LED Controller (See Page 1105) 0.6

700

750



650

#### Mounted LED, P = 500 mW

600

- Uncollimated, Lambertian Radiation Pattern.
- Internally SM1 Threaded

0.4

0.2

0.0 550



#### Collimated LED, P = 144 - 174 mW

- Closely Collimated Beam
- High Power Density
- Adjustable Focus
- Designed to Integrate Into Standard Microscopes

| ITEM#  | MICROSCOPE              | POWER  | BEAM   | BEAM AREA            |
|--------|-------------------------|--------|--------|----------------------|
| LEDC25 | Olympus BX/IX           | 174 mW | Ø50 mm | 1963 mm <sup>2</sup> |
| LEDC26 | Leica DMI               | 144 mW | Ø37 mm | 1075 mm <sup>2</sup> |
| LEDC27 | Nikon Eclipse (F Mount) | 152 mW | Ø43 mm | 1452 mm <sup>2</sup> |
| LEDC28 | Zeiss Axioskop          | 153 mW | Ø44 mm | 1521 mm <sup>2</sup> |

- High-Power LED
- Average Lifetime of 100,000 Hours
- Mounted on Heatsink



Typical Emitter

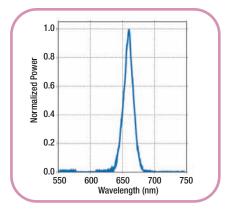
| . 8                                                 |        | тур         |         |
|-----------------------------------------------------|--------|-------------|---------|
| CHARACTERISTIC (T <sub>a</sub> = 25 °C, I = 700 mA) | MIN    | ТҮР         | MAX     |
| Peak Wavelength                                     | 620 nm | 627 nm      | 645nm   |
| Spectral Full Width                                 | -      | 48.4 nm     | -       |
| Forward Current                                     | -      | -           | 1540 mA |
| Peak Pulsed Forward Current                         | -      | 2200 nm     | -       |
| Forward Voltage                                     | -      | 3.5 V       | -       |
| Operating Temperature                               | -40 °C | _           | 120 °C  |
| Storage Temperature                                 | -40 °C | _           | 120 °C  |
| Lifetime                                            | _      | 100,000 hrs | _       |

Thorlabs offers 627 nm mounted LEDs with or without collimation optics. Both types of units use the same LED with EEPROM, which is housed in an internally SM1-threaded housing. The mounted LED can be easily incorporated into lens tube or cage systems via the SM1 threading. The collimated versions house an optic in a microscope-compatible adapter that can be easily installed into the epi-illumination port of many microscopes made by Leica, Nikon, Zeiss, or Olympus.

#### Drivers

We recommend using the DC2100 LED driver to control the LED. The DC2100 is a more sophisticated controller that is capable of CW or pulsed operation up to 10 kHz. If an external trigger is used, pulse frequency can be increased up to 100 kHz. Additionally, the DC2100 can read the LED's EEPROM, which contains operating parameters, such as the maximum current, that help to prolong the life of the LED. Please see pages 1223-1228 for more details on this driver as well as other compatible drivers.




| ITEM#  |      | \$       |   | £        |   | €        |   | RMB       | DESCRIPTION                                                               |
|--------|------|----------|---|----------|---|----------|---|-----------|---------------------------------------------------------------------------|
| M627L1 | \$   | 127.50   | £ | 88.40    | € | 113,20   | ¥ | 1,076.70  | 627 nm, 500 mW, Mounted LED                                               |
| LEDC25 | \$   | 331.50   | £ | 229.90   | € | 294,40   | ¥ | 2,799.20  | 627 nm, 174 mW, Collimated LED for Olympus BX/IX Microscopes              |
| LEDC26 | \$   | 331.50   | £ | 229.90   | € | 294,40   | ¥ | 2,799.20  | 627 nm, 144 mW, Collimated LED for Leica DMI Microscopes                  |
| LEDC27 | \$   | 331.50   | £ | 229.90   | € | 294,40   | ¥ | 2,799.20  | 627 nm, 152 mW, Collimated LED for Nikon Eclipse<br>(F Mount) Microscopes |
| LEDC28 | \$   | 331.50   | £ | 229.90   | € | 294,40   | ¥ | 2,799.20  | 627 nm, 153 mW, Collimated LED for Zeiss Axioskop Microscopes             |
| DC2100 | \$ 1 | 1,750.00 | £ | 1,213.00 | € | 1.553,50 | ¥ | 14,778.00 | High-Power LED Driver with Modulation, 2000 mA                            |



Not Connected

4

## 660 nm Mounted or Mounted and Collimated LEDs



- High-Power LED
- Average Lifetime of 500 Hours
- Mounted on Heatsink

CHARACTERISTIC (Ta = 25 °C)

Peak Wavelength

Forward Current

Forward Voltage

Lifetime

Operating Temperature

Storage Temperature

Spectral Full Width

 Compatible with Many of Our LED Controllers (See Pages 1223-1228)

MIN

658 nm

-40 °C

-40 °C

| Typical Emitter |
|-----------------|

MAX

670 nm

700 mA

120 °C

120 °C

TYP

660 nm

33.2 nm

 $4.4 \mathrm{V}$ 

-

500 hrs

| Coherent Sources      |
|-----------------------|
| Incoherent Sources    |
| Covega                |
| <b>Drivers/Mounts</b> |
| Accessories           |
| SECTIONS V            |
| Mounted LEDs          |
| Unmounted LEDs        |
| SLDs                  |
| ASE Sources           |
| Lamps                 |
|                       |
|                       |

TECHNOLOGY Liaht CHAPTERS V

at Co.

Thorlabs offers 660 nm mounted LEDs with or without collimation optics. Both types of units use the same LED with EEPROM, which is housed in an internally SM1-threaded housing. The mounted LED can be easily incorporated into lens tube or cage systems via the SM1 threading. The collimated versions house an optic in a microscope-compatible adapter that can be easily installed into the epi-illumination port of many microscopes made by Leica, Nikon, Zeiss, or Olympus.

#### Drivers

We recommend using either the LEDD1A T-Cube driver or the DC2100 LED driver to control the LED. The T-Cube version is compact and offers basic controls for current and toggling between CW or pulsed operation. When pulsing the LED, an external trigger must be connected to the T-Cube's BNC connection. Please note that a power supply is not included with our T-Cubes, but the TPS001 single-channel power supply is available below.

The DC2100 is a more sophisticated controller that is capable of CW or pulsed operation up to 10 kHz. If an external trigger is used, pulse frequency can be increased up to 100 kHz. Additionally, the DC2100 can read the LED's EEPROM, which contains operating parameters, such as the maximum current that help to prolong the life of the LED. Please see pages 1223-1228 for more details on these drivers as well as other compatible drivers.



| Pin | Description   |  |  |  |
|-----|---------------|--|--|--|
| 1   | LED +Ve       |  |  |  |
| 2   | LED -Ve       |  |  |  |
| 3   | Not Connected |  |  |  |
| 4   | Not Connected |  |  |  |



| 050 |
|-----|

#### Mounted LED, P = 850 mW

- Uncollimated, Lambertian Radiation Pattern
- Internally SM1 Threaded



#### Collimated LED, P = 302 - 366 mW

- Closely Collimated Beam
- High Power Density
- Adjustable Focus
- Designed to Integrate Into Standard Microscopes

| ITEM#  | MICROSCOPE              | POWER  | BEAM   | BEAM AREA            |
|--------|-------------------------|--------|--------|----------------------|
| LEDC45 | Olympus BX/IX           | 366 mW | Ø50 mm | 1963 mm <sup>2</sup> |
| LEDC46 | Leica DMI               | 302 mW | Ø37 mm | 1075 mm <sup>2</sup> |
| LEDC47 | Nikon Eclipse (F Mount) | 320 mW | Ø43 mm | 1452 mm <sup>2</sup> |
| LEDC48 | Zeiss Axioskop          | 323 mW | Ø44 mm | 1521 mm <sup>2</sup> |

| ITEM#                                   |    | \$       |   | £        |   | €        |   | RMB       | DESCRIPTION                                                            |
|-----------------------------------------|----|----------|---|----------|---|----------|---|-----------|------------------------------------------------------------------------|
| M660L1                                  | \$ | 127.50   | £ | 88.40    | € | 113,20   | ¥ | 1,076.70  | 660 nm, 850 mW, Mounted LED                                            |
| LEDC45                                  | \$ | 350.00   | £ | 242.70   | € | 310,80   | ¥ | 2,955.50  | 660 nm, 366 mW, Collimated LED for Olympus BX/IX Microscopes           |
| LEDC46                                  | \$ | 350.00   | £ | 242.70   | € | 310,80   | ¥ | 2,955.50  | 660 nm, 302 mW, Collimated LED for Leica DMI Microscopes               |
| LEDC47                                  | \$ | 350.00   | £ | 242.70   | € | 310,80   | ¥ | 2,955.50  | 660 nm, 320 mW, Collimated LED for Nikon Eclipse (F Mount) Microscopes |
| LEDC48                                  | \$ | 350.00   | £ | 242.70   | € | 310,80   | ¥ | 2,955.50  | 660 nm, 323 mW, Collimated for Zeiss Axioskop Microscopes              |
| LEDD1A*                                 | \$ | 269.00   | £ | 186.50   | € | 238,90   | ¥ | 2,271.50  | T-Cube LED Driver, 1000 mA                                             |
| TPS001                                  | \$ | 25.00    | £ | 17.40    | € | 22,20    | ¥ | 211.20    | T-Cube Power Supply                                                    |
| DC2100                                  | \$ | 1,750.00 | £ | 1,213.00 | € | 1.553,50 | ¥ | 14,778.00 | High-Power LED Driver with Modulation, 2000 mA                         |
| * Power supply, see TPS001 or page 1104 |    |          |   |          |   |          |   |           |                                                                        |

### Light ▼ CHAPTERS

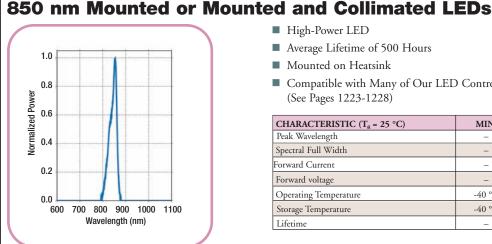
**Coherent Sources** 

### **Incoherent Sources**

Covega

**Drivers/Mounts** 

Accessories


▼ SECTIONS **Mounted LEDs** 

**Unmounted LEDs** 

SLDs

**ASE Sources** 

Lamps





### Mounted LED, P = 400 mW

- Uncollimated, Lambertian Radiation Pattern.
- Internally SM1 Threaded



### Collimated LED, P = 97 - 117 mW

- Closely Collimated Beam
- High Power Density
- Adjustable Focus
- Designed to Integrate Into Standard Microscopes

| ITEM#  | MICROSCOPE              | POWER  | BEAM   | BEAM AREA            |
|--------|-------------------------|--------|--------|----------------------|
| LEDC49 | Olympus BX/IX           | 117 mW | Ø50 mm | 1963 mm <sup>2</sup> |
| LEDC50 | Leica DMI               | 97 mW  | Ø37 mm | 1075 mm <sup>2</sup> |
| LEDC51 | Nikon Eclipse (F Mount) | 102 mW | Ø43 mm | 1452 mm <sup>2</sup> |
| LEDC52 | Zeiss Axioskop          | 103 mW | Ø44 mm | 1521 mm <sup>2</sup> |

- High-Power LED
- Average Lifetime of 500 Hours

Mounted on Heatsink



Compatible with Many of Our LED Controllers (See Pages 1223-1228)



Typical Emitter

| CHARACTERISTIC (T <sub>a</sub> = 25 °C) | MIN    | ТҮР     | MAX    |
|-----------------------------------------|--------|---------|--------|
| Peak Wavelength                         | -      | 850 nm  | -      |
| Spectral Full Width                     | -      | 80 nm   | -      |
| Forward Current                         | -      | -       | 700 mA |
| Forward voltage                         | _      | 4.4 V   | _      |
| Operating Temperature                   | -40 °C | _       | 120 °C |
| Storage Temperature                     | -40 °C | -       | 120 °C |
| Lifetime                                | -      | 500 hrs | _      |

Thorlabs offers 850 nm mounted LEDs with or without collimation optics. Both types of units use the same LED with EEPROM, which is housed in an internally SM1-threaded housing. The mounted LED can be easily incorporated into lens tube or cage systems via the SM1 threading. The collimated versions house an optic in a microscope-compatible adapter that can be easily installed into the epi-illumination port of many microscopes made by Leica, Nikon, Zeiss, or Olympus.

#### Drivers

We recommend using either the LEDD1A T-Cube driver or the DC2100 LED driver to control the LED. The T-Cube version is compact and offers basic controls for current and toggling between CW or pulsed operation. When pulsing the LED, an external trigger must be connected to the T-Cube's BNC connection. Please note that a power supply is not included with our T-Cubes, but the TPS001 single-channel power supply is available below.

The DC2100 is a more sophisticated controller that is capable of CW or pulsed operation up to 10 kHz. If an external trigger is used, pulse frequency can be increased up to 100 kHz. Additionally, the DC2100 can read the LED's EEPROM, which contains operating parameters, such as the maximum current that help to prolong the life of the LED. Please see pages 1223-1228 for more details on these drivers as well as other compatible drivers.



| ITEM#   | \$ £           |   |          | € |          | RMB | DESCRIPTION |                                                                           |
|---------|----------------|---|----------|---|----------|-----|-------------|---------------------------------------------------------------------------|
| M850L1  | \$<br>127.50   | £ | 88.40    | € | 113,20   | ¥   | 1,076.70    | 850 nm, 400 mW, Mounted LED                                               |
| LEDC49  | \$<br>350.00   | £ | 242.70   | € | 310,80   | ¥   | 2,955.50    | 850 nm, 117 mW, Collimated LED for Olympus BX/IX Microscopes              |
| LEDC50  | \$<br>350.00   | £ | 242.70   | € | 310,80   | ¥   | 2,955.50    | 850 nm, 97 mW, Collimated LED for Leica DMI Microscopes                   |
| LEDC51  | \$<br>350.00   | £ | 242.70   | € | 310,80   | ¥   | 2,955.50    | 850 nm, 102 mW, Collimated LED for Nikon Eclipse<br>(F Mount) Microscopes |
| LEDC52  | \$<br>350.00   | £ | 242.70   | € | 310,80   | ¥   | 2,955.50    | 850 nm, 103 mW, Collimated for Zeiss Axioskop Microscopes                 |
| LEDD1A* | \$<br>269.00   | £ | 186.50   | € | 238,90   | ¥   | 2,271.50    | T-Cube LED Driver, 1000 mA                                                |
| TPS001  | \$<br>25.00    | £ | 17.40    | € | 22,20    | ¥   | 211.20      | T-Cube Power Supply                                                       |
| DC2100  | \$<br>1,750.00 | £ | 1,213.00 | € | 1.553,50 | ¥   | 14,778.00   | High-Power LED Driver with Modulation, 2000 mA                            |

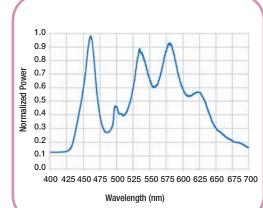
\* Power supply sold separately, see TPS001 or page 1104.

### White Light Mounted or Mounted and Collimated LEDs

Typical Emitter

- High-Power LED
- Average Lifetime of 100,000 Hours
- Mounted on Heatsink
- Compatible with Many of Our LED Controllers (See Pages 1223-1228)

| CHARACTERISTIC (T <sub>a</sub> = 25 °C, I = 700 mA) | MIN    | ТҮР         | MAX     |
|-----------------------------------------------------|--------|-------------|---------|
| Peak Wavelength                                     | 435 nm | _           | 675 nm  |
| Spectral Full Width                                 | -      | _           | _       |
| Forward Current                                     | _      | -           | 700 mA  |
| Peak Pulsed Forward Current                         | -      | -           | 1000 mA |
| Forward Voltage                                     | 5.43 V | 6.84 V      | 8.31 V  |
| Operating Temperature                               | -40 °C | -           | 120 °C  |
| Storage Temperature                                 | -40 °C | -           | 120 °C  |
| Lifetime                                            | _      | 100,000 hrs | _       |


Thorlabs offers white light mounted LEDs with or without collimation optics. Both types of units use the same LED with EEPROM, which is housed in an internally SM1 threaded housing. The mounted LED can be easily incorporated into lens tube or cage systems via the SM1 threading. The collimated versions house an optic in a microscope-compatible adapter that can be easily installed into the epi-illumination port of many microscopes made by Leica, Nikon, Zeiss, or Olympus.

#### Drivers

We recommend using either the LEDD1A T-Cube driver or the DC2100 LED driver to control the LED. The T-Cube version is compact and offers basic controls for current and toggling between CW or pulsed operation. When pulsing the LED, an external trigger must be connected to the T-Cube's BNC connection. Please note that a power supply is not included with our T-Cubes, but the TPS001 single-channel power supply is available below.

The DC2100 is a more sophisticated controller that is capable of CW or pulsed operation up to 10 kHz. If an external trigger is used, pulse frequency can be increased up to 100 kHz. Additionally, the DC2100 can read the LED's EEPROM, which contains operating parameters, such as the maximum current that help to prolong the life of the LED. Please see pages 1223-1228 for more details on these drivers as well as other compatible drivers.







### Mounted LED, P = 500 mW

- Uncollimated, Lambertian Radiation Pattern
- Internally SM1 Threaded



### Collimated LED, P = 122 - 148 mW

- Closely Collimated Beam
- High Power Density
- Adjustable Focus
- Designed to Integrate Into Standard Microscopes

| ITEM#  | MICROSCOPE              | POWER  | BEAM.  | BEAM AREA            |
|--------|-------------------------|--------|--------|----------------------|
| LEDC17 | Olympus BX/IX           | 148 mW | Ø50 mm | 1963 mm <sup>2</sup> |
| LEDC18 | Leica DMI               | 122 mW | Ø37 mm | 1075 mm <sup>2</sup> |
| LEDC19 | Nikon Eclipse (F Mount) | 130 mW | Ø43 mm | 1452 mm <sup>2</sup> |
| LEDC20 | Zeiss Axioskop          | 130 mW | Ø44 mm | 1521 mm <sup>2</sup> |

| ITEM#   | \$ |          | \$£ |          | € RMB |          | RMB                                                                  | DESCRIPTION |                                                                          |  |
|---------|----|----------|-----|----------|-------|----------|----------------------------------------------------------------------|-------------|--------------------------------------------------------------------------|--|
| MCWHL1  | \$ | 127.50   | £   | 88.40    | €     | 113,20   | ¥ 1,076.70 White, 500 mW, Mounted LED, Cold                          |             | White, 500 mW, Mounted LED, Cold                                         |  |
| LEDC17  | \$ | 331.50   | £   | 229.90   | €     | 294,40   | ¥ 2,799.20 148 mW, Collimated LED, White, for Olympus BX/IX Microsco |             | 148 mW, Collimated LED, White, for Olympus BX/IX Microscopes             |  |
| LEDC18  | \$ | 331.50   | £   | 229.90   | €     | 294,40   | ¥                                                                    | 2,799.20    | 122 mW, Collimated LED, White for Leica DMI Microscopes                  |  |
| LEDC19  | \$ | 331.50   | £   | 229.90   | €     | 294,40   | ¥                                                                    | 2,799.20    | 130 mW, Collimated LED, White for Nikon Eclipse<br>(F Mount) Microscopes |  |
| LEDC20  | \$ | 331.50   | £   | 229.90   | €     | 294,40   | ¥                                                                    | 2,799.20    | 130 mW, Collimated LED, White for Zeiss Axioskop Microscopes             |  |
| LEDD1A* | \$ | 269.00   | £   | 186.50   | €     | 238,90   | ¥                                                                    | 2,271.50    | T-Cube LED Driver, 1000 mA                                               |  |
| TPS001  | \$ | 25.00    | £   | 17.40    | €     | 22,20    | ¥                                                                    | 211.20      | T-Cube Power Supply                                                      |  |
| DC2100  | \$ | 1,750.00 | £   | 1,213.00 | € :   | 1.553,50 | ¥                                                                    | 14,778.00   | High-Power LED Driver with Modulation, 2000 mA                           |  |

\* Power supply sold separately, see TPS001 or page 1104.

TECHNOLOGY V

### Light

### CHAPTERS V

# Coherent Sources

Covega

Drivers/Mounts

Accessories

Mounted LEDs

**ASE Sources** 

**Unmounted LEDs** 

SECTIONS V

SLDs

Lamps

### Light CHAPTERS

#### **Coherent Sources**

**Incoherent Sources** 

#### Covega

**Drivers/Mounts** 

Accessories

▼ SECTIONS

Mounted LEDs

**Unmounted LEDs** 

SLDs

**ASE Sources** 

Lamps





#### Features

- Easy-to-Use LED Driver
- Constant Current and Pulsed Current Modes
- Compact T-Cube Footprint
- Pulse Width and Frequency Controllable via External
   0 5 V TTL Signal

LEDD1A

T-Cube LED Driver (Power Supply Sold Separately)

The T-Cube LEDD1 Series is a variable intensity, compact LED driver that was designed for use with our mounted or mounted and collimated LEDs (MxxxL1, LEDCx).

The LED brightness can be adjusted via a potentiometer, which regulates the LED current up to a maximum of 700 mA (LEDD1) or 1 A (LEDD1A). This adjuster also turns the controller on and off. The LEDD1 Series offers a continuous current mode (CC) and an externally triggered pulsed mode (via BNC 5 V TTL input),

| ITEM#                          | LEDD1                                       | LEDD1A  |  |  |
|--------------------------------|---------------------------------------------|---------|--|--|
| Output Current                 | 700 mA                                      | 1000 mA |  |  |
| Maximum Forward Voltage        | 13 V                                        | 10 V    |  |  |
| Maximum Flash Frequency        | 10 kHz                                      |         |  |  |
| Minimum Strobe Pulse Width     | 50 µs                                       |         |  |  |
| Strobe Turn-On / Turn-Off Time | <25 µs                                      |         |  |  |
| Power Supply                   | 15 VDC                                      |         |  |  |
| Operating Temperature          | 0 to 40 °C                                  |         |  |  |
| Storage Temperature            | -40 to 70 °C                                |         |  |  |
| Physical Size                  | 2.4" x 2.4" x 1.8"<br>60 mm x 60 mm x 47 mm |         |  |  |



which makes the LEDD1 an ideal choice for imaging with CCD cameras or photodiodes (CW mode) or for applications that strobe the LED with pulse width modulation. Each controller is shipped attached to a removable base plate that allows the T-Cube to be secured to an optical table. Please note that our T-Cubes do not include a power supply, but three power supply options are available below.

| ITEM#  | \$        | £        | €        | RMB        | DESCRIPTION                                    |  |
|--------|-----------|----------|----------|------------|------------------------------------------------|--|
| LEDD1  | \$ 249.00 | £ 172.70 | € 221,10 | ¥ 2,102.60 | T-Cube LED Driver, 700 mA Drive Current (Max)  |  |
| LEDD1A | \$ 269.00 | £ 186.50 | € 238,90 | ¥ 2,271.50 | T-Cube LED Driver, 1000 mA Drive Current (Max) |  |

### **T-Cube LED Driver Power Supply Options**

The LEDD1 and LEDD1A can be powered using a TPS001 Single T-Cube Power Supply, a TPS008 8-Channel Power Supply, or the TCH002 T-Cube Hub and Power Supply. TPS001 and TPS008 plug into a standard wall outlet and provide +15 VDC. The TCH002 Hub and Power Supply consists of two parts: the hub, which can support up to six standard-footprint T-Cubes, and a power supply that plugs into a standard wall outlet and powers the hub, which in turn powers all the T-Cubes connected to the hub.

| ГСНОО  | 2  | Single | Supply for a<br>T-Cube Contr<br>rides +15 VDC |          | ■ Pr<br>■ Ar<br>Co | rer Supply for Eight T-Cube Controllers<br>rovides Eight +15 VDC Outputs<br>n AC Adapter with 4 m Cable Enables<br>convenient Positioning |
|--------|----|--------|-----------------------------------------------|----------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| ITEM#  |    | \$     | £                                             | €        | RMB                | DESCRIPTION                                                                                                                               |
| TPS001 | \$ | 25.00  | £ 17.40                                       | € 22,20  | ¥ 211.2            | 20 15 V Power Supply Unit for a Single T-Cube                                                                                             |
| TPS008 | \$ | 175.00 | £ 121.40                                      | € 155,40 | ¥ 1,477.8          | 80 15 V Power Supply Unit for up to 8 T-Cubes                                                                                             |
| TCH002 | \$ | 726.90 | £ 504.00                                      | € 645,40 | ¥ 6,138.0          | 00 T-Cube <sup>™</sup> Controller Hub and Power Supply Unit                                                                               |



### TECHNOLOGY V

### Light

Covega

### CHAPTERS V

**Coherent Sources** 

**Incoherent Sources** 

**Drivers/Mounts** 

Accessories

Mounted LEDs

**ASE Sources** 

**Unmounted LEDs** 

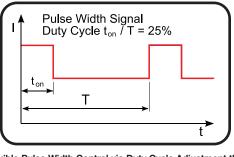
SECTIONS V

**SLDs** 

Lamps

### **High-Power LED Driver with Pulse Modulation**




Thorlabs' new DC2100 LED Driver provides up to 2 A of output current for very high-power LEDs with a maximum forward voltage up to 24 V. The pulse width modulation feature offers flexible pulse control: pulse height via LED current, pulse frequency, duty cycle, and number of pulses down to single pulse operation. The LED current can be controlled via an external trigger input voltage as well, which allows modulation up to 100 kHz.

The DC2100 is ultra stable and designed for applications that are sensitive to even small high frequency brightness fluctuations. If connected to our MxxxL1 or LEDCx Series of Mounted LEDs (see pages 1092-1103), the DC2100 automatically reads the stored LED data from the EEPROM and adjusts the controller's settings accordingly; for example, the maximum current can be set to avoid LED damage.

The DC2100 can operate in three modes:

- **Constant Current Mode:** For visual inspection the LED current is adjustable from 0 to 2 A in 1 mA increments.
- Pulse Width Modulation Mode: Enables control for single LED pulses with adjustable LED current (0 - 2 A), pulse frequency (1 Hz - 10 kHz), duty cycle (1% - 100%), and number of pulses (1 - 100 or continuous pulse emission).
- External Control Mode: Customizable external trigger with adjustable modulation frequency up to 100 kHz, input voltage from 0 V to 10 V (1 V corresponds to 200 mA LED current).

The DC2100 can be connected to a PC using a USB2.0 interface. The unit comes with a GUI interface and drivers.



Flexible Pulse Width Control via Duty Cycle Adjustment that is Defined as  $t_{\text{on}}\,/\,T$ 

- Ideal for LED Currents up to 2 A and Voltages up to 24 V
- Modulation Frequency up to 100 kHz, Sine Wave
- Three Modes of Operation
  - Constant Current Mode
  - Pulse Width Modulation ModeCustomizable External Trigger Mode with
  - Adjustable Modulation Frequency
- USB2.0 Interface for PC Control

#### **Applications:**

Features

- Operation of Very High Power LEDs or High-Power LED Arrays
- LED Characterization
- Microscopy Applications with Trigger or Pulse Control Requirements

| ITEM#                                            | DC2100                                                           |  |  |
|--------------------------------------------------|------------------------------------------------------------------|--|--|
| Constant Current Mode                            |                                                                  |  |  |
| LED Current Range                                | 0 - 2 A (1 mA Resolution)                                        |  |  |
| LED Current Resolution                           | 1 mA                                                             |  |  |
| LED Current Accuracy                             | ±20 mA                                                           |  |  |
| LED Forward Voltage                              | 24 V                                                             |  |  |
| Pulse Width Modulation Mode                      |                                                                  |  |  |
| PWM Frequency Range                              | 1 Hz - 10 kHz                                                    |  |  |
| PWM Frequency Resolution                         | 1 Hz (for Frequencies <1 kHz)<br>100 Hz (for Frequencies >1 kHz) |  |  |
| Duty Cycle                                       | 1 - 100%                                                         |  |  |
| Duty Cycle Resolution                            | 1%                                                               |  |  |
| External Control Mode                            |                                                                  |  |  |
| Modulation Frequency Range                       | 0 - 100 kHz, Sine Wave                                           |  |  |
| Modulation                                       | Arbitrary                                                        |  |  |
| Trigger Input Max.                               | 10 V<br>1 V Corresponds to 200 mA                                |  |  |
| General                                          |                                                                  |  |  |
| Operating<br>Temperature Range*                  | 0 to 40 °C                                                       |  |  |
| Storage Temperature Range                        | -40 to 70 °C                                                     |  |  |
| Dimensions (W x H x D) w/o<br>Operating Elements | 160 mm x 80 mm x 150 mm                                          |  |  |
| Dimensions (W x H x D) w/<br>Operating Elements  | 160 mm x 80 mm x 168 mm                                          |  |  |
| Warm-up Time for Rated Accuracy                  | <10 min                                                          |  |  |
| Weight                                           | <1 kg                                                            |  |  |

 ITEM#
 \$
 £
 €
 RMB
 DESCRIPTION

 DC2100
 \$ 1,750.00
 £ 1,213.00
 € 1.553,50
 ¥ 14,778.00
 High-Power, 1-Channel LED Driver with Pulse Modulation, 2 A, 24 V

### Light CHAPTERS

**Coherent Sources** 

Incoherent Sources

Covega

**Drivers/Mounts** 

Accessories

▼ SECTIONS

Mounted LEDs

Unmounted LEDs

SLDs

**ASE Sources** 

Lamps

### **4-Wavelength High-Power LED Sources**





- Rapid Switching and Intensity Adjustments via LED Current Settings (Compatible with DC4100 Driver)
- Adapters Available for Olympus, Nikon, Zeiss, and Leica Microscope Lightports
- ±0.1 nm Wavelength Stability, ±1.5% Power Stability
- Three Factory Configured Combinations
  - 455, 530, 590, and 627 nm
  - 405, 470, 530, and 617 nm
  - 505, 590, 617, and 660 nm

1.0 0.8 ≥ 385 nm 405 nm 455 nm Normal Intens 0.6 470 nm 505 nm 0.4 530 nm 590 nm 617 nm 02 627 nm 660 nm 0.0 350 400 450 550 500 600 650 Wavelength (nm)

Thorlabs' 4-Wavelength LED Source combines four LED beams into a single collimated emission beam. Together with the DC4100 4-Channel Driver (featrued on the next page), the DC4100 provides a versatile light source with rapid switching and modulation of individual LEDs. Compared to non-LED sources, the LED4C provides a higher signalto-noise ratio due to narrow bandwidth emission, simple operation without maintenance cycles, and no active cooling requirements. Microscope adapters are available and listed at the bottom of the page. For custom wavelength combinations, please contact Tech Support.

#### Available Wavelengths for 4-Wavelength LED Source

| Color      | Center Wavelength | Spectral Range   | Power  | Lifetime       |
|------------|-------------------|------------------|--------|----------------|
| UV         | 385 nm            | 380 - 390 nm     | 10 mW  | >500 Hours     |
| UV         | 405 nm            | 400 - 405 nm     | 130 mW | >100,000 Hours |
| Royal Blue | 455 nm            | 440 - 460 nm     | 40 mW  | >100,000 Hours |
| Blue       | 470 nm            | 460 - 490 nm     | 25 mW  | >100,000 Hours |
| Cyan       | 505 nm            | 530 - 520 nm     | 20 mW  | >100,000 Hours |
| Green      | 530 nm            | 520 - 550 nm     | 15 mW  | >100,000 Hours |
| Amber      | 590 nm            | 584.5 - 597 nm   | 25 mW  | >100,000 Hours |
| Orange     | 617 nm            | 613.5 - 620.5 nm | 30 mW  | >100,000 Hours |
| Red        | 627 nm            | 620.5 - 645 nm   | 40 mW  | >100,000 Hours |
| Deep Red   | 660 nm            | 658 - 670 nm     | 10 mW  | >100,000 Hours |

#### For other wavelength combinations, please contact Tech Support.

| ITEM#  | \$          | £          | €          | RMB         | DESCRIPTION                                  |
|--------|-------------|------------|------------|-------------|----------------------------------------------|
| LED4C1 | \$ 2,495.00 | £ 1,729.50 | € 2.215,00 | ¥ 21,068.00 | 4-Color LED Head (455, 530, 590, and 627 nm) |
| LED4C2 | \$ 2,495.00 | £ 1,729.50 | € 2.215,00 | ¥ 21,068.00 | 4-Color LED Head (405, 470, 530, and 617 nm) |
| LED4C3 | \$ 2,495.00 | £ 1,729.50 | € 2.215,00 | ¥ 21,068.00 | 4-Color LED Head (505, 590, 617, and 660 nm) |

### **LED4C Series of Microscope Adapters**

These adapters mate the LED4C Series of 4-Wavelength, High-Power LED Sources (featured above) to the illumination port of Olympus, Nikon, Zeiss, and Leica Microscopes.



| ITEM#  | \$          |   | £     |   | €     |   | RMB    | DESCRIPTION                                       |
|--------|-------------|---|-------|---|-------|---|--------|---------------------------------------------------|
| LED4A1 | \$<br>60.00 | £ | 41.60 | € | 53,30 | ¥ | 506.70 | LED4C Source Adapter, SM2 Thread to Olympus Mount |
| LED4A2 | \$<br>60.00 | £ | 41.60 | € | 53,30 | ¥ | 506.70 | LED4C Source Adapter, SM2 Thread to Leica Mount   |
| LED4A3 | \$<br>60.00 | £ | 41.60 | € | 53,30 | ¥ | 506.70 | LED4C Source Adapter, SM2 Thread to Nicon Eclipse |
| LED4A4 | \$<br>60.00 | £ | 41.60 | € | 53,30 | ¥ | 506.70 | LED4C Source Adapter, SM2 Thread to Zeiss Mount   |



### **4-Channel LED Driver**



Thorlabs' DC4100 is designed to drive our 4-Wavelength LED Source (LED4C, see previous page) or four individual high-power LEDs (MxxxL1 or LEDCx series). The LED current of each channel can be adjusted independently from 0 mA to 1000 mA or modulated simultaneously via an external voltage. The DC4100 controller is ideal for microscopy applications to drive up to four LEDs with adjustable intensity. The DC4100 has a compact housing with an easy-to-read backlit LCD display. It can operate in three modes:

- Constant Current Mode the LED current is kept constant at a preset current value. This mode is ideal for general illumination applications. LED current can be individually set for each LED.
- Brightness Mode Controls the LED current at a set percentage of the maximum current. This mode is optimal for fluorescence microscopy applications. LED current percentage can be individually set for each LED.
- **External Control Mode** Enables control of all LED currents via a single external trigger voltage (0 to 10 V). 1 V corresponds to an LED current of 100 mA. This mode allows customers to set custom modulation settings of the LED current. All activated LEDs are simultaneously controlled, but individual LEDs can be deactivated.



4-Wavelength LED Source (LED4C) with Driver (DC4100) Mounted on Olympus Microscope



#### Features

- Controls Thorlabs' 4-Wavelength LED4C Source or 4 Individual LEDs (Using DC4100-HUB)
- Ideal for Multi-Wavelength Fluorescence Imaging Applications
- Drives LED Currents up to 1 A with Modulation up to 100 kHz, Sine Wave
- Three Modes of Operation
  - Constant Current
  - Brightness
  - External Control



Back View

| ITEM#                              | DC4100                                |  |  |  |  |
|------------------------------------|---------------------------------------|--|--|--|--|
| Constant Current Mode              |                                       |  |  |  |  |
| LED Current Range                  | 0 - 1000 mA                           |  |  |  |  |
| LED Current Resolution             | 1 mA                                  |  |  |  |  |
| LED Current Accuracy               | ±10 mA                                |  |  |  |  |
| LED Forward Voltage                | 5 V                                   |  |  |  |  |
| Brightness Mode                    |                                       |  |  |  |  |
| LED Current Range                  | 1 - 100%                              |  |  |  |  |
| LED Current Resolution             | 0.1% (1 mA Min)                       |  |  |  |  |
| LED Current Accuracy               | ±10 mA                                |  |  |  |  |
| LED Forward Voltage                | 5 V                                   |  |  |  |  |
| External Control Mode              |                                       |  |  |  |  |
| Modulation                         | 0 - 100 kHz, Sine Wave                |  |  |  |  |
| Trigger Input                      | 0 - 10 V<br>1 V Corresponds to 100 mA |  |  |  |  |
| General                            |                                       |  |  |  |  |
| Operating Temperature*             | 0 to 40 °C                            |  |  |  |  |
| Storage Temperature                | -40 to 70 °C                          |  |  |  |  |
| Dimensions (W x H x D)             | 160 mm x 80 mm x 168 mm               |  |  |  |  |
| Warm-Up Time<br>for Rated Accuracy | 10 min                                |  |  |  |  |
| Weight                             | <1 kg                                 |  |  |  |  |

\*Non-Condensing

| ITEM#      | \$          | £          | €          | RMB         | DESCRIPTION                                   |
|------------|-------------|------------|------------|-------------|-----------------------------------------------|
| DC4100     | \$ 2,495.00 | £ 1,729.50 | € 2.215,00 | ¥ 21,068.00 | 4-Channel LED Driver, 1 A, 5 V                |
| DC4100-HUB | \$ 150.00   | £ 104.00   | € 133,20   | ¥ 1,266.70  | 4-Channel Hub for MxxxL and LEDCx Series LEDs |

THORLAES

## Light

CHAPTERS V

Covega

**Coherent Sources** 

**Drivers/Mounts** 

Accessories

Mounted LEDs

**ASE Sources** 

**Unmounted LEDs** 

SECTIONS V

**SLDs** 

Lamps

Incoherent Sources

### Light ▼ CHAPTERS

**Coherent Sources** 

**Incoherent Sources** 

Covega

#### **Drivers/Mounts**

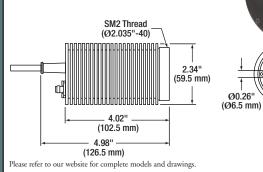
Accessories

### SECTIONS

**Mounted LEDs** 

**Unmounted LEDs** 

SLDs


**ASE Sources** 

Lamps

### LED Source: 10 MHz to 100 MHz Modulation (Page 1 of 2)

High-Power DC3100 Series Driver (Power Supply Included)





| Specifications           |                        |                                                            |                     |               |  |  |
|--------------------------|------------------------|------------------------------------------------------------|---------------------|---------------|--|--|
| LED Current              |                        | 0 to 1 A                                                   |                     |               |  |  |
| Internal Modulation Mode |                        |                                                            |                     |               |  |  |
| Modulation Freq          | uency                  | 10 -                                                       | 100 MHz in 0        | .1 MHz Steps* |  |  |
| Modulation Dep           |                        | 0 to 10                                                    | 0%                  |               |  |  |
| Trigger Output           |                        | Sine Wave                                                  |                     |               |  |  |
| External Modulation Mode |                        |                                                            |                     |               |  |  |
| Drive Voltage            | 0 to 10 V (1 V/100 mA) |                                                            |                     |               |  |  |
| Modulation               |                        | Arbitrary                                                  |                     |               |  |  |
| Modulation Frequency     |                        | 0 to 100 kHz (Sine Wave)                                   |                     |               |  |  |
| Mechanical               |                        |                                                            |                     |               |  |  |
| LED Mounting**           |                        | Compatible with Standard Star-<br>Shaped PCB-Packaged LEDs |                     |               |  |  |
| *LED dependant           | **LED i                | s delivered                                                | mounted in housing. |               |  |  |
| ITEM# \$                 |                        |                                                            | £                   | €             |  |  |

#### **3 Operation Modes**

- Internal Modulation Mode for FLIM Applications
- External Trigger Mode for Non-FLIM Applications
- Constant Current Mode for Visual Inspection

Thorlabs' new DC3100 series of Modulated LED Sources are designed for applications that benefit from modulated, highbrightness LED sources, such as frequency-domain Fluorescence Lifetime Imaging Microscopy (FLIM). FLIM is an imaging technology that utilizes the lifetime of the fluorophore signal to create an image. Using this technique, one can distinguish dyes,

even those that fluoresce at the same wavelength, and indirectly measure biomolecular concentrations. This technique is also beneficial for imaging applications in which the

excitation wavelength is close to the emission wavelength.

These compact LED sources enable the aforementioned measurements. They include a highcurrent, high-power LED driver with three operation modes, an LED head with modulating electronics that are designed for high-brightness LEDs with high thermal dissipation, and the LED itself. There are four standard wavelengths available: 365 nm, 405 nm, 470 nm, and 630 nm. Other wavelengths are available upon request. The DC3100 can be remotely operated via USB2.0 by the included software package with an intuitive GUI and an extensive driver set.

| ITEM#      | Center Peak | I (Max) | Cutoff Frequency |
|------------|-------------|---------|------------------|
| DC3100-365 | 365 nm      | 700 mA  | 90 MHz           |
| DC3100-405 | 405 nm      | 1000 mA | 95 MHz           |
| DC3100-470 | 470 nm      | 1000 mA | 80 MHz           |
| DC3100-630 | 630 nm      | 1000 mA | 70 MHz           |



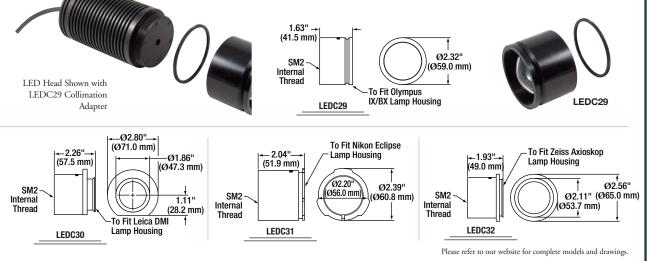
LED Head shown with Leica DMI Collimation Adapter (Collimation Adapter Sold Separately, see Following Page)

| LED dependant | LED is derivered mounted in nousing. |            |            |             |                                                 |  |  |
|---------------|--------------------------------------|------------|------------|-------------|-------------------------------------------------|--|--|
| ITEM#         | \$                                   | £          | €          | RMB         | DESCRIPTION                                     |  |  |
| DC3100-365    | \$ 1,950.00                          | £ 1,352.00 | € 1.731,00 | ¥ 16,466.00 | Modulated LED Source for FLIM with Head, 365 nm |  |  |
| DC3100-405    | \$ 1,650.00                          | £ 1,144.00 | € 1.465,00 | ¥ 13,933.00 | Modulated LED Source for FLIM with Head, 405 nm |  |  |
| DC3100-470    | \$ 1,650.00                          | £ 1,144.00 | € 1.465,00 | ¥ 13,933.00 | Modulated LED Source for FLIM with Head, 470 nm |  |  |
| DC3100-630    | \$ 1,650.00                          | £ 1,144.00 | € 1.465,00 | ¥ 13,933.00 | Modulated LED Source for FLIM with Head, 630 nm |  |  |

### LED Source: 10 MHz to 100 MHz Modulation (Page 2 of 2)

#### Frequency-Domain FLIM

FLIM (Fluorescence Lifetime Imaging Microscopy) is an imaging technology that utilizes the exponential fluorescence decay rate from a fluorescent sample; it is used with confocal microscopy, two-photon microscopy, and other microscope systems. The image in FLIM is based on the lifetime of the fluorophore signal rather than its intensity, which minimizes photon scattering in thick sample layers.


As an alternative to Time-Domain FLIM, where the decay time of single excitation pulses is measured, Frequency-Domain FLIM (FD-FLIM) determines the fluorescence lifetimes two ways: 1) by measuring the phase delay between the fluorescent and excitation signals and 2) by using the modulation ratio (defined in the diagram

Excitation Emission b/B a/A m=  $\tau_{\phi} = \frac{1}{\omega} \tan \phi$ 

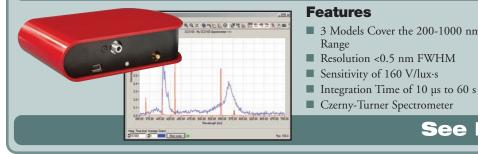
to the right). In FD-FLIM the intensity of the light source is continuously modulated at high frequency. The phase delay of the fluorescence signal with respect to the excitation signal is due to the lifetime of the excited state, and is reduced in amplitude.

### Microscope Adapters for Collimation of FLIM LEDs

Four collimating lens housings are offered that adapt our DC3100 series of LED mounting heads directly to the illumination ports on the Olympus IX/BX (LEDC29), Leica DMI (LEDC30), Nikon Eclipse (LEDC31), or Zeiss Axioskop (LEDC32) microscopes. They collimate the light emitted by the LED modules. To switch between LED sources, simply unscrew the LED housing and replace it with an alternative housing.



## NEW


| ITEM#  | \$        | £        | €        | RMB        | DESCRIPTION                                                           |
|--------|-----------|----------|----------|------------|-----------------------------------------------------------------------|
| LEDC29 | \$ 175.70 | £ 121.80 | € 156,00 | ¥ 1,483.70 | Accessory for Modulated FLIM LEDs, Olympus IX/BX Port                 |
| LEDC30 | \$ 175.70 | £ 121.80 | € 156,00 | ¥ 1,483.70 | Accessory for Modulated FLIM LEDs, Leica DMI Port                     |
| LEDC31 | \$ 218.60 | £ 151.60 | € 194,10 | ¥ 1,845.90 | Accessory for Modulated FLIM LEDs, Nikon Eclipse (Bayonet Mount) Port |
| LEDC32 | \$ 175.70 | £ 121.80 | € 156,00 | ¥ 1,483.70 | Accessory for Modulated FLIM LEDs, Zeiss Axioskop Port                |

Range

3 Models Cover the 200-1000 nm

### **Compact CCD Spectrometers**





## **Incoherent Sources** Covega **Drivers/Mounts** Accessories SECTIONS V Mounted LEDs **Unmounted LEDs SLDs ASE Sources** Lamps

#### TECHNOLOGY V

**Coherent Sources** 

### Light

CHAPTERS V

30 mm x 120 mm x 80 mm

High-Speed USB Connection

16-Bit A/D Converter

3,648 Pixel CCD Line Array

External Trigger Synchronization

Footprint

See Pages 1310-1311

### Light

### ▼ CHAPTERS

**Coherent Sources** 

### **Incoherent Sources**

Covega

#### **Drivers/Mounts**

Accessories

### **V** SECTIONS **Mounted LEDs**

**Unmounted LEDs** 

SLDs

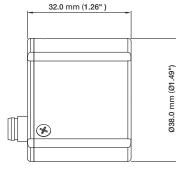
**ASE Sources** 

Lamps

### LED Array Light Source (Page 1 of 2)

The LIU series of LED light sources are available in red, blue, green, or white LED arrays. Conveniently mounted in a 1.5" outer diameter housing, these light sources can be used for a variety of applications. The housing can be readily secured into most optical mounts used in camera illumination units.

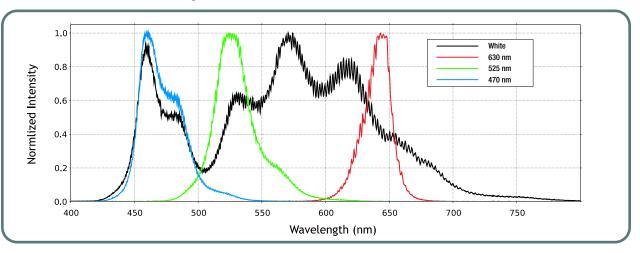
Each LED array light source unit consists of 20 individual LEDs that are mounted in an array on a printed circuit board. When operating with 100 mA of current, the red, green, and blue LED units have an output intensity of more than 600  $\mu$ W/cm<sup>2</sup>, while the white LED unit has an output intensity of greater than 1700 µW/cm<sup>2</sup>. These intensities were measured at a distance of 100 mm from the LED array along the central axis.




Power Cord not Included

#### Features




- Longer Lifetime than Traditional Light Sources
- LED Array Output can be Modulated
- Fits Many Commerical Camera Illumination Units
- Compatible with the 30 mm Cage System





| Pin | DESCRIPTION                  |
|-----|------------------------------|
| 1   | LED +Ve                      |
| 2   | Channel One Controller Input |
| 3   | Coded Input                  |
| 4   | Channel Two Controller Input |
|     |                              |

| ITEM#               | COLOR                | APROXIMATE CENTRAL<br>WAVELENGTH   | INTENSITY*              | MAX<br>CURRENT | MAX<br>VOLTAGE |
|---------------------|----------------------|------------------------------------|-------------------------|----------------|----------------|
| LIU001              | Red                  | 630 nm                             | 600 µW/cm <sup>2</sup>  | 120 A          | 24 V           |
| LIU002              | Green                | 525 nm                             | 600 μW/cm <sup>2</sup>  | 120 A          | 24 V           |
| LIU003              | Blue                 | 470 nm                             | 600 μW/cm <sup>2</sup>  | 120 A          | 24 V           |
| LIU004              | White                | White                              | 1700 µW/cm <sup>2</sup> | 120 A          | 24 V           |
| *When measured at a | distance of 100 mm f | rom the LED along the control axis |                         |                |                |



#### Liaht CHAPTERS V LED Array Light Source (Page 2 of 2) **Coherent Sources Incoherent Sources** The AD38 double-bored mounting ring holds an LIU series LED array in place with a single #8-32 setscrew. The outside of the ring is $\emptyset 2$ " so that it can mount inside many optical-mechanical AD38 Covega parts suitable for Ø2" components. Mounting Ring used with LED Arrays **Drivers/Mounts** Additional mounting options include two threaded holes on the rear of each housing, one M4 x 0.7 and one #8-32, as well as grooves running the length of the housing that allow the Accessories LED unit to be placed in a 30 mm cage system. The LED unit will be suspended by the cage rods, but not restrained from SECTIONS V moving along the optical axis of the cage system. To fix Mounted LEDs the position of the LED unit, sandwich it between two fixed cage elements. **Unmounted LEDs** SLDs LIU002 LED Array with LIU004 LED Array in a **ASE Sources** AD38 Mounting Ring 30 mm Cage System Application Secured in a KS2 Mount All Components Sold Separately on a TR Series Post Lamps All Components Sold Separately ITEM# RMB € DESCRIPTION \$ £ LIU001 114.00 \$ £ 79.10 € 101,30 ¥ 962.70 Red LED Array, 1.5" Outer Diameter Green LED Array, 1.5" Outer Diameter LIU002 \$ 114.00 £ 79.10 € 101,30 ¥ 962.70 LIU003 \$ 114.00 79.10 € 101,30 ¥ 962.70 Blue LED Array, 1.5" Outer Diameter £ LIU004 105,70 1,004.90 White LED Array, 1.5" Outer Diameter \$ 119.00 £ 82.50 € ¥ AD38 \$ 16.00 £ 11.10 € 14,30 ¥ 135.20 LED Mounting Ring LIU-PS 33.30 281.20 Power Supply for LED Array \$ 23.10 € 29,60 ¥ £

## Cage Systems

Thorlabs' Cage Assembly Systems provide a convenient way to construct large optomechanical systems with an established line of precision-machined building blocks designed for flexibility and accurate alignment.

#### Available Components Include:

- Kinematic Mounts
- Translation Stages
- Rotation Mounts
- Filter Wheel Mounts
- Cage Cubes

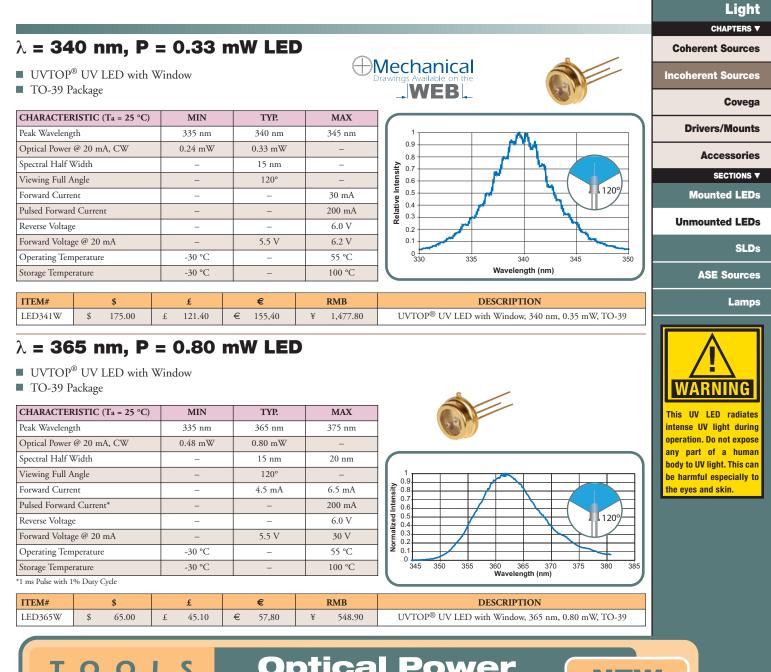
### See Pages 147-184

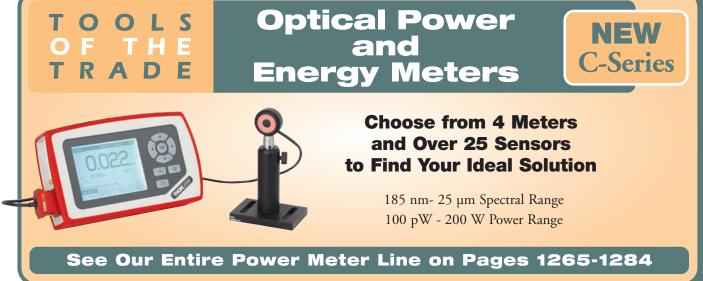






w6




### **Compact • Rigid • Accurate Alignment • Flexible**

TECHNOLOGY V

| Light                                               |                                                                                                                                                       |                                      |               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ▼ CHAPTERS                                          |                                                                                                                                                       |                                      |               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Coherent Sources                                    | λ <b>= 260 nr</b>                                                                                                                                     | -                                    | ) mW LEI      | כ                        | 00.360''<br>+ 00.200''⊢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Incoherent Sources                                  | <ul> <li>UVTOP<sup>®</sup> UV LE</li> <li>TO-39 Package</li> </ul>                                                                                    | D with Window                        |               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Covega                                              | CHARACTERISTIC (T                                                                                                                                     | a = 25 °C) MIN                       | TYP.          | MAX                      | 0.030"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Drivers/Mounts                                      | Peak Wavelength<br>Optical Power @ 20 mA,                                                                                                             | 255 nm                               | 260 nm        | 264 nm                   | 45° Anode Cathode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Accessories                                         | Spectral Half Width                                                                                                                                   | -                                    | 12 nm         | 15 nm                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| ▼ SECTIONS                                          | Viewing Full Angle                                                                                                                                    | _                                    | 120°          | -                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                     | Forward Current                                                                                                                                       | -                                    | -             | 30 mA                    | 0.9<br>0.7<br>0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| Mounted LEDs                                        | Pulsed Forward Current*                                                                                                                               | -                                    | -             | 200 mA                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Unmounted LEDs                                      | Reverse Voltage                                                                                                                                       | -                                    | -             | 6.0 V                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                     | Forward Voltage @ 20 m/                                                                                                                               |                                      | 6.5 V         | 8.0 V                    | <b>1 1 1 1 1 1 1 1 1 1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| SLDs                                                | Operating Temperature                                                                                                                                 | -30 °C                               | -             | 55 °C                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| ASE Sources                                         | Storage Temperature                                                                                                                                   | -30 °C                               | -             | 100 °C                   | 240 245 250 255 260 265 270 275 280<br>Wavelength (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| ASE Sources                                         | *1 ms Pulse with 1% Duty Cyc                                                                                                                          | e                                    |               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Lamps                                               | ITEM#                                                                                                                                                 | \$£                                  | €             | RMB                      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                                     | LED260W \$ 2                                                                                                                                          | £ 200.40                             | € 256,60      | ¥ 2,440.40               | UVTOP <sup>®</sup> UV LED with Window, 260 nm, 0.30 mW, TO-39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| <u>I</u><br>WARNING                                 | <ul> <li>λ = 285 nr</li> <li>UVTOP<sup>®</sup> UV LF</li> <li>TO-39 Package</li> </ul>                                                                | D with Window                        |               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| This UV LED radiates                                | CHARACTERISTIC (T                                                                                                                                     |                                      | TYP.          | MAX                      | 0.030"->                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| intense UV light during<br>operation. Do not expose | Peak Wavelength                                                                                                                                       | 280 nm                               |               | 290 nm                   | 45° Anode Cathode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| any part of a human                                 | Optical Power @ 20 mA,                                                                                                                                |                                      |               | -                        | 0.032"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| body to UV light. This can                          | Spectral Half Width                                                                                                                                   | -                                    | 12 nm<br>120° | 15 nm                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| be harmful especially to the eyes and skin.         | Viewing Full Angle<br>Forward Current                                                                                                                 | -                                    |               |                          | 0.9 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| the eyes and skin.                                  | Pulsed Forward Current*                                                                                                                               |                                      |               | 200 mA                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                     | Reverse Voltage                                                                                                                                       |                                      |               | 6.0 V                    | <b>1</b> 0.6<br><b>1</b> 0.5<br><b>1</b> 0.5<br><b>1</b> 120°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                                                     | Forward Voltage @ 20 m/                                                                                                                               |                                      | 6.5 V         | 7.0 V                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                     | Operating Temperature                                                                                                                                 | -30 °C                               |               | 55 °C                    | 0.3<br>0.2<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                     | Storage Temperature                                                                                                                                   | -30 °C                               | -             | 100 °C                   | 265 270 275 280 285 290 295 300 305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                                     | *1 ms Pulse with 1% Duty Cyc                                                                                                                          | e                                    |               |                          | Wavelength (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                     | ITEM#                                                                                                                                                 | £                                    | €             | DMD                      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                                     |                                                                                                                                                       | \$ £<br>82.00 £ 126.20               | € 161,60      | <b>RMB</b><br>¥ 1,536.90 | DESCRIPTION UVTOP <sup>®</sup> UV LED with Window, 285 nm, 0.80 mW, TO-39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                     |                                                                                                                                                       | 02.00 2 120.20                       | C 101,00      | 1 1,550.50               | 0 V 101 0 V EED with window, 209 mil, 0.00 m w, 10-59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                                     | <ul> <li>λ = <b>315</b> nr</li> <li>UVTOP<sup>®</sup> UV LF</li> <li>TO-39 Package</li> <li>CHARACTERISTIC (TARACTERISTIC (TARACTERISTIC))</li> </ul> | $\frac{1}{1000} = 25 ^{\circ}C)$ MIN | TYP.          | MAX                      | 0.030"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                     | Peak Wavelength                                                                                                                                       | 310 nm                               |               | 320 nm                   | 45° Anode Cathode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                     | Optical Power @ 20 mA,                                                                                                                                |                                      |               | -                        | 0.032" Alloue Callioue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                     | Spectral Half Width                                                                                                                                   | -                                    | 10 nm         | 20 nm                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                     | Viewing Full Angle                                                                                                                                    | -                                    | 120°          | -                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                     | Forward Current                                                                                                                                       | -                                    | -             | 30 mA                    | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.000000 |  |
|                                                     | Pulsed Forward Current*                                                                                                                               | -                                    | -             | 200 mA                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                     | Reverse Voltage                                                                                                                                       | -                                    | -<br>5.5 V    | 6.0 V<br>7.5 V           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                     | Forward Voltage @ 20 m/<br>Operating Temperature                                                                                                      |                                      |               | 7.5 V<br>55 °C           | <b>1</b> 200<br><b>1</b> 200<br><b>1</b> 200<br><b>1</b> 200<br><b>1</b> 200<br><b>1</b> 200<br><b>1</b> 200<br><b>1</b> 200<br><b>1</b> 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                                                     | Storage Temperature                                                                                                                                   | -30 °C                               | -30 °C –      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                     | *1 ms Pulse with 1% Duty Cyc                                                                                                                          |                                      | _             | 100 °C                   | 295 300 305 310 315 320 325 330 335<br>Wavelength (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                                     |                                                                                                                                                       |                                      |               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                     |                                                                                                                                                       | \$ £                                 | €             | RMB                      | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                                     | LED315W \$ 1                                                                                                                                          | 42.00 £ 98.50                        | € 126,10      | ¥ 1,199.10               | UVTOP® UV LED with Windo, 315 nm, 0.60 mW, TO-39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                                     |                                                                                                                                                       |                                      |               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |





TECHNOLOGY V

| • | TECH | INOL | OGY |
|---|------|------|-----|
|   |      | n o  |     |
|   |      |      |     |

### Light

### ▼ CHAPTERS

**Coherent Sources** 

#### Incoherent Sources

Covega

Drivers/Mounts

Accessories

▼ SECTIONS

Mounted LEDs

**Unmounted LEDs** 

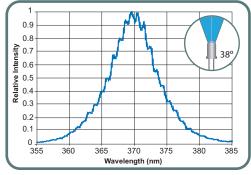
SLDs

**ASE Sources** 

Lamps



the eyes and skin.


This UV LED radiates intense UV light during operation. Do not expose any part of a human body to UV light. This can be harmful especially to

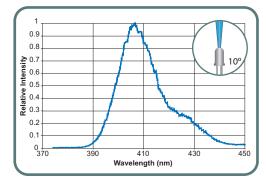


Epoxy Lens, 38° Viewing Full Angle
 T-1 3/4 Package

| CHARACTERISTIC ( $T_a = 25 \text{ °C}$ ) | MIN    | TYF      | 2. | MAX    |  |  |
|------------------------------------------|--------|----------|----|--------|--|--|
| Peak Wavelength                          | 365 nm | 375 n    | m  | 385 nm |  |  |
| Optical Power @ 20 mA, CW                | -      | 2.5 m    | W  | -      |  |  |
| Spectral Half Width                      | -      | 10 ni    | m  | -      |  |  |
| Viewing Full Angle                       | -      | 38°      |    | -      |  |  |
| Forward Current                          |        |          |    | 30 mA  |  |  |
| Pulsed Forward Current                   |        |          |    | -      |  |  |
| Reverse Voltage                          | -      |          |    | 3.0 V  |  |  |
| Forward Voltage @ 20 mA                  | -      | 3.5 V    |    | 4.3 V  |  |  |
| Operating Temperature                    | -30 °C | -30 °C – |    | 85 °C  |  |  |
| Storage Temperature                      | -30 °C | -        |    | 100 °C |  |  |






| ITEM#   | \$         |   | £    | € |      | RMB |       | DESCRIPTION                                |  |  |
|---------|------------|---|------|---|------|-----|-------|--------------------------------------------|--|--|
| LED370E | \$<br>4.40 | £ | 3.05 | € | 4,00 | ¥   | 37.20 | Epoxy Encased LED, 375 nm, 2.5 mW, T-1 3/4 |  |  |
|         |            |   |      |   |      |     |       |                                            |  |  |

### $\lambda$ = 405 nm, P = 6.0 mW LED

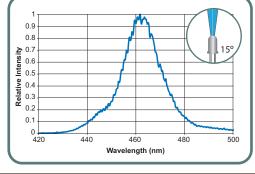
Epoxy Lens, 10° Viewing Full Angle
 T-1 3/4 Package

| CHARACTERISTIC ( $T_a = 25 \text{ °C}$ ) | MIN    | TYP.   | MAX    |
|------------------------------------------|--------|--------|--------|
| Peak Wavelength                          | 395 nm | 405 nm | 415 nm |
| Optical Power @ 20 mA, CW                | _      | 6.0 mW | 10 mW  |
| Spectral Half Width                      | _      | 15 nm  | -      |
| Viewing Full Angle                       | _      | 10°    | -      |
| Forward Current                          | _      | -      | 30 mA  |
| Pulsed Forward Current                   | _      | -      | -      |
| Reverse Voltage                          | -      | -      | 5.0 V  |
| Forward Voltage @ 20 mA                  | -      | 3.8 V  | 4.3 V  |
| Operating Temperature                    | -30 °C | _      | 85 °C  |
| Storage Temperature                      | -30 °C | _      | 100 °C |

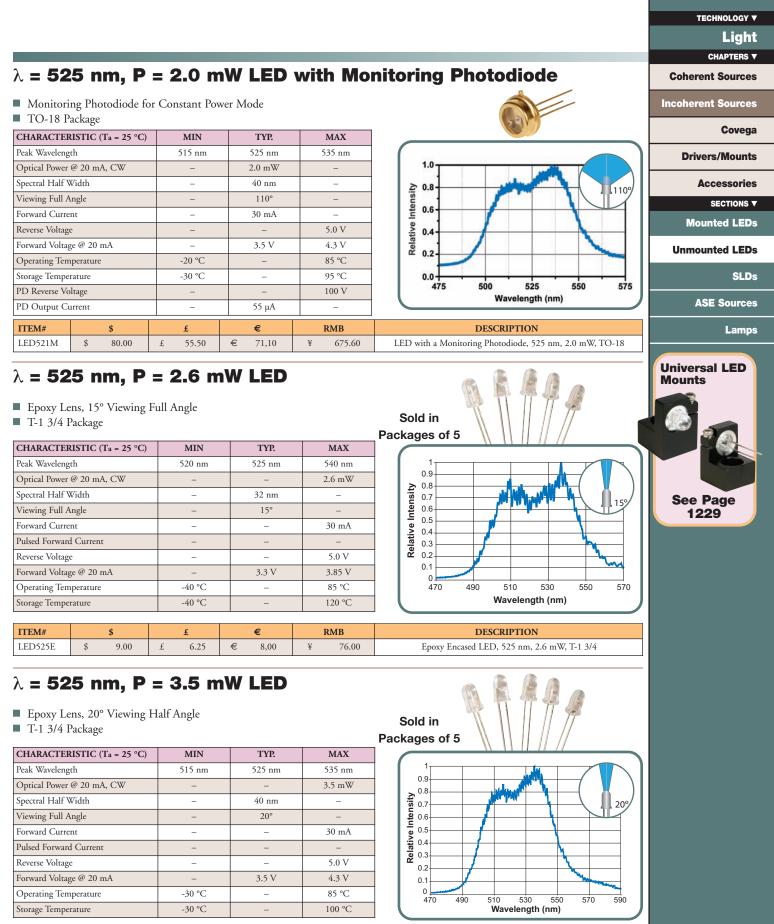




| ITEM#   | \$          |   | £     | € |       | RMB |        | DESCRIPTION                                |
|---------|-------------|---|-------|---|-------|-----|--------|--------------------------------------------|
| LED405E | \$<br>14.50 | £ | 10.05 | € | 12,90 | ¥   | 122.50 | Epoxy Encased LED, 405 nm, 6.0 mW, T-1 3/4 |


### $\lambda$ = 470 nm, P = 8.5 mW LED

Epoxy Lens, 15° Viewing Full Angle


■ T-1 3/4 Package

| CHARACTERISTIC ( $T_a = 25 \text{ °C}$ ) |   | MIN           | TYI   | 2 | MAX    |
|------------------------------------------|---|---------------|-------|---|--------|
| Peak Wavelength                          |   | 460 nm 470 nm |       |   | 480 nm |
| Optical Power @ 20 mA, CW                |   | -             | -     |   | 8.5 mW |
| Spectral Half Width                      |   | -             | 23 ni | m | -      |
| Viewing Full Angle                       |   | – 15°         |       |   | -      |
| Forward Current                          |   |               |       |   | 30 mA  |
| Pulsed Forward Current                   |   |               |       |   | 100 mA |
| Reverse Voltage                          |   |               |       |   | 5.0 V  |
| Forward Voltage @ 20 mA                  |   | -             | 3.2   | V | 3.85 V |
| Operating Temperature                    |   | -40 °C –      |       |   | 85 °C  |
| Storage Temperature                      |   | -40 °C        | -     |   | 120 °C |
|                                          |   |               |       |   |        |
|                                          | 6 |               | ~     |   | DICD   |

Sold in Packages of 5



| ITEM#   | \$         |   | £    |   | €    |   | RMB   | DESCRIPTION                                         |
|---------|------------|---|------|---|------|---|-------|-----------------------------------------------------|
| LED470E | \$<br>9.00 | £ | 6.25 | € | 8,00 | ¥ | 76.00 | Epoxy Encased LED, 470 nm, 8.5 mW, T-1 3/4 (Qty. 5) |



 ITEM#
 \$
 £
 RMB
 DESCRIPTION

 LED528E
 \$
 15.00
 £
 10.40
 €
 13,40
 ¥
 126.70
 Epoxy Encased LED, 525 nm, 3.5 mW, T-1 3/4

THORLADS

www.thorlabs.com

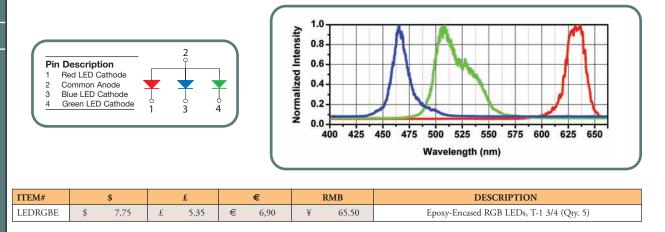
### Light

#### ▼ CHAPTERS

#### **Coherent Sources**

### RGB, P = 5.8 mW, 3.1 mW, and 6.2 mW LED

| Incoherent Sources | CHARACTERISTIC (Ta = 25 °C) | MIN (R,G, & B) | TYP. (R,G, & B) | MAX (R,G, & B) |  |
|--------------------|-----------------------------|----------------|-----------------|----------------|--|
| 0                  | Peak Wavelength             | 620/515/460 nm | _               | 635/535/475 nm |  |
| Covega             | Optical Power @ 20 mA, CW   | -              | 5.8/3.1/6.2 mW  | -              |  |
| Drivers/Mounts     | Spectral Half Width         | 8.0 nm         | 10.0 nm         | 8.0 nm         |  |
|                    | Viewing Full Angle          | -              | 12.5°           | -              |  |
| Accessories        | Forward Current             | -              | -               | 50 mA          |  |
| ▼ SECTIONS         | Pulsed Forward Current      | -              | -               | 100 mA         |  |
|                    | Reverse Voltage             | -              | -               | 5.0 V          |  |
| Mounted LEDs       | Forward Voltage @ 20 mA     | 1.7/2.8/2.8 V  | -               | 2.4/3.6/3.6 V  |  |
| Unmounted LEDs     | Operating Temperature       | -40 °C         | -               | 95 ℃           |  |
|                    | Storage Temperature         | -40 °C         | -               | 100 °C         |  |


- Red, Green, and Blue LEDs Packaged Together (Can be Operated Separately)
- Epoxy Lens, 12.5° Viewing Half Angle
- T-1 3/4 Package



SLDs

**ASE Sources** 

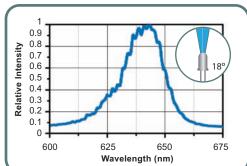
Lamps



## **4-Wavelength, High-Power LED Source**

- 4-Wavelength Source
- Precisely Defined Spectral Range
- Fast Switching and Intensity Adjustments via LED Current Settings
- High Emission Stability and Reproducibility
- High Thermal and Mechanical Stability

- Long Life-Time Lightsource
- Three Preselected Combinations of 4 LED Wavelengths
  - LED4C1: 455, 530, 590, and 627 nm
  - LED4C2: 405, 470, 530, and 617 nm
  - LED4C3: 505, 590, 617, and 660 nm
- Adapter for Olympus, Nikon, Zeiss, and Leica Microscope Lightports Included



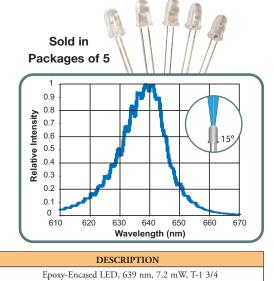



www.thorlabs.com

| ▼ TECHNOLOGY       |                             |                                            |            |           |      |       |          |                                                     |
|--------------------|-----------------------------|--------------------------------------------|------------|-----------|------|-------|----------|-----------------------------------------------------|
| Light              |                             |                                            |            |           |      |       |          |                                                     |
| ▼ CHAPTERS         |                             |                                            |            |           |      |       |          |                                                     |
| Coherent Sources   | λ = 59                      | 90 nm,                                     | <b>P</b> : | = 2.0 m   | hW L | ED    |          |                                                     |
| Incoherent Sources |                             | ens, 20° View                              | ing F      | ull Angle |      |       |          | Sold in                                             |
| Covega             | T-1 3/4                     | 0                                          |            |           |      |       |          | Packages of 5                                       |
| Drivers/Mounts     |                             | RISTIC (Ta = 25                            | °C)        | MIN       |      | YP.   | MAX      |                                                     |
| Differs/mounts     | Peak Waveleng               | 5                                          |            | 580 nm    |      | 0 nm  | 600 nm   |                                                     |
| Accessories        | Optical Power @ 20 mA, CW   |                                            |            | -         | 2.0  | mW    | -        | 20°                                                 |
| ▼ SECTIONS         | Spectral Half Width         |                                            |            | -         | 20   | ) nm  | -        |                                                     |
|                    | Pulsed Forward Current      |                                            |            | -         | 2    | 20°   | -        |                                                     |
| Mounted LEDs       |                             |                                            |            | -         |      | -     | 50 mA    |                                                     |
| Unmounted LEDs     |                             |                                            |            | -         |      | -     | 140 mA   |                                                     |
| Unnounted LEDS     |                             |                                            | -          |           | -    | 5.0 V |          |                                                     |
| SLDs               | Forward Volta               | 0                                          |            | -         | 2.   | 2 V   | 2.6 V    |                                                     |
|                    | Operating Ten               | nperature                                  |            | -25 °C    |      | -     | 85 °C    | 570 580 590 600 610 620<br>Wavelength (nm)          |
| ASE Sources        | Storage Tempe               | erature                                    |            | -25 °C    |      | -     | 100 °C   | wavelength (nin)                                    |
| Lamps              | ITEM#                       | \$                                         |            | £         | €    |       | RMB      | DESCRIPTION                                         |
| -                  | LED591E                     | \$ 18.00                                   | )          | £ 12.50   | € 10 | 5,00  | ¥ 152.00 | Epoxy-Encased LED, 590 nm, 2.0 mW, T-1 3/4 (Qty. 5) |
| LED Sockets        |                             | <b>85 nm,</b><br>ens, 18° View.<br>Package |            |           | NW L | ED    |          |                                                     |
| - 60               | CHARACTERISTIC (Ta = 25 °C) |                                            |            |           |      | YP.   | MAX      |                                                     |
| 00                 | Peak Waveleng               | gth                                        |            | 625 nm    | 63   | 5 nm  | 645 nm   |                                                     |
| See Page           | Optical Power               | @ 20 mA, CW                                |            | -         | 4.0  | mW    | -        | 💆 0.7 -                                             |
| 381                | Spectral Half               | Width                                      |            | -         | 10   | ) nm  | -        |                                                     |
|                    | Viewing Full A              | Angle                                      |            | _         | 1    | l8°   | _        |                                                     |

| Peak Wavelength           | 625 nm | 635 nm | 645 nm |
|---------------------------|--------|--------|--------|
| Optical Power @ 20 mA, CW | -      | 4.0 mW | -      |
| Spectral Half Width       | -      | 10 nm  | -      |
| Viewing Full Angle        | -      | 18°    | -      |
| Forward Current           | -      | -      | 50 mA  |
| Reverse Voltage           | -      | -      | 5.0 V  |
| Forward Voltage @ 20 mA   | -      | 2.2 V  | 2.6 V  |
| Operating Temperature     | -30 °C | -      | 85 °C  |
| Storage Temperature       | -30 °C | -      | 100 °C |

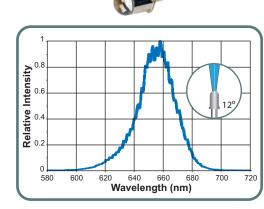



| ITEM#   | \$         | £ |      | €        |  | RMB   |                                            | DESCRIPTION |  |  |
|---------|------------|---|------|----------|--|-------|--------------------------------------------|-------------|--|--|
| LED631E | \$<br>3.00 | £ | 2.10 | € 2,70 ¥ |  | 25.40 | Epoxy-Encased LED, 635 nm, 4.0 mW, T-1 3/4 |             |  |  |

### $\lambda$ = 639 nm, P = 7.2 mW LED

Epoxy Lens, 15° Viewing Half Angle

■ T-1 3/4 Package


| CHARACTER       | RISTIC (Ta = 25 °C) |   | MIN    |   |     | TYP.   |   |        | MAX    |  |
|-----------------|---------------------|---|--------|---|-----|--------|---|--------|--------|--|
| Peak Waveleng   | th                  |   | 629 nm |   |     | 639 nm | T | 649 nm |        |  |
| Optical Power   | @ 20 mA, CW         |   | _      |   |     | 7.2 mW |   |        | -      |  |
| Spectral Half W | √idth               |   | -      |   |     | 17 nm  |   |        | _      |  |
| Viewing Full A  | ngle                |   | _      |   | 15° |        |   | -      |        |  |
| Forward Curre   | nt                  |   | _      |   |     | -      |   |        | 50 mA  |  |
| Pulsed Forward  | l Current           |   | -      |   | -   |        |   | 1      | 00 mA  |  |
| Reverse Voltage | 2                   |   | -      |   |     | -      |   |        | 5.0 V  |  |
| Forward Voltag  | ge @ 20 mA          |   | -      |   |     | 2.0 V  |   |        | 2.5 V  |  |
| Operating Tem   | perature            |   | -40 °C |   |     | -      |   |        | 100 °C |  |
| Storage Temper  | rature              |   | -40 °C |   |     | -      |   | 120 °C |        |  |
| ITEM#           | \$                  |   | £      |   |     | €      |   | F      | MB     |  |
| LED630E         | \$ 6.00             | £ | 4.15   | - |     |        |   | ¥      | 50.70  |  |

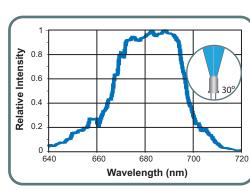


## $\lambda$ = 655 nm, P = 1.7 mW LED

- Glass Lens, 12° Viewing Full Angle
- TO-18 Package

| CHARACTERISTIC (Ta = 25 °C) | MIN    | TYP.   | MAX    |
|-----------------------------|--------|--------|--------|
| Peak Wavelength             | 645 nm | 655 nm | 665 nm |
| Optical Power @ 20 mA, CW   | -      | 1.7 mW | -      |
| Spectral Half Width         | -      | 20 nm  | -      |
| Viewing Full Angle          | -      | 12°    | -      |
| Forward Current             | -      | -      | 50 mA  |
| Pulsed Forward Current*     | -      | -      | 75 mA  |
| Reverse Voltage             | -      | -      | 5.0 V  |
| Forward Voltage @ 20 mA     | -      | 1.9 V  | 2.2 V  |
| Operating Temperature       | -30 °C | -      | 85 °C  |
| Storage Temperature         | -30 °C | -      | 100 °C |




\*1 ms Pulse with 1% Duty Cycle

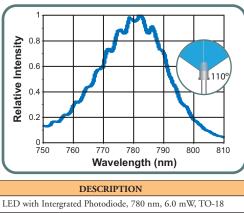
| ITEM#   | \$£ |      | £ |      | € | RMB  |   | DESCRIPTION |                                            |
|---------|-----|------|---|------|---|------|---|-------------|--------------------------------------------|
| LED661L | \$  | 4.25 | £ | 2.95 | € | 3,80 | ¥ | 35.90       | LED with Glass Lens, 655 nm, 1.7 mW, TO-18 |

### $\lambda$ = 670 nm, P = 0.45 mW LED

- Glass Window, 30° Viewing Full Angle
- TO-18 Package

| CHARACTERISTIC (Ta = 25 °C) | MIN    | TYP.    | MAX    |
|-----------------------------|--------|---------|--------|
| Peak Wavelength             | 650 nm | 670 nm  | 700 nm |
| Optical Power @ 20 mA, CW   | -      | 0.45 mW | -      |
| Spectral Half Width         | -      | 20 nm   | -      |
| Viewing Full Angle          | -      | 30°     | -      |
| Forward Current             | -      | -       | 60 mA  |
| Pulsed Forward Current      | -      | -       | 500 mA |
| Reverse Voltage             | -      | -       | 3.0 V  |
| Forward Voltage @ 20 mA     | -      | 1.9 V   | 2.2 V  |
| Operating Temperature       | -30 °C | -       | 85 °C  |
| Storage Temperature         | -40 °C | -       | 100 °C |
| Rise/Fall Time              | -      | 60 ns   | 100 ns |




| ITEM#   | \$         | £ |      | € |      | RMB |       | DESCRIPTION                                   |  |
|---------|------------|---|------|---|------|-----|-------|-----------------------------------------------|--|
| LED661W | \$<br>3.75 | £ | 2.60 | € | 3,40 | ¥   | 31.70 | LED with Glass Window, 670 nm, 0.45 mW, TO-18 |  |

 $\lambda$  = 780 nm, P = 6.0 mW LED

- LED with Integrated Photodiode
- TO-18 Package

THORLAES

| CHARACTER       | RISTIC (Ta = 25 °C) | MIN     | TYP.     | MAX      |               |
|-----------------|---------------------|---------|----------|----------|---------------|
| Peak Waveleng   | th                  | 765 nm  | 780 nm   | 795 nm   |               |
| Optical Power   | @ 20 mA, CW         | 3 mW    | 6 mW     | -        |               |
| Spectral Half V | Width               | -       | 35 nm    | -        | ہ <u>ت</u> ج  |
| Viewing Full A  | Ingle               | -       | 110°     | -        | 0<br>0<br>0   |
| Forward Curre   | nt                  | -       | -        | 100 mA   |               |
| Pulsed Forward  | d Current           | -       | -        | 500 mA   | o<br>Relative |
| Reverse Voltag  | e                   | -       | _        | 5.0 V    | lati          |
| Forward Voltag  | ge @ 20 mA          | -       | 1.7 V    | 2.0 V    | <u></u> ଅଧି   |
| Operating Ten   | nperature           | -20 °C  | -        | 85 °C    |               |
| Storage Tempe   | rature              | -30 °C  | -        | 100 °C   | 1             |
| Rise/Fall Time  |                     | -       | 60/40 ns | -        |               |
| ITEM#           | \$                  | £       | €        | RMB      |               |
| LED781M         | \$ 72.00            | £ 50.00 | € 64,00  | ¥ 608.00 | LED wit       |
|                 |                     |         |          |          |               |



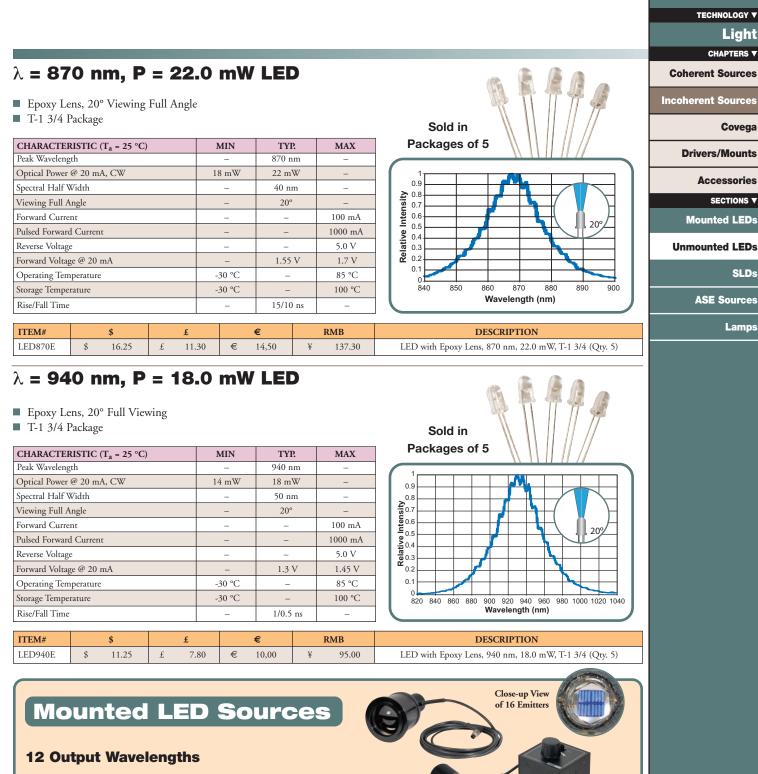
Covega Drivers/Mounts Accessories SECTIONS V Mounted LEDs Unmounted LEDs SLDs

ASE Sources

Lamps

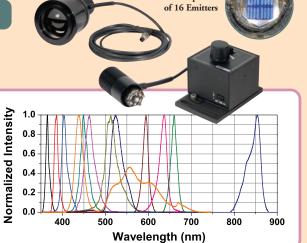





### Light

### CHAPTERS **V**

**Coherent Sources** 


**Incoherent Sources** 

| Light              |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |               |              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|--------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ▼ CHAPTERS         |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |               |              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Coherent Sources   |                                                 | 0 nm, P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            |               | V LE         | )                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Incoherent Sources | <ul> <li>Epoxy Le</li> <li>T-1 3/4 1</li> </ul> | ens, 20° Viewing<br>Package                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Full Angle | 2             |              |                   | $\mathbb{R}$ $\Pi$ $\Pi$ $\mathcal{T}$ $\mathcal{P}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Covega             | CHARACTERISTIC ( $T_a = 25 ^{\circ}C$ )         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | MIN           | TY           | P. MAX            | Sold in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Drivers/Mounts     | Peak Wavelength                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 770 nm        | 780 r        | ım 790 nm         | Packages of 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Accessories        | Optical Power<br>Spectral Half                  | @ 20 mA, CW<br>Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 13 mW         | 18 m<br>30 n |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ▼ SECTIONS         | Viewing Full A                                  | ngle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | -             | 200          | . –               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mounted LEDs       | Forward Curre                                   | nt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | -             | -            | 100 mA            | 20°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    | Pulsed Forward                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | -             | -            | 500 mA            | <b>U</b> 0.5 <b>O</b> 0.4 <b>O</b> 0. |
| Unmounted LEDs     | Reverse Voltag<br>Forward Volta                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | -             | 1.75         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SLDs               | Operating Ten                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | -30 °C        |              | 85 °C             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | Storage Tempe                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | -30 °C        | -            | 100 °C            | Wavelength (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ASE Sources        | Rise/Fall Time                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | -             | 80/80        | ) ns —            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lamps              | ITEM#                                           | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | £          |               | €            | RMB               | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                    | LED780E                                         | \$ 16.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | £ 11.      | .30 €         | 14,50        | ¥ 137.30          | Epoxy Lens LED, 780 nm, 18.0 mW, T-1 3/4 (Qty. 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    | ■ TO-18 P                                       | h Glass Window<br>ackage<br>USTIC (T <sub>a</sub> = 25 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | MIN TYP MAX   |              |                   | <pre></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                    | Peak Waveleng                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | )          | MIN<br>835 nm | 850 r        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                                 | @ 20 mA, CW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 5.0 mW        | 8.0 m        | - W -             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | Spectral Half                                   | Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | -             | 40 n         | m –               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | Viewing Full A                                  | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | -             | 110          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | Forward Curre                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | -             | -            | 100 mA            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | Pulsed Forward<br>Reverse Voltag                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | -             | -            | 1000 m.<br>5.0 V  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | Forward Voltag                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | _             | 1.55         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | Operating Ten                                   | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | -30 °C        | -            | 90 °C             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | Storage Tempe                                   | rature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | -30 °C        | -            | 100 °C            | 830 840 850 860 870<br>Wavelength (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    | Rise/Fall Time                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | -             | 30/25        | 25 ns –           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | ITEM#                                           | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | £          |               | €            | RMB               | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                    | LED851W                                         | \$ 3.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | £ 2.       | .65 €         | 3,40         | ¥ 32.10           | LED with Glass Window, 850 nm, 8.0 mW, TO-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    | λ = 85                                          | .0 mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |               |              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | Peak Waveleng                                   | Substitution of the second se |            | 835 nm        | 850 r        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                                 | @ 20 mA, CW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 11 mW         | 18 m         | W –               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | Spectral Half                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | -             | 40 n         |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | Viewing Full A                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | -             | 200          |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | Forward Current<br>Pulsed Forward Current       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | -             | -            | 100 mA<br>1000 m. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | Reverse Voltag                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | _             | -            | 5.0 V             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | Forward Volta                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | -             | 1.55         | V 1.7 V           | Realities 0.7<br>0.7<br>0.6<br>0.5<br>0.6<br>0.5<br>0.6<br>0.5<br>0.6<br>0.5<br>0.6<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    | Operating Temperature                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | -30 °C        |              |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | Storage Tempe                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | -30 °C        | -            | 100 °C            | 830 840 850 860 870<br>Wavelength (nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    | Rise/Fall Time                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | -             | 30/25        | ns –              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | ITEM#                                           | \$ 2.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | £          | 60 6          | €<br>3.40    | <b>RMB</b>        | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                    | LED851L                                         | \$ 3.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | £ 2.       | .60 €         | 3,40         | ¥ 31.70           | LED with Glass Lens, 850 nm, 18.0 mW, TO-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



- 365 nm, 350 mW
- 385 nm, 450 mW
  405 nm, 670 mW
- 455 nm, 730 mW
- 470 nm, 625 mW
- 505 nm, 420 mW
- 530 nm, 275 mW
  590 nm, 34 mW
- 633 nm, 500 mW
- 660 nm, 850 mW
- 850 nm, 400 mW
- White, 500 mW

### **Selection Starts on Page 1092**



#### Light ▼ CHAPTERS $\lambda$ = 1050 nm, P = 2.5 mW LED Epoxy Lens, 30° Viewing Full Angle **Coherent Sources** T-1 3/4 Package **Incoherent Sources** CHARACTERISTIC (T<sub>a</sub> = 25 °C) MIN TYP. MAX LED1050E Spectral Distribution Covega 1 1050 nm 1000 nm 1100 nm Peak Wavelength Optical Power @ 20 mA, CW 1.0 mW 2.5 mW **Drivers/Mounts** 0.8 Spectral Half Width 55 nm \_ Relative Intensity 9.0 9.0 9.0 9.0 Viewing Full Angle Accessories 30° Forward Current 100 mA ▼ SECTIONS 30 Pulsed Forward Current 500 mA \_ **Mounted LEDs** Reverse Voltage 5.0 V \_ Forward Voltage @ 20 mA 1.25 V 1.55 V \_ **Unmounted LEDs** 0.2 Operating Temperature -30 °C 85 °C \_ Storage Temperature -30 °C \_ 100 °C SLDs 0 Rise/Fall Time 10 ns \_ 1150 1000 1050 1100 950 **ASE Sources** Wavelength (nm) ITEM# Lamps € RMB DESCRIPTION \$ LED1050E \$ 14.25 £ 9.90 € 12,70 ¥ 120.40 LED with Epoxy Lens, 1050 nm, 2.5 mW, T-1 3/4 $\lambda$ = 1200 nm, P = 2.5 mW LED Epoxy Lens, 30° Viewing Full Angle T-1 3/4 Package -alle CHARACTERISTIC ( $T_a = 25 \text{ °C}$ ) MIN TYP. MAX Peak Wavelength 1150 nm 1200 nm 1250 nm Optical Power @ 20 mA, CW 2.5 mW Spectral Half Width 100 nm LED1200E Spectral Distribution Viewing Full Angle 30° 8.0 ntensity Forward Current 100 mA Pulsed Forward Current 1000 mA Reverse Voltage \_ 50V 309 .4 0.4 Forward Voltage @ 20 mA 1.2 V 1.5 V **Relat** 0.2 Operating Temperature -30 °C 85 °C \_ Storage Temperature -30 °C \_ 100 °C 0 1150 1200 Wavelength (nm) 1100 1250 1300 1350 1050 Rise/Fall Time \_ 10 ns ITEM# DESCRIPTION \$ £ € **RMB** LED1200E \$ 14.50 £ 10.05 € 12,90 ¥ 122.50 LED with Epoxy Lens, 1200 nm, 2.5 mW, T-1 3/4 $\lambda$ = 1300 nm, P = 2.0 mW LED ■ Epoxy Lens, 30° Viewing Full Angle T-1 3/4 Package all of CHARACTERISTIC ( $T_a = 25 \ ^{\circ}C$ ) MIN TYP. MAX Peak Wavelength 1250 nm 1300 nm 1350 nm **LED1300E Spectral Distribution** Optical Power @ 20 mA, CW 2.0 mW Spectral Half Width 100 nm \_ \_ 0.8 Viewing Full Angle 30° \_ Relative Intensity Forward Current \_ \_ 100 mA 0.6 30 Pulsed Forward Current \_ \_ 1000 mA Reverse Voltage 5.0 V \_ \_ 0.4 Forward Voltage @ 20 mA 1.2 V 1.5 V 0.2 Operating Temperature -30 °C 85 °C Storage Temperature -30 °C 100 °C

| ITEM#    | \$          | £ |       | € RMB |       |   | DESCRIPTION |                                               |
|----------|-------------|---|-------|-------|-------|---|-------------|-----------------------------------------------|
| LED1300E | \$<br>16.25 | £ | 11.30 | €     | 14,50 | ¥ | 137.30      | LED with Epoxy Lens, 1300 nm, 2.0 mW, T-1 3/4 |

\_

10 ns

\_

1200

1250

1300

Wavelength (nm)

1350

Rise/Fall Time

1400

1122

▼ TECHNOLOGY

### $\lambda$ = 1450 nm, P = 2.0 mW LED

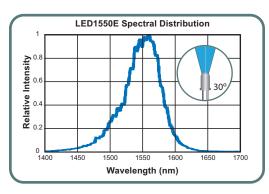
Epoxy Lens, 30° Viewing Full Angle

■ T-1 3/4 Package

8.0

LED1450E Spectral Di

| MIN     | TYP.        | MAX                                                                                                                                                                                                                                                                                                                                             |
|---------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1400 nm | 1450 nm     | 1500 nm                                                                                                                                                                                                                                                                                                                                         |
| -       | 2.0 mW      | -                                                                                                                                                                                                                                                                                                                                               |
| -       | 100 nm      | -                                                                                                                                                                                                                                                                                                                                               |
| -       | 30°         | -                                                                                                                                                                                                                                                                                                                                               |
| -       | _           | 100 mA                                                                                                                                                                                                                                                                                                                                          |
| -       | _           | 1000 mA                                                                                                                                                                                                                                                                                                                                         |
| -       | -           | 5.0 V                                                                                                                                                                                                                                                                                                                                           |
| -       | 1.2 V       | 1.5 V                                                                                                                                                                                                                                                                                                                                           |
| -30 °C  | -           | 85 °C                                                                                                                                                                                                                                                                                                                                           |
| -30 °C  | -           | 100 °C                                                                                                                                                                                                                                                                                                                                          |
| -       | 10/10 ns    | _                                                                                                                                                                                                                                                                                                                                               |
|         | 1400 nm<br> | 1400 nm         1450 nm           -         2.0 mW           -         100 nm           -         30°           -         -           -         -           -         -           -         -           -         -           -         -           -         -           -         1.2 V           -30 °C         -           -30 °C         - |




| ITEM#    | \$          |   | £     |   | €     | RMB |        | DESCRIPTION                                   |  |
|----------|-------------|---|-------|---|-------|-----|--------|-----------------------------------------------|--|
| LED1450E | \$<br>16.85 | £ | 11.70 | € | 15,00 | ¥   | 142.30 | LED with Epoxy Lens, 1450 nm, 2.0 mW, T-1 3/4 |  |

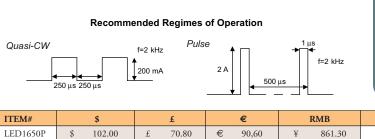
### $\lambda$ = 1550 nm, P = 2.0 mW LED

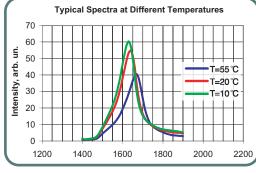
Epoxy Lens, 30° Viewing Full AngleT-1 3/4 Package

| CHARACTERISTIC (T <sub>a</sub> = 25 °C) | MIN     | TYP.     | MAX     |
|-----------------------------------------|---------|----------|---------|
| Peak Wavelength                         | 1500 nm | 1550 nm  | 1600 nm |
| Optical Power @ 20 mA, CW               | -       | 2.0 mW   | -       |
| Spectral Half Width                     | -       | 100 nm   | -       |
| Viewing Full Angle                      | -       | 30°      | -       |
| Forward Current                         | -       | -        | 100 mA  |
| Pulsed Forward Current                  | -       | -        | 1000 mA |
| Reverse Voltage                         | -       | -        | 5.0 V   |
| Forward Voltage @ 20 mA                 | -       | 1.2 V    | 1.5 V   |
| Operating Temperature                   | -30 °C  | _        | 85 °C   |
| Storage Temperature                     | -30 °C  | -        | 100 °C  |
| Rise/Fall Time                          | -       | 10/10 ns | -       |



| ITEM#    | \$          |   | £     | € |       | RMB |        | DESCRIPTION                                   |  |
|----------|-------------|---|-------|---|-------|-----|--------|-----------------------------------------------|--|
| LED1550E | \$<br>15.25 | £ | 10.55 | € | 13,60 | ¥   | 128.80 | LED with Epoxy Lens, 1550 nm, 2.0 mW, T-1 3/4 |  |


### $\lambda$ = 1650 nm, P = 0.9 mW LED


THORLAES

LED with Parabolic ReflectorTO-18R Package



| CHARACTERISTIC (T <sub>a</sub> = 25 °C) | MIN     | TYP.    | MAX     |
|-----------------------------------------|---------|---------|---------|
| Peak Wavelength                         | 1600 nm | 1650 nm | 1690 nm |
| Optical Power, (0.2 A Pulse)            | 0.7 mW  | 0.9 mW  | 1.1 mW  |
| Optical Power (2A Pulse)                | 15 mW   | 20 mW   | 25 mW   |
| Spectral Half Width                     | 100 nm  | 150 nm  | 200 nm  |
| Switching Time                          | 10 ns   | 30 ns   | 50 ns   |





DESCRIPTION

LED with Parabolic Reflector, 1650 nm, 0.9 mW, TO-18R

| stribution |  |
|------------|--|
|            |  |
|            |  |
|            |  |
| 30°        |  |
| 00         |  |

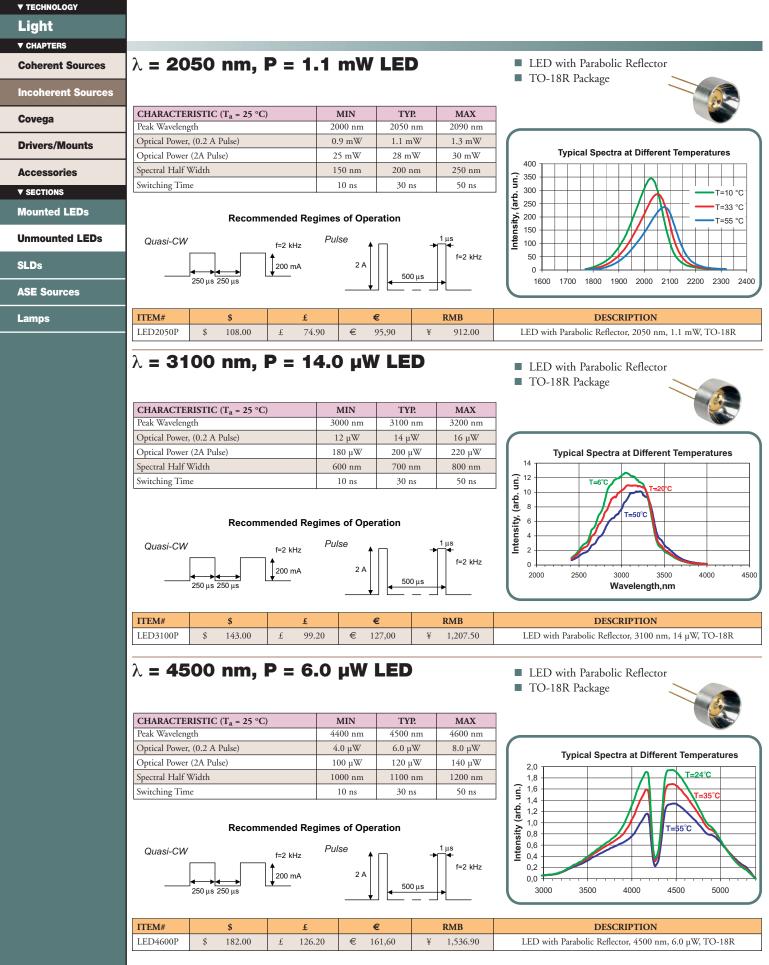
Mounted LEDs

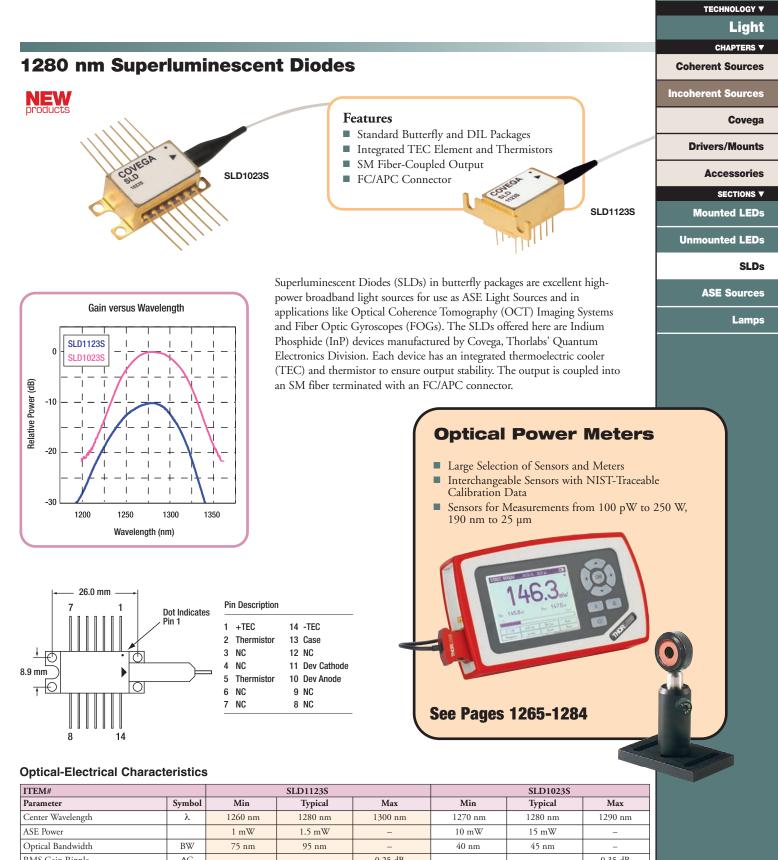
**Drivers/Mounts** 

Accessories

SECTIONS V

SLDs


ASE Sources


Lamps

**Coherent Sources** 

**Incoherent Sources** 

Covega





| KM3   | RMS Gain Ripple   |             | ΔΟ              | 1      | - |          |        | -        | 0.25 dB                                                            | - | -         | 0.35 dB |  |  |
|-------|-------------------|-------------|-----------------|--------|---|----------|--------|----------|--------------------------------------------------------------------|---|-----------|---------|--|--|
| Opera | Operating Current |             | I <sub>OI</sub> | ?      | - |          | 500 mA |          | 600 mA                                                             | _ | 600 mA    | 800 mA  |  |  |
| Forwa | Forward Voltage   |             | VF              | :      | - |          | 1.6 V  |          | 2.0 V                                                              | - | 1.4 V     | 2.0 V   |  |  |
|       |                   |             |                 |        |   |          |        |          |                                                                    |   |           |         |  |  |
| ITEN  | <b>M</b> #        | \$          |                 | £      |   | €        | R      | MB       |                                                                    |   | DESCRIPTI | ON      |  |  |
| SLD1  | 11235             | \$ 1,275.00 | £               | 883.90 | € | 1.132,00 | ¥ 10   | 0,767.00 | 1 mW, 75 nm Bandwidth SLD, CWL: 1280 nm, DIL Pkg, SM Fiber, FC/APC |   |           |         |  |  |

¥ 18,159.00

\$ 2,150.50 £ 1,491.00

€

1.909,00

SLD1023S

10 mW, 45 nm Bandwidth SLD, CWL: 1280 nm, Butterfly Pkg, SM Fiber, FC/APC

### Light

### ▼ CHAPTERS

**Coherent Sources** 

**Incoherent Sources** 

Covega

#### **Drivers/Mounts**

Accessories

▼ SECTIONS

**Mounted LEDs** 

#### **Unmounted LEDs**

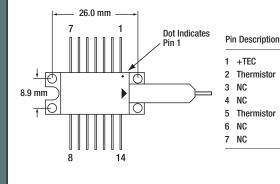
#### **SLD**s

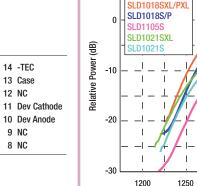
**ASE Sources** 

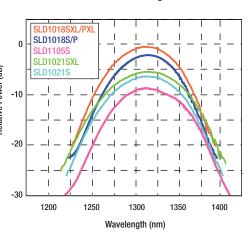
Lamps

### **1310 nm Superluminescent Diodes**

Superluminescent Diodes (SLDs) in butterfly packages are excellent high-power, broadband light sources for use as ASE Light Sources and in applications like Optical Coherence Tomography (OCT) Imaging Systems and Fiber Optic Gyroscopes (FOGs). The SLDs offered here are Indium Phosphide (InP) devices manufactured by Covega, Thorlabs' Quantum Electronics Division. Each device has an integrated thermoelectric cooler (TEC) and thermistor to ensure output stability. The output is coupled into an SM or PM fiber terminated with an FC/APC connector. Our SLDs are


#### Features


- Standard Butterfly and DIL Packages
- Integrated TEC Element and Thermistor
- SM or PM Fiber Coupled Output
- FC/APC Connector


available in standard or premium versions. The premium SLDs, denoted with the suffix XL, are hand picked to provide higher bandwidth and power.



SLD1021S SLD1105S







Gain versus Wavelength

#### Wide Bandwidth

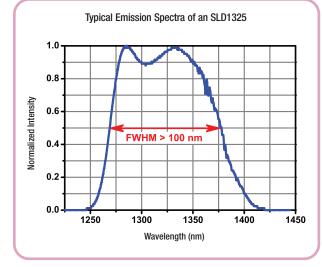
| ITEM#             |                 | SLD1021SX | L       |         | SLD1021S | _       | SLD1105S |         |         |         |
|-------------------|-----------------|-----------|---------|---------|----------|---------|----------|---------|---------|---------|
| Parameter         | Symbol          | Min       | Typical | Max     | Min      | Typical | Max      | Min     | Typical | Max     |
| Center Wavelength | λ               | 1290 nm   | 1310 nm | 1330 nm | 1290 nm  | -       | 1330 nm  | 1290 nm | 1310 nm | 1330 nm |
| ASE Power         |                 | 13.0 mW   | -       | -       | 10 mW    | 12.5 mW | -        | 5 mW    | 7 mW    | -       |
| Optical Bandwidth | BW              | 85 nm     | -       | -       | 80 nm    | 85 nm   | -        | 60 nm   | 65 nm   | -       |
| RMS Gain Ripple   | ΔG              | -         | 0.1 dB  | 0.35 dB | -        | 0.1 dB  | 0.35 dB  | -       | -       | 0.25 dB |
| Operating Current | I <sub>OP</sub> | -         | 700 mA  | 900 mA  | -        | 700 mA  | 900 mA   | -       | 500 mA  | 650 mA  |
| Forward Voltage   | V <sub>F</sub>  | -         | 1.55 V  | 1.8 V   | -        | 1.55 V  | 1.8 V    | -       | 1.3 V   | 2.0 V   |

#### **High Power**

| ITEM#             |                 | SLD     | 1018SXL/SLD101 | 8PXL    | SLD1018S/SLD1018P |         |         |  |
|-------------------|-----------------|---------|----------------|---------|-------------------|---------|---------|--|
| Parameter         | Symbol          | Min     | Typical        | Max     | Min               | Typical | Max     |  |
| Center Wavelength | λ               | 1290 nm | 1310 nm        | 1330 nm | 1290 nm           | 1310 nm | 1330 nm |  |
| ASE Power         |                 | 30 mW   | -              | -       | 22 mW             | 30 mW   | -       |  |
| Optical Bandwidth | BW              | 45 nm   | -              | -       | 40 nm             | 45 nm   | -       |  |
| RMS Gain Ripple   | ΔG              | _       | 0.1 dB         | 0.35 dB | -                 | 0.1 dB  | 0.35 dB |  |
| Operating Current | I <sub>OP</sub> | _       | 600 mA         | 800 mA  | -                 | 600 mA  | 800 mA  |  |
| Forward Voltage   | V <sub>F</sub>  | -       | 1.5 V          | 1.8 V   | _                 | 1.5 V   | 1.8 V   |  |

| ITEM#      | \$             |   | £        |   | €        |   | RMB       | DESCRIPTION                                                             |
|------------|----------------|---|----------|---|----------|---|-----------|-------------------------------------------------------------------------|
| SLD1105S   | \$<br>1,450.00 | £ | 1,005.00 | € | 1.287,50 | ¥ | 12,244.00 | Wide-Bandwidth 5 mW SLD, CWL: 1310 nm, DIL Pkg, SM Fiber, FC/APC        |
| SLD1021S   | \$<br>1,850.00 | £ | 1,282.50 | € | 1.642,50 | ¥ | 15,622.00 | Wide-Bandwidth 10 mW SLD, CWL: 1310 nm, Butterfly Pkg, SM Fiber, FC/APC |
| SLD1018S   | \$<br>2,150.00 | £ | 1,490.50 | € | 1.909,00 | ¥ | 18,155.00 | High-Power 22 mW SLD, CWL: 1310 nm, Butterfly Pkg, SM Fiber, FC/APC     |
| SLD1018P   | \$<br>2,300.00 | £ | 1,594.50 | € | 2.042,00 | ¥ | 19,422.00 | High-Power 22 mW SLD, CWL: 1310 nm, Butterfly Pkg, PM Fiber, FC/APC     |
| SLD1018SXL | \$<br>4,300.00 | £ | 2,981.00 | € | 3.817,50 | ¥ | 36,310.00 | High-Power 30 mW SLD, CWL: 1310 nm, Butterfly Pkg, SM Fiber, FC/APC     |
| SLD1018PXL | \$<br>4,600.00 | £ | 3,189.00 | € | 4.084,00 | ¥ | 38,843.00 | High-Power 30 mW SLD, CWL: 1310 nm, Butterfly Pkg, PM Fiber, FC/APC     |
| SLD1021SXL | \$<br>3,700.00 | £ | 2,565.00 | € | 3.285,00 | ¥ | 31,243.00 | High-Power 30 mW SLD, CWL: 1310 nm, Butterfly Pkg, PM Fiber, FC/APC     |

### Superluminescent Diode Light Source for OCT Systems


#### Features

- Integrated Optical Isolator
- Thermistor for Enhanced Output Stability
- FC/APC-Terminated Fiber Pigtail Minimizes Optical Feedback
- Integrated TEC and Thermistor for Temperature Control
- Hermetically Sealed 14-Pin Butterfly Package

The SLD1325 is a high-power, broadband 1325 nm Super Luminescent Diode (SLD). It is hermetically sealed in a 14-pin butterfly package and includes a built-in thermoelectric cooler and thermistor for temperature control. Each device goes through burn-in screening, mechanical robustness testing, and characterization testing before being packaged. The output is coupled into an SM fiber terminated with an FC/APC connector.

Superluminescent Diodes (SLDs) in butterfly packages are excellent high-power broadband light sources for use as ASE Light Sources and in applications like Optical Coherence Tomography (OCT) Imaging Systems and Fiber Optic Gyroscopes (FOGs).

Each SLD is shipped with its own characterization sheet.



| PARAMETERS                          |           |
|-------------------------------------|-----------|
| Central Wavelength                  | 1325 nm   |
| Bandwidth (FWHM)                    | >100 nm   |
| Fiber-Coupled Power                 | >10 mW    |
| Maximum SLD Injection Current       | 780 mA    |
| Maximum Voltage                     | 4 V       |
| Operating Temperature Range         | 0 - 40 °C |
| Isolation of Integrated Isolator    | >30 dB    |
| Fiber Pigtail                       | SMF-28e   |
| Fiber Length                        | ~1 m      |
| Fiber Connector                     | FC/APC    |
| Return Loss of FC/APC Connector     | >50 dB    |
| Thermoelectric Cooler Current (Max) | 4 A       |
| Thermoelectric Cooler Voltage (Max) | 4 V       |
| Thermistor Resistance*              | 10 kΩ     |

Laser Diode and Temperature Controllers - ITC4000 Series

| ITEM#   | \$          | £          | €          | RMB         | DESCRIPTION                                         |
|---------|-------------|------------|------------|-------------|-----------------------------------------------------|
| SLD1325 | \$ 3,200.00 | £ 2,218.50 | € 2.841,00 | ¥ 27,021.00 | FC/APC Pigtailed SLD, 1325 nm, >10 mW, >100 nm FWHM |

### Butterfly Laser Diode Mount

- Features
- Laser Diode Mount for 14-Pin Butterfly Package
- Laser-Enabled LED Indicator
- User-Defined Pin Out Configuration



TEC Power Outputs: >225 W and >180 W

oroduct

- Constant Current (CC) and Constant Power (CP) Control Modes
- Supports Thermistor, RTD, and IC Temperature Sensors

### See Pages 1175-1230 for More Information

Incoherent Sources Covega Drivers/Mounts Accessories SECTIONS V Mounted LEDs SLD1325 SLD1325 SLDs

ASE Sources

Lamps

### TECHNOLOGY V

**Coherent Sources** 

Light

### Light

### **V** CHAPTERS

**Coherent Sources** 

**Incoherent Sources** 

Covega

#### **Drivers/Mounts**

Accessories

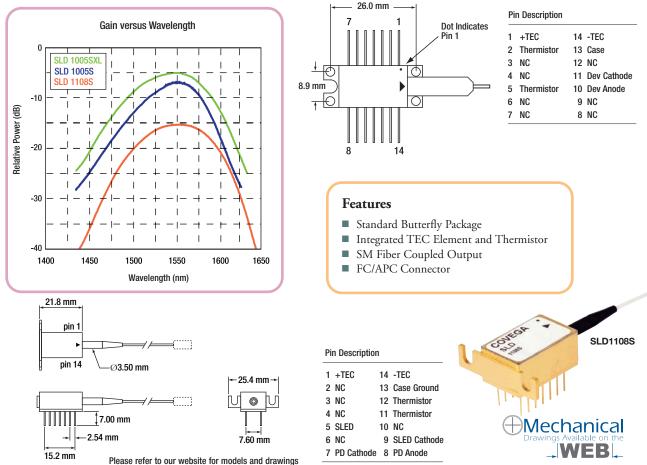
▼ SECTIONS

Mounted LEDs

Unmounted LEDs

#### SLDs

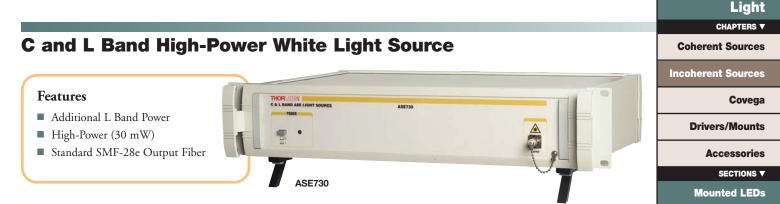
**ASE Sources** 


Lamps

### **1550 nm Superluminescent Diodes**

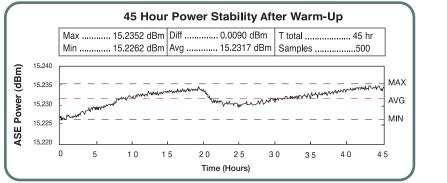
Superluminescent Diodes (SLDs) in butterfly packages are excellent high-power, broadband light sources for use as ASE Light Sources and in applications like Optical Coherence Tomography (OCT) Imaging Systems and Fiber Optic Gyroscopes (FOGs). The SLDs offered here are Indium Phosphide (InP) devices manufactured by Covega, Thorlabs' Quantum Electronics Division. Each device has an integrated thermoelectric cooler (TEC) and thermistor to ensure output stability. The output is coupled into an SM fiber with an FC/APC connector. Our SLDs are available in standard or premium versions. The premium SLDs, denoted with the suffix XL, are hand picked to provide higher bandwidth and power.

Typical Power vs. Current, Voltage vs. Current, and Emission Intensity (AU) vs. Wavelength plots for each Superluminescent Diode model are available on our website: www.thorlabs.com.






#### **Optical-Electrical Characteristics**


| ITEM#             |                 |         | SLD1005SX | L       |         | SLD1005S |         | SLD1108S |         |         |  |
|-------------------|-----------------|---------|-----------|---------|---------|----------|---------|----------|---------|---------|--|
| Parameter         | Symbol          | Min     | Typical   | Max     | Min     | Typical  | Max     | Min      | Typical | Max     |  |
| Center Wavelength | λ               | 1535 nm | 1550 nm   | 1565 nm | 1530 nm | 1550 nm  | 1570 nm | 1530 nm  | 1550 nm | 1570 nm |  |
| ASE Power         |                 | 22 mW   | -         | -       | 20 mW   | 22 mW    | -       | 2 mW     | 2.5 mW  | -       |  |
| Optical Bandwidth | BW              | 55 nm   | -         | -       | 45 nm   | 50 nm    | -       | 85 nm    | 90 nm   | -       |  |
| RMS Gain Ripple   | ΔG              | -       | 0.2 dB    | 0.35 dB | -       | 0.2 dB   | 0.35 dB | -        | -       | 0.25 dB |  |
| Operating Current | I <sub>OP</sub> | -       | 600 mA    | 800 mA  | -       | 600 mA   | 800 mA  | -        | 450 mA  | 550 mA  |  |
| Forward Voltage   | V <sub>F</sub>  | -       | 1.4V      | 1.6 V   | -       | 1.4 V    | 1.6 V   | _        | 1.6 V   | 2.0 V   |  |

| ITEM#      | \$ £ |          | £€ |          | RMB | DESCRIPTION |             |                                                          |
|------------|------|----------|----|----------|-----|-------------|-------------|----------------------------------------------------------|
| SLD1108S   | \$   | 1,450.00 | £  | 1,005.00 | €   | 1.287,50    | ¥ 12,244.00 | 2 mW SLD, CWL: 1550 nm, DIL Pkg, SM Fiber, FC/APC        |
| SLD1005S   | \$   | 1,677.50 | £  | 1,163.00 | €   | 1.489,50    | ¥ 14,165.00 | 20 mW SLD, CWL: 1550 nm, Butterfly Pkg, SM Fiber, FC/APC |
| SLD1005SXL | \$   | 3,355.00 | £  | 2,326.00 | €   | 2.978,50    | ¥ 28,330.00 | 22 mW SLD, CWL: 1550 nm, Butterfly Pkg, SM Fiber, FC/APC |



The ASE730 White Light Test Source delivers more than 15 dBm of output power across the C and L Band wavelengths (1530 to 1625 nm). This ASE source satisfies the demand for higher power, longer wavelength test equipment in the L Band market, while also supporting existing C-Band test instrumentation. The ASE730 is the lowest noise, high-power C- and L-Band test source available today. (See Figure A for test results)

The ASE730 test source is designed to perform well beyond the industry standard. Key features of all of our ASE modules include low intensity noise, broadband output, and exceptional wavelength stability (see Figure B). This ASE source takes advantage of Erbium-doped fluoride fiber, pumped with a single 1480 nm laser diode, to produce 30 mW (15 dBm) of broadband white light. This rare-earth fiber design allows for a higher degree of power and wavelength stability than conventional silica fibers with multiple pumping lasers. The output fiber is a standard SMF-28 silica fiber.



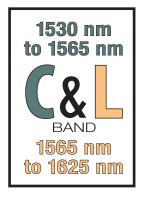
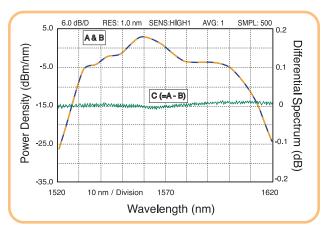




Figure A - The wavelength stability of the ASE730 is shown above.

Trace C is the difference between two scans (traces A and B) taken 15 minutes apart.



**Figure B** - The ASE730 offers low noise, broadband output, and exceptional stability as illustrated. Our optical power stability specification of ±0.005 dB (maximum) offers an exceptional broadband test instrument and is touted as the best in the industry.

#### Specifications

- Total Output Power: >15 dBm (30 mW)
- Spectral Power Density (Typical):
   > -18 dBm/nm at 1530 nm,
   > -11 dBm/nm for 1540 1600 nm,
   > -18 dBm/nm at 1610 nm
- Output Power Stability: ±0.001 dB (15 min After 1 hr Warmup), ±0.005 dB (Max)
- Wavelength Range: 1530 1625 nm
- Output Connector: FC/PC
- Output Fiber: SMF-28e
- Size: 88 mm x 230 mm x 352 mm 19" Rack-Mount Compatible
- Operation Temperature: 0 to 40 °C
- **Storage Temperature:** -10 to 45 °C
- Warranty: 2 years

| ITEM#  | \$           | £          | €           | RMB         | DESCRIPTION                           |  |  |
|--------|--------------|------------|-------------|-------------|---------------------------------------|--|--|
| ASE730 | \$ 11,340.00 | £ 7,862.00 | € 10.068,00 | ¥ 95,756.00 | 30 mW, 1530 - 1625 nm ASE Test Source |  |  |

**Unmounted LEDs** 

**ASE Sources** 

**SLDs** 

Lamps

### Light

#### ▼ CHAPTERS

**Coherent Sources** 

### **Incoherent Sources**

Covega

#### **Drivers/Mounts**

Accessories

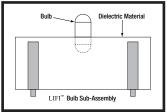
▼ SECTIONS

Mounted LEDs

**Unmounted LEDs** 

SLDs

**ASE Sources** 


Lamps

**High-Power Solid State Light Sources** 

Thorlabs' High-Power Light Sources are solid-state plasma light sources (LIFI®) that combine the best features of solid-state electronics and full spectrum plasma emitters. The HPLS series uses a dielectric resonant cavity to efficiently couple power from a solid-state power amplifier into a high-intensity discharge vessel unlike other electrodeless sources. The results are a long life (>10,000 hours\*), high energy efficiency, and a complete color spectrum, making this source ideal for applications such as endoscopy, microscopy, and other medical lighting and inspection applications. This unit also offers many additional

features including a USB 2.0 control interface and instantaneous intensity dimming.

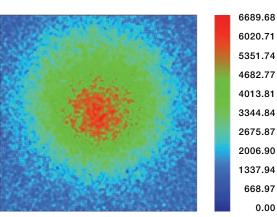
At the heart of LIFI® is the bulb sub-assembly where a sealed bulb is embedded in a dielectric



material. This design is more reliable than conventional light sources that insert degradable electrodes into the bulb. The dielectric material serves two purposes: first as a waveguide for the RF energy transmitted by the RF Power Amplifier Circuit (PA) and second as an electric field concentrator that focuses energy in the bulb. The energy from the electric field rapidly heats the material in the bulb to a plasma state that emits light of high intensity and full spectrum.

#### Features

THOR


HPLS-30-04

- 350-700 nm Wavelength Range
- 10,000 hr Typical Lifetime\*
- Ultra Low Flicker
- Dimming Control, 20-100 %

\* Lumen maintenance typical operating condition is defined as mean time to 50% of original output.

| HPLS-30-02              | HPLS-30-02 HPLS-30-03 HPLS-30- |                                                                                                                                                                                                 |  |  |  |
|-------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 350 to 700 nm           |                                |                                                                                                                                                                                                 |  |  |  |
|                         | 94                             |                                                                                                                                                                                                 |  |  |  |
| 2260 lm                 | 1950 lm                        | 2800 lm                                                                                                                                                                                         |  |  |  |
| 0.66                    | 0.5                            | 0.5                                                                                                                                                                                             |  |  |  |
| 10,000 Hours            |                                |                                                                                                                                                                                                 |  |  |  |
| 20% to 100%             |                                |                                                                                                                                                                                                 |  |  |  |
|                         |                                |                                                                                                                                                                                                 |  |  |  |
| 85 VAC to 264 VAC       |                                |                                                                                                                                                                                                 |  |  |  |
| 28 VDC (Rated at 8.5 A) |                                |                                                                                                                                                                                                 |  |  |  |
| 230 W                   |                                |                                                                                                                                                                                                 |  |  |  |
|                         | 2260 lm<br>0.66                | 350 to 700 nm           94           2260 lm         1950 lm           0.66         0.5           10,000 Hours           20% to 100%           85 VAC to 264 VAC           28 VDC (Rated at 8.5 |  |  |  |

|                     | Power Collected (Ø5 mm Aperture) |            |            |  |  |  |  |
|---------------------|----------------------------------|------------|------------|--|--|--|--|
| Wavelength Range    | HPLS-30-02                       | HPLS-30-03 | HPLS-30-04 |  |  |  |  |
| UV (200-400 nm)     | 1.0 W                            | 0.9 W      | 1.3 W      |  |  |  |  |
| VIS (400-750 nm)    | 8.2 W                            | 7.1 W      | 10.2 W     |  |  |  |  |
| NIR (750-1400 nm)   | 2.0 W                            | 1.7 W      | 2.5 W      |  |  |  |  |
| SWIR (1400-3000 nm) | 0.5 W                            | 0.4 W      | 0.6 W      |  |  |  |  |

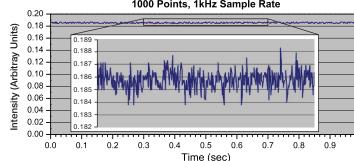


**Detector Image: Luminance in Position Space** Detector 6, NSCG Surface 1: Rect Near Field

400

40

Power (mW) <sup>30</sup> <sup>10</sup>


Size: 5.000 W x 5.000 H mm, Pixels 181 W x 181 H, Total Hits = 289,841

500

**High-Power Light Source Spectrum** 

600

700



| 0.0                        | 0.1 0.2                     | Tim        | e (sec)                | Wavelength (nm) |                                                                    |  |  |  |  |  |  |
|----------------------------|-----------------------------|------------|------------------------|-----------------|--------------------------------------------------------------------|--|--|--|--|--|--|
| ITEM#                      | \$                          | £          | €                      | RMB             | DESCRIPTION                                                        |  |  |  |  |  |  |
| HPLS-30-02                 | \$ 1,950.00                 | £ 1,352.00 | € 1.731,00             | ¥ 16,466.00     | Light Source, Focused, NA 0.50, Lumens 2260, UV Screened Spectrum* |  |  |  |  |  |  |
| HPLS-30-03                 | \$ 1,950.00                 | £ 1,352.00 | € 1.731,00 ¥ 16,466.00 |                 | Light Source, Focused, NA 0.50, Lumens 1950                        |  |  |  |  |  |  |
| HPLS-30-04                 | \$ 1,950.00                 | £ 1,352.00 | € 1.731,00             | ¥ 16,466.00     | Light Source, Focused, NA 0.66, Lumens 2800                        |  |  |  |  |  |  |
| * UV screened at 315 - 400 | UV screened at 315 - 400 nm |            |                        |                 |                                                                    |  |  |  |  |  |  |

#### 1000 Points, 1kHz Sample Rate

THORLABS

800

www.thorlabs.com

#### TECHNOLOGY V

### Light

Covega

### CHAPTERS V Coherent Sources

**Incoherent Sources** 

**Drivers/Mounts** 

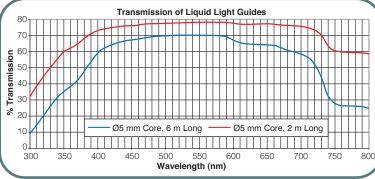
Accessories SECTIONS V

Mounted LEDs

**ASE Sources** 

SLDs

Lamps


**Unmounted LEDs** 



Thorlabs' Liquid Light Guides, which are available in 4', 6', and 8' lengths with either a Ø3 mm or Ø5 mm core, offer outstanding transmission from 340-800 nm for white light illumination applications. They provide superior transmission of UV radiation up to 5 W and excellent transmission from the UV to the near IR range. These light guides are recommended for use with the following light sources: tungsten halogen, xenon, metal halide. The long-term temperature range for the liquid light guides range from -5 to 35 °C.

#### Features

- Excellent Transmission from 340 to 800 nm
- Outstanding White Light Illumination
- Suitable for Rugged Environments
- -5 to 35 °C Long-Term Temperature Range
- Custom Core Diameters and Lengths Available Upon Request



| ITEM#     | \$        | £        | €        | RMB        | DESCRIPTION                                      |
|-----------|-----------|----------|----------|------------|--------------------------------------------------|
| LLG0338-4 | \$ 215.00 | £ 149.10 | € 190,90 | ¥ 1,815.50 | Liquid Light Guide Ø3 mm Core, 4' (1.2 m) Length |
| LLG0338-6 | \$ 252.00 | £ 174.70 | € 223,80 | ¥ 2,127.90 | Liquid Light Guide Ø3 mm Core, 6' (1.8 m) Length |
| LLG0338-8 | \$ 297.00 | £ 205.90 | € 263,70 | ¥ 2,507.90 | Liquid Light Guide Ø3 mm Core, 8' (2.4 m)Length  |
| LLG0538-4 | \$ 271.00 | £ 187.90 | € 240,60 | ¥ 2,288.40 | Liquid Light Guide Ø5 mm Core, 4' (1.2 m)Length  |
| LLG0538-6 | \$ 338.00 | £ 234.40 | € 300,10 | ¥ 2,854.10 | Liquid Light Guide Ø5 mm Core, 6' (1.8 m) Length |
| LLG0538-8 | \$ 424.00 | £ 294.00 | € 376,50 | ¥ 3,580.30 | Liquid Light Guide Ø5 mm Core, 8' (2.4 m) Length |

### **High-Intensity Fiber Light Source**



#### Our 150 W (3200 K Color

Temp) Halogen OSL Light Source is designed to deliver strong, cool light for microscopy and lab applications. The rugged design with thermal switch and safety cutoff features a 150 W halogen lamp with a 1000:1 variable control and is shipped complete with a lamp, bulb, 36" (91 cm), Ø1/4" fiber bundle, and fiber adapter chuck. Versions offering either 110 V or 230 V (CE compliant) are available. To mount the fiber, we recommend using our AD12F mounting adapter, which allows easy integration of the fiber bundle into any of our



#### SPECIFICATION

| SPECIFICATIONS                                 |                                                |  |  |  |  |  |  |
|------------------------------------------------|------------------------------------------------|--|--|--|--|--|--|
| Input Voltage                                  | 110 - 120 VAC or 220 - VAC, 180 W Max          |  |  |  |  |  |  |
| Light Output                                   | 40,000 Foot-Candles                            |  |  |  |  |  |  |
| Lamp Adjustment Range                          | 1000:1 (0 to 100%)                             |  |  |  |  |  |  |
| Color Temperature                              | 3200 K with Standard EKE Lamp at Max Intensity |  |  |  |  |  |  |
| Lamp Life                                      | 250 - 10,000 Hours                             |  |  |  |  |  |  |
| Operating Temperature                          | 0 - 40 °C                                      |  |  |  |  |  |  |
| Humidty Range                                  | 0 - 80% Non Condensing                         |  |  |  |  |  |  |
| Weight (Light Source<br>(without Fiber Bundle) | 7.5 lbs (3.4 kg)                               |  |  |  |  |  |  |

SM1-compatible mounting hardware. In addition, Thorlabs also offers intense white light LED arrays, single emitter LEDs, collimated multi-emitter LEDs, and uncollimated multi-emitter LEDs (See Page 1110).

| ITEM#   | \$           | £ |        | € |        | RMB |          | DESCRIPTION                                                           |
|---------|--------------|---|--------|---|--------|-----|----------|-----------------------------------------------------------------------|
| OSL1    | \$<br>497.50 | £ | 344.90 | € | 441,70 | ¥   | 4,201.00 | High-Intensity Fiber-Coupled Light Source, 110 - 120 VAC              |
| OSL1-EC | \$<br>499.80 | £ | 346.50 | € | 443,80 | ¥   | 4,220.40 | High-Intensity Fiber-Coupled Light Source, 220 - 240 VAC, CE Approved |
| OSL1B   | \$<br>34.70  | £ | 24.10  | € | 30,90  | ¥   | 293.10   | Replacement Bulb for High-Intensity Fiber Light Source                |

# THORLAES

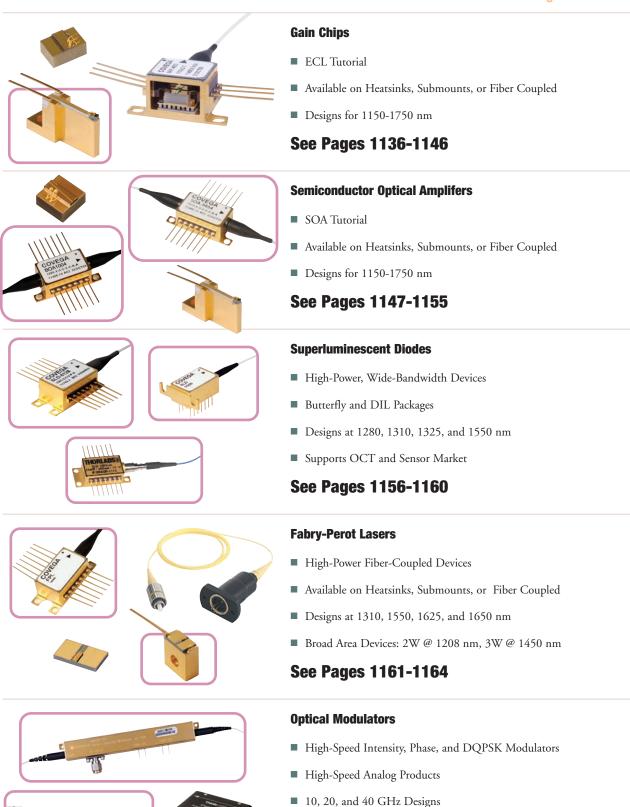
# Covega, Thorlabs' Quantum Electronics Division Introducing Our New Lines:

- SAF Gain Chips
- Semiconductor Optical Amplifiers (SOA)
- Superluminescent Diodes (SLD)
- Fabry-Perot Lasers (FPL)
- **\_** Optical Modulators



Gain Chips See Page 1135

> Optical Amplifiers See Page 1147


Contact Thorlabs Tech Support for an Application Specialist 973-579-7227 techsupport@thorlabs.com Superluminescent Diodes See Page 1156

22



# **Covega Section Guide**

### Pages 1133-1173



Free-Space Amplitude and Phase Products

### See Pages 1165-1173

and a good a

### Light

▼ CHAPTERS Coherent Sources

**Incoherent Sources** 

Covega

**Drivers/Mounts** 

Accessories

▼ SECTIONS

Gain Chips

**Optical Amplifiers** 

Superluminescent Diodes

.....

Fabry-Perot Lasers

**Optical Modulators** 

### The Thorlabs Family of Companies Welcomes Covega

In March 2009, the Thorlabs family added to its growing portfolio of companies by acquiring Thorlabs Quantum Electronics, formerly Covega Corporation. Covega is well known as a world-class manufacturer of InP and LiNbO3 products. Their superior opto-electronic product technologies are supported by a manufacturing infrastructure capable of producing highperformance optical devices and modules that are designed to meet the needs of a diverse customer base. Their components are widely used by laboratory researchers, product developers, and OEM companies alike.

We are excited about the addition of Covega, Thorlabs Quantum Electronics into the Thorlabs family. Thorlabs Quantum Electronics

complements and enhances the capabilities of the Thorlabs family as we continue to move toward more complete solutions for our customers. The products from Thorlabs Quantum Electronics enable and support vital technology areas that are important to Thorlabs, including superluminescent diodes, laser sources, optical modulators, tunable laser components, and active opto-electronic subsystems. With these technologies, Thorlabs continues its pursuit of the advanced imaging markets.

### **Expertise and Facilities**

Thorlabs Quantum Electronics is a vertically integrated company with full in-house Indium Phosphide (InP) and Lithium Niobate (LiNbO3) capabilities and foundry services, which include device design and modeling, wafer growth and fabrication, and electro-optic device packaging. Members of Thorlabs Quantum Electronics' technology team are pioneers in high-power semiconductor lasers, optical amplifiers, and LiNbO3 modulators. The team's vast knowledge includes materials science, device design, wafer growth and fabrication, processing,

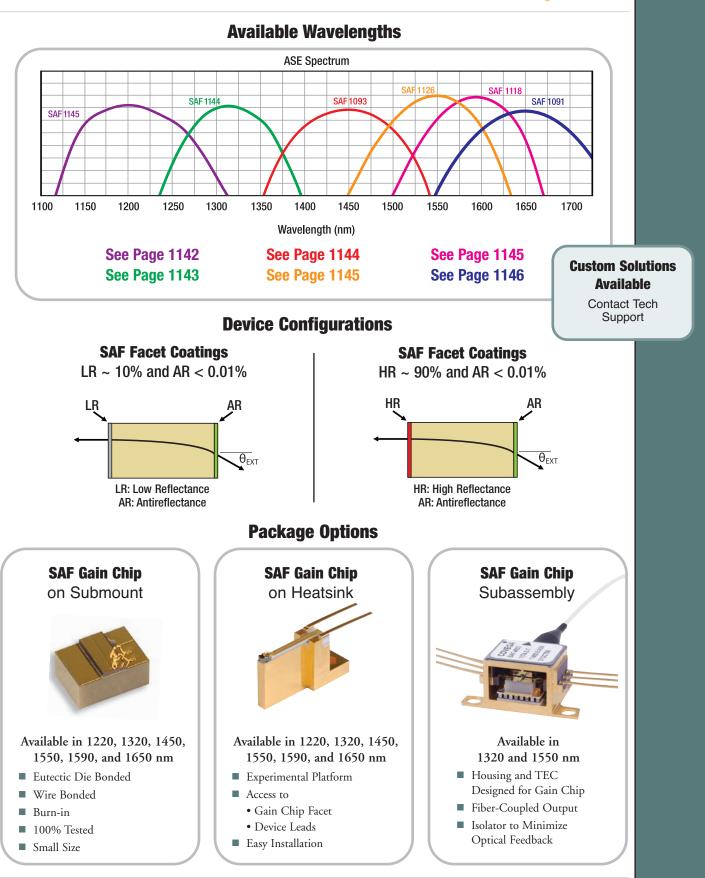




advanced electro-optic device packaging, manufacturing, and system engineering. Thorlabs Quantum Electronics has a 40,000 square foot building in central Maryland, which includes 18,000 square feet of class 100 and 10,000 cleanroom facilities.

Thorlabs Quantum Electronics' InP products are designed for use in the 1150 – 1750 nm spectral range and are typically found in

telecommunication, medical instrumentation, and sensor applications. The company's InP product families include SAF gain block, Semiconductor Optical Amplifiers (SOA), Booster Optical Amplifiers (BOA),




Fabry-Perot Lasers, Broad-Area Lasers, and Superluminescent Diodes (SLD). The company uses their technological advantage of high-power InP active waveguide designs to build an array of products with superior performance by providing various combinations, including broad bandwidth, high power, and stable operation. In parallel, the company also takes full advantage of their Lithium Niobate technological advantage to offer a family of high performance, Telcordia-compliant, optical intensity and phase modulators with industry-leading long-term reliability. These modulators operate over a range of 10 Gb/s to 40 Gb/s and are sold to a variety of customers and industries.

The devices are supplied in solutions ranging from packaged modules to chip-level subassemblies. These solutions are ideally suited for communication systems, instrumentation, photonics sensors, scientific applications, interferometric fiber optic gyroscopes, and other aerospace applications. Customers will benefit from the acquisition via Thorlabs' ability to develop more solutions from the ground up.

# **Gain Chips Selection Guide**

Pages 1135-1146



Light CHAPTERS

**Coherent Sources** 

Incoherent Sources

Covega

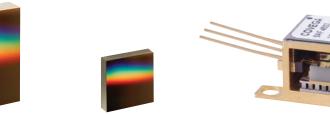
Drivers/Mounts

Accessories

▼ SECTIONS

Gain Chips

**Optical Amplifiers** 


Superluminescent Diodes

Fabry-Perot Lasers

**Optical Modulators** 

# Tunable Wavelength and Narrow Linewidth

**External Cavity Diode Lasers** 



wo elements are required for a laser to operate: (1) an active gain medium that amplifies the optical signal and (2) a feedback mechanism to provide sustained laser

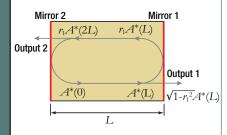



Figure 1: Fabry-Perot Laser Structure

oscillation. In a Fabry-Perot laser, two mirrors having a reflection coefficient  $r_1$  and  $r_2$  (power reflectance  $R_1 = r_1^2$  and  $R_2 = r_2^2$ ) provide feedback for the optical field, as shown in Figure 1. The roundtrip gain for the optical field within a cavity of length L can be expressed as

$$\sqrt{G_{RT}} = r_1 r_2 e^{(g-\alpha_i)L} e^{-j\frac{2\pi n_{eff}}{\lambda} 2L}$$

Equation 1: Round-trip gain for optical field

where g and  $\alpha_i$  are the gain and internal loss coefficients, respectively,  $\lambda$  is the vacuum wavelength,  $n_{eff}$  is the effective refractive index, and L is the cavity length. Solving for unity results in the threshold amplitude and phase conditions:

$$g_{ih} = \alpha_i + \frac{1}{2L} \ln \left( \frac{1}{R_1 R_2} \right) = \alpha_i + \alpha_m$$

Equation 2: The amplitude condition

$$\lambda_N = \frac{2n_{eff}L}{N}$$

Equation 3: The phase condition

where  $\alpha_m$  is defined as the mirror loss and N is a running integer index representing the mode number.

In a semiconductor (diode) laser, the gain medium is excited by injecting a current into the junction region of a forward biased diode. The high concentration of electrons and holes in the engineered quantum-well junction of a semiconductor laser makes it possible to create the population inversion required for optical gain.

When the gain medium is a semiconductor material, a Fabry-Perot cavity can be created by the Fresnel optical reflections at the cleaved facets of the chip. The junction is effectively a waveguide that extends from one facet to the other. An uncoated "as-cleaved" facet perpendicular to the waveguide has a reflectivity of R~ 30%. However, the maximum output power of the device can be optimized by modifying the reflectance

of the facets with optical coatings. Maximum power for a Fabry-Perot laser diode is typically achieved with a highreflectivity (HR) coating on the back facet and a low-reflectivity (LR) coating on the front facet.

The emission spectrum of the Fabry-Perot laser diode device will be dependent on the injection current. When biased below threshold with  $g > \alpha_i$  the emission spectrum consists of a broad series of peaks corresponding to the longitudinal modes of the Fabry-Perot cavity defined by the phase equation. Lasing does not occur until the injection current is increased to the point where  $g = \alpha_i + \alpha_m$ . The lasing wavelength is determined by the longitudinal mode that first achieves the threshold condition. The output spectrum does not always collapse into a single lasing wavelength but can consist of a narrow spectrum of longitudinal modes.

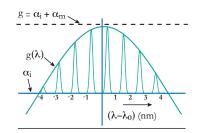



Figure 2: Gain Curve of a Fabry-Perot Laser This is particularly true for InP-based

### **External Cavity Diode Lasers (Page 2 of 4)**

Fabry-Perot lasers, which typically have an optical bandwidth of 5 to 10 nm. GaAs-based devices can operate in a single longitudinal mode, depending on wavelength and output power. They typically have an output bandwidth <2 nm.

A typical 850 nm laser diode with a length of 300 µm and a group index around 4 will have a longitudinal mode spacing of 0.3 nm, which is similar to a 1 mm long 1550 nm laser diode. Changing the length or refractive index of the cavity, for example by heating or cooling the laser diode, will shift the whole comb of modes and consequently the output wavelength.

#### Laser Linewidth

The linewidth of a semiconductor laser single longitudinal lasing mode (FWHM) is given by the modified Schawlow and Townes formula that incorporates the Henry linewidth enhancement factor  $\alpha_{H}$ [1]

$$\Delta v = \frac{hv v_g^2 (\alpha_i + \alpha_m) \alpha_m n_{sp}}{8\pi P_{out}} (1 + \alpha_H^2)$$

Equation 4: Schawlow-Townes-Henry Laser Linewidth

where hv is the photon energy,  $v_g$  is the group velocity,  $n_{sp}$  is the population inversion factor, and  $P_{out}$  is the single-facet output power. This equation describes the spectral broadening of the laser linewidth due to phase and amplitude fluctuations caused by the unavoidable addition of spontaneous emission photons to the coherent lasing mode. These so-called quantum noise fluctuations define a lower limit on the laser linewidth, which may be masked by larger noise fluctuations caused by mechanical/acoustic vibration or thermal variation.

Extending the length of the cavity will decrease  $\alpha_m$  (see Eq. 2), which reduces the linewidth. This can be understood by viewing the quantum noise-limited linewidth (see Eq. 4) as being proportional to the ratio of the number of spontaneous emission photons in the lasing mode compared to the total number of photons in the lasing mode. Increasing the cavity length both reduces the number of spontaneous emission photons (by decreasing the "cold-cavity" spectral width of each longitudinal mode) and increases the total number of photons in the cavity for a fixed output power. This is why the cavity length term appears twice in the Schallow-Townes equation.

A single-frequency distributed feedback (DFB) diode laser with a cavity of 0.3 mm will typically have an emission linewidth on the order of 1 to 10 MHz. Increasing the length of the cavity to 3 cm, for example, will narrow the emission linewidth by a factor of more than 100. It has been shown [2] that the linewidth of the emission from an extended cavity semiconductor lasers can be reduced to <1 kHz.

## Single Wavelength Operation and Tuning

For many applications, it is desirable to have a single longitudinal mode (single frequency) laser, to be able to adjust the lasing wavelength, or both. To accomplish this, a wavelength-selective feedback element external to the semiconductor laser chip can be used to select the lasing wavelength. Proper operation of this external cavity laser (ECL) requires suppression of the intrinsic optical feedback from the semiconductor chip Fabry-Perot cavity so that it does not interfere with the external feedback. The gain chip's Fabry-Perot cavity effect can be reduced by applying an antireflection (AR) optical coating to one chip facet.

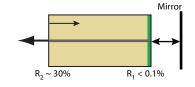



Figure 3: External Cavity Operation Based on a Gain Chip

At a minimum, the chip facet reflectance  $(R_1)$  should be 20 dB less than the external feedback (Rext); that is,  $R_1 < 10^{-2} x R_{ext.}$  [3] Even with the AR coating, the residual reflection from the AR-coated FP gain chip facet often limits the stability, output power, and spectral quality of the ECL, especially if the laser is tunable. To further reduce the reflection at the chip facet, the combination of an angled waveguide and an AR coating can be used to effectively remove most of the feedback from the internal chip Fabry-Perot cavity.[4] This single-angled-facet (SAF) gain chip provides a superior structure for ECLs, in particular broadband tunable ECLs.

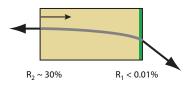



Figure 4: Single-Angled-Facet Gain Chip

#### External Cavity Laser Design

There are numerous approaches for implementing an external cavity semiconductor laser.[3] The first consideration for most approaches is the choice of a wavelength selective feedback

## Light CHAPTERS V Coherent Sources Incoherent Sources Covega Drivers/Mounts Accessories SECTIONS V Gain Chips

TECHNOLOGY V

Superluminescent Diodes Fabry-Perot Lasers

**Optical Modulators** 

#### Light CHAPTERS

Coherent Sources Incoherent Sources Covega Drivers/Mounts

Accessories

▼ SECTIONS Gain Chips

Optical Amplifiers Superluminescent Diodes Fabry-Perot Lasers Optical Modulators

#### External Cavity Diode Lasers (Page 3 of 4)

element. One of the most common feedback elements is a diffraction grating, which can be used as the feedback element in both single-frequency and broadly tunable external cavity lasers.

When the collimated output of the gain chip is incident on a diffraction grating at angle  $\theta$  with respect to the grating surface normal and perpendicular to the grating lines, the diffracted beams exit the grating at an angle  $\theta'$  determined by the grating equation:

#### $n\lambda = d(sin\theta + sin\theta')$

#### Equation 5: Grating Equation

Here, n is the order of diffraction,  $\lambda$  is the diffracted wavelength, and d is the grating constant (the distance between grooves). For n>0, the diffraction grating will spatially separate a polychromatic incident beam by diffracting the beam at an angle  $\theta'$ , which is wavelength dependent. Once the spectral content of the gain chip is spatially separated, a variety of means can be employed to selectively reflect light with a specific wavelength back into the gain medium.

#### Littrow ECL Configuration

One of the simplest approaches is to use a Littrow configuration where the diffraction grating is oriented so that the first-order diffraction is retroreflected back into the gain chip [i.e.,  $\theta = \theta'$  in Eq. (5) above]:

#### $n\lambda = 2d(sin\theta)$

Equation 6: Grating Equation, Littrow configuration

The laser output power can be taken from the zero-order reflection of the grating, which is often done because it minimizes the number of optical elements required to construct the ECL (a collimating lens and the diffraction grating).

Wavelength tuning is accomplished by rotating the diffraction grating, which varies the wavelength of the light that is reflected back into the waveguide. When the diffraction grating (grating constant), collimation lens, and cavity length are chosen so that only one longitudinal mode is reflected back to the gain chip within the acceptance angle of the waveguide, the external cavity laser will produce a single frequency laser spectrum. Note that the selection of collimation lens is important because it affects the amount of grating area that is illuminated as well as the focused spot size coupling back into the semiconductor gain chip. One of the disadvantages of this configuration is that the angle of the zero-order output beam changes as the wavelength is tuned. However, this problem can be avoided if the output of the ECL is emitted from the normal facet of the SAF gain chip. In this configuration, the reflectance of the SAF normal facet is typically reduced to R~ 10% and a grating is chosen that efficiently diffracts light into the order being used to create the ECL to maximize the output power of the laser.

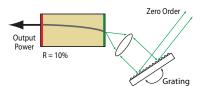



Figure 5: Littrow External Cavity Laser

#### Littman-Metcalf ECL Configuration

Another common ECL implementation is the Littman-Metcalf configuration, which uses an additional adjustable mirror to select the feedback wavelength.[5] The

double-pass of the diffraction grating at an increased angle of incidence results in an external cavity that has better wavelength selectivity. As a result, the output beam of a Littman-Metcalf ECL typically has a narrower linewidth than a similar laser built using a Littrow configuration. In the Littman-Metcalf configuration, the output beam of the laser is typically the zeroorder reflection from the diffraction grating, since the propagation direction remains fixed as the wavelength is tuned. In this case, the SAF normal facet is coated with a high-reflective (HR) coating, typically >90%, in order to minimize the losses in the ECL, which maximizes the output power.

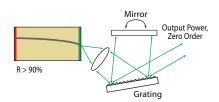



Figure 6: Littman-Metcalf External Cavity Laser

For some applications it may still be desirable to use the normal facet of the SAF chip as the output coupler of the laser. For these applications, a low reflection coating on the normal facet of the SAF gain chip would be required in order to maximize the output power of the laser.

One drawback to the Littman-Metcalf design is that the internal losses are higher than in the Littrow configuration, and hence, the output power of the laser is typically lower. The increase in internal losses are mainly due to the loss of the zero-order beam reflected from the tuning mirror and the increased loss due to the decrease in the efficiency of the grating when used to reflect light at a large angle of incidence.

#### **External Cavity Diode Lasers (Page 4 of 4)**

#### **Innovative ECL Designs**

The innovative design of an SAF gain chip is ideal for use in external cavity lasers because it virtually eliminates the unwanted feedback from the intracavity facet of the gain chip. Thorlabs offers SAF chips with both low- and high-reflectivity coatings on the normal facet in order to support a wide variety of external cavity configurations. For information on custom coatings that optimize the performance of a particular external cavity laser configuration, please contact Thorlabs.

1) C. H. Henry, "Theory of the Linewidth of Semiconductor Lasers" IEEE J. of Quantum Electron, QE-18, 259 (1982).

2) R. Wyatt, K. H. Cameron and M.R. Matthews, "Tunable Narrow Line External Cavity Lasers for Coherent Optical Communication Systems", Br. Telecom. Technol. J. 3, 5 (1985).

3) P. Zorabedian, "Tunable External Cavity Semiconductor Lasers." Tunable Lasers Handbook, Ed. F. J. Duarte. New York, Academic, 1995. Chapter 8.

4) P. J. S. Heim, Z. F. Fan, S. -H. Cho, K. Nam, M. Dagenais, F. G. Johnson and R. Leavitt, "Single-angled-facet Laser Diode for Widely Tunable External Cavity Semiconductor Lasers with High Spectral Purity", Electron. Lett., 33, 1387 (1997).

5) M.G. Littman and H. J. Metcalf, "Spectrally narrow pulsed dye laser without beam expander," App. Opt. 17, 2224 (1978).

#### TECHNOLOGY V

#### Liaht

CHAPTERS V

**Coherent Sources** 

**Incoherent Sources** 

#### Covega

**Drivers/Mounts** 

#### Accessories

SECTIONS V

#### **Gain Chips**

**Optical Amplifiers** 

Superluminescent Diodes

**Fabry-Perot Lasers** 

**Optical Modulators** 

#### External Cavity Laser Components



Thorlabs designs, develops, and manufactures high-quality components and systems for the photonics industry and is a complete supplier of products used to create ECL cavities. From gain chips to gratings and mirrors to mounts, Thorlabs offers industry expertise along with these components to support and simplify the design process.

For technical support while building ECL cavities, Thorlabs' Technical Support department is available by phone or email to advise and support customers as they choose products to meet specific needs. In addition, Thorlabs' extensive design and production gain chip capabilities, mechanical elements, advanced system development, and custom optic components can be used to assist customers so they can realize their research objectives. Please contact our team for help achieving your goals.

GR25-0613 GR25-0616 Ruled Diffraction Gratings See Page 742



KM100C Cylindrical Kinematic

Lens Mount See Page 236

> SAF1176S Gain Chip in Subassembly See Page 1141



ITC4001 Benchtop Laser Diode and Temperature Controller

See Page 1193

POLARIS-K1 Ultra Stable Mirror Mount

See Page 214

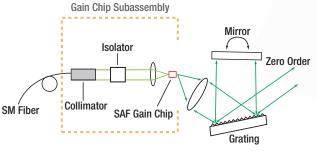
PF10-03-M01 Protected Gold Mirror See Page 682

S20R Slit See Page 291

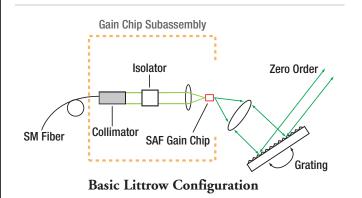
#### Light

# ▼ CHAPTERS Coherent Sources Incoherent Sources Covega Drivers/Mounts Accessories ▼ SECTIONS Gain Chips Optical Amplifiers

Superluminescent Diodes


Fabry-Perot Lasers

**Optical Modulators** 


#### SAF Gain Chip Assemblies, $\lambda_{c}$ = 1320 and 1550 nm (Page 1 of 2)

Thorlabs offers two varieties of single-angled-facet gain chips mounted in a fiber-coupled subassemblies for easy integration into ECL cavities. The SAF1174S is offered for the 1300 to 1400 nm range, whereas the SAF1176S is fabricated for the 1500 to 1600 nm range. These devices are optimized for high gain, high power, broad tunability, and minimal mode hopping.

Both devices are superior gain elements for tunable Extended Cavity Lasers (ECLs) in term of laser stability, output power, and spectral quality. To achieve these qualities, the SAF gain chips have an angled waveguide and AR coatings on both ends to virtually eliminate unwanted reflective feedback from the intra-cavity facet of the gain chip. In addition, the devices use a proven SOA structure to give designers of tunable ECLs the highest power and widest tuning range available in the market.



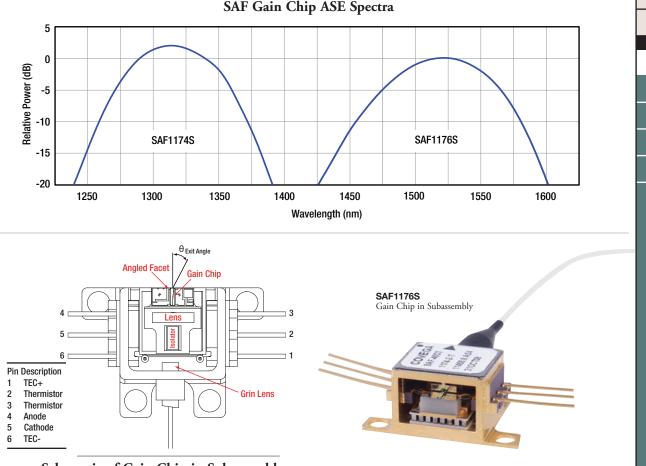
**Basic Littman-Metcalf Configuration** 



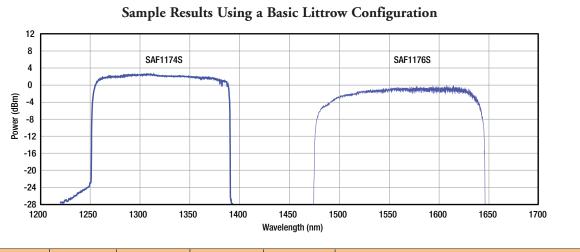


To simplify integration of the gain chip into an extended cavity design, Thorlabs offers an open butterfly package assembly, which couples the output of the normal facet to a fiber pigtail. By using the assembly, the designer gains the advantage of a fibercoupled ECL cavity.

The butterfly assembly includes the gain chip mounted on a thermoelectric cooler such that the gain chip's normal facet is pre-aligned with a collimating lens, optical isolator, and a single mode fiber pigtail. The optical isolator prevents any unwanted reflections from an external system from disrupting the ECL in operation. All devices undergo a monitored burn-in procedure to assure long-term stability and device quality.


| ITEM#                                                                                                                    |                       |         | SAF1174S |         | SAF1176S |         |         |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------|---------|----------|---------|----------|---------|---------|--|--|--|--|
| Parameter                                                                                                                | Symbol                | Min     | Typical  | Max     | Min      | Typical | Max     |  |  |  |  |
| Center Wavelength                                                                                                        | λ                     | 1290 nm | 1320 nm  | 1340 nm | 1500 nm  | 1550 nm | 1600 nm |  |  |  |  |
| ASE 3 dB Bandwidth                                                                                                       | BW                    | 60 nm   | 80 nm    | _       | 60 nm    | 80 nm   | -       |  |  |  |  |
| ASE Power @ I <sub>OP</sub>                                                                                              | P <sub>OUT</sub>      | 0.4 mW  | 0.5 mW   | _       | 0.4 mW   | 0.5 mW  | _       |  |  |  |  |
| Peak Gain @ I <sub>OP</sub>                                                                                              | G                     | -       | 39 dB    | _       | _        | 17 dB   | -       |  |  |  |  |
| Gain Ripple, rms**                                                                                                       |                       | -       | 0.35 dB  | 1 dB    | -        | 0.1 dB  | 0.4 dB  |  |  |  |  |
| Angled Facet Reflectivity                                                                                                | R <sub>1</sub>        | _       | 0.005%   | 0.01%   | _        | 0.005%  | 0.01%   |  |  |  |  |
| Normal Facet Reflectivity                                                                                                | R <sub>2</sub>        | -       | 10%      | -       | _        | 10%     | -       |  |  |  |  |
| Lateral Beam Exit Angle                                                                                                  | $\theta_{\text{EXT}}$ | -       | 26.5°    | _       | _        | 19.5°   | _       |  |  |  |  |
| Beam Divergence                                                                                                          | θ <sub>T</sub>        | 20°     | 30°      | 40°     | 27°      | 31°     | 35°     |  |  |  |  |
| (FWHM)                                                                                                                   | $\theta_{\rm L}$      | 10°     | 20°      | 30°     | 14°      | 17°     | 21°     |  |  |  |  |
| Operating Current                                                                                                        | I <sub>OP</sub>       | _       | 600 mA   | 800 mA  | _        | 300 mA  | 500 mA  |  |  |  |  |
| Forward Voltage                                                                                                          | V <sub>F</sub>        | _       | 1.3 V    | 1.8 V   | _        | 1.1 V   | 1.4 V   |  |  |  |  |
| Chip Length                                                                                                              | L                     | _       | 2.0 mm   | _       | _        | 1.0 mm  | _       |  |  |  |  |
| Specifications based on Littrow external cavity configuration, R2 = 10%, external cavity losses <5 dB, CW T (Chip) = 25% |                       |         |          |         |          |         |         |  |  |  |  |

**Optical-Electrical Characteristics\*** 


\*\* @ I<sub>OP</sub> (Res. BW = 0.1 nm)

#### SAF Gain Chip Assemblies, $\lambda_{\text{C}}$ = 1320 and 1550 nm (Page 2 of 2)

The innovative design of an SAF gain chip is ideal for use in external cavity lasers because it virtually eliminates the unwanted feedback from the intracavity facet of the gain chip. These devices offer superior performance in a wide variety of external cavity configurations. Shown below are typical SAF1174S and SAF1176S ASE spectras, details on the packaged devices, and the resultanting tuning curves.



Schematic of Gain Chip in Subassembly



| ITEM#    | \$£         |            | \$ £ € RMB |             | DESCRIPTION                                                        |  |  |
|----------|-------------|------------|------------|-------------|--------------------------------------------------------------------|--|--|
| SAF1174S | \$ 2,500.00 | £ 1,733.00 | € 2.219,50 | ¥ 21,111.00 | 1320 nm Single-Angled-Facet Gain Chip in Subassembly, $R_2 = 10\%$ |  |  |
| SAF1176S | \$ 2,500.00 | £ 1,733.00 | € 2.219,50 | ¥ 21,111.00 | 1550 nm Single-Angled-Facet Gain Chip Subassembly, R2 = 10%        |  |  |

| <b>Coherent Sources</b>    |
|----------------------------|
| Incoherent Sources         |
| Covega                     |
| <b>Drivers/Mounts</b>      |
| Accessories                |
| SECTIONS V                 |
| Gain Chips                 |
| <b>Optical Amplifiers</b>  |
| Superluminescent<br>Diodes |
| Fabry-Perot Lasers         |
| <b>Optical Modulators</b>  |
|                            |

TECHNOLOGY **V** Light

#### Light CHAPTERS

**Coherent Sources** 

#### Incoherent Sources

Covega

#### Drivers/Mounts

Accessories

▼ SECTIONS

#### **Gain Chips**

**Optical Amplifiers** 

Superluminescent Diodes

Fabry-Perot Lasers

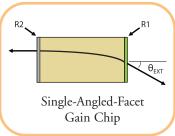
**Optical Modulators** 



**SAF1145H** Chip on Heatsink

**#0-80 CLEARANCE** 

0.7


mm

3.7 mm

2.3 mm

#### For tunable laser designs from 1200 to 1300 nm, Thorlabs Quantum Electronics (Covega) offers two single-angled-facet gain chips. The SAF1145 InP gain chip is available either as a Chip on Submount (CoS) or a Chip on Heatsink (CoH). Both chips are coated with a 10% HR coating on the normal facet ( $R_2$ ) and a <0.05% AR coating on the angled facet ( $R_1$ ), making them ideal for extended cavity setups.

Covega's gain chips use a geometric technique to further reduce the reflection at the chip facet by using a



combination of curved or angled waveguide and AR coatings to selectively remove reflective feedback from the cavity. This single-angled-facet (SAF) gain chip provides a superior gain element for Extended Cavity Lasers (ECLs), particularly tunable ECLs, since any residual reflection from the AR-coated Fabry-Perot (FP) gain chip facet often limits the stability, output power, and spectral quality of the laser.

#### **Optical-Electrical Characteristics**\*

| ITEM#                                                                                                                                                                              |                       | SAF1145 |         |         |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------|---------|---------|--|--|--|--|--|
| Parameter                                                                                                                                                                          | Symbol                | Min     | Typical | Max     |  |  |  |  |  |
| Center Wavelength                                                                                                                                                                  | λ                     | 1190 nm | 1220 nm | 1250 nm |  |  |  |  |  |
| ASE 3 dB Bandwidth                                                                                                                                                                 | BW                    | 60 nm   | 80 nm   | -       |  |  |  |  |  |
| ASE Power @ I <sub>OP</sub>                                                                                                                                                        | P <sub>OUT</sub>      | 1 mW    | 1.25 mW | -       |  |  |  |  |  |
| Peak Gain @ I <sub>OP</sub>                                                                                                                                                        | G                     | -       | 20 dB   | -       |  |  |  |  |  |
| Gain Ripple, rms**                                                                                                                                                                 |                       | -       | 0.35 dB | 1 dB    |  |  |  |  |  |
| Angled Facet Reflectivity                                                                                                                                                          | R <sub>1</sub>        | -       | -       | 0.05%   |  |  |  |  |  |
| Normal Facet Reflectivity                                                                                                                                                          | R <sub>2</sub>        | -       | 10%     | -       |  |  |  |  |  |
| Lateral Beam Exit Angle                                                                                                                                                            | $\theta_{\text{EXT}}$ | -       | 19.5°   | -       |  |  |  |  |  |
| Beam Divergence                                                                                                                                                                    | θ <sub>T</sub>        | 20°     | 30°     | 40°     |  |  |  |  |  |
| (FWHM)                                                                                                                                                                             | $\theta_L$            | 10°     | 20°     | 30°     |  |  |  |  |  |
| Operating Current                                                                                                                                                                  | I <sub>OP</sub>       | -       | 300 mA  | 500 mA  |  |  |  |  |  |
| Forward Voltage                                                                                                                                                                    | V <sub>F</sub>        | -       | 1.4 V   | 1.8 V   |  |  |  |  |  |
| Chip Length                                                                                                                                                                        | L                     | -       | 1.0 mm  | -       |  |  |  |  |  |
| Specifications based on Littrow external cavity configuration, R <sub>2</sub> = 10%, external cavity losses <5 dB,<br>CW T (Chip) = 25%     ** @ I <sub>OP</sub> (Res. BW = 0.1nm) |                       |         |         |         |  |  |  |  |  |

4.0

mm

ASE Spectrum of the SAF1145

#### Sample Results of SAF1145 used in a Basic Littman-Metcalf Configuration



| ITEM#    | \$       | £        | €        | RMB        | DESCRIPTION                                                 |
|----------|----------|----------|----------|------------|-------------------------------------------------------------|
| SAF1145C | \$625.00 | £ 433.30 | € 554,90 | ¥ 5,277.60 | 1220 nm Single-Angled-Facet Gain Chip on Submount, R2 = 10% |
| SAF1145H | \$625.00 | £ 433.30 | € 554,90 | ¥ 5,277.60 | 1220 nm Single-Angled-Facet Gain Chip on Heatsink. R2 = 10% |

1.4 mm

7.5 mm

> 8.1 mm

19.5

🗕 8.0 mm –

15.0 mm

Mechanical

WEB

#### SAF Gain Chips, $\lambda_{C}$ = 1320 nm

For the 1300 to 1400 nm range, Thorlabs offers two versions of singleangled-facet gain chips: a standard Chip on Submount (CoS) package and a Chip on Heatsink (CoH) package.

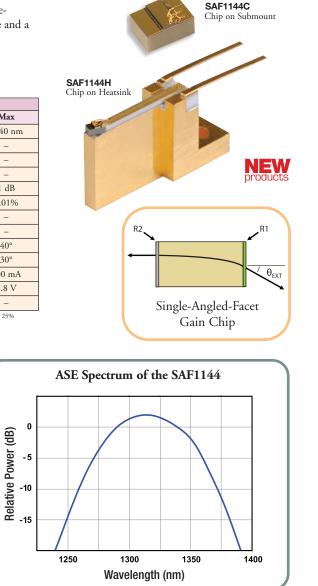
#### **Optical-Electrical Characteristics\***

| ITEM#                       |                  | SAF1144 |         |         |  |  |
|-----------------------------|------------------|---------|---------|---------|--|--|
| Parameter                   | Symbol           | Min     | Typical | Max     |  |  |
| Center Wavelength           | λ                | 1290 nm | 1320 nm | 1340 nm |  |  |
| ASE 3 dB Bandwidth          | BW               | 30 nm   | 50 nm   | -       |  |  |
| ASE Power @ I <sub>OP</sub> | P <sub>OUT</sub> | 10 mW   | 20 mW   | -       |  |  |
| Peak Gain @ I <sub>OP</sub> | G                | -       | 30 dB   | -       |  |  |
| Gain Ripple, rms**          |                  | -       | 0.35 dB | 1 dB    |  |  |
| Angled Facet Reflectivity   | R <sub>1</sub>   | -       | 0.005%  | 0.01%   |  |  |
| Normal Facet Reflectivity   | R <sub>2</sub>   | -       | 10%     | -       |  |  |
| Lateral Beam Exit Angle     | $\theta_{EXT}$   | -       | 26.5°   | -       |  |  |
| Beam Divergence             | θ <sub>T</sub>   | 20°     | 30°     | 40°     |  |  |
| (FWHM)                      | θ                | 10°     | 20°     | 30°     |  |  |
| Operating Current           | I <sub>OP</sub>  | -       | 600 mA  | 800 mA  |  |  |
| Forward Voltage             | V <sub>F</sub>   | -       | 1.3 V   | 1.8 V   |  |  |
| Chip Length                 | L                | -       | 2.0 mm  | _       |  |  |

\*Specifications based on Littrow external cavity configuration,  $R_2 = 10\%$ , external cavity losses <5 dB, CW T (Chip) = 25% \*\*at  $I_{OP}$  (Res. BW = 0.1 nm)

15.000 mm

26.5

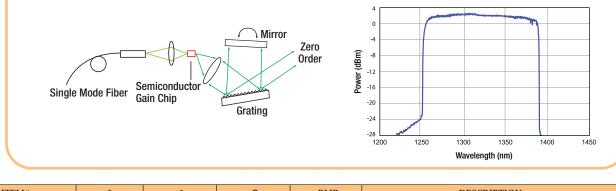

4.0 mm

Please refer to our website for complete models and drawings.

#0-80 CLEARANCE

4.0 mm

2.55 mm




#### Sample Results of SAF1144 used in a Basic Littman-Metcalf Configuration

8.1

mm

2.5 mm



| ITEM#    | \$ £      |          | \$ £ € RMB |            | DESCRIPTION                                                             |  |
|----------|-----------|----------|------------|------------|-------------------------------------------------------------------------|--|
| SAF1144C | \$ 625.00 | £ 433.30 | € 554,90   | ¥ 5,277.60 | 1320 nm Single-Angled-Facet Gain Chip on Submount, R <sub>2</sub> = 10% |  |
| SAF1144H | \$ 625.00 | £ 433.30 | € 554,90   | ¥ 5,277.60 | 1320 nm Single-Angled-Facet Gain Chip on Heatsink, R2 = 10%             |  |

| TECHNOLOGY V              |
|---------------------------|
| Light                     |
| CHAPTERS V                |
| <b>Coherent Sources</b>   |
| Incoherent Sources        |
| Covega                    |
| <b>Drivers/Mounts</b>     |
| Accessories               |
| SECTIONS V                |
| Gain Chips                |
| <b>Optical Amplifiers</b> |
| Superluminescent          |
| Diodes                    |
|                           |
| Diodes                    |

OCT Lasers

#### Light ▼ CHAPTERS

**Coherent Sources** 

#### **Incoherent Sources**

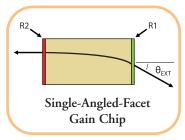
Covega

#### **Drivers/Mounts**

Accessories

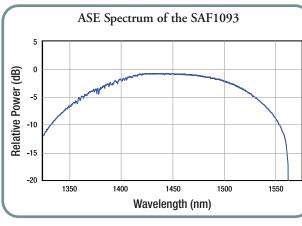
#### SECTIONS

**Gain Chips** 


**Optical Amplifiers** 

Superluminescent Diodes

- **Fabry-Perot Lasers**
- **Optical Modulators**

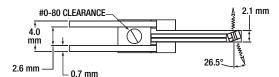



SAF1093H Chip on Heatsink For tunable laser designs in the 1400 to 1500 nm range, Thorlabs Quantum Electronics (Covega) offers two single-angled-facet (SAF) gain chips. The SAF1093 InP gain chip is available as a Chip on Submount (CoS) or a Chip on Heatsink. Both chips are coated with a 90% HR coating on the normal facet (R2) and a <0.01% AR coating on the angled facet (R1), making them ideal for extended cavity setups.

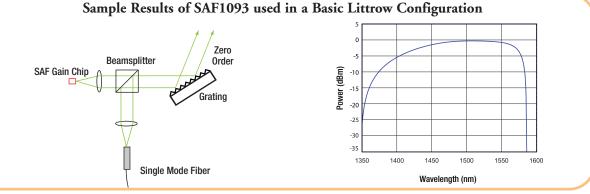


Covega's gain chips use a geometric technique to further

reduce the reflection at the chip facet by using a combination of curved or angled waveguide and AR coatings to selectively remove reflective feedback from the cavity. This SAF gain chip provides a superior gain element for extended cavity lasers (ECLs), particularly tunable ECLs, since any residual reflection from the AR-coated FP gain chip facet often limits the stability, output power, and spectral quality of the laser.




#### 7.5 4.0 mm mm 8.1 mm 8.0 mm 15.0 mm


#### **Optical-Electrical Characteristics\***

| ITEM#                       |                    | SAF1093 |         |         |  |
|-----------------------------|--------------------|---------|---------|---------|--|
| Parameter                   | Symbol             | Min     | Typical | Max     |  |
| Center Wavelength           | λ                  | 1420 nm | 1450 nm | 1480 nm |  |
| ASE 3 dB Bandwidth          | BW                 | 80 nm   | 95 nm   | -       |  |
| ASE Power @ I <sub>OP</sub> | P <sub>OUT</sub>   | 10 mW   | 20 mW   | -       |  |
| Peak Gain @ I <sub>OP</sub> | G                  | -       | 33 dB   | -       |  |
| Gain Ripple, rms**          |                    | -       | 0.3 dB  | 1 dB    |  |
| Angled Facet Reflectivity   | R <sub>1</sub>     | -       | 0.005%  | 0.01%   |  |
| Normal Facet Reflectivity   | R <sub>2</sub>     | -       | 90%     | -       |  |
| Lateral Beam Exit Angle     | $\theta_{\rm EXT}$ | -       | 26.5°   | -       |  |
| Beam Divergence             | θ <sub>T</sub>     | 20°     | 30°     | 40°     |  |
| (FWHM)                      | $\theta_{\rm L}$   | 10°     | 20°     | 30°     |  |
| Operating Current           | I <sub>OP</sub>    | -       | 500 mA  | 800 mA  |  |
| Forward Voltage             | V <sub>F</sub>     | -       | 1.4 V   | 1.8 V   |  |
| Chip Length                 | L                  | _       | 1.5 mm  | _       |  |





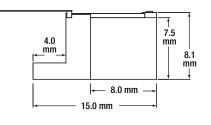
Please refer to our website for complete models and drawings.

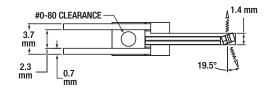


| ITEM#    | \$           |   | £      |   | € RMB  |   | RMB      | DESCRIPTION                                                 |
|----------|--------------|---|--------|---|--------|---|----------|-------------------------------------------------------------|
| SAF1093C | \$<br>625.00 | £ | 433.30 | € | 554,90 | ¥ | 5,277.60 | 1450 nm Single-Angled-Facet Gain Chip on Submount, R2 = 90% |
| SAF1093H | \$<br>625.00 | £ | 433.30 | € | 554,90 | ¥ | 5,277.60 | 1450 nm Single-Angled-Facet Gain Chip on Heatsink, R2 = 90% |

#### SAF Gain Chips, $\lambda_{\textbf{C}}$ = 1550 nm and 1590 nm

For the 1500 to 1600 nm range, Covega, Thorlabs Quantum Electronics, offers two versions of single-angled-facet (SAF) gain chips, each with two different packaging styles. Standard Chip on Submount (CoS) or Chip on Heatsink (CoH) packages are available. Both devices are coated with a 10% LR coating on the normal facet and a less than 0.01% AR coating on the angled facet.


These SAF gain chip devices are optimized for high gain, high power, broad tunability, and minimial mode hopping. Both devices are superior gain elements for tunable external cavity lasers (ECLs) in term of laser stability, output power, and spectral quality. To achieve these qualities, the devices are built using a combination of an angled waveguide and AR coatings to virtually eliminate reflective feedback from the ECL cavity. In addition, the devices use a proven SOA structure to give designers of tunable ECLs the highest power and widest tuning range available in the market.


#### **Optical-Electrical Characteristics\***

| ITEM#                       |                       | SAF1126 |         | SAF1118 |         |         |         |
|-----------------------------|-----------------------|---------|---------|---------|---------|---------|---------|
| Parameter                   | Symbol                | Min     | Typical | Max     | Min     | Typical | Max     |
| Center Wavelength           | λ                     | 1500 nm | -       | 1560 nm | 1540 nm | -       | 1600 nm |
| ASE 3 dB Bandwidth          | BW                    | 85 nm   | -       | 100 nm  | 85 nm   | -       | 100 nm  |
| ASE Power @ I <sub>OP</sub> | P <sub>OUT</sub>      | 0.4 mW  | -       | -       | 0.4 mW  | -       | -       |
| Peak Gain @ I <sub>OP</sub> | G                     | -       | 20 dB   | -       | -       | 20dB    | -       |
| Gain Ripple, rms**          |                       | -       | -       | 1.2 dB  | -       | -       | 1.2 dB  |
| Angled Facet Reflectivity   | R <sub>1</sub>        | -       | 0.005%  | 0.01%   | -       | 0.005%  | 0.01%   |
| Normal Facet Reflectivity   | R <sub>2</sub>        | -       | 10%     | -       | -       | 10%     | -       |
| Lateral Beam Exit Angle     | $\theta_{\text{EXT}}$ | -       | 19.5°   | -       | -       | 19.5°   | -       |
| Beam Divergence             | θ <sub>T</sub>        | 26°     | 30°     | 34°     | 26°     | 30°     | 34°     |
| (FWHM)                      | $\theta_{\rm L}$      | -       | 16°     | -       | -       | 16°     | -       |
| Operating Current           | I <sub>OP</sub>       | -       | 300 mA  | 350 mA  | -       | 300 mA  | 350 mA  |
| Forward Voltage             | V <sub>F</sub>        | -       | 1.3 V   | 1.8 V   | -       | 1.3 V   | 1.8 V   |
| Chip Length                 | L                     | -       | 1.0 mm  | -       | -       | 1.0 mm  | -       |

\* Specifications based on Littrow external cavity configuration, R2 = 10%, external cavity losses <5 dB, CW T (Chip) = 25%

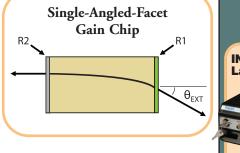
\*\*  $@ I_{OP}$  (Res. BW = 0.1 nm)





#### Hechanical Drawings Available on the

THORLABS


| _                            | ASE | Spectrur | n of the | SAF11       | 18 and             | SAF11        | 26                      |
|------------------------------|-----|----------|----------|-------------|--------------------|--------------|-------------------------|
| 5                            |     |          |          |             |                    |              |                         |
|                              |     | SAF 1126 |          | $\sum$      | $\left\{ \right\}$ | SAF          | 1118                    |
| Relative Power (dB)<br>5- 5- |     |          | /        |             |                    |              | $\downarrow \downarrow$ |
| elan<br>-15                  |     |          |          |             |                    | $\downarrow$ |                         |
| -20<br>14                    | 100 | 1450     | 1500     | 15          | 50                 | 1600         | 1650                    |
|                              |     |          | Wa       | avelength ( | nm)                |              |                         |

ITEM# \$ € RMB DESCRIPTION £ SAF1126C \$ 625.00 433.30 € 554,90 5,277.60 1550 nm Single-Angled-Facet Gain Chip on Submount, R2 = 10% SAF1126H \$ 625.00 433.30 € 554,90 5,277.60 1550 nm Single-Angled-Facet Gain Chip on Heatsink, R2 = 10% £ ¥ 5,277.60 SAF1118C \$ 625.00 £ 433.30 € 554,90 ¥ 1590 nm Single-Angled-Facet Gain Chip on Submount, R2 = 10% SAF1118H \$ 625.00 433.30 € 554,90 5,277.60 1590 nm Single-Angled-Facet Gain Chip on Heatsink, R2 = 10%



| CHAPTERS V                 |
|----------------------------|
| <b>Coherent Sources</b>    |
| Incoherent Sources         |
| Covega                     |
| <b>Drivers/Mounts</b>      |
| Accessories                |
| SECTIONS V                 |
| Gain Chips                 |
| <b>Optical Amplifiers</b>  |
| Superluminescent<br>Diodes |
| Fabry-Perot Lasers         |
| Optical Modulators         |
|                            |
|                            |
|                            |

TECHNOLOGY **T** Liaht





#### Light CHAPTERS

**Coherent Sources** 

#### . . .

#### Incoherent Sources

Covega

#### **Drivers/Mounts**

Accessories

#### ▼ SECTIONS

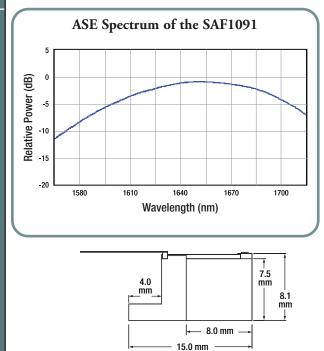
#### Gain Chips

**Optical Amplifiers** 

Superluminescent Diodes

\_\_\_\_\_

Fabry-Perot Lasers


**Optical Modulators** 



For tunable laser designs in the 1600 to 1700 nm range, Covega, Thorlabs Quantum Electronics, offers two single-angled-facet (SAF) gain chips. The SAF1091 InP gain chip is available as a Chip on Submount (CoS) or a Chip on Heatsink. Both chips are coated with a 90% HR coating on the normal facet and a <0.01% AR coating on the angled facet, making them ideal for extended cavity setups.

Covega's gain chips use a geometric technique to

further reduce the reflection at the chip facet by using a combination of curved or angled waveguide and AR coatings to selectively remove reflective feedback from the cavity. This SAF gain chip is a superior gain element for external cavity lasers (ECLs), particularly tunable ECLs, since any residual reflection from the AR-coated FP gain chip facet often limits the stability, output power, and spectral quality of the laser.

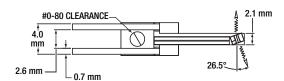


Please refer to our website for complete models and drawings.

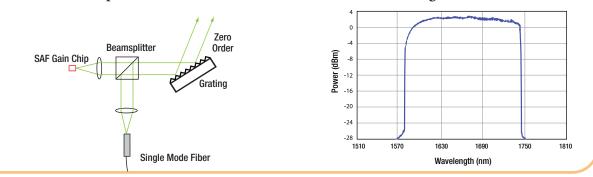
#### **Optical-Electrical Characteristics\***

R2

R1


Single-Angled-Facet

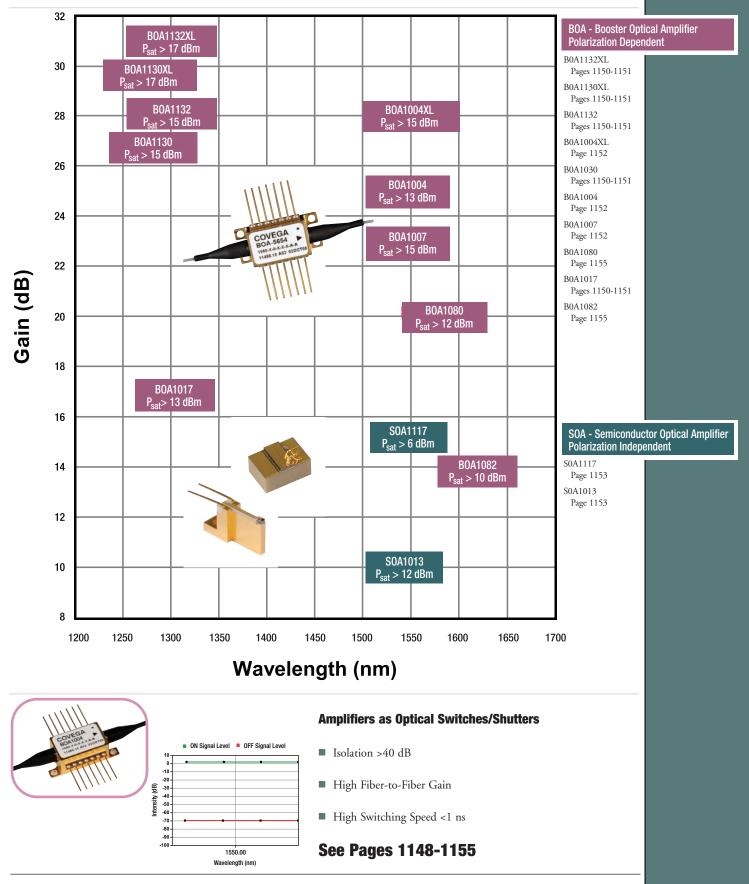
Gain Chip


 $\theta_{\text{EXT}}$ 

| ITEM#                       |                    |         | SAF1091 |         |
|-----------------------------|--------------------|---------|---------|---------|
| Parameter                   | Symbol             | Min     | Typical | Max     |
| Center Wavelength           | λ                  | 1620 nm | 1650 nm | 1680 nm |
| ASE 3 dB Bandwidth          | BW                 | 80 nm   | 90 nm   | -       |
| ASE Power @ I <sub>OP</sub> | P <sub>OUT</sub>   | 2.5 mW  | 3.5 mW  | -       |
| Peak Gain @ I <sub>OP</sub> | G                  | -       | 23 dB   | -       |
| Gain Ripple, rms**          |                    | -       | 0.1 dB  | 0.35 dB |
| Angled Facet Reflectivity   | R <sub>1</sub>     | -       | 0.005%  | 0.01%   |
| Normal Facet Reflectivity   | R <sub>2</sub>     | -       | 90%     | -       |
| Lateral Beam Exit Angle     | $\theta_{\rm EXT}$ | -       | 26.5°   | -       |
| Beam Divergence             | θ <sub>T</sub>     | 20°     | 30°     | 40°     |
| (FWHM)                      | $\theta_{L}$       | 10°     | 18°     | 30°     |
| Operating Current           | I <sub>OP</sub>    | _       | 500 mA  | 800 mA  |
| Forward Voltage             | V <sub>F</sub>     | -       | 1.35 V  | 1.6 V   |
| Chip Length                 | L                  | -       | 1.5 mm  | -       |

 Specifications based on Littrow external cavity configuration, R<sub>2</sub> = 10%, external cavity losses <5 dB, CW T (Chip) = 25%
 \*\* @ I<sub>OP</sub> (Res. BW = 0.1 nm)




#### Sample Results of SAF1091 used in a Basic Littrow Configuration



| ITEM#    | \$        | £        | €        | RMB        | DESCRIPTION                                                 |
|----------|-----------|----------|----------|------------|-------------------------------------------------------------|
| SAF1091C | \$ 625.00 | £ 433.30 | € 554,90 | ¥ 5,277.60 | 1650 nm Single-Angled-Facet Gain Chip on Submount, R2 = 90% |
| SAF1091H | \$ 625.00 | £ 433.30 | € 554,90 | ¥ 5,277.60 | 1650 nm Single-Angled-Facet Gain Chip on Heatsink, R2 = 90% |

# **Optical Amplifiers Selection Guide**

Pages 1147-1155



#### Light

#### ▼ CHAPTERS

#### Semiconductor Optical Amplifiers Overview (Page 1 of 2)

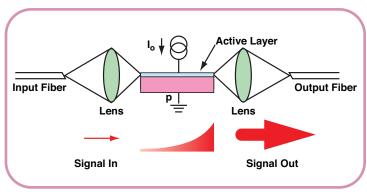
### Incoherent Sources

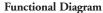
**Coherent Sources** 

Covega

#### Drivers/Mounts

Accessories


#### ▼ SECTIONS Gain Chips


Optical Amplifiers Superluminescent Diodes

#### Fabry-Perot Lasers

**Optical Modulators** 

Semiconductor Optical Amplifiers (SOAs) are devices that directly amplify optical signals using the properties of semiconductors. The Semiconductor Optical Amplifier structure consists of a highly efficient InP/InGaAsP Multiple Quantum Well (MQW) layer structure grown on an InP wafer and processed into a waveguide. Thorlabs' Semiconductor Optical Amplifiers are designed as single-pass, traveling-wave optical amplifiers that perform well with both monochromatic and multi-wavelength signals. As seen in the functional diagram to the right, the input and output of the amplifier is coupled to the well-proven ridge waveguide on the optical amplifier chip. The device is contained in a standard 14-pin butterfly package with either SMF or PMF pigtails that are terminated with FC/APC connectors.

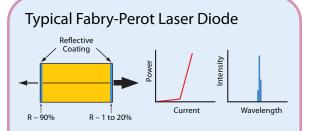




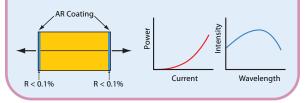
#### SOA and BOA Semiconductor Optical Amplifiers

Thorlabs offers two varieties of Semiconductor Optical Amplifiers: traditional SOAs and BOAs (Booster Optical Amplifiers). SOAs amplify input signals independent of the state of input polarization, while BOAs amplify only certain polarization states of the input signal. As input signals are coupled into a SOA waveguide, SOAs ideally amplify both the TE and TM modes equally. A polarization-independent amplifier (i.e., an SOA) is required in applications where the input polarization is unknown or fluctuates. When input signals are coupled into a BOA waveguide, it will only amplify the TE mode. Thus, BOAs are used in applications where the polarization state of the input light is known and controlled to match the device. For those applications where the state of polarization is known, BOAs offer improved gain, noise, bandwidth, and saturation power compared to their SOA counterparts. We also offer hand-picked BOAs that have been determined to have superior specifications to the design specifications of the device. These premium devices are known as our XL Series. While the normal product line is specified with typical values, the XL line is specified with minimum values and typically feature larger bandwidths and greater gain.

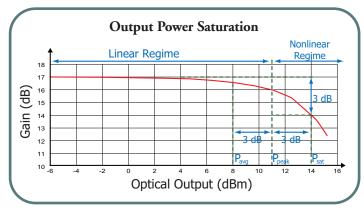
#### Available as Packaged Devices or Chip on Submount


#### Features

- World-Class Semiconductor Optical Amplifiers Functionality
   C-Band Polarization Independent (Linear/Nonlinear)
  - O-Band, C-Band, and L-Band Polarization Dependent
- High Saturation Power (up to 23 dBm)
- High Gain Levels (up to 30 dB)
- Low Interface Reflections due to AR-Coated End Faces (R <0.01%)</li>
- Available as Packaged Device or CoS/CoH
  - SM or PM Fiber Pigtailed Butterfly Package
  - Chip on Submount
  - Chip on Heatsink
- FC/APC Connectors


#### SOAs Compared to Fabry-Perot Laser Diodes

All Semiconductor Optical Amplifiers (SOAs and BOAs) are similar in design to Fabry-Perot Laser Diodes. The difference is that Fabry-Perot laser diodes have reflective coatings on both end faces of the semiconductor chip. The optical feedback from the end faces establishes a cavity in which lasing can occur. SOAs and BOAs have antireflection (AR) coatings on both end faces of the semiconductor chip. These AR coatings limit the optical feedback into the chip so that lasing does not occur.



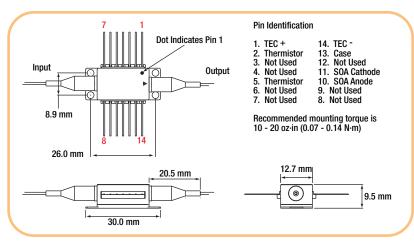



#### Semiconductor Optical Amplifier



#### Semiconductor Optical Amplifiers Overview (Page 2 of 2)




#### Linear versus Nonlinear

As is typical for all amplifiers, SOAs and BOAs operate in two regimes: a linear, flat, constant gain regime and a nonlinear, saturated output regime. When used to amplify a modulated signal, the linear regime is typically used to eliminate pattern-dependent distortion, multi-channel crosstalk, and transient response issues common to Erbium-Doped Fiber Amplifiers (EDFAs). The nonlinear regime is used to take advantage of the highly nonlinear attributes of the semiconductor gain medium (cross-gain modulation, cross phase modulation) to perform wavelength conversion, optical 3R regeneration, optical pattern recognition, and other high-speed optical signal processing functions.

The amount of output power that can be linearly produced without significant distortion by the amplifier is denoted by the saturation output power  $(P_{sat})$  parameter.  $P_{sat}$  is defined as the output power at which the gain of the amplifier has been compressed by 3 dB from the maximum gain available to input signals (see Output

Power Saturation diagram above). In the diagram, the gain of the output signal decreases as the level of output increases. At an output signal level of 14 dBm, the signal gain has decreased 3 dB and has reached the level of saturation. Any output signals that are below  $P_{sat}$  are considered to be distortion free and replicas of the input signal. The practical output power limit of SOAs and BOAs is approximately 3 dB higher than the saturation power value.

The devices are packaged in a standard butterfly package as shown in the illustration to the right. The SOAs and BOAs can be customized upon request to have isolators on the input, output, or both.



#### **Butterfly Driver Products**



#### Laser Diode / TEC Controllers - ITC4001

- Laser Currents up to ±1 A
- TEC Currents up to ±15 A
- Extremely Low Noise and High Stability

#### Butterfly Laser Diode Mounts - LM14S2

- 14-Pin Butterfly Package Laser Diode Mount
- ZIF Mounting Socket
- Laser Diode TEC Temperature Regulation
- User-Defined Pinout Configuration





#### Standalone LD/TEC Controller – LDC1300B

- Laser Diode Driver
- Controlled via RS-232 Interface
- Suited for use with BOAs, SOAs, SLDs, and FPLs
- Integrated TEC Controller
- 14-Pin Butterfly Package Mount
  - See Page 1217

#### Light

#### ▼ CHAPTERS Coherent Sources

#### \_\_\_\_\_

Incoherent Sources

Covega

**Drivers/Mounts** 

Accessories

▼ SECTIONS Gain Chips

#### **Optical Amplifiers**

Superluminescent Diodes

Fabry-Perot Lasers

**Optical Modulators** 

1300 nm (O-Band) Polarization-Dependent BOAs (Page 1 of 2)

Thorlabs has ten varieties of O-Band Polarization-Dependent Booster Optical Amplifiers (BOAs). Our advanced epitaxial wafer growth and opto-electronic packaging techniques enable a high output saturation power, low noise figure, and large gain across a broad spectral bandwidth. The major differences between the models are the center wavelength and input and output fiber types.

These BOAs were designed and tested to ensure the highest available gain and  $P_{sat}$  on the market. The devices come in an industry-standard 14-pin butterfly package with either single mode fiber or polarization-maintaining fiber pigtails.

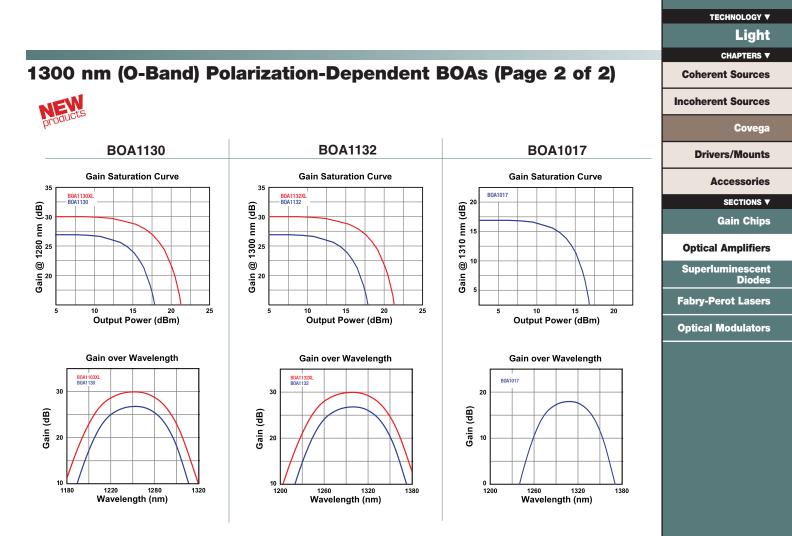

BOAs, a polarization-dependent variety of Semiconductor Optical Amplifiers (SOAs), directly amplify optical signals using the properties of semiconductors. The Semiconductor Optical Amplifiers structure consists of a highly efficient InP/InGaAsP Multiple Quantum Well (MQW) layer structure grown on an InP wafer and processed into a waveguide. Thorlabs' SOAs are designed as singlepass, traveling-wave optical amplifiers that perform well with both monochromatic and multi-wavelength signals. We also offer O-Band Optical Amplifiers that have been tested and determined to have significantly superior performance over the design specifications of the device. These premium devices are known as

our XL series. While the normal product line is specified with typical

#### **BOA – Polarization-Dependent Optical Amplifier**

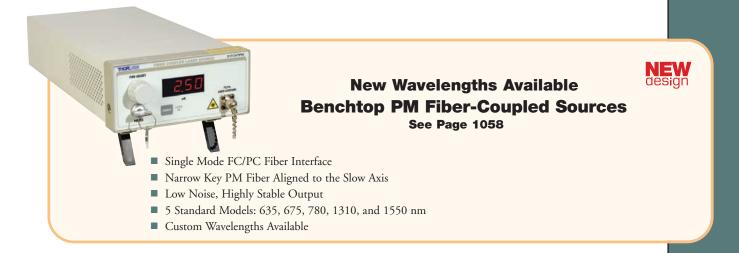
- Polarization-Dependent Amplification
- High Saturation Power (up to 18 dBm)
- High Gain Levels (up to 30 dB)
- Available as SM or PM Fiber-Pigtailed Butterfly Package
- 1.5 m Fiber-Pigtailed FC/APC Connectors
- Typical Applications are Amplification of Lasers and Transmitter Signals and Swept-Source Tunable Lasers

values, the XL line is specified with minimum values. These devices typically feature larger bandwidths and greater gain. The device is packaged in a standard 14-pin butterfly package with either SMF or PMF pigtails that are terminated with FC/APC connectors. The BOAs can be customized upon request to have isolators on the input, output, or both. Please contact Tech Support for help in customizing a BOA for your application.




| ITEM#                                         | BOA1    | 130S / BOA | .1130P | BOA1130SXL / BOA1130PXL |         |         |  |
|-----------------------------------------------|---------|------------|--------|-------------------------|---------|---------|--|
| Parameter                                     | Min     | Typical    | Max    | Min                     | Typical | Max     |  |
| Operating Current                             | -       | 600 mA     | 750 mA | -                       | 600 mA  | 750 mA  |  |
| Center Wavelength                             | 1265 nm | 1285 nm    | 1295nm | 1265 nm                 | 1275 nm | 1290 nm |  |
| Optical 3 dB Bandwidth                        | 80 nm   | 87 nm      | -      | 90 nm                   | -       | -       |  |
| Saturation Output Power (@ -3 dB)             | 15 dBm  | 17 dBm     | -      | 17 dBm                  | 18 dBm  | -       |  |
| Small Signal Gain Across BW (@ Pin = -20 dBm) | 27 dB   | 30 dB      | -      | 30 dB                   | -       | -       |  |
| Gain Ripple (p-p) @ IOP                       | -       | 0.2 dB     | 0.3 dB | -                       | 0.2 dB  | 0.3 dB  |  |
| Noise Figure                                  | -       | 7.0        | 9.0    | -                       | 7.0     | 9.0     |  |
| Forward Voltage                               | -       | 1.6 V      | 2.0 V  | -                       | 1.6 V   | 2.0 V   |  |
| TEC Current*                                  | -       | 0.4 A      | 1.5 A  | -                       | 0.4 A   | 1.5 A   |  |
| TEC Voltage*                                  | -       | 0.5 V      | 4.0 V  | -                       | 0.5 V   | 4.0 V   |  |
| Thermistor Resistance*                        | -       | 10 kΩ      | -      | -                       | 10 kΩ   | -       |  |

\* TEC Operation (Typ/Max @ TCASE = 25/70 °C)


| ITEM#                                         | BOA1    | BOA1017S / BOA1017P |         |         | 132S / BOA | 1132P   | BOA1132SXL / BOA1132PXL |         |         |
|-----------------------------------------------|---------|---------------------|---------|---------|------------|---------|-------------------------|---------|---------|
| Parameter                                     | Min     | Typical             | Max     | Min     | Typical    | Max     | Min                     | Typical | Max     |
| Operating Current                             | -       | 500 mA              | 600 mA  | -       | 700 mA     | 750 mA  | -                       | 700 mA  | 750 mA  |
| Center Wavelength                             | 1290 nm | 1310 nm             | 1330 nm | 1290 nm | 1300 nm    | 1315 nm | 1290 nm                 | 1300 nm | 1315 nm |
| Optical 3 dB Bandwidth                        | 60 nm   | 70 nm               | -       | 80 nm   | 87 nm      | -       | 90 nm                   | -       | -       |
| Saturation Output Power (@ -3 dB)             | 13 dBm  | 15 dBm              | -       | 15 dBm  | 17 dBm     | -       | 17 dBm                  | 18 dBm  | -       |
| Small Signal Gain Across BW (@ Pin = -20 dBm) | 17 dB   | 23 dB               | -       | 27 dB   | 30 dB      | -       | 30 dB                   | -       | -       |
| Gain Ripple (p-p) @ IOP                       | -       | 0.3 dB              | 0.8 dB  | -       | 0.2 dB     | 0.3 dB  | -                       | 0.1 dB  | 0.2 dB  |
| Noise Figure                                  | -       | 7.0 dB              | 9.0 dB  | -       | 7.0 dB     | 9.0 dB  | -                       | 6.0 dB  | 7.0 dB  |
| Forward Voltage                               | -       | 1.4 V               | 1.6 V   | -       | 1.6 V      | 2.0 V   | -                       | 1.6 V   | 2.0 V   |
| TEC Current*                                  | -       | 0.15 A              | 1.5 A   | -       | 0.4 A      | 1.5 A   | -                       | 0.4 A   | 1.5 A   |
| TEC Voltage*                                  | -       | 0.35 V              | 3.5 V   | -       | 0.5 V      | 4.0 V   | -                       | 0.5 V   | 4.0 V   |
| Thermistor Resistance*                        | -       | 10 kΩ               | _       | -       | 10 kΩ      | -       | -                       | 10 kΩ   | -       |

\* TEC Operation (Typ/Max @ TCASE = 25/70 °C)



#### **Booster Optical Amplifiers**

| ITEM#      | \$          | £          | €          | RMB         | DESCRIPTION                                   |
|------------|-------------|------------|------------|-------------|-----------------------------------------------|
| BOA1130S   | \$ 2,115.00 | £ 1,466.00 | € 1.877,50 | ¥ 17,860.00 | 1285 nm BOA, 80 nm BW, Butterfly, SMF, FC/APC |
| BOA1130P   | \$ 2,380.00 | £ 1,650.00 | € 2.113,00 | ¥ 20,097.00 | 1285 nm BOA, 80 nm BW, Butterfly, PMF, FC/APC |
| BOA1130SXL | \$ 4,230.00 | £ 2,932.50 | € 3.755,50 | ¥ 35,719.00 | 1275 nm BOA, 90 nm BW, Butterfly, SMF, FC/APC |
| BOA1130PXL | \$ 4,760.00 | £ 3,300.00 | € 4.226,00 | ¥ 40,194.00 | 1275 nm BOA, 90 nm BW, Butterfly, PMF, FC/APC |
| BOA1132S   | \$ 2,015.00 | £ 1,397.00 | € 1.789,00 | ¥ 17,015.00 | 1300 nm BOA, 80 nm BW, Butterfly, SMF, FC/APC |
| BOA1132P   | \$ 2,280.00 | £ 1,580.50 | € 2.024,00 | ¥ 19,253.00 | 1300 nm BOA, 80 nm BW, Butterfly, PMF, FC/APC |
| BOA1132SXL | \$ 4,030.00 | £ 2,793.50 | € 3.578,00 | ¥ 34,030.00 | 1300 nm BOA, 90 nm BW, Butterfly, SMF, FC/APC |
| BOA1132PXL | \$ 4,560.00 | £ 3,162.00 | € 4.049,00 | ¥ 38,505.00 | 1300 nm BOA, 90 nm BW, Butterfly, PMF, FC/APC |
| BOA1017S   | \$ 1,875.00 | £ 1,300.00 | € 1.664,50 | ¥ 15,833.00 | 1310 nm BOA, 60 nm BW, Butterfly, SMF, FC/APC |
| BOA1017P   | \$ 2,140.00 | £ 1,483.50 | € 1.900,00 | ¥ 18,071.00 | 1310 nm BOA, 60 nm BW, Butterfly, PMF, FC/APC |



#### Light ▼ CHAPTERS

**Coherent Sources** 

**Incoherent Sources** 

#### Covega

**Drivers/Mounts** 

Accessories

▼ SECTIONS

Gain Chips

#### **Optical Amplifiers**

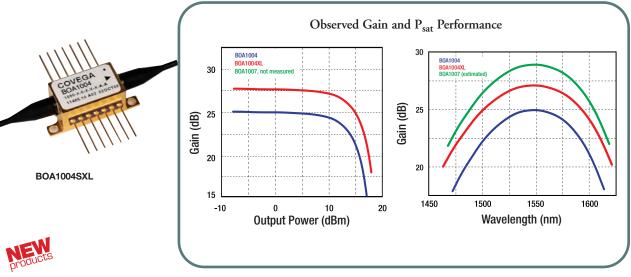
Superluminescent Diodes

Fabry-Perot Lasers

**Optical Modulators** 



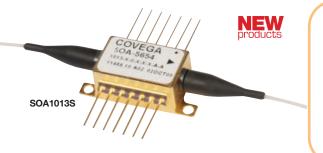
Thorlabs has six varieties of 1550 nm Booster Optical Amplifiers (BOAs), a polarization-dependent variant of Semiconductor Optical Amplifiers (SOAs). Our advanced epitaxial wafer growth and optoelectronic packaging techniques enable a high output saturation power, low noise figure, and large gain across a broad spectral bandwidth. The BOA devices are available as chip on submount (CoS), as chip on heatsink (CoH), or in butterfly packages. Our BOA devices are designed and tested to ensure the highest available gain and saturated output power on the market. The butterfly devices come in an industry-standard 14-pin package with single mode fiber or polarization-maintaining pigtails. Devices can be customized to include input or output isolators.


Semiconductor Optical Amplifiers are devices that directly amplify optical signals using the properties of semiconductors. The SOAs structure consists of a highly efficient InP/InGaAsP Multiple Quantum Well (MQW) layer structure grown on an InP wafer and processed into a waveguide. Thorlabs' Semiconductor Optical Amplifiers are designed as single-pass, traveling-wave optical amplifiers that perform well with both monochromatic and polychromatic signals. Please contact Tech Support for help customizing a BOA.

| ITEM#                                         | BOA10   | 004S / BOA | 1004P   | BOA1004 | SXL / BOA | 1004PXL | BOA1007C / BOA1007H |         |         |
|-----------------------------------------------|---------|------------|---------|---------|-----------|---------|---------------------|---------|---------|
| Parameter                                     | Min     | Typical    | Max     | Min     | Typical   | Max     | Min                 | Typical | Max     |
| Operating Current                             | -       | 600 mA     | 750 mA  | -       | 600 mA    | 750 mA  | -                   | 500 mA  | -       |
| Center Wavelength                             | 1530 nm | 1550 nm    | 1570 nm | 1530 nm | 1550 nm   | 1570 nm | 1530 nm             | 1550 nm | 1570 nm |
| Optical 3 dB Bandwidth                        | 90 nm   | 100 nm     | -       | 100 nm  | -         | -       | 90 nm               | 100 nm  | -       |
| Saturation Output Power (@ -3 dB)             | 13 dBm  | 15 dBm     | -       | 15 dBm  | -         | -       | N/A*                | N/A*    | N/A*    |
| Small Signal Gain Across BW (@ Pin = -20 dBm) | 25 dB   | 28 dB      | -       | 28 dB   | -         | -       | N/A*                | N/A*    | N/A*    |
| Gain Ripple (p-p) @ IOP                       | -       | 0.1 dB     | 0.2 dB  | -       | 0.1 dB    | 0.2 dB  | -                   | 0.05 dB | 0.2 dB  |
| Noise Figure                                  | -       | 7.5 dB     | 9.0 dB  | -       | -         | 7.0 dB  | N/A*                | N/A*    | N/A*    |
| Forward Voltage                               | -       | 1.4 V      | 1.6 V   | -       | 1.4 V     | 1.6 V   | -                   | 1.3 V   | 1.6 V   |
| TEC Current**                                 | -       | 0.12 A     | 1.5 A   | -       | 0.12 A    | 1.5 A   | -                   | -       | -       |
| TEC Voltage**                                 | -       | 0.25 V     | 4.0 V   | -       | 0.25 V    | 4.0 V   | -                   | -       | _       |
| Thermistor Resistance**                       | -       | 10 kΩ      | -       | -       | 10 kΩ     | -       | -                   | -       | -       |
| Chip Length                                   | -       | -          | -       | -       | -         | -       | -                   | 1.5 mm  | -       |
| Lateral Beam Angle                            | -       | -          | -       | -       | -         | -       | -                   | 19.5 °  | -       |
| Beam Divergence Angle (FWHM), Transverse      | -       | -          | -       | -       | -         | -       | 32 °                | 36 °    | 40 °    |
| Beam Divergence Angle (FWHM), Lateral         | -       | _          | -       | -       | -         | _       | 10 °                | 14 °    | 18 °    |

1550 nm (C-Band) Polarization-Dependent BOAs

\* Not Applicable

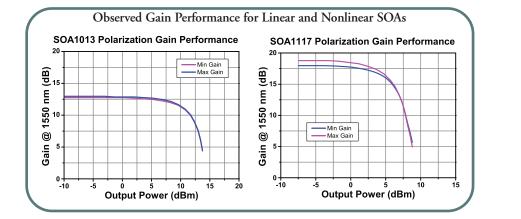

\*\* TEC Operation (Typ/Max @ TCASE = 25/70 °C)



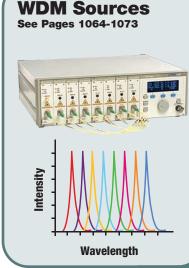
| ITEM#      | \$      |      | £          | €          | RMB         | DESCRIPTION                                        |
|------------|---------|------|------------|------------|-------------|----------------------------------------------------|
| BOA1004S   | \$ 1,75 | 0.00 | £ 1,213.00 | € 1.553,50 | ¥ 14,778.00 | 1550 nm BOA, 90 nm BW, Butterfly Pkg, SMF, FC/APC  |
| BOA1004SXL | \$ 3,50 | 0.00 | £ 2,426.50 | € 3.107,50 | ¥ 29,555.00 | 1550 nm BOA, 100 nm BW, Butterfly Pkg, PMF, FC/APC |
| BOA1004P   | \$ 2,01 | 5.00 | £ 1,397.00 | € 1.789,00 | ¥ 17,015.00 | 1550 nm BOA, 90 nm BW, Butterfly Pkg, SMF, FC/APC  |
| BOA1004PXL | \$ 4,03 | 0.00 | £ 2,793.50 | € 3.578,00 | ¥ 34,030.00 | 1550 nm BOA, 100 nm BW, Butterfly Pkg, PMF, FC/APC |
| BOA1007C   | \$ 85   | 0.00 | £ 589.30   | € 754,70   | ¥ 7,177.50  | 1550 nm BOA, 90 nm BW, Chip on Submount            |
| BOA1007H   | \$ 92   | 5.00 | £ 641.30   | € 821,30   | ¥ 7,810.80  | 1550 nm BOA, 90 nm BW, Chip on Heatsink            |

#### www.thorlabs.com

#### 1550 nm (C-Band) Polarization-Independent SOAs




#### SOA – Polarization-Independent Optical Amplifier


- Linear/Nonlinear Operation
- High Saturation Power (up to 14 dBm)
  - High Gain Levels (up to 20 dB)
- SM or PM Fiber Pigtailed Butterfly Package
- 1.5 m Fiber Pigtailed FC/APC Connectors
- Typical Applications Include Inline Amplifier and Detector Pre-Amp

For applications in the 1550 nm, where the input polarization is unknown or fluctuates, Thorlabs has two varieties of C-band polarization-independent optical amplifiers – the linear SOA1013S and the nonlinear SOA1117S/P. Our advanced epitaxial wafer growth and opto-electronic packaging techniques enable a high output saturation power, low noise figure, and large gain across a broad spectral bandwidth.

Semiconductor Optical Amplifiers (SOAs) are devices that directly amplify optical signals using the properties of semiconductors. Thorlabs' SOAs are designed as single pass, traveling-wave optical amplifiers that perform well with both monochromatic and polychromatic signals. The SOA structure consists of a highly efficient InP/InGaAsP Multiple Quantum Well (MQW) layer structure grown on an InP wafer and processed into a proven reliable ridge waveguide. The device is packaged in an industry-standard 14-pin butterfly package with either SMF or PMF pigtails that are terminated with FC/APC connectors. The SOAs can be customized upon request to have isolators on the input, output, or both. Please contact Tech Support for help customizing a device for your application.



| ITEM#                                         |         | SOA1013S |         | S       | OA11175 / | Р       |
|-----------------------------------------------|---------|----------|---------|---------|-----------|---------|
| Parameter                                     | Min     | Typical  | Max     | Min     | Typical   | Max     |
| Operating Current                             | -       | 500 mA   | 600 mA  | -       | 500 mA    | 600 mA  |
| Center Wavelength                             | 1520 nm | 1550 nm  | 1570 nm | 1520 nm | 1550 nm   | 1570 nm |
| Optical 3 dB Bandwidth                        | 70 nm   | 74 nm    | -       | 50 nm   | 60 nm     | -       |
| Saturation Output Power (@ -3 dB)             | 12 dBm  | 14 dBm   | -       | 6 dBm   | 9 dBm     | -       |
| Small Signal Gain Across BW (@ Pin = -20 dBm) | 10 dB   | 13 dB    | -       | 15 dB   | 20 dB     | -       |
| Gain Flatness @ IOP                           | -       | 5 dB     | 7 dB    | -       | -         | -       |
| Gain Ripple (p-p) @ IOP                       | -       | 0.1 dB   | 0.5 dB  | -       | 0.2 dB    | 0.5 dB  |
| Noise Figure                                  | -       | 8.0      | 9.5     | -       | 9.0       | 11.0    |
| Forward Voltage                               | -       | 1.6 V    | 1.8 V   | -       | 1.4 V     | 2.0 V   |
| TEC Current*                                  | -       | 0.23 A   | 1.5 A   | -       | 0.2 A     | 1.2 A   |
| TEC Voltage*                                  | -       | 0.5 V    | 3.5 V   | -       | 0.4 V     | 3.5 V   |
| Thermistor Resistance*                        | -       | 10 kΩ    | -       | -       | 10 kΩ     | -       |



#### Hechanical Drawings Available on the

\* TEC Operation (Typ/Max @ TCASE = 25/70 °C)

| ITEM#    | \$          | £          | €          | RMB         | DESCRIPTION                                                 |
|----------|-------------|------------|------------|-------------|-------------------------------------------------------------|
| SOA1013S | \$ 1,685.00 | £ 1,168.00 | € 1.496,00 | ¥ 14,229.00 | 1550 nm Linear SOA, 70 nm BW, Butterfly Pkg, SMF, FC/APC    |
| SOA1117S | \$ 1,585.00 | £ 1,099.00 | € 1.407,00 | ¥ 13,384.00 | 1550 nm Nonlinear SOA, 50 nm BW, Butterfly Pkg, SMF, FC/APC |
| SOA1117P | \$ 1,850.00 | £ 1,282.50 | € 1.642,50 | ¥ 15,622.00 | 1550 nm Nonlinear SOA, 50 nm BW, Butterfly Pkg, PMF, FC/APC |

#### THORLADS

#### 

Light

CHAPTERS V

**Coherent Sources** 

**Incoherent Sources** 

Covega

**Drivers/Mounts** 

Accessories SECTIONS V

Gain Chips

Diodes

Optical Amplifiers Superluminescent

**Fabry-Perot Lasers** 

**Optical Modulators** 

#### Light ▼ CHAPTERS

**Coherent Sources** 

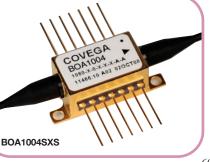
**Incoherent Sources** 

#### Covega

**Drivers/Mounts** 

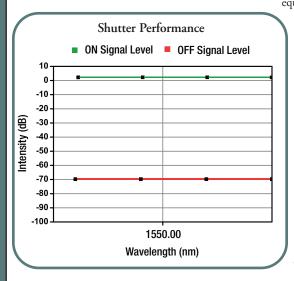
Accessories

▼ SECTIONS **Gain Chips** 


#### **Optical Amplifiers**

Superluminescent Diodes

**Fabry-Perot Lasers** 


**Optical Modulators** 

#### Semiconductor Optical Amplifier as an Optical Shutter Switch



The SOA1013SXS and BOA1004PXS Optical Switches are designed specifically for applications requiring an optical shutter in the 1530 to 1570 nm range. Both the polarizationindependent SOA1013SXS and the polarizationdependent BOA1004PXS provide isolation greater than 60 dB. The devices are based

on our semiconductor amplifier platform consisting of a highly efficient InP/InGaAsP Multiple Quantum Well (MQW) layer structures grown on an InP wafer and processed into a proven reliable ridge waveguide. The device can operate as a lossless, high-speed, optical isolation switch, a full-range variable optical attenuator (VOA), or an optical shutter for protection of delicate optical equipment.



SOA as an Optical Switch

- Polarization-Dependent and Polarization-Independent Versions
- High Fiber-to-Fiber Gain
- On/Off Isolation >45 dB
- High Switching Speed of <1 ns
- Available as SM Fiber-Pigtailed Butterfly
- FC/APC Connectors. Key Aligned to Slow Axis on BOA1004PXS
- Typical Applications Include LIDAR Systems, Remote Sensing Systems, and Cavity Ring-Down Sensors

The SOA1013SXS polarization-independent switch features the right combination of low polarization sensitivity, wide optical bandwidth, and high extinction ratio for an optical isolation switch. Using the gain/absorption properties of the MQW structure, the device can function as an optical blocking shutter with no reflections. In addition, the switch is also designed to support the highest gain and signal levels, allowing it to function reliably at signal levels of 15 dBm and above. The SOA1013SXS is also ideal for applications where the input signal polarization is unknown or fluctuates.

The BOA1004PXS polarization-dependent switch offers the user full control of the power level making it ideal for high-power laser pulse generation systems like cavity ring-down sensors and LIDAR systems. The device comes in an industry-standard 14-pin butterfly package with PMF pigtails that are terminated with FC/APC connectors and key aligned to the slow axis. The BOAs can be customized upon request to have isolators on the input, output, or both. Please contact Tech Support for help customizing a device for your application.

| ITEM#                                                                      | S       | OA1013SX | S       | ]       | BOA1004PX | (S      |
|----------------------------------------------------------------------------|---------|----------|---------|---------|-----------|---------|
| Parameter                                                                  | Min     | Typical  | Max     | Min     | Typical   | Max     |
| Operating Current                                                          | -       | 500 mA   | 600 mA  | -       | 500 mA    | 600 mA  |
| Operating Wavelength                                                       | 1528 nm | -        | 1562 nm | 1528 nm | -         | 1562 nm |
| Optical Isolation (P <sub>IN</sub> / P <sub>OUT</sub> ) @ 0 mA and 1550 nm | 45 dB   | -        | -       | 40 dB   | -         | -       |
| Extinction Ratio (On/Off @ P <sub>IN</sub> = -20 dBm and 1550 nm)          | -       | 60 dB    | -       | -       | 70 dB     | -       |
| Switching Speed                                                            | -       | 1ns      | -       | -       | 1 ns      | -       |
| Max Output Power for CW Input Signal                                       | -       | 17 dBm   | -       | -       | 18 dBm    | -       |
| Max Output Power for Modulated Input Signal                                | -       | 9 dBm    | -       | -       | 10 dBm    | -       |
| Saturation Output Power (@ -3 dB)                                          | 12 dBm  | 14 dBm   | -       | 13 dBm  | 15 dBm    | -       |
| Small Signal Gain Across BW (@ Pin = -20 dBm)                              | 10 dB   | 13 dB    | -       | 25 dB   | 28 dB     | -       |
| Polarization Dependant Gain                                                | -       | 1 dB     | 1.5 dB  | -       | -         | -       |
| Noise Figure                                                               | -       | 8.0 dB   | 9.5 dB  | -       | 8.0 dB    | 9.5 dB  |
| Forward Voltage                                                            | -       | 1.6 V    | 1.8 V   | -       | 1.6 V     | 1.8 V   |
| TEC Current*                                                               | _       | 0.23 A   | 1.5 A   | -       | 0.23 A    | 1.5 A   |
| TEC Voltage*                                                               | _       | 0.5 V    | 3.5 V   | -       | 0.5 V     | 3.5 V   |
| Thermistor Resistance*                                                     | -       | 10 kΩ    | -       | -       | 10 kΩ     | -       |

\* TEC Operation (Typ/Max @ TCASE = 25/70 °C)

| ITEM#      | \$          | £          | €          | RMB         | DESCRIPTION                                                                     |
|------------|-------------|------------|------------|-------------|---------------------------------------------------------------------------------|
| SOA1013SXS | \$ 1,854.00 | £ 1,285.00 | € 1.646,00 | ¥ 15,656.00 | 1550 nm Polarization-Independent Optical Shutter/Switch, Butterfly, SMF, FC/APC |
| BOA1004PXS | \$ 2,218.00 | £ 1,537.50 | € 1.969,00 | ¥ 18,729.00 | 1550 nm Polarization-Dependent Optical Shutter/Switch, Butterfly, PMF, FC/APC   |

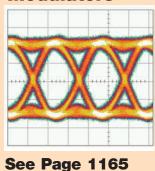


See Pages 1265-1284

#### 1600 nm (L-Band) Polarization-Dependent BOAs

For support of applications in the 1570-1650 nm wavelength range, Thorlabs has two wavelength variations of L-band polarization-dependent optical amplifiers (BOAs) – the BOA1080S/P and the BOA1082S/P. Polarization-sensitive BOAs only amplify one state of polarization so they are best suited for applications where the input polarization of the light is known. Our advanced epitaxial wafer growth and opto-electronic packaging techniques enable a high output saturation power, low noise figure, and large gain across a broad spectral bandwidth.

**BOA – Polarization-Dependent Optical Amplifier** 


- High Saturation Power (up to 12 dBm)
- High Gain Levels (up to 20 dB)
- Available as SM or PM Fiber-Pigtailed Butterfly Package
- 1.5 m Fiber Pigtailed FC/APC Connectors
- Typical Applications Include Amplification of Lasers and Transmitter Signals and Swept-Source Tunable Lasers

BOAs, a polarization-dependent variant of Semiconductor Optical Amplifiers (SOAs), directly amplify optical signals using

the properties of semiconductors. Thorlabs' Booster Optical Amplifiers are designed as single pass, traveling-wave optical amplifiers that perform well with both monochromatic and multi-wavelength signals. The BOA structure consists of a highly efficient InP/InGaAsP Multiple Quantum Well (MQW) layer structure grown on an InP wafer and processed into a proven reliable ridge waveguide. The device is packaged in an industry-standard 14-pin butterfly package with either SMF or PMF pigtails that are terminated with FC/APC connectors. The BOAs can be customized upon request to have isolators on the input, output, or both. Please contact Tech Support for help in customizing a device for your application.

| ITEM#                                         | I       | BOA1080S/ | Р       | B       | BOA1082S/I | 2       |
|-----------------------------------------------|---------|-----------|---------|---------|------------|---------|
| Parameter                                     | Min     | Typical   | Max     | Min     | Typical    | Max     |
| Operating Current                             | -       | 500 mA    | 600 mA  | -       | 600 mA     | -       |
| Center Wavelength                             | 1570 nm | 1590 nm   | 1610 nm | 1600 nm | 1625 nm    | 1650 nm |
| Optical 3 dB Bandwidth                        | 80 nm   | 90 nm     | -       | 70 nm   | 80 nm      | -       |
| Saturation Output Power (@ -3 dB)             | 12 dBm  | 15 dBm    | -       | 10 dBm  | 13 dBm     | -       |
| Small Signal Gain Across BW (@ Pin = -20 dBm) | 20 dB   | 25 dB     | -       | 14 dB   | 18 dB      | -       |
| Gain Ripple (p-p) @ I <sub>OP</sub>           | -       | 0.05 dB   | 0.2 dB  | -       | 0.05 dB    | 0.3 dB  |
| Noise Figure                                  | -       | 7.0 dB    | 9.0 dB  | -       | 7.0 dB     | 9.0 dB  |
| Forward Voltage                               | -       | 1.5 V     | 2 V     | -       | 1.5 V      | 2 V     |
| TEC Current*                                  | -       | 0.12 A    | 1.5 A   | -       | 0.12 A     | 1.5 A   |
| TEC Voltage*                                  | -       | 0.25 V    | 4.0 V   | -       | 0.25 V     | 4.0 V   |
| Thermistor Resistance*                        | -       | 10 kΩ     | -       | -       | 10 kΩ      | _       |

#### 10G & 40G Optical Modulators



\* TEC Operation (Typ/Max @ TCASE = 25/70 °C)





products

| ITEM#    | \$          | £          | €          | RMB         | DESCRIPTION                                              |
|----------|-------------|------------|------------|-------------|----------------------------------------------------------|
| BOA1080S | \$ 1,950.00 | £ 1,352.00 | € 1.731,00 | ¥ 16,466.00 | 1600 nm L-Band BOA, 80 nm BW, Butterfly Pkg, SMF, FC/APC |
| BOA1080P | \$ 2,215.00 | £ 1,535.50 | € 1.966,50 | ¥ 18,704.00 | 1600 nm L-Band BOA, 80 nm BW, Butterfly Pkg, PMF, FC/APC |
| BOA1082S | \$ 2,250.00 | £ 1,559.50 | € 1.997,50 | ¥ 19,000.00 | 1625 nm L-Band BOA, 70 nm BW, Butterfly Pkg, SMF, FC/APC |
| BOA1082P | \$ 2,515.00 | £ 1,743.50 | € 2.233,00 | ¥ 21,237.00 | 1625 nm L-Band BOA, 70 nm BW, Butterfly Pkg, PMF, FC/APC |

TECHNOLOGY V

#### Light

CHAPTERS V

Coherent Sources

Incoherent Sources

Covega

**Drivers/Mounts** 

Accessories

SECTIONS V Gain Chips

**Optical Amplifiers** 

Superluminescent Diodes

Fabry-Perot Lasers

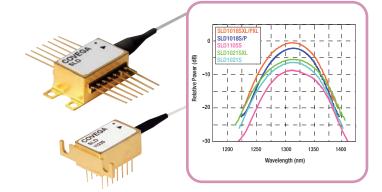
**Optical Modulators** 

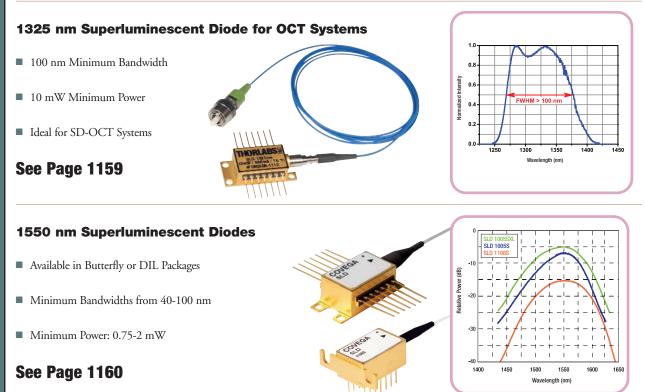
## **Superluminescent Diodes Selection Guide**

#### Pages 1156-1160

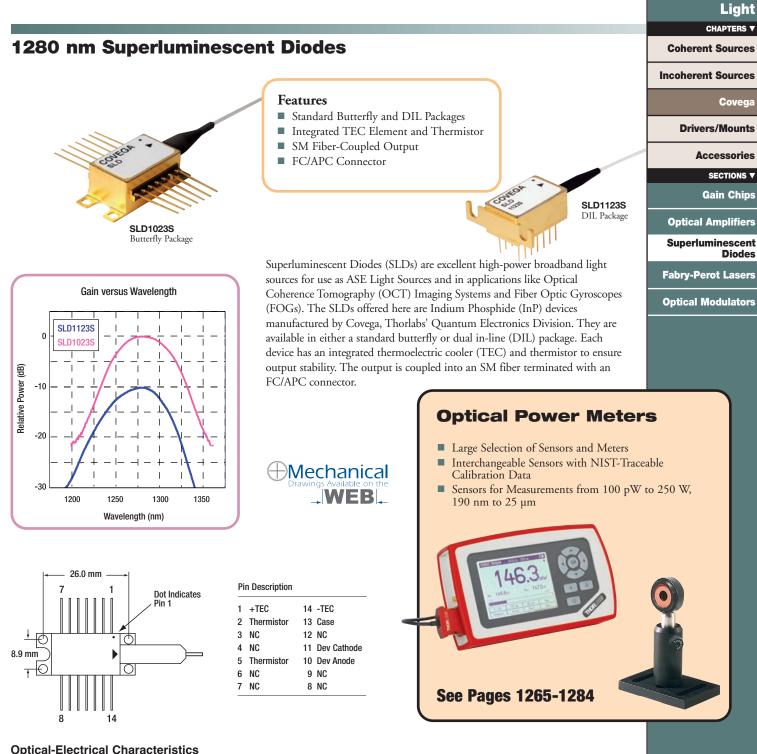
#### **1280 nm Superluminescent Diodes**

- Available in Butterfly or DIL Packages
- Minimum Bandwidths from 35-75 nm
- Minimum Power: 1-10 mW


#### See Page 1157


# $(\mathbf{g}) = \mathbf{g} = \mathbf{g}$

#### **1310 nm Superluminescent Diodes**


- Available in Butterfly or DIL Packages
- Minimum Bandwidths from 35-85 nm
- Minimum Power: 5-30 mW

#### See Page 1158





**NOTE:** The products on pages 1156-1160 are designated for use solely as components and are not sold as a finished product. The purchaser assumes responsibility to comply with US 21 CFR 1040.10 and 1040.11 or IEC 60825-1 with regard to the safe use of these components in a laboratory environment or their introduction into commerce.



| ITEM#             |                 |         | SLD1123S |         | SLD1023S |         |         |  |
|-------------------|-----------------|---------|----------|---------|----------|---------|---------|--|
| Parameter Symbol  |                 | Min     | Typical  | Max     | Min      | Typical | Max     |  |
| Center Wavelength | λ               | 1260 nm | 1280 nm  | 1300 nm | 1270 nm  | 1280 nm | 1290 nm |  |
| ASE Power         |                 | 1 mW    | 1.5 mW   | -       | 10 mW    | 15 mW   | -       |  |
| Optical Bandwidth | BW              | 75 nm   | 95 nm    | -       | 40 nm    | 45 nm   | -       |  |
| RMS Gain Ripple   | ΔG              | -       | -        | 0.25 dB | -        | -       | 0.35 dB |  |
| Operating Current | I <sub>OP</sub> | -       | 500 mA   | 600 mA  | -        | 600 mA  | 800 mA  |  |
| Forward Voltage   | V <sub>F</sub>  | -       | 1.6 V    | 2.0 V   | -        | 1.4 V   | 2.0 V   |  |

| ITEM#    | \$          | £          | €          | RMB         | DESCRIPTION                                                        |
|----------|-------------|------------|------------|-------------|--------------------------------------------------------------------|
| SLD1123S | \$ 1,275.00 | £ 883.90   | € 1.132,00 | ¥ 10,767.00 | 1 mW, 75 nm BW SLD, CWL: 1280 nm, DIL Pkg, SM Fiber, FC/APC        |
| SLD1023S | \$ 2,150.50 | £ 1,491.00 | € 1.909,00 | ¥ 18,159.00 | 10 mW, 45 nm BW SLD, CWL: 1280 nm, Butterfly Pkg, SM Fiber, FC/APC |

TECHNOLOGY V

#### Light CHAPTERS

#### **Coherent Sources**

**Incoherent Sources** 

Covega

**Drivers/Mounts** 

Accessories

▼ SECTIONS

Gain Chips

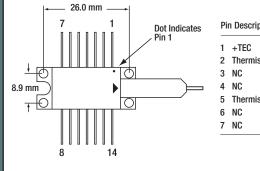
**Optical Amplifiers** 

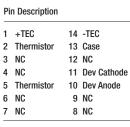
Superluminescent Diodes

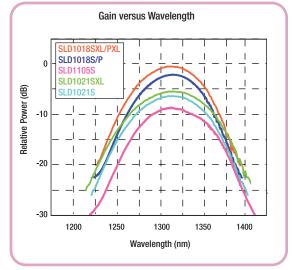
Fabry-Perot Lasers

Optical Modulators

#### **1310 nm Superluminescent Diodes**


Superluminescent Diodes (SLDs) are excellent high-power, broadband light sources for use as ASE Light Sources and in applications like Optical Coherence Tomography (OCT) Imaging Systems and Fiber Optic Gyroscopes (FOGs). The SLDs offered here are Indium Phosphide (InP) devices manufactured by Covega, Thorlabs' Quantum Electronics Division. They are available in either a standard butterfly or dual in-line (DIL) package. Each device has an integrated thermoelectric cooler (TEC) and thermistor to ensure output stability. The output is coupled into an SM or PM fiber


Features


- Standard Butterfly or DIL Package
- Integrated TEC Element and Thermistor
- SM or PM Fiber Coupled Output
- FC/APC Connector

terminated with an FC/APC connector. Our SLDs are available in standard or premium versions. The premium SLDs, denoted with the suffix XL, are hand-picked to provide higher bandwidth and power.









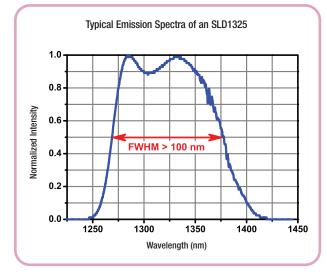
#### Wide Bandwidth

| ITEM#             |                 | SLD1021SXL |         |         |         | SLD1021S |         | SLD1105S |         |         |  |
|-------------------|-----------------|------------|---------|---------|---------|----------|---------|----------|---------|---------|--|
| Parameter         | Symbol          | Min        | Typical | Max     | Min     | Typical  | Max     | Min      | Typical | Max     |  |
| Center Wavelength | λ               | 1290 nm    | 1310 nm | 1330 nm | 1290 nm | -        | 1330 nm | 1290 nm  | 1310 nm | 1330 nm |  |
| ASE Power         |                 | 13 mW      | -       | -       | 10 mW   | 12.5 mW  | -       | 5 mW     | 7 mW    | -       |  |
| Optical Bandwidth | BW              | 85 nm      | -       | -       | 80 nm   | 85 nm    | -       | 60 nm    | 65 nm   | -       |  |
| RMS Gain Ripple   | ΔG              | -          | 0.1 dB  | 0.35 dB | -       | 0.1 dB   | 0.35 dB | -        | -       | 0.25 dB |  |
| Operating Current | I <sub>OP</sub> | _          | 700 mA  | 900 mA  | -       | 700 mA   | 900 mA  | -        | 500 mA  | 650 mA  |  |
| Forward Voltage   | V <sub>F</sub>  | -          | 1.55 V  | 1.8 V   | -       | 1.55 V   | 1.8 V   | -        | 1.3 V   | 2.0 V   |  |

#### **High Power**

| ITEM#             |                 | SLD     | 1018SXL/SLD1018 | 8PXL    | S       | LD1018S/SLD1018 | 3P      |
|-------------------|-----------------|---------|-----------------|---------|---------|-----------------|---------|
| Parameter Symbol  |                 | Min     | Typical         | Max     | Min     | Typical         | Max     |
| Center Wavelength | λ               | 1290 nm | 1310 nm         | 1330 nm | 1290 nm | 1310 nm         | 1330 nm |
| ASE Power         |                 | 30 mW   | -               | -       | 22 mW   | 30 mW           | -       |
| Optical Bandwidth | BW              | 45 nm   | -               | -       | 40 nm   | 45 nm           | -       |
| RMS Gain Ripple   | ΔG              | -       | 0.1 dB          | 0.35 dB | -       | 0.1 dB          | 0.35 dB |
| Operating Current | I <sub>OP</sub> | -       | 600 mA          | 800 mA  | _       | 600 mA          | 800 mA  |
| Forward Voltage   | V <sub>F</sub>  | -       | 1.5 V           | 1.8 V   | _       | 1.5 V           | 1.8 V   |

| ITEM#      | \$          | £          | €          | RMB         | DESCRIPTION                                                             |
|------------|-------------|------------|------------|-------------|-------------------------------------------------------------------------|
| SLD1105S   | \$ 1,450.00 | £ 1,005.00 | € 1.287,50 | ¥ 12,244.00 | Wide-Bandwidth 5 mW SLD, CWL: 1310 nm, DIL Pkg, SM Fiber, FC/APC        |
| SLD1021S   | \$ 1,850.00 | £ 1,282.50 | € 1.642,50 | ¥ 15,622.00 | Wide-Bandwidth 10 mW SLD, CWL: 1310 nm, Butterfly Pkg, SM Fiber, FC/APC |
| SLD1018S   | \$ 2,150.00 | £ 1,490.50 | € 1.909,00 | ¥ 18,155.00 | High-Power 22 mW SLD, CWL: 1310 nm, Butterfly Pkg, SM Fiber, FC/APC     |
| SLD1018P   | \$ 2,300.00 | £ 1,594.50 | € 2.042,00 | ¥ 19,422.00 | High-Power 22 mW SLD, CWL: 1310 nm, Butterfly Pkg, PM Fiber, FC/APC     |
| SLD1018SXL | \$ 4,300.00 | £ 2,981.00 | € 3.817,50 | ¥ 36,310.00 | High-Power 13 mW SLD, CWL: 1310 nm, Butterfly Pkg, SM Fiber, FC/APC     |
| SLD1018PXL | \$ 4,600.00 | £ 3,189.00 | € 4.084,00 | ¥ 38,843.00 | High-Power 30 mW SLD, CWL: 1310 nm, Butterfly Pkg, PM Fiber, FC/APC     |
| SLD1021SXL | \$ 3,700.00 | £ 2,565.00 | € 3.285,00 | ¥ 31,243.00 | Wide-Bandwidth 13 mW SLD, CWL: 1310 nm, Butterfly Pkg, SM Fiber, FC/APC |


#### Superluminescent Diode Light Source for OCT Systems

#### Features

- Integrated Optical Isolator, Thermistor for Enhanced Output Stability
- FC/APC-Terminated Fiber Pigtail Minimizes Optical Feedback
- Integrated TEC and Thermistor for Temperature Control
- Hermetically Sealed 14-Pin Butterfly Package

The SLD1325 is a high-power, broadband 1325 nm Super Luminescent Diode (SLD). It is hermetically sealed in a 14-pin butterfly package and includes a built-in thermoelectric cooler and thermistor for temperature control. Each device goes through burn-in screening, mechanical robustness testing, and characterization testing before being packaged. The output is coupled into an SM fiber terminated with an FC/APC connector.

SLDs in butterfly packages are excellent high-power broadband light sources for use as ASE Light Sources and in applications like Optical Coherence Tomography (OCT) Imaging Systems and Fiber Optic Gyroscopes (FOGs). Each SLD is shipped with its own characterization sheet.



| PARAMETERS                        |           |
|-----------------------------------|-----------|
| Central Wavelength                | 1325 nm   |
| Bandwidth (FWHM)                  | >100 nm   |
| Fiber-Coupled Power               | >10 mW    |
| Maximum SLD Injection Current     | 780 mA    |
| Maximum Voltage                   | 4 V       |
| Operating Temperature Range       | 0 - 40 °C |
| Isolation of Integrated Isolator  | >30 dB    |
| Fiber Pigtail                     | SMF-28e   |
| Fiber Length                      | ~1 m      |
| Fiber Connector                   | FC/APC    |
| Return Loss of FC/APC Connector   | >50 dB    |
| Max Thermoelectric Cooler Current | 4 A       |
| Max Thermoelectric Cooler Voltage | 4 V       |
| Thermistor Resistance*            | 10 kΩ     |

| ITEM#   | \$          | £          | €          | RMB         | DESCRIPTION                                         |
|---------|-------------|------------|------------|-------------|-----------------------------------------------------|
| SLD1325 | \$ 3,200.00 | £ 2,218.50 | € 2.841,00 | ¥ 27,021.00 | FC/APC Pigtailed SLD, 1325 nm, >10 mW, >100 nm FWHM |

#### Laser Diode and Temperature Controllers - ITC4000 Series **Butterfly Laser**

#### Features

Laser Diode Mount for 14-Pin Butterfly Package

Laser-Enabled

LED Indicator

Diode Mount

User-Defined Pin Out Configuration





#### Features

- Laser Currents for 3 Models: ±1 A, ±5 A, and, ±20 A @ 10 V
- TEC Currents of ±12 A @ 15 V
- Constant Current (CC) and Constant Power (CP) Control Modes
- Supports Thermistor, RTD, and IC Temperature Sensors

#### See Pages 1175-1230 for More Information

Light

#### CHAPTERS V

TECHNOLOGY V

**Coherent Sources** 

**Incoherent Sources** 

Covega

**Drivers/Mounts** 

Accessories

SECTIONS V

Gain Chips

**Optical Amplifiers** 

Superluminescent **Diodes** 

SLD1325

**Fabry-Perot Lasers** 

**Optical Modulators** 

#### Light CHAPTERS

#### **Coherent Sources**

**Incoherent Sources** 

Covega

**Drivers/Mounts** 

Accessories

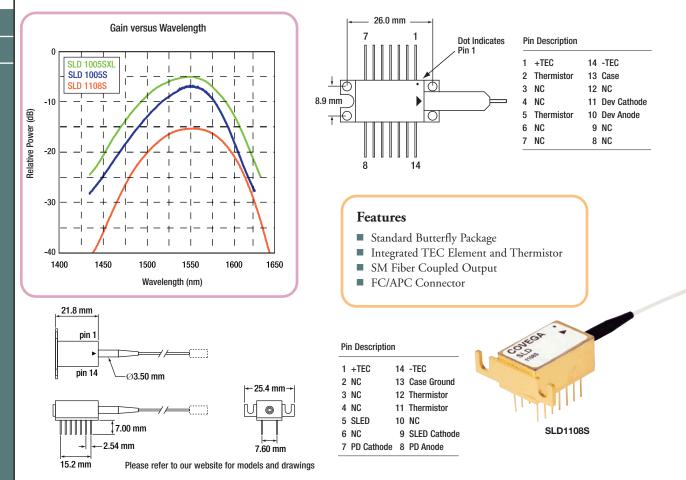
▼ SECTIONS Gain Chips

-----

#### **Optical Amplifiers**

Superluminescent Diodes

Fabry-Perot Lasers


Optical Modulators

#### **1550 nm Superluminescent Diodes**

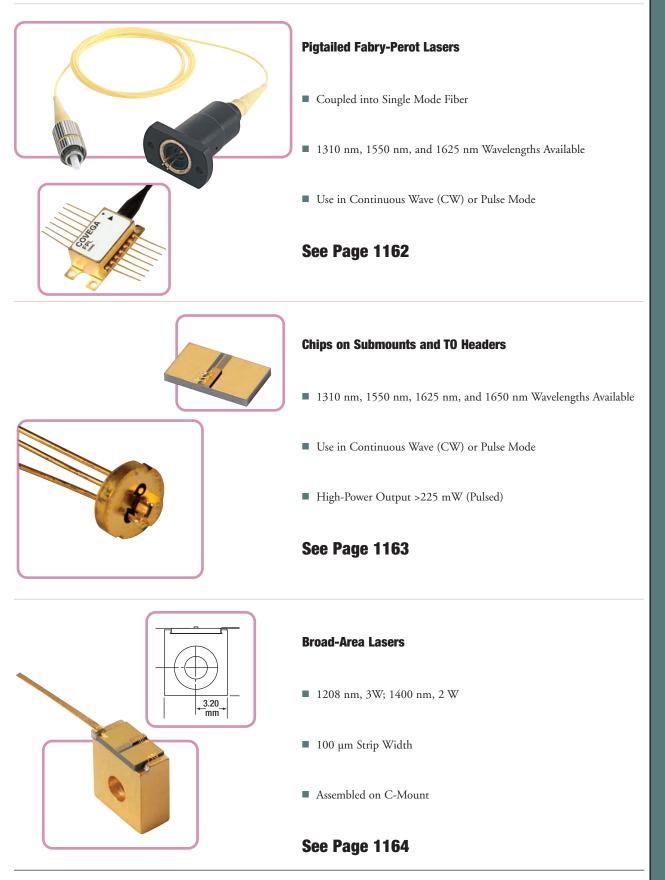
Superluminescent Diodes (SLDs) are excellent high-power, broadband light sources for use as ASE Light Sources and in applications like Optical Coherence Tomography (OCT) Imaging Systems and Fiber Optic Gyroscopes (FOGs). The SLDs offered here are Indium Phosphide (InP) devices manufactured by Covega, Thorlabs' Quantum Electronics Division. They are available in either a standard butterfly or dual in-line (DIL) package. Each device has an integrated thermoelectric cooler (TEC) and thermistor to ensure output stability. The output is coupled into an SM fiber with an FC/APC connector.

Our SLDs are available in standard or premium versions. These premium SLDs, denoted with the suffix XL, are hand-picked to provide higher bandwidth and power.

Typical Power versus Current, Voltage versus Current, and Emission Intensity (AU) versus Wavelength plots for each superluminescent diode model are available on our website: www.thorlabs.com.



#### **Optical-Electrical Characteristics**


| ITEM#             |                 |         | SLD1108S |         |             | SLD1005S |         | SLD1005SXL  |         |         |  |
|-------------------|-----------------|---------|----------|---------|-------------|----------|---------|-------------|---------|---------|--|
| Parameter Symbol  |                 | Min     | Typical  | Max     | Min Typical |          | Max     | Min Typical |         | Max     |  |
| Center Wavelength | λ               | 1530 nm | 1550 nm  | 1570 nm | 1530 nm     | 1550 nm  | 1570 nm | 1535 nm     | 1550 nm | 1565 nm |  |
| ASE Power         |                 | 2 mW    | 2.5 mW   | -       | 20 mW       | 22 mW    | -       | 22 mW       | -       | -       |  |
| Optical Bandwidth | BW              | 85 nm   | 90 nm    | -       | 45 nm       | 50 nm    | -       | 55 nm       | -       | -       |  |
| RMS Gain Ripple   | ΔG              | -       | -        | 0.25 dB | -           | 0.2 dB   | 0.35 dB | -           | 0.2 dB  | 0.35 dB |  |
| Operating Current | I <sub>OP</sub> | -       | 450 mA   | 550 mA  | -           | 600 mA   | 800 mA  | -           | 600 mA  | 800 mA  |  |
| Forward Voltage   | V <sub>F</sub>  | -       | 1.6 V    | 2.0 V   | -           | 1.4 V    | 1.6 V   | _           | 1.4V    | 1.6 V   |  |

| ITEM#      | \$          | £          | €          | € RMB DESCRIPTION |                                                          |  |  |
|------------|-------------|------------|------------|-------------------|----------------------------------------------------------|--|--|
| SLD1108S   | \$ 1,450.00 | £ 1,005.00 | € 1.287,50 | ¥ 12,244.00       | 2 mW SLD, CWL = 1550 nm, DIL Pkg, SM Fiber, FC/APC       |  |  |
| SLD1005S   | \$ 1,677.50 | £ 1,163.00 | € 1.489,50 | ¥ 14,165.00       | 20 mW SLD, CWL= 1550 nm, Butterfly Pkg, SM Fiber, FC/APC |  |  |
| SLD1005SXL | \$ 3,355.00 | £ 2,326.00 | € 2.978,50 | ¥ 28,330.00       | 22 mW SLD, CWL= 1550 nm, Butterfly Pkg, SM Fiber, FC/APC |  |  |

SLD1005S

## **Fabry-Perot Lasers Selection Guide**

#### Pages 1161-1164



THORLABS

#### Light

#### ▼ CHAPTERS Coherent Sources

-----

**Incoherent Sources** 

Covega

Drivers/Mounts

Accessories

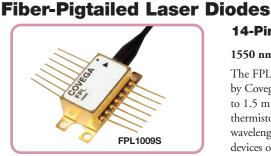
▼ SECTIONS

Gain Chips

**Optical Amplifiers** 

Superluminescent Diodes

Dioues


Fabry-Perot Lasers

30 mm

onc

12.7 mm

**Optical Modulators** 



#### 14-Pin Butterfly Fabry-Perot Lasers



#### 1550 nm Fabry-Perot Lasers – Standard and XL Series with SM or PM Fiber

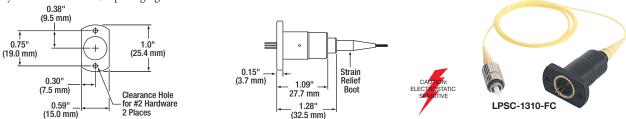
The FPL1009S and FPL1009P are high-power fiber-coupled Fabry-Perot Lasers made by Covega, Thorlabs Quantum Electronics. These butterfly packaged lasers are coupled to 1.5 m of FC/APC connectorized SM and PM fiber, respectively. An integrated thermistor allows these lasers to be temperature controlled, thus stabilizing the lasing wavelength and power. The XL versions of these lasers are premium-grade, hand-picked devices offering the highest power.

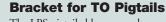
|                |              | ITEM#                    |                 | FPL1009 | SXL / FPI | .1009PXL | FPL     | 1009S / FP | L1009P  |
|----------------|--------------|--------------------------|-----------------|---------|-----------|----------|---------|------------|---------|
| n              |              | Parameter                | Symbol          | Min     | Typical   | Max      | Min     | Typical    | Max     |
| 14 TEC Cathode |              | Center Wavelength        | λ               | 1530 nm | 1550 nm   | 1570 nm  | 1530 nm | 1550 nm    | 1570 nm |
|                | 13 Case      | Spectral Bandwidth (rms) | BW              | -       | -         | 18 nm    | -       | 10 nm      | 20 nm   |
| 12             |              | Output Power @ IOP       | I <sub>OP</sub> | 100 mW  | -         | -        | 80 mW   | 100 mW     | -       |
| 11             | LD Cathode   | Slope Efficiency         |                 | 0.2 W/A | 0.3 W/A   | -        | 0.2 W/A | 0.3 W/A    | -       |
|                | LD Anode     | Threshold Current        | I <sub>TH</sub> | -       | 38 mA     | 45 mA    | -       | 35 mA      | 55 mA   |
| 9<br>8         | 9 NC<br>8 NC | Operating Current        | I <sub>CW</sub> | -       | 400 mA    | 500 mA   | -       | 400 mA     | 500 mA  |
| 8 NC           |              | Forward Voltage          | V <sub>F</sub>  | -       | 1.4 V     | 1.6 V    | _       | 1.4 V      | 1.6 V   |
|                |              |                          |                 |         |           |          |         |            |         |

| ITEM#      | \$          | £          | €          | RMB         | DESCRIPTION                                                     |
|------------|-------------|------------|------------|-------------|-----------------------------------------------------------------|
| FPL1009S   | \$ 1,270.00 | £ 880.40   | € 1.127,60 | ¥ 10,724.00 | Fabry-Perot Laser, 1550 nm, 80 mW, SM Fiber, Butterfly Package  |
| FPL1009P   | \$ 1,402.50 | £ 972.24   | € 1.245,00 | ¥ 11,843.00 | Fabry-Perot Laser, 1550 nm, 80 mW, PM Fiber, Butterfly Package  |
| FPL1009SXL | \$ 2,540.00 | £ 1,761.00 | € 2.255,00 | ¥ 21,448.00 | Fabry-Perot Laser, 1550 nm, 100 mW, SM Fiber, Butterfly Package |
| FPL1009PXL | \$ 2,805.00 | £ 1,944.50 | € 2.490,50 | ¥ 23,686.00 | Fabry-Perot Laser, 1550 nm, 100 mW, PM Fiber, Butterfly Package |

#### **Pigtailed Fabry-Perot Laser**

Pin Description


1 TEC Anode


2 Thermistor 3 NC 4 NC

5 Thermistor 6 NC

7 NC

The LPSC-1310-FC, LPSC-1550-FC, and LPSC-1625-FC are pigtailed versions of Covega's TO-56 fabry-perot lasers that have 1m of fiber terminated with an FC/PC connector. These economical lasers do not include a TEC controller and can be integrated into any system that uses TO-56 packaging.





The LPS pigtailed lasers may be conveniently mounted to a breadboard or a TR post using a PTLB1 Fiber Pigtail Bracket. The universal design allows the L-bracket to be used with both imperial and metric components. The PTLB1 has a 13/30"-40 tap through the center of the mounting area, allowing the end user to plug the pigtail into an SR9 Cable and connect to an LD driver (see page 1176).

| ITEM# | \$       | £       | €       | RMB      | DESCRIPTION             |  |
|-------|----------|---------|---------|----------|-------------------------|--|
| PTLB1 | \$ 22.00 | £ 15.30 | € 19,60 | ¥ 185.80 | Fiber Pigtail L-Bracket |  |

| ITEM#                                    | LPSC-1310-FC        |         |         | LPSC-1550-FC |         |         | LPSC-1625-FC |         |         |         |
|------------------------------------------|---------------------|---------|---------|--------------|---------|---------|--------------|---------|---------|---------|
| Parameter                                | Symbol              | Min     | Typical | Max          | Min     | Typical | Max          | Min     | Typical | Max     |
| Center Wavelength                        | λ                   | 1290 nm | 1310 nm | 1330 nm      | 1530 nm | 1550 nm | 1570 nm      | 1605 nm | 1625 nm | 1645 nm |
| Spectral Bandwidth (rms)                 | BW                  | -       | 5 nm    | 8 nm         | -       | 6 nm    | 10 nm        | -       | 7 nm    | 12 nm   |
| Output Power Pulsed @ I <sub>PULSE</sub> | P <sub>PULSED</sub> | 120 mW  | -       | -            | 85 mW   | -       | -            | 75 mW   | -       | -       |
| Output Power CW @ I <sub>CW</sub>        | P <sub>CW</sub>     | 60 mW   | 80 mW   | -            | 40 mW   | 50 mW   | -            | 40 mW   | 50 mW   | -       |
| Threshold Current                        | I <sub>TH</sub>     | -       | 30 mA   | 50 mA        | -       | 40 mA   | 50 mA        | -       | 45 mA   | 55 mA   |
| Operating Current Pulsed*                | I <sub>PULSE</sub>  | -       | 750 mA  | 1000 mA      | -       | 750 mA  | 1000 mA      | -       | 750 mA  | 1000 mA |
| Operating Current CW                     | I <sub>CW</sub>     | -       | 400 mA  | 500 mA       | -       | 400 mA  | 500 mA       | -       | 400 mA  | 500 mA  |
| Forward Voltage                          | V <sub>F</sub>      | -       | 2.0 V   | 3.0 V        | _       | 2.0 V   | 3.0 V        | -       | 2.0 V   | 3.0 V   |

| ITEM#        | \$        | £        | €        | RMB        | DESCRIPTION                                                       |
|--------------|-----------|----------|----------|------------|-------------------------------------------------------------------|
| LPSC-1310-FC | \$ 621.00 | £ 430.50 | € 551,40 | ¥ 5,243.80 | Fabry-Perot Laser, 1310 nm, 60 mW, SM Fiber, Pigtailed TO Package |
| LPSC-1550-FC | \$ 685.00 | £ 474.90 | € 608,20 | ¥ 5,784.20 | Fabry-Perot Laser, 1550 nm, 40 mW, SM Fiber, Pigtailed TO Package |
| LPSC-1625-FC | \$ 685.00 | £ 474.90 | € 608,20 | ¥ 5,784.20 | Fabry-Perot Laser, 1625 nm, 40 mW, SM Fiber, Pigtailed TO Package |

#### Fabry-Perot Lasers, Chips on Submounts and TO Headers

The Fabry-Perot Laser products from Covega, Thorlabs Quantum Electronics, are reliable laser diodes based on high-power Multiple Quantum Well (MQW), InP ridge waveguide devices. These diodes, optimized for 1300-1650 nm operation, can be used in either continuous wave (CW) or pulsed operation. Each Fabry-Perot Laser is available as chip-on-submount (CoS) or chip-on-TO-56 header. The TO-56 header option is a Ø5.6 mm header, featuring an anode pin, cathode pin, and an unused pin.

#### **Optical-Electrical Characteristics**

| ITEM#                                          |                     | FPL1    | 053C/FPL | 1053T   | FPL1055C/FPL1055T |         |         |
|------------------------------------------------|---------------------|---------|----------|---------|-------------------|---------|---------|
| Parameter                                      | Symbol              | Min     | Typical  | Max     | Min               | Typical | Max     |
| Center Wavelength                              | λ                   | 1290 nm | 1310 nm  | 1330 nm | 1530 nm           | 1550 nm | 1570 nm |
| Spectral Bandwidth (rms)                       | BW                  | -       | 5 nm     | 8 nm    | -                 | 6 nm    | 10 nm   |
| Output Power Pulsed @ I <sub>PULSE</sub>       | P <sub>PULSED</sub> | 300 mW  | -        | -       | 300 mW            | -       | -       |
| Output Power CW @ I <sub>CW</sub>              | $P_{CW}$            | 160 mW  | -        | -       | 140 mW            | -       | -       |
| Threshold Current                              | I <sub>TH</sub>     | -       | 30 mA    | 50 mA   | -                 | 40 mA   | 50 mA   |
| Operating Current Pulsed <sup>1</sup>          | I <sub>PULSE</sub>  | -       | 750 mA   | 1000 mA | -                 | 750 mA  | 1000 mA |
| Operating Current CW                           | I <sub>CW</sub>     | -       | 400 mA   | 500 mA  | -                 | 400 mA  | 500 mA  |
| Forward Voltage                                | V <sub>F</sub>      | -       | 2.0 V    | 3.0 V   | -                 | 2.0 V   | 3.0 V   |
| Transverse Far Field Angle <sup>2</sup> (FWHM) | $\theta_{\rm T}$    | -       | 27°      | 33°     | -                 | 28°     | 33°     |
| Lateral Far Field Angle <sup>2</sup> (FWHM)    | $\theta_{\rm L}$    | -       | 15°      | 23°     | -                 | 15°     | 23°     |

| ITEM#                                    |                  | FPL1    | 054C/FPL | 1054T   | FPL1059C/FPL1059T |         |         |
|------------------------------------------|------------------|---------|----------|---------|-------------------|---------|---------|
| Parameter                                | Symbol           | Min     | Typical  | Max     | Min               | Typical | Max     |
| Center Wavelength                        | λ                | 1605 nm | 1625 nm  | 1645 nm | 1630 nm           | 1650 nm | 1670 nm |
| Spectral Bandwidth (rms)                 | BW               | -       | 7 nm     | 12 nm   | -                 | 7 nm    | 12 nm   |
| Output Power Pulsed @ I <sub>PULSE</sub> | P <sub>OUT</sub> | 250 mW  | -        | -       | 225 mW            | -       | -       |
| Output Power CW @ I <sub>CW</sub>        | P <sub>CW</sub>  | 130 mW  | -        | -       | 125 mW            | -       | -       |
| Threshold Current                        | I <sub>TH</sub>  | -       | 45 mA    | 55 mA   | -                 | 50 mA   | 60 mA   |
| Operating Current Pulsed*                | I <sub>OP</sub>  | -       | 750 mA   | 1000 mA | -                 | 750 mA  | 1000 mA |
| Operating Current CW                     | I <sub>CW</sub>  | -       | 400 mA   | 500 mA  | -                 | 400 mA  | 500 mA  |
| Forward Voltage                          | V <sub>F</sub>   | -       | 2.0 V    | 3.0 V   | -                 | 2.0 V   | 3.0 V   |
| Transverse Far Field Angle**(FWHM)       | θ <sub>T</sub>   | -       | 28°      | 33°     | -                 | 28°     | 33°     |
| Lateral Far Field Angle** (FWHM)         | $\theta_{L}$     | -       | 15°      | 23°     | -                 | 15°     | 23°     |



FPL1054C



Cathode - Anode 20.0 mm CD Header +0.30.5 mm 1.2 mm Max ±0.1 <u>+</u> † 1.5 mm H ±0.1 † 1.4 mm 0.9 mm Header Heatsink Laser Junction

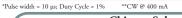
Coherent Sources
Incoherent Sources
Covega

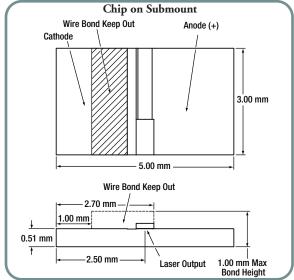
TECHNOLOGY V Light <u>CHAPTERS</u> V

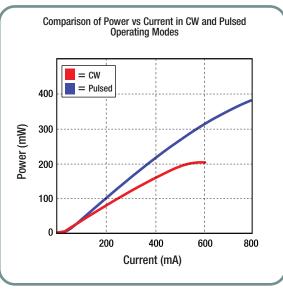
**Drivers/Mounts** 

Accessories

SECTIONS V


Gain Chips


**Optical Amplifiers** 


Superluminescent Diodes

Fabry-Perot Lasers

**Optical Modulators** 







| ITEM#    | \$        | £        | €        | RMB        | DESCRIPTION                                   |
|----------|-----------|----------|----------|------------|-----------------------------------------------|
| FPL1053C | \$ 250.00 | £ 173.40 | € 222,00 | ¥ 2,111.10 | Fabry-Perot Laser, 1310 nm, Chip on Submount  |
| FPL1053T | \$ 350.00 | £ 242.70 | € 310,80 | ¥ 2,955.50 | Fabry-Perot Laser, 1310 nm, Chip on TO Header |
| FPL1055C | \$ 250.00 | £ 173.40 | € 222,00 | ¥ 2,111.10 | Fabry-Perot Laser, 1550 nm, Chip on Submount  |
| FPL1055T | \$ 350.00 | £ 242.70 | € 310,80 | ¥ 2,955.50 | Fabry-Perot Laser, 1550 nm, Chip on TO Header |
| FPL1054C | \$ 275.00 | £ 190.70 | € 244,20 | ¥ 2,322.20 | Fabry-Perot Laser, 1625 nm, Chip on Submount  |
| FPL1054T | \$ 385.00 | £ 266.90 | € 341,90 | ¥ 3,251.00 | Fabry-Perot Laser, 1625 nm, Chip on TO Header |
| FPL1059C | \$ 300.00 | £ 208.00 | € 266,40 | ¥ 2,533.30 | Fabry-Perot Laser, 1650 nm, Chip on Submount  |
| FPL1059T | \$ 420.00 | £ 291.20 | € 372,90 | ¥ 3,546.50 | Fabry-Perot Laser, 1650 nm, Chip on TO Header |



#### Light CHAPTERS

**Coherent Sources** 

**Incoherent Sources** 

#### Covega

**Drivers/Mounts** 

Accessories

Gain Chips

**Optical Amplifiers** 

Superluminescent Diodes

**Fabry-Perot Lasers** 

**Optical Modulators** 

4.0 mm Emission Height



6.8 mm

10.0 mm

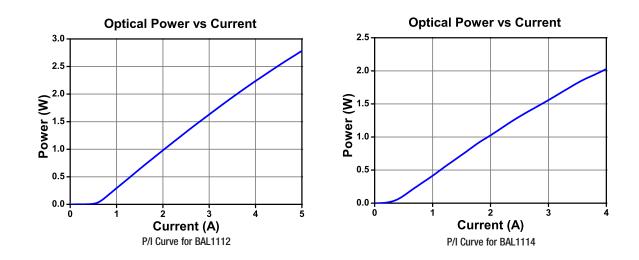
1.0 mm

ŧ

Hole Ø2.3 mm Counterbore Ø4.4 mm Depth 1.2 mm

Thorlabs offers two IR Broad-Area Lasers. The Broad-Area Laser products from Covega, Thorlabs Quantum Electronics, are reliable Fabry-Perot (FP) laser diodes based on a high-power InP ridge waveguide device design, combined with a Multiple Quantum Well (MQW) chip optimized for 1200 nm or 1400 nm. Product features include high output power in excess of

#### Features


- 100 µm Strip Width
- High Power CW operation
   2 W @ 1400 nm
  - 2.5 W @ 1208 nm
- Available as Chip on C-mount

1.8 W for the 1400 nm chip and in excess of 2.7 W for the 1200 nm chip. In addition to the advanced ridge waveguide technology, these devices also benefit from the advanced epitaxial wafer growth techniques and die bonding processes.

Covega's family of devices are used as optical sources for free-space optical wireless systems and as laser transmitters for eye-safe remote sensing applications. Additional packaging options such as fiber-pigtailed TO cans, butterfly packaging, chip on TO header, and chip-on-submount (CoS) are available upon request.

#### **Optical-Electrical Characteristics**

| ITEM#                                |                  |         | BAL1112 |         | BAL1114  |          |         |  |
|--------------------------------------|------------------|---------|---------|---------|----------|----------|---------|--|
| Parameter                            | Symbol           | Min     | Typical | Max     | Min      | Typical  | Max     |  |
| Center Wavelength                    | λ                | 1188 nm | 1208 nm | 1228 nm | 1380 nm  | 1400 nm  | 1420 nm |  |
| Spectral Bandwidth (rms)             | BW               | -       | 1.5 nm  | 5 nm    | -        | 3 nm     | 6 nm    |  |
| CW Output Power                      | P <sub>CW</sub>  | 2.5 W   | 3 W     | -       | 1.8 W    | 2 W      | -       |  |
| Operating Current                    | I <sub>OP</sub>  | -       | 5 A     | 7 A     | -        | 4 A      | 5 A     |  |
| Threshold Current                    | I <sub>TH</sub>  | -       | 0.6 A   | 0.75 A  | -        | 0.33 A   | 0.4 A   |  |
| Slope Efficiency                     |                  | 0.5 W/A | 0.6 W/A | -       | 0.48 W/A | 0.55 W/A | -       |  |
| Operating Voltage                    | V <sub>F</sub>   | -       | 1.33 V  | 1.6 V   | -        | 1.22 V   | 1.5 V   |  |
| EO Efficiency                        |                  | 35 %    | 40 %    | -       | 35 %     | 40 %     | -       |  |
| Vertical Farfield (FWHM)             | θ <sub>T</sub>   | 21 °C   | 26 °C   | 31 °C   | 31 °C    | 36 °C    | 41 °C   |  |
| Lateral Farfield (1/e <sup>2</sup> ) | $\theta_{\rm L}$ | 15 °C   | 20 °C   | 25 °C   | 12 °C    | 17 °C    | 22 °C   |  |



| ITEM#     | \$           |   | £      | € |        | RMB |          | DESCRIPTION                                           |
|-----------|--------------|---|--------|---|--------|-----|----------|-------------------------------------------------------|
| BAL1112CM | \$<br>650.00 | £ | 450.60 | € | 577,10 | ¥   | 5,488.70 | 1208 nm, 3 W, Broad-Area Fabry-Perot Laser on C-Mount |
| BAL1114CM | \$<br>650.00 | £ | 450.60 | € | 577,10 | ¥   | 5,488.70 | 1400 nm, 2 W, Broad-Area Fabry-Perot Laser on C-Mount |

# **Optical Modulators Selection Guide**

#### Pages 1165-1173



#### **10 GHz Intensity Modulators**

- Mach-Zehnder Interferometer Design
- Available in Zero and Fixed-Chirp Design
- Supports Data Rates up to 12.5 Gb/s

#### See Pages 1166-1167

#### **10 GHz Phase Modulator**

- Ideal for Coherent Communication and Sensing
- Available with and without Output Polarizer
- Supports Data Rates up to 12.5 Gb/s

#### See Page 1168





- Ideal for Microwave Photonics and Remote Sensing
- Supports Bandwidths up to 20 GHz

#### See Page 1169

#### **40 GHz Intensity Modulators**

- Fixed-Chirp Coefficient of ±0.7
- Ideal for NRZ and RZ Data Formats
- Supports Data Rates up to 40 Gb/s

#### See Page 1170

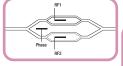
#### **40 GHz Phase Modulators**

- Ideal for Coherent Communication and Sensing
- Available with and without Output Polarizer
- Supports Data Rates up to 40 Gb/s

#### See Page 1170

#### 40 GHz DQPSK Modulator

- Ideal for QPSK or 4QAM Modulations
- Two Mach-Zehnder Modulators and a Phase Controller
- Supports Data Rates up to 20 Gb/s in Each Channel


#### See Page 1171

#### Free Space Amplitude and Phase Modulators

- Free-Space LiNbO<sub>3</sub> Amplitude Modulators
- Free-Space LiNbO<sub>3</sub> Phase Modulators
- High Voltage Amplifier

#### See Pages 1172-1173

THORLABS





Z-Axis

Z-Axis



#### Light CHAPTERS

**Coherent Sources** 

**Incoherent Sources** 

#### Covega

Drivers/Mounts

Accessories

▼ SECTIONS

Gain Chips

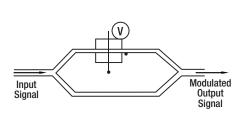
**Optical Amplifiers** 

Superluminescent Diodes

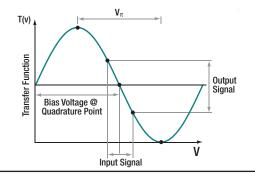
Fabry-Perot Lasers

**Optical Modulators** 

#### 10 GHz Intensity Modulators (Page 1 of 2)




Thorlabs' 10 Gb/s Intensity Modulators are made from Titanium-Indiffused Lithium Niobate Modulators from Covega, Thorlabs Quantum Electronics. All of these high-performance optical modulators are designed for simple system integration to benefit customers developing high-speed modulation systems. These high-performance 10 GHz (10 Gb/s) modulators, which have an extremely small footprint and profile, feature a single-ended drive configuration with separate DC bias pins.


All modulators are based on a Titanium-indiffused LiNbO<sub>3</sub> structure and packaged in a hermetic housing with PM fiber and SM fiber pigtails on the device input and output, respectively. The pigtails are connectorized with FC/PC and SC/PC connectors. Please note that polarization-maintaining fiber and a full range of connectorization options are available for all Lithium Niobate Modulators; contact our Technical Support Team for assistance and details. Within the set of Intensity Modulators, Fixed-Chirp and Zero-Chirp devices are offered for dispersion control.

#### Mach-Zehnder Modulator Operation

Applying a voltage across one arm of the Mach-Zehnder modulator shifts the phase of the signal through that arm by an amount proportional to the voltage applied. If the phase shift equates to an integral number of wavelengths, the two beams will combine constructively and the intensity of the output power will be at its maximum. If the phase shift is a half wavelength out of phase, the two beams will combine destructively and the output power will be at its minimum.



Schematic Diagram of a Mach-Zehnder Modulator



Transfer Function of a Mach-Zehnder Modulator

#### **Fixed-Chirp Modulators**

Thorlabs offers two types of Z-Cut, Fixed-Chirp Modulators for signal control: LN63S and LN82S have an integrated photodetector, while LN83S has an integrated Variable Optical Attenuator. The LN63S and LN82S Intensity Modulators are equipped with SMP and GPO connectors, respectively.

The photodetectors integrated into LN63S and LN82S have a sensitivity range of at least 15 dB and enable optical power monitoring and modulator bias control, thereby eliminating the need for an external fiber tap and splicing. The Variable Optical Attenuator integrated into LN83S has an active attenuation range in excess of 15 dB; the attenuator enables dynamic channel equalization by active attenuation of optical output power. These features and levels of integration give designers of NRZ and RZ data format modulation systems an ideal set of components and tools to create modulation systems.

| ITEM#                                    |                    | LN63S          | / LN82S / I | LN83S         |
|------------------------------------------|--------------------|----------------|-------------|---------------|
| Parameter                                | Symbol             | Min            | Тур         | Max           |
| E/O Bandwidth (-3 dB)                    | f <sub>c-3dB</sub> | 10.0 GHz       | -           | -             |
| Bit Rate Frequency                       | f <sub>BR</sub>    | 9.953 Gbs      | -           | 12.5 Gbs      |
| Optical On/Off Extinction Ratio          | E.R.               | 20 dB          | -           | -             |
| Optical Extinction Ratio (PRBS)          | E.R.               | 13 dB          | -           | -             |
| Chirp Parameter (Fixed / Zero Chirp)     | ΙαΙ                | 0.6 / -0.1 GHz | -           | 0.8 / 0.1 GHz |
| Optical Insertion Loss (Connectorized)   | I.L.               | -              | 4.0 dB      | 5.0 dB        |
| Insertion Loss Variation (EOL)           | ΔI.L.              | -0.5 dB        | -           | 0.5 dB        |
| Optical Return Loss                      |                    | 40 dB          | -           | -             |
| Operating Wavelength                     | λ                  | 1525 nm        | -           | 1605 nm       |
| S11 (DC to 10 GHz)                       |                    | -              | -12 dB      | -10 dB        |
| RF Drive Voltage (PRBS)                  | V <sub>PRBS</sub>  | -              | 5.5 V       | 6.0 V         |
| V <sub>π</sub> @DC                       |                    | -              | 3.0 V       | 8.0 V         |
| DC Bias Voltage Range (EOL)              | V <sub>BIAS</sub>  | -8.0 V         | -           | 8.0 V         |
| PD Responsitivity (Ref. to Output Power) |                    | 0.1 A/W        | -           | 0.5 A/W       |
| Output Optical Power Monitoring          |                    | -5 dBm         | -           | 10 dBm        |
| Output Monitor Variation                 |                    | -0.5 dB        | -           | 0.5 dB        |
| Monitor Photodiode Reverse Bias Voltage  |                    | -5.5 V         | -           | -3.0 V        |
| Vp Attenuator Port (@DC)                 |                    | 0.1 V          | -           | 0.5 V         |
| VOA Control Voltage Range (EOL)          |                    | -5 V           | -           | 10 V          |
| Attenuation Range                        |                    | -0.5 dB        | -           | 0.5 dB        |

#### 10 GHz Intensity Modulators (Page 2 of 2)

ITEM#

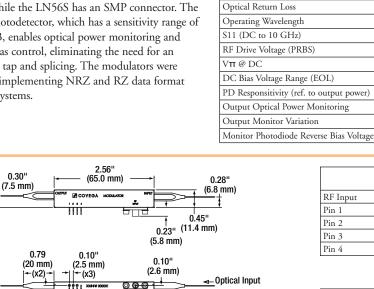
Parameter

E/O Bandwidth (-3 dBe)

Optical On/Off Extinction Ratio

Optical Extinction Ratio (PRBS)

Insertion Loss Variation (EOL)


Chirp Parameter (Fixed / Zero Chirp)

Optical Insertion Loss (Connectorized)

Bit Rate Frequency

#### **Zero-Chirp Modulators**

Covega, Thorlabs Quantum Electronics, offers two Zero-Chirp 10 Gb/s Intensity Modulators. These modulators have a Mach-Zehnder interferometric architecture and offer a large bandwidth with an industry-leading low RF drive voltage, supporting data rates up to 12.5 Gb/s. The LN56S and LN81S are X-cut Zero-Chirp modulators with an integrated photodetector. The LN81S has a GPO connector, while the LN56S has an SMP connector. The integrated photodetector, which has a sensitivity range of at least 15 dB, enables optical power monitoring and modulator bias control, eliminating the need for an external fiber tap and splicing. The modulators were designed for implementing NRZ and RZ data format modulation systems.



0.47"

(12.0 mm)

1.87"

(47.4 mm)

|          | LN56S / LN63S<br>LN83S | LN81S / LN82S    |
|----------|------------------------|------------------|
| RF Input | GPO Connector          | SMP Connector    |
| Pin 1    | Detector Cathode       | Detector Cathode |
| Pin 2    | Detector Anode         | Detector Anode   |
| Pin 3    | DC Bias Voltage        | DC Bias Voltage  |
| Pin 4    | Case Ground            | Case Ground      |

Symbol

f<sub>c-3dB</sub>

fBR

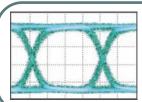
E R

E.R.

lαl

I.L.

ΔI.L.


λ

VPRBS

VBIAS

| OPTICAL PORTS                         |
|---------------------------------------|
| Input : PM Fiber<br>Output : SM Fiber |

10 GHz Modulator Package Drawing Please refer to our website for complete models and drawings.



0.10"

(2.6 mm)

(x4)

The display of a receiver "Eye Pattern" is a convenient graphical method to indicate the data signal quality produced by the communications channel. As one of the first elements in the communication channel, the modulators from Covega, Thorlabs Quantum Electronics, have been Telcordia GR-468-CORE qualified for use in communication systems.

The image is an example "Eye Pattern" produced by a Covega Modulators, showing the oscilloscope trace at the receiver of a two-level modulation scheme such as an "On-Off-Keying" (OOK) signal.

#### Other connector styles are available, contact Thorlabs

| Other connector styles are available, contact i nonads |             |            |            |             |                                                                          |  |
|--------------------------------------------------------|-------------|------------|------------|-------------|--------------------------------------------------------------------------|--|
| ITEM#                                                  | \$          | £          | €          | RMB         | DESCRIPTION                                                              |  |
| LN56S-FC                                               | \$ 1,275.00 | £ 883.90   | € 1.132,00 | ¥ 10,767.00 | Zero-Chirp, 10 GHz Intensity Modulator, Integrated PD, FC/PC Connectors  |  |
| LN56S-SC                                               | \$ 1,275.00 | £ 883.90   | € 1.132,00 | ¥ 10,767.00 | Zero-Chirp, 10 GHz Intensity Modulator, Integrated PD, SC/PC Connectors  |  |
| LN63S-FC                                               | \$ 1,350.00 | £ 935.90   | € 1.198,60 | ¥ 11,400.00 | Fixed-Chirp, 10 GHz Intensity Modulator, Integrated PD, FC/PC Connectors |  |
| LN63S-SC                                               | \$ 1,350.00 | £ 935.90   | € 1.198,60 | ¥ 11,400.00 | Fixed-Chirp, 10 GHz Intensity Modulator, Integrated PD, SC/PC Connectors |  |
| LN81S-FC                                               | \$ 1,275.00 | £ 883.90   | € 1.132,00 | ¥ 10,767.00 | Zero-Chirp, 10 GHz Intensity Modulator, Integrated PD                    |  |
| LINOIS-FC                                              | \$ 1,279.00 | £ 883.90   | € 1.152,00 | + 10,707.00 | and Replaceable GPO Connector, FC/PC Connectors                          |  |
| LN81S-SC                                               | \$ 1,275.00 | £ 883.90   | € 1.132.00 | ¥ 10,767.00 | Zero-Chirp, 10 GHz Intensity Modulator, Integrated PD and                |  |
| LIN615-5C                                              | \$ 1,273.00 | £ 883.90   | € 1.152,00 | ₹ 10,/0/.00 | Replaceable GPO Connector, SC/PC Connectors                              |  |
| LN82S-FC                                               | ¢ 1.250.00  | 6 025 00   | £ 1 100 (0 | ¥ 11,400.00 | Fixed-Chirp, 10 GHz Intensity Modulator, Integrated PD                   |  |
| LIN625-FC                                              | \$ 1,350.00 | £ 935.90   | € 1.198,60 | ₹ 11,400.00 | and Replaceable GPO Connector, FC/PC Connectors                          |  |
| LNIG26 CC                                              | ¢ 1.250.00  | 6 025 00   | C 1 100 (0 | V 11 (00 00 | Fixed-Chirp, 10 GHz Intensity Modulator,                                 |  |
| LN82S-SC                                               | \$ 1,350.00 | £ 935.90   | € 1.198,60 | ¥ 11,400.00 | and Replaceable GPO Connector, SC/PC Connectors                          |  |
| LNIQ26 EC                                              | ¢ 1750.00   | 6 1 212 00 | C 155250   | V 16770.00  | Fixed-Chirp, 10 GHz Intensity Modulator,                                 |  |
| LN83S-FC                                               | \$ 1,750.00 | £ 1,213.00 | € 1.553,50 | ¥ 14,778.00 | Integrated Variable Optical Attenuator, FC/PC Connectors                 |  |
| LNI026 CC                                              | ¢ 1750.00   | 6 1 212 00 | C 155250   | V 16770.00  | Fixed-Chirp, 10 GHz Intensity Modulator,                                 |  |
| LN83S-SC                                               | \$ 1,750.00 | £ 1,213.00 | € 1.553,50 | ¥ 14,778.00 | Integrated Variable Optical Attenuator, SC/PC Connectors                 |  |
|                                                        |             |            |            |             |                                                                          |  |

| CHAPTERS V                 |  |  |  |  |  |
|----------------------------|--|--|--|--|--|
| <b>Coherent Sources</b>    |  |  |  |  |  |
| Incoherent Sources         |  |  |  |  |  |
| Covega                     |  |  |  |  |  |
| <b>Drivers/Mounts</b>      |  |  |  |  |  |
| Accessories                |  |  |  |  |  |
| SECTIONS V                 |  |  |  |  |  |
| Gain Chips                 |  |  |  |  |  |
| <b>Optical Amplifiers</b>  |  |  |  |  |  |
| Superluminescent<br>Diodes |  |  |  |  |  |
| Fabry-Perot Lasers         |  |  |  |  |  |
| <b>Optical Modulators</b>  |  |  |  |  |  |

h

LN56S / LN81S

Тур

\_

\_

4.0 dB

\_

-12 dB

5.5 V

5.5 V

\_

\_

Max

12.5 GHz

0.8 / 0.1 GHz

5.0 dB

0.5 dB

\_

1605 nm

-10 dB

6.0 V

8.0 V

8.0 V

0.5 A/W

10 dBm

0.5 dB

-3.0 V

Min

10.0 GHz

9.953 GHz

20 dB

13 dB

0.6 / -0.1 GHz

-0.5 dB

40 dB

1525 nm

\_

\_

-8.0 V

0.1 A/W

-5 dBm

-0.5 dB

-5.5 V

#### Light CHAPTERS

Covega

| <b>Coherent Sources</b> |
|-------------------------|
|-------------------------|

**Drivers/Mounts** 

Accessories

▼ SECTIONS

**Gain Chips** 

**Optical Amplifiers** 

Superluminescent Diodes

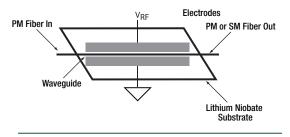
Fabry-Perot Lasers

**Optical Modulators** 

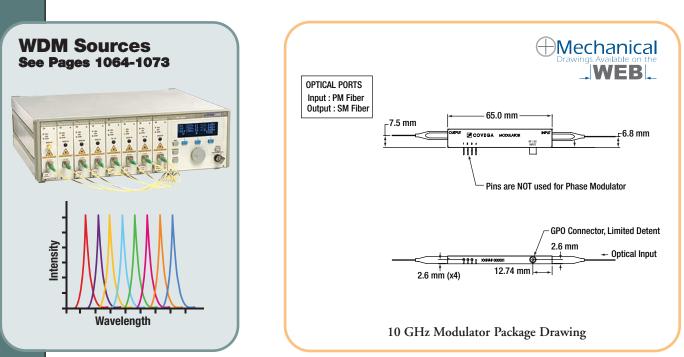
**Incoherent Sources** 

#### 10 GHz Phase Modulators

The LN53S and the LN65S are Phase Modulators from Covega, Thorlabs Quantum Electronics. These modulators are highperformance optical modulators with a Titanium-indiffused Lithium Niobate design, which allows for ease of use in high-speed modulation systems.


The LN53S and the LN65S are high-performance 10 GHz (10 Gb/s) phase modulators that have a large bandwidth, allowing for chirp control in high-speed data communication; they can support data rates up to 12.5 Gb/s. These modulators are also ideal for applications in coherent communications, sensing, all-optical




frequency-shifting, and data encryption. The LN53S and the LN65S 10 Gb/s Phase Modulators are identical aside from the inclusion of an optical polarizer before the output fiber of the LN65S.

The LN53S and LN65S modulators are based on Z-Cut Titanium-indiffused LiNbO3 and packaged in a hermetic housing with PM and SM fiber pigtails on the device input and output, respectively. The pigtails are connectorized with FC/PC and SC/PC connectors. PM fiber pigtails are available on the device output upon request.

| ITEM#                                  | LN538 / LN658      |           |        |          |
|----------------------------------------|--------------------|-----------|--------|----------|
| Parameter                              | Symbol             | Min       | Тур    | Max      |
| E/O Bandwidth (-3 dB)                  | f <sub>c-3dB</sub> | 10.0 GHz  | -      | -        |
| Bit Rate Frequency                     | f <sub>BR</sub>    | 9.953 GHz | -      | 12.5 GHz |
| Optical Insertion Loss (Connectorized) | I.L.               | -         | 3.5 dB | 4.5 dB   |
| Operating Wavelength                   | λ                  | 1525 nm   | -      | 1605 nm  |
| Insertion Loss Variation (EOL)         | ΔI.L.              | -0.5 dB   | -      | 0.5 dB   |
| Optical Return Loss                    |                    | 40 dB     | -      | -        |
| S11 (DC to 10 GHz)                     |                    | -         | -12 dB | -10 dB   |
| RF Drive Voltage (PRBS)                | V <sub>PRBS</sub>  | -         | 4.5 V  | 5.0 V    |
| V <sub>π</sub> @ DC                    |                    | -         | 3.5 V  | 4.0 V    |
| Operating Case Temperature             |                    | 0 °C      | -      | 70 °C    |
| Storage Temperature                    |                    | -40 °C    | -      | 85 °C    |



Phase Modulator Waveguide

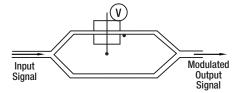


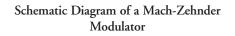
| ITEM#    | \$          | £          | €          | RMB         | DESCRIPTION                                                |
|----------|-------------|------------|------------|-------------|------------------------------------------------------------|
| LN53S-FC | \$ 1,550.00 | £ 1,074.50 | € 1.376,00 | ¥ 13,089.00 | 10 GHz Phase Modulator without Polarizer, FC/PC Connectors |
| LN53S-SC | \$ 1,550.00 | £ 1,074.50 | € 1.376,00 | ¥ 13,089.00 | 10 GHz Phase Modulator without Polarizer, SC/PC Connectors |
| LN65S-FC | \$ 1,550.00 | £ 1,074.50 | € 1.376,00 | ¥ 13,089.00 | 10 GHz Phase Modulator with Polarizer, FC/PC Connector     |
| LN65S-SC | \$ 1,550.00 | £ 1,074.50 | € 1.376,00 | ¥ 13,089.00 | 10 GHz Phase Modulator with Polarizer, SC/PC Connectors    |

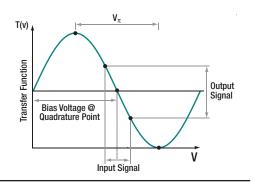
1168

#### 20 GHz Low V $_{\pi}$ Analog Intensity Modulator

The LN58S is a 20 GHz Analog Intensity Modulator from Covega, Thorlabs Quantum Electronics. This innovative Titanium-Indiffused Z-cut Lithium Niobate Optical Modulator is designed for ease of system integration to benefit customers developing high-speed analog modulation systems.


The LN58S Analog Modulator is a high-performance, low  $V_{\pi}$ , single-ended drive modulator capable of supporting analog signaling up to 20 GHz. The industry-leading, low


RF drive and  $V_{\pi}$  voltages simplify any design based around the LN58S. The LN58S Analog Modulator has a Mach-Zehnder interferometric architecture that offers a large bandwidth, a low drive voltage ( $V_{\pi} < 3.9$  V @ 20 GHz), and supports 20 GHz operating frequencies, making it an ideal solution for microwave photonics and fiber optic antenna remote solutions.


The LN58S modulator is based on Z-cut Titanium-indiffused LiNbO3 and packaged in a hermetic housing with a K-connector RF input signal port and PM and SM fiber pigtails on the device input and output, respectively. The fiber pigtails are connectorized with FC/PC and SC/PC connectors.

#### Mach-Zehnder Modulator Operation

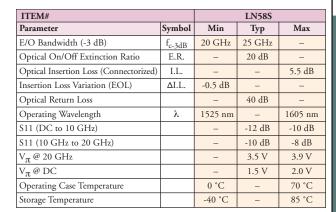
The voltage applied to an arm of the Mach-Zehnder modulator shifts the phase of the signal through that arm by an amount proportional to the voltage applied. If the phase shift equates to an integral number of wavelengths, the two beams will combine constructively and the intensity of the output power will be at its maximum. If the phase shift is a half-wavelength out of phase, the two beams will combine destructively, and the output power will be at its minimum.

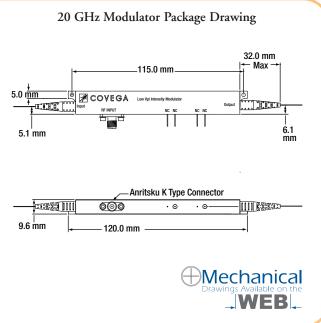






Transfer Function of a


5,250.00


£

3,640.00

€ 4.661,00

\$





20 GHz Low Vπ Intensity Modulator, SC/PC Connectors

| Mac      | ch-Zehnder N | lodulator  |            |             |                                                            |
|----------|--------------|------------|------------|-------------|------------------------------------------------------------|
| ITEM#    | \$           | £          | €          | RMB         | DESCRIPTION                                                |
| LN58S-FC | \$ 5,250.00  | £ 3,640.00 | € 4.661,00 | ¥ 44,332.00 | 20 GHz Low $V_{\pi}$ Intensity Modulator, FC/PC Connectors |

¥ 44,332.00

| MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-ITED<br>MCCP-I |                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>LN58S</b><br>20 GHz Intensity Modulator |

**Incoherent Sources** Covega **Drivers/Mounts** Accessories

> SECTIONS V Gain Chips

**Optical Amplifiers** 

Superluminescent Diodes

**Fabry-Perot Lasers** 

**Optical Modulators** 

LN58S-SC

#### TECHNOLOGY

**Coherent Sources** 

Light CHAPTERS V

#### Light CHAPTERS

**Coherent Sources** 

Incoherent Sources

#### Covega

**Drivers/Mounts** 

Accessories

▼ SECTIONS

Gain Chips

**Optical Amplifiers** 

Superluminescent Diodes

Fabry-Perot Lasers

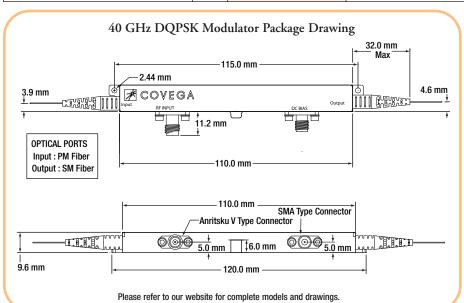
**Optical Modulators** 

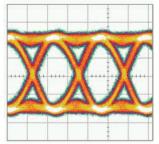


**40 GHz Phase and Intensity Modulators** 

**LN05S** 40 GHz Intensity Modulator The LN05S, LN27S, and the LN66S are 40 Gb/s Modulators manufactured by Covega, Thorlabs Quantum Electronics. These three revolutionary, Titanium-indiffused Z-cut Lithium Niobate, high-performance optical modulators were designed for ease of system integration; they offer large bandwidths and are ideal for developing high-speed modulation systems.

The LN05S intensity modulator with external DC bias is a high-performance 40 GHz (40 Gb/s) modulator that has a single-ended drive configuration with a fixed chirp coefficient of  $\pm 0.7$  and an industry-leading low RF drive voltage.


The LN05S has a Mach-Zehnder interferometric architecture with external DC bias, ideal for both NRZ and RZ data format solutions.


The LN27S and the LN66S are high-performance 40 GHz (40 Gb/s) phase modulators, allowing for chirp control in high-speed data communications; these modulators, which can support data rates up to 43 Gb/s, are also ideal for applications in coherent communications, sensing, all-optical frequency shifting, and data encryption. The LN27S and LN66S modulators both offer internal RF terminations, but the LN27S also offers an optical polarizer not included with the LN66S.

| ITEM#                                  |                    |           | LN05S        |         |           | LN27S / LN66S |         |  |
|----------------------------------------|--------------------|-----------|--------------|---------|-----------|---------------|---------|--|
| Parameter                              | Symbol             | Min       | Тур          | Max     | Min       | Тур           | Max     |  |
| E/O Bandwidth (-3 dB)                  | f <sub>c-3dB</sub> | 30 GHz    | 35 GHz       | -       | 30 GHz    | 35 GHz        | -       |  |
| Bit Rate Frequency                     | f <sub>BR</sub>    | -         | 40 Gb/s      | -       | -         | 40 Gb/s       | -       |  |
| Optical On/Off Extinction Ratio        | E.R.               | -         | 20 dB        | -       | N/A       | N/A           | N/A     |  |
| Optical Extinction Ratio (PRBS)        |                    | -         | 13 dB        | -       | N/A       | N/A           | N/A     |  |
| Optical Insertion Loss (Connectorized) | I.L.               | -         | 4.0 dB       | 5.0 dB  | -         | 4.0 dB        | 5.0 dB  |  |
| Insertion Loss Variation (EOL)         | ΔI.L.              | -0.5 dB   | -            | 0.5 dB  | -0.5 dB   | -             | 0.5 dB  |  |
| Optical Return Loss                    |                    | 40 dB     | -            | -       | 40 dB     | -             | -       |  |
| Operating Wavelength                   | λ                  | 1525 nm   | -            | 1605 nm | 1525 nm   | -             | 1605 nm |  |
| S11 (DC to 10 GHz)                     |                    | -         | -12 dB       | -10 dB  | -         | -12 dB        | -10 dB  |  |
| S11 (30 GHz to 40 GHz)                 |                    | -         | -10 dB       | -8 dB   | -         | -10 dB        | -8 dB   |  |
| RF Drive Voltage (PRBS)                | VPRBS              | -         | 5.5 V        | -       | -         | 5.5 V         | -       |  |
| $V_{\pi} @ DC$                         |                    | -         | 5.5 V        | 6.0 V   | -         | 5.5 V         | 6.0 V   |  |
| Operating Case Temperature             |                    | 0 °C      | -            | 70 °C   | 0 °C      | -             | 70 °C   |  |
| Storage Temperature                    |                    | -40 °C    | -            | 85 °C   | -40 °C    | -             | 85 °C   |  |
| V-Connector                            |                    | RF Signal |              |         | RF Signal |               |         |  |
| SMA Connector                          |                    | DO        | C Bias Volta | ıge     | Not V     | Jsed / No O   | Connect |  |

All three modulators are based on Z-cut Titanium-indiffused LiNbO<sub>3</sub> and are hermetically packaged in a dual-port housing with PM and SM fiber pigtails on the device input and output, respectively. The fiber pigtails are connectorized with FC/PC and SC/PC connectors.

Please note that polarizationmaintaining fiber and a full range of connectorization options are available for all Lithium Niobate Modulators. Contact our Technical Support Team for assistance and details.

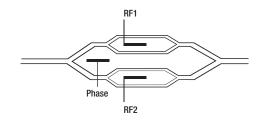




The image above is an example "Eye Pattern" produced by Thorlabs Quantum Electronics' Modulators showing the oscilloscope trace of a two-level modulation scheme such as an "On-Off-Keying" (OOK) signal. The modulators have been Telcordia GR-468-CORE qualified for use in communication systems.

| ITEM#    | \$          | £          | €          | RMB         | DESCRIPTION                                                |
|----------|-------------|------------|------------|-------------|------------------------------------------------------------|
| LN05S-FC | \$ 4,850.00 | £ 3,363.00 | € 4.306,00 | ¥ 40,954.00 | 40 GHz Intensity Modulator, FC/PC Connectors               |
| LN05S-SC | \$ 4,850.00 | £ 3,363.00 | € 4.306,00 | ¥ 40,954.00 | 40 GHz Intensity Modulator, SC/PC Connectors               |
| LN66S-FC | \$ 4,350.00 | £ 3,016.00 | € 3.862,00 | ¥ 36,732.00 | 40 GHz Phase Modulator without Polarizer, FC/PC Connectors |
| LN66S-SC | \$ 4,350.00 | £ 3,016.00 | € 3.862,00 | ¥ 36,732.00 | 40 GHz Phase Modulator without Polarizer, SC/PC Connectors |
| LN27S-FC | \$ 4,350.00 | £ 3,016.00 | € 3.862,00 | ¥ 36,732.00 | 40 GHz Phase Modulator with Polarizer, FC/PC Connectors    |
| LN27S-SC | \$ 4,350.00 | £ 3,016.00 | € 3.862,00 | ¥ 36,732.00 | 40 GHz Phase Modulator without Polarizer, SC/PC Connectors |




#### 40 GHz DQPSK/4QAM Modulator

The LN86S Titanium-Indiffused X-Cut Lithium Niobate Modulator, a Dual-Parallel Modulator, is the latest addition to Covega's highperformance offerings. It is capable of providing a 40 Gb/s signaling rate and offers a large bandwidth to benefit customers developing high-speed modulation systems. Each Mach-Zehnder Interferometer (MZI) has an independently controlled bias section to achieve maximum performance.

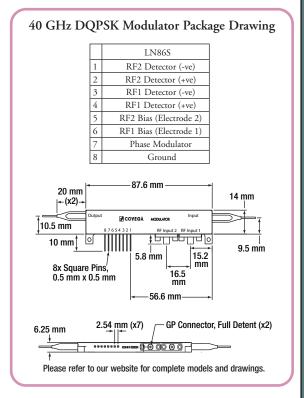
The front end of the modulator is a phase modulator to allow for the required phase control in the signal channel. The back end of the modulator consists of two MZIs in parallel. Each MZI is an intensity

modulator with separate external DC bias controls, giving the user the ability to perform multi-level signaling. The LN86S is designed for quadrature modulation (QPSK or 4QAM) and single side-band suppressed carrier (SSB-SC) transmission.

The LN86S modulator is part of a family of high-performance, Telcordia-compliant external optical modulators with industry-leading long-term stability. This modulator is hermetically packaged in a durable housing with PMF and SMF fiber pigtails on the device input and output, respectively. The standard device has fiber pigtails connectorized with FC/PC and SC/PC connectors.



System Diagram of a Dual Parallel Modulator


| ITEM#                                  |                    |                       | LN86S  |                       |
|----------------------------------------|--------------------|-----------------------|--------|-----------------------|
| Parameter                              | Symbol             | Min                   | Тур    | Max                   |
| Optical Extinction Ratio (@ DC)*       | E.R.               | 20 dB                 | -      | -                     |
| Optical Insertion Loss (Connectorized) | I.L.               | -                     | 5 dB   | 6 dB                  |
| Insertion Loss Variation (EOL)         | ΔI.L.              | -0.5 dB               | -      | 0.5 dB                |
| Optical Return Loss                    |                    | -                     | -      | 40 dB                 |
| Operating Wavelength                   | λ                  | 1525 nm               | -      | 1575 nm               |
| Operating Case Temperature TCASE       |                    | 0 °C                  | -      | 70 °C                 |
| Storage Temperature                    |                    | -40 °C                | -      | 85 °C                 |
| Vpi RF Ports (@ DC)                    |                    | -                     | 2.5 V  | 4.5 V                 |
| Vπ RF Ports (@ 1 GHz)                  |                    | -                     | 4.5 V  | 6 V                   |
| Vπ Bias Ports (@ 1 GHz)                |                    | -                     | 4.5 V  | 5.5V                  |
| RF Port S11                            |                    | -                     | -12 dB | -10 dB                |
| RF Parameters                          |                    |                       |        |                       |
| E/O Bandwidth (-3 dB)                  | f <sub>c-3dB</sub> | 16.0 GHz              | -      | -                     |
| S21 Amplitude Ripple**                 |                    | -1.5 dB               | -      | -1.5 dB               |
| S21 Phase Difference                   |                    | 10°                   | -      | 10°                   |
| Phase Ripple                           |                    | 10°                   | -      | 10°                   |
| Differential RF Delay                  |                    | -5 ps                 | -      | 5 ps                  |
| Phase Modulator                        |                    |                       |        |                       |
| DC Input V <sub>π</sub>                |                    | _                     | _      | 6 V                   |
| E/O Bandwidth                          |                    | 1 MHz                 | _      | _                     |
| RF Detectors                           |                    |                       |        |                       |
| Threshold                              |                    | -                     | -      | 0.5 V                 |
| Slope                                  |                    | 0.1 V/V <sub>pp</sub> | -      | 0.4 V/V <sub>pp</sub> |
| Linearity                              |                    | -5 %                  | -      | 5 %                   |
| *per MZI E.R. **(50 MHz to 20 GH       | Hz)                |                       |        |                       |

**Incoherent Sources** BIF OF FOR LN86S 40 GHz Phase Modulator



#### Mach-Zehnder Modulator Operation

In this dual-parallel modulator, the incoming signal is equally split into two legs and sent through a low speed phase modulator. The phase modulator serves the purpose of applying a phase delay between the legs. The signals in each leg are then sent through separate intensity modulators. Each intensity modulator is modulated with a DPSK format. The outputs of each intensity modulator's legs are re-combined to form the output signal of the dual-parallel modulator. This resultant re-combined signal forms a DQPSK signal through the interference effects.



| ITEM#    | \$          | £          | €          | RMB         | DESCRIPTION                              |
|----------|-------------|------------|------------|-------------|------------------------------------------|
| LN86S-FC | \$ 4,850.00 | £ 3,363.00 | € 4.306,00 | ¥ 40,954.00 | 40 GHz DQPSK Modulator, FC/PC Connectors |
| LN86S-SC | \$ 4,850.00 | £ 3,363.00 | € 4.306,00 | ¥ 40,954.00 | 40 GHz DQPSK Modulator, SC/PC Connectors |

TECHNOLOGY Light CHAPTERS V

Covega

**Coherent Sources** 

**Drivers/Mounts** 

Accessories

SECTIONS V

Gain Chips

Diodes

**Optical Amplifiers** 

Superluminescent

**Fabry-Perot Lasers Optical Modulators** 

#### Light **V** CHAPTERS

**Coherent Sources** 

#### **Incoherent Sources**

Covega

**Drivers/Mounts** 

Accessories

▼ SECTIONS **Gain Chips** 

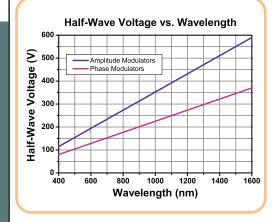
**Optical Amplifiers** 

Superluminescent Diodes

**Fabry-Perot Lasers** 

**Optical Modulators** 

# Electro-Optic Modulators (Page 1 of 2)

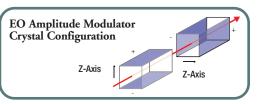



#### Features

- High Performance in a Compact Package
- Broadband DC Coupled
- Broadband AR Coatings
- Ø2 mm Clear Aperture
- SMA Female Modulation Input Connector
- DC to 100 MHz
- Custom Versions Available
- #8-32 Tapped Hole on Bottom

EO-PM-NR-C1

Thorlabs' free-space electro-optic amplitude and phase modulators use undoped lithium niobate. These broadband DC-coupled modulators have an SMA RF input, which is directly compatible with our HVA200 high voltage amplifier. The HVA200 is capable of modulating these EO devices up to 1 MHz.




| SPECIFICATION                   | Amplitude Modulators<br>(EO-AM)                               | Phase Modulators<br>(EO-PM)                                   |
|---------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|
| Wavelength Range                |                                                               |                                                               |
| C4                              | 400-600 nm                                                    | 400-600 nm                                                    |
| C1                              | 600-900 nm                                                    | 600-900 nm                                                    |
| C2                              | 900-1250 nm                                                   | 900-1250 nm                                                   |
| C3                              | 1250-1650 nm                                                  | 1250-1650 nm                                                  |
| Clear Aperture                  | Ø2 mm                                                         | Ø2 mm                                                         |
| Electrical Input                | Female SMA                                                    | Female SMA                                                    |
| Max Optical Power Density       | 2 W/mm <sup>2</sup> @ 532 nm<br>4 W/mm <sup>2</sup> @ 1064 nm | 2 W/mm <sup>2</sup> @ 532 nm<br>4 W/mm <sup>2</sup> @ 1064 nm |
| Half-Wave Drive Voltage, $V\pi$ | 360 V @ 1064 nm (Typ)                                         | 240 V @ 1064 nm (Typ)                                         |
| Capacitance (Typ)               | 14 pF                                                         | 14 pF                                                         |

#### **EO Amplitude Modulator**

The electro-optic amplitude modulators (EO-AM), which are Pockels cell type modulators, consist of two matched lithium niobate crystals packaged in a compact housing with an RF input connector. Applying an electric field to the crystal induces a change in the indices of refraction (both ordinary and extraordinary), giving rise to an electric field-dependent birefringence, which leads

to a change in the polarization state of the optical beam. The EO crystal acts as a



variable wave plate whose retardance is linearly dependent on the applied electric field. By placing a linear polarizer at the exit, the beam intensity through the polarizer varies sinusoidally with a linear change in applied voltage.

| ITEM#       | \$          | £          | € RMB      |             | DESCRIPTION                                     |  |
|-------------|-------------|------------|------------|-------------|-------------------------------------------------|--|
| EO-AM-NR-C4 | \$ 2,346.00 | £ 1,626.50 | € 2.083,00 | ¥ 19,810.00 | Electro-Optic Amplitude Modulator, 400-600 nm   |  |
| EO-AM-NR-C1 | \$ 2,346.00 | £ 1,626.50 | € 2.083,00 | ¥ 19,810.00 | Electro-Optic Amplitude Modulator, 600-900 nm   |  |
| EO-AM-NR-C2 | \$ 2,346.00 | £ 1,626.50 | € 2.083,00 | ¥ 19,810.00 | Electro-Optic Amplitude Modulator, 900-1250 nm  |  |
| EO-AM-NR-C3 | \$ 2,346.00 | £ 1,626.50 | € 2.083,00 | ¥ 19,810.00 | Electro-Optic Amplitude Modulator, 1250-1650 nm |  |

#### **EO Phase Modulator**

Our electro-optic phase modulators provide a variable phase shift on the linearly polarized input beam. The input beam is linearly polarized along the vertical direction, which is the Z-axis of the crystal. A voltage at the RF input is applied across the Z-axis electrodes inducing a change in the crystal's extraordinary index of refraction and thereby causing a phase shift in the optical signal.

The control signal may be a DC or a time-varying RF signal. When the control voltage is a time varying signal, the optical beam undergoes frequency modulation whereby some of the energy at the fundamental frequency is converted into sidebands separated from the fundamental frequency by integer multiples of the modulating frequency. The amount of energy converted into sidebands is determined by the depth of modulation.

| ITEM#       | \$          | £          | €          | RMB         | DESCRIPTION                                 |  |
|-------------|-------------|------------|------------|-------------|---------------------------------------------|--|
| EO-PM-NR-C4 | \$ 2,346.00 | £ 1,626.50 | € 2.083,00 | ¥ 19,810.00 | Electro-Optic Phase Modulator, 400-600 nm   |  |
| EO-PM-NR-C1 | \$ 2,346.00 | £ 1,626.50 | € 2.083,00 | ¥ 19,810.00 | Electro-Optic Phase Modulator, 600-900 nm   |  |
| EO-PM-NR-C2 | \$ 2,346.00 | £ 1,626.50 | € 2.083,00 | ¥ 19,810.00 | Electro-Optic Phase Modulator, 900-1250 nm  |  |
| EO-PM-NR-C3 | \$ 2,346.00 | £ 1,626.50 | € 2.083,00 | ¥ 19,810.00 | Electro-Optic Phase Modulator, 1250-1650 nm |  |

|                                                                                  | Ontic M                                                                     | Indulato                                                                  | nrs (Pad                                                     | e 2 of 2)                                                             |                                                                          | Coherent Source   |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------|
|                                                                                  | mplifier for Fre                                                            |                                                                           |                                                              | -                                                                     | THORLASS HIGH VOLTAGE AMPLINER HVA200                                    |                   |
| he HVA200 H                                                                      | ligh Voltage Am                                                             | plifier is design                                                         | ed to drive our f                                            |                                                                       |                                                                          | Incoherent Source |
|                                                                                  | dulators. The ar<br>a continuous cu                                         |                                                                           |                                                              | uding a<br>1Hz bandwidth, and                                         | 00 mas                                                                   | Cove              |
| w noise (1.5 m                                                                   | N <sub>rms</sub> ). The volt                                                | age amplifier bo                                                          | oosts the input v                                            | voltage by a factor o<br>udband modulators.                           | of 📕 🤐 💿 🛦                                                               | Drivers/Mou       |
| n adjustable bia                                                                 | as allows for pre                                                           | cise DC offset                                                            | control.                                                     |                                                                       | HVA200                                                                   | Accessor          |
|                                                                                  | ses a high voltag<br>ed output. The                                         |                                                                           |                                                              | tput amplifier to                                                     | HVA200                                                                   | SECTION           |
|                                                                                  |                                                                             |                                                                           |                                                              | odulation. This                                                       | Specifications                                                           | Gain Ch           |
| mposite signal                                                                   | Optical Amplifi                                                             |                                                                           |                                                              |                                                                       |                                                                          |                   |
|                                                                                  |                                                                             |                                                                           |                                                              | to connect the HV<br>otary encoder, whic                              | = $\pm 200 \text{ V} \text{ Output}$                                     | Superluminesc     |
| ows precise con                                                                  | ntrol and repeat                                                            | tability. The bia                                                         | s adjustment is                                              | typically used to shi                                                 | ft I MHz Bandwidth                                                       | Dioc              |
|                                                                                  | the output as ne                                                            |                                                                           |                                                              | oring of the high                                                     | ■ 400 V/µs Slew Rate                                                     | Fabry-Perot Las   |
|                                                                                  |                                                                             |                                                                           |                                                              | with high impedanc                                                    | ■ -20 ± 2% Gain                                                          | Optical Modulat   |
|                                                                                  | t an output of 2                                                            |                                                                           |                                                              |                                                                       | <ul> <li>200 mA Pulsed Output Current<br/>(100 mA Continuous)</li> </ul> |                   |
|                                                                                  |                                                                             |                                                                           |                                                              |                                                                       | (100 mA Continuous)                                                      |                   |
|                                                                                  |                                                                             |                                                                           |                                                              |                                                                       |                                                                          |                   |
| 'EM#                                                                             | \$                                                                          | £                                                                         | €                                                            | RMB                                                                   | DESCRIPTION                                                              |                   |
| VA200                                                                            | \$ 2,346.00                                                                 | £ 1,626.50                                                                | € 2.083,00                                                   | ¥ 19,810.00                                                           | High Voltage Amplifier for Free-Space EO Modulators                      |                   |
| Our Elect                                                                        | Mounting Ada<br>tro-Optic Modu<br>tates into and o<br>h                     | ulators (<br>out of f                                                     | GTH5M<br>#2-56 Mounting<br>Washer Included                   |                                                                       |                                                                          |                   |
|                                                                                  |                                                                             | unt designed to                                                           |                                                              | nompson polarizer (<br>ptic Modulators. Th                            |                                                                          |                   |
| 6-897) in fron<br>n design of the<br>am path, whicl                              | nt of the input a<br>e EO-PMT allo<br>h simplifies the                      | perture of Tho<br>ws the polarize<br>alignment of th                      | r to be easily mo<br>he beam through                         | oved into and out of<br>the EO modulato<br>M) with the mounti         | f the<br>r. The                                                          |                   |
| 6-897) in fron<br>n design of the<br>am path, whicl<br>D-GTH5M pa                | nt of the input a<br>e EO-PMT allo<br>h simplifies the<br>ackages the Glan  | perture of Tho<br>ws the polarize<br>alignment of th<br>Thompson po       | r to be easily mo<br>he beam through<br>blarizer (GTH5N      | oved into and out of<br>the EO modulato<br>M) with the mounti         | f the<br>r. The<br>ng adapter.                                           |                   |
| 6-897) in fron<br>n design of the<br>am path, which<br>D-GTH5M pa<br><b>TEM#</b> | nt of the input a<br>e EO-PMT allo<br>h simplifies the                      | perture of Tho<br>ws the polarize<br>alignment of th                      | r to be easily mo<br>he beam through                         | oved into and out of<br>h the EO modulato                             | f the<br>r. The                                                          |                   |
| 96-897) in fron<br>m design of the<br>eam path, which                            | nt of the input a<br>e EO-PMT allo<br>th simplifies the<br>ackages the Glan | perture of Tho<br>ows the polarize<br>alignment of th<br>Thompson po<br>£ | r to be easily mo<br>he beam through<br>plarizer (GTH5N<br>€ | oved into and out o<br>n the EO modulato<br>A) with the mounti<br>RMB | f the<br>r. The<br>ng adapter.<br>DESCRIPTION                            |                   |

FT-EOMA

380.00

RMB

¥

€

40,00

€

For mounting our free-space EO modulators on our Fiber lables (see page 896-897), we offer the FT-EOMA. This mounts the modulator on its side so that the SMA connector for the RF input is vertical for easy access.

£

£

31.20



\$

45.00

\$

ITEM#

FT-EOMA

9

DESCRIPTION

EO Modulator FiberTable Mounting Adapter

EO Modulator

and FiberTable

Assembly

TECHNOLOGY **TECHNOLOGY** 

# Benchtop Systems: Laser Diode/TEC Controller Overview

# **Benchtop Solutions**

Thorlabs offers benchtop solutions to suit your instrumentation needs, from industrial customers who need to drive and monitor multiple devices simultaneously, to customers who prefer to have all of their instrumentation controlled from one convenient location.



The LDC200C series of laser diode controllers all provide features that ensure outstanding performance. There are seven models with different current ranges, each configured to provide optimal performance for its particular intended laser application. The laser diode controllers of the LDC200C can be driven in constant current (CC) or constant power (CP) mode. All laser diode and photodiode configuration types are supported. In comparison to driver designs that require a floating ground, this grounded

 COCANO
 LOCANO
 LABRI DODE CONTIQUES

 Image: Continue of the state of t

operation of the laser diode offers

suppression, and stability.

advantages regarding noise, transient

The LDC4000 Series of Laser Diode Current Controllers provide precise and stable current for driving high-power laser diodes with injection currents up to 20 A. It supports all laser diode and monitor diode pin configurations and features a constant current or constant power mode.

This benchtop controller is designed for stand-alone operation and is controlled via front panel keys and intuitive operation menus on a large and easy-to-read graphic LCD display. Additionally the LDC4000 Series can be fully remote controlled via an SCPI-compatible USB Interface.

Compared to the LDC200C Series, the LDC4000 Series offers higher injection currents plus additional features like the Quasi-Continuous Wave (QCW) operation mode, an internal modulation generator, a thermopile input, laser voltage measurement, and an optical power limit. These features, together with the new design, which offers silent and powerefficient operation, make the LDC4000 Series Laser Diode Controllers an ideal choice for most applications.



The TED200C is a precision temperature controller designed to drive thermoelectric cooler (TEC) elements with currents up to  $\pm 2$  A. It is equipped with a PID feedback circuit that allows independent setting of the P (proportional) gain, the I (integral) offset control, and the D (differential) rate control, allowing the user to adjust the TED200C to obtain the optimal performance for a wide variety of thermal loads.



The TED4015 is a high-performance digital temperature controller designed to drive thermoelectric cooler (TEC) elements with currents up to ±15 A. It supports most common temperature sensors and can be adapted to different thermal loads. Compared to the TED200 Series, the TED4015 Series Controller offers a wider TEC current range plus additional features like full digital control, easy auto PID setting, constant TEC current mode, set temperature protection, TEC voltage measurement, and adjustable temperature window protection. These features together with the new design, which offers silent and efficient operation, make the



TED4015 Series Laser Diode Controllers an ideal choice for demanding applications.

The ITC4000 Series combination controller incorporates the LDC4000 series laser diode controller with the TED4015 temperature controller. It has been designed to provide precise and stable current for laser diodes with injection currents from 1 A up to 20 A and an excellent temperature stabilization of

0.002 °C within 24 hrs. It supports all laser diode and monitor diode pin configurations and features a constant current (CC) or constant power (CP) mode. These features, together with the new design, which offers silent and efficient operation, make the ITC4000 Series an ideal choice for most applications.

# **Driver/Mount Selection Guide**

### Pages 1175-1230



# **Laser Diode Controller Selection Guide**

| ITEM#     | DRIVE CURRENT  | COMPLIANCE<br>VOLTAGE | LD/TEC                | CC* | CP* | MODULATION | PACKAGE<br>(UNITS/19" RACK) | # OF CHANNELS/<br>UNIT # OF MODULES<br>/ CHASIS | PAGI |
|-----------|----------------|-----------------------|-----------------------|-----|-----|------------|-----------------------------|-------------------------------------------------|------|
| LDC200CV  | 20 mA          | 6 V                   |                       | V   | ~   | External   | Benchtop                    |                                                 | 1179 |
| MLC8200-8 | 50 mA / 200 mA | 4 V                   |                       | ~   | ~   |            | 19" Chassis                 | 8 / 8 / PRO8000                                 | 1225 |
| LDC201CU  | 100 mA         | 5 V                   |                       | V   | ~   | External   | Benchtop                    |                                                 | 1179 |
| LDC8001   | 100 mA         | 2.5 V                 |                       | V   | V   | External   | 19" Chassis                 | 1 / 8 / PRO8000                                 | 120  |
| LD2000R   | 100 mA         | 3.5 V                 |                       |     | V   | External   | OEM                         |                                                 | 1184 |
| EK2000    | 100 mA         | 3.5 V                 |                       |     | ~   | External   | OEM                         |                                                 | 118  |
| LDC202C   | 200 mA         | 10 V                  |                       | ~   | ~   | External   | Benchtop                    |                                                 | 117  |
| LDC8002   | 200 mA         | 5 V                   |                       | ~   | ~   | External   | 19" Chassis                 | 1 / 8 / PRO8000                                 | 120  |
| ITC8022   | 200 mA         | 5 V                   | V                     | ~   | ~   |            | 19" Chassis                 | 1 / 8 / PRO8000                                 | 1204 |
| ITC5022   | 200 mA         | 2.5 V                 | <ul> <li>✓</li> </ul> | ~   | ~   | Int/Ext    | 19" Chassis                 | 1 / 16 / TXP5000                                | 100  |
| TLD001    | 200 mA         | 8 V                   |                       | ~   | ~   | External   | T-Cube                      |                                                 | 118  |
| ITC102    | 200 mA         | 4 V                   | ~                     | ~   | ~   | External   | OEM                         |                                                 | 119  |
| IP250-BV  | 250 mA         | 8 V                   |                       | ~   | ~   | External   | OEM                         |                                                 | 118  |
| LD1100    | 250 mA         | 8 V                   |                       |     | ~   |            | OEM                         |                                                 | 118  |
| EK1101    | 250 mA         | 8 V                   |                       |     | ~   |            | OEM                         |                                                 | 118  |
| EK1102    | 250 mA         | 8 V                   |                       |     | ~   |            | OEM                         |                                                 | 118  |
| LD1255R   | 250 mA         | 3.3 V                 |                       | ~   |     | External   | OEM                         |                                                 | 118  |
| LDC205C   | 500 mA         | 10 V                  |                       | ~   | ~   | External   | Benchtop                    |                                                 | 117  |
| LDC8005   | 500 mA         | 5 V                   |                       | ~   | ~   | External   | 19" Chassis                 | 1 / 8 / PRO8000                                 | 120  |
| ITC8052   | 500 mA         | 5 V                   | ~                     | ~   | ~   |            | 19" Chassis                 | 1 / 8 / PRO8000                                 | 120  |
| ITC5052   | 500 mA         | 2.5 V                 | ~                     | ~   | ~   | Int/Ext    | 19" Chassis                 | 1 / 16 / TXP5000                                | 100  |
| IP500     | 500 mA         | 3 V                   |                       | ~   | ~   | External   | OEM                         |                                                 | 118  |
| LDC210C   | 1 A            | 10 V                  |                       | ~   | ~   | External   | Benchtop                    |                                                 | 117  |
| LDC8010   | 1 A            | 5 V                   |                       | ~   | ~   | External   | 19" Chassis                 | 1 / 8 / PRO8000                                 | 120  |
| ITC8102   | 1 A            | 5 V                   | ~                     | ~   | ~   |            | 19" Chassis                 | 1 / 8 / PRO8000                                 | 120  |
| ITC4001   | 1 A            | 10 V                  | ~                     | ~   | ~   | Int/Ext    | Benchtop                    |                                                 | 119  |
| ITC5102   | 1A             | 2.5 V                 | ~                     | ~   | ~   | Int/Ext    | 19" Chassis                 | 1 / 16 / TXP5000                                | 100  |
| ITC110    | 1A             | 4 V                   | <ul> <li>✓</li> </ul> | ~   | ~   | External   | OEM                         |                                                 | 119  |
| LDC220C   | 2 A            | 4 V                   |                       | ~   | ~   | External   | Benchtop                    |                                                 | 117  |
| LDC8020   | 2 A            | 5 V                   |                       | ~   | ~   | External   | 19" Chassis                 | 1 / 8 / PRO8000                                 | 120  |
| LD3000R   | 2.5 A          | 3.3 V                 |                       | ~   |     | External   | OEM                         |                                                 | 118  |
| ITC133    | 3 A            | 4 V                   | ~                     | ~   | ~   | External   | OEM                         |                                                 | 119  |
| LDC240C   | 4 A            | 5 V                   |                       | ~   | ~   | External   | Benchtop                    |                                                 | 117  |
| LDC8040   | 4 A            | 5 V                   |                       | V   | ~   | External   | 19" Chassis                 | 1 / 8 / PRO8000                                 | 120  |
| LDC8080   | 8 A            | 5 V                   |                       | V   | ~   | External   | 19" Chassis                 | 1 / 4 / PRO8000                                 | 120  |
| ITC4005   | 5 A            | 10 V                  | ~                     | ~   | ~   | Int/Ext    | Benchtop                    |                                                 | 118  |
| LDC4005   | 5 A            | 10 V                  |                       | ~   | ~   | Int/Ext    | Benchtop                    |                                                 | 118  |
| ITC4020   | 20 A           | 10 V                  | ~                     | ~   | ~   | Int/Ext    | Benchtop                    |                                                 | 118  |
| LDC4020   | 20 A           | 10 V                  |                       | V   | ~   | Int/Ext    | Benchtop                    |                                                 | 1193 |

\*CC = Constant Current, CP = Constant Power

# **Temperature Controller Selection Guide**

|          |                  |                  |            |           | Temperature S         | Sensors |        | ]      |            |             |                        |      |
|----------|------------------|------------------|------------|-----------|-----------------------|---------|--------|--------|------------|-------------|------------------------|------|
| ITEM#    | DRIVE<br>CURRENT | MAX TEC<br>POWER | LD/<br>TEC | NTC<br>TH | AD590 & 592<br>LM335  | LM35    | Pt100  | KRYO   | TUNE<br>IN | PACKAGE     | CHANNELS<br>(19" RACK) | PAGE |
| TCM1000T | ±1 A             | 3 W              |            | V         |                       |         |        |        |            | OEM         | (=, ===,               | 1186 |
| TTC001   | ±1 A             | 4 W              |            |           | <ul> <li>✓</li> </ul> |         |        |        |            | T-Cube      |                        | 1187 |
| ITC5022  | ±1.5 A           | 5.25 W           | ~          | ~         |                       |         |        |        | ~          | 19" Chassis | 1/ 16 /TXP5000         | 1211 |
| ITC5052  | ±1.5 A           | 5.25 W           | ~          | ~         |                       |         |        |        | ~          | 19" Chassis | 1 / 16 /TXP5000        | 1211 |
| ITC5102  | ±1.5 A           | 5.25 W           | ~          | ~         |                       |         |        |        | ~          | 19" Chassis | 1 / 16 /TXP5000        | 1211 |
| ITC102   | ±2 A             | 12 W             | ~          | ~         | <ul> <li>✓</li> </ul> |         |        | Option | ~          | OEM         | 1                      | 1196 |
| ITC110   | ±2 A             | 12 W             | ~          | ~         | <ul> <li>✓</li> </ul> |         |        | Option | ~          | OEM         | 1                      | 1196 |
| TED200C  | ±2 A             | 12 W             |            | ~         | ~                     |         |        |        | ~          | Benchtop    | 1                      | 1189 |
| TED8020  | ±2 A             | 16 W             |            | ~         | ~                     |         | Option | Option | ~          | 19" Chassis | 1 / 8 / PRO8000        | 1206 |
| ITC8022  | ±2 A             | 16 W             | ~          | ~         | <ul> <li>✓</li> </ul> |         |        |        |            | 19" Chassis | 1 / 8 / PRO8000        | 1208 |
| ITC8052  | ±2 A             | 16 W             | ~          | ~         | ~                     |         |        |        |            | 19" Chassis | 1 / 8 / PRO8000        | 1208 |
| ITC8102  | ±2 A             | 16 W             | ~          | ~         | ~                     |         |        |        |            | 19" Chassis | 1 / 8 / PRO8000        | 1208 |
| ITC133   | ±3 A             | 18 W             | ~          | ~         | <ul> <li>✓</li> </ul> |         |        | Option | ~          | OEM         | 1                      | 1196 |
| TED8040  | ±4 A             | 32 W             |            | ~         | <ul> <li>✓</li> </ul> |         | Option | Option | ~          | 19" Chassis | 1 / 8 / PRO8000        | 1206 |
| TED8080  | ±8 A             | 64 W             |            | ~         | <b>v</b>              |         | Option |        | ~          | 19" Chassis | 1 / 4 / PRO8000        | 1206 |
| TED4015  | ±15 A            | 225 W            | ~          | ~         | ~                     | ~       | ~      |        |            | Benchtop    | 1                      | 1190 |
| ITC4001  | ±15 A            | 225 W            | ~          | ~         | ~                     | ~       | ~      |        |            | Benchtop    | 1                      | 1195 |
| ITC4005  | ±15 A            | 225 W            | ~          | ~         | ~                     | ~       | ~      |        |            | Benchtop    | 1                      | 1195 |
| ITC4020  | ±12 A            | 180 W            | ~          | ~         | ~                     | ~       | ~      |        |            | Benchtop    | 1                      | 1195 |

Laser Diode Pigtailing

6

See

Page 1056

# **Current/TEC Controllers Selection Guide**

# Pages 1177-1197



### Light CHAPTERS

**Coherent Sources** 

**Incoherent Sources** 

Covega

**Drivers/Mounts** 

Accessories

V SECTIONS Laser Diode

Controllers

Temperature/TEC Controllers

LD/TEC Controllers

LD/TEC

Platforms

LD Mounts

LED Drivers

**LED Mounts** 

### Expanded Selection of Laser Diodes





Benchtop Laser Diode Controllers (Page 1 of 2)

Includes Power Cord and Mount Connection Cable (CAB400)

# 7 Models Offering Currents from 20 mA to 4 A

The LDC200C series of laser diode controllers all provide features that ensure

Highlights

- 10 V Compliance Voltage on LDC202C, LDC205C, and LDC210C for Blue Laser Diodes
- Extremely Low Noise (LDC201CU Offers 0.2 μA RMS)
- 5-Digit Display
- Analog Control Input and Output
- Reliable Laser Diode Protection
- Operates with All Laser Diode and Photodiode Polarities
- Seven Models with Laser Diode Current Ranges from 20 mA to 4 A

outstanding performance. There are seven models with different current ranges, each configured to provide optimal performance for its particular intended laser application. Please refer to the Specifications and Selection Guide on the following page, and the Typical Applications Table (below) for an overview of the product range.

### MODES:

With the laser diode controllers of the LDC200C series, laser diodes can be driven in constant current (CC) or constant power (CP) mode. All laser diode and photodiode configuration types are supported. The laser diode is always driven with respect to ground. In comparison to driver designs that require a floating ground, this grounded operation of the laser diode offers advantages regarding noise, transient suppression, and stability.

In CC mode, the current to the laser is held precisely at the prescribed level. This mode is used when the lowest noise and highest response speed are required. Most applications in this mode require stabilizing the temperature as well; see page 1188 for our temperature controllers.

In CP mode, a feedback cicuit uses the signal generated by the internal photodiode integrated into most laser diode packages or an external photodiode to actively stabilize the laser's output power. An adjustment of the full scale photodiode current in CP mode is provided in order to compensate for the differences in the photodiode currents between different laser diodes.

### **CONTROLLER OUTPUTS:**

Independent of the selected operating mode, the 5-digit LED display can show the laser current, photodiode monitor current, or laser current limit. It can also display the optical power in milliwatts. The power readout can be calibrated to the responsivity of the monitor photodiode by adjusting a front panel trim potentiometer. In many applications, the aforementioned benefits eliminate the need for a separate optical power meter. A TTL input for remote laser on/off, a modulation input for laser current or power, and a control output proportional to the laser diode current are all available from the rear of the unit.

### **PROTECTION FEATURES:**

**Current Limit:** A precisely adjustable current limit ensures that the maximum laser current cannot be exceeded. Thorlabs has intentionally provided limited access to this feature to prevent accidental adjustment. An attempt to increase the laser drive current above the preset limit will result in a visible and short audible indicator. Even when utilizing the external modulation feature, the current limit setpoint cannot be exceeded.

**Current Source:** If the connection between the current source and laser diode is interrupted, the current source automatically switches off the current output. The open current circuit condition is indicated by the "OPEN" indicator on the controller and a short acoustic warning. The separate laser ON key switches the laser current on and off. When switched off, an electronic switch within the LDC200C

| Typical<br>Applications                | LDC200CV | LDC201CU              | LDC202C               | LDC205C | LDC210C | LDC220C               | LDC240C |
|----------------------------------------|----------|-----------------------|-----------------------|---------|---------|-----------------------|---------|
| Low-Current VCSEL                      | ~        |                       |                       |         |         |                       |         |
| Low-Power Lasers                       | ~        | <ul> <li>✓</li> </ul> | <ul> <li>✓</li> </ul> |         |         |                       |         |
| Medium-Power Lasers                    |          |                       | <ul> <li>✓</li> </ul> | ~       | ~       |                       |         |
| Higher-Power Lasers                    |          |                       |                       |         | ~       | <ul> <li>✓</li> </ul> | ~       |
| Blue Lasers–High<br>Compliance Voltage |          |                       | <b>v</b>              | V       | r       |                       |         |
| Low-Noise Operation                    | ~        |                       | <ul> <li>✓</li> </ul> | ~       | ~       | <ul> <li>✓</li> </ul> | ~       |
| Ultra-Low-Noise<br>Operation           |          | ~                     |                       |         |         |                       |         |

# **Benchtop Laser Diode Controllers (Page 2 of 2)**

short circuits the laser diode for added protection. After being switched on, a soft start ensures a slow increase of the laser current without voltage peaks. Even in the case of line failure, the laser current remains transient free. Voltage peaks on the AC line are effectively suppressed by electrical filters, shielding of the transformer, and careful grounding of the chassis.

| Model Number                                                             | LDC200CV      | LDC201CU               | LDC202C            | LDC205C             | LDC210C            | LDC220C             | LDC240C      | Las              |  |  |  |
|--------------------------------------------------------------------------|---------------|------------------------|--------------------|---------------------|--------------------|---------------------|--------------|------------------|--|--|--|
| Current Control                                                          |               |                        |                    |                     |                    |                     |              | Co               |  |  |  |
| Control Range (Continuous)                                               | 0 to ±20 mA   | 0 to ±100 mA           | 0 to ±200 mA       | 0 to ±500 mA        | 0 to ±1 A          | 0 to ±2 A           | 0 to ±4 A    | Temperat<br>Co   |  |  |  |
| Compliance Voltage                                                       | 6 V           | 5 V                    | 10 V               | 10 V                | 10 V               | 4 V                 | 5 V          |                  |  |  |  |
| Resolution                                                               | 1.0 µA        | 10 µA                  | 10 µA              | 10 µA               | 100 µA             | 100 µA              | 100 µA       | Co               |  |  |  |
| Accuracy (Full Scale)                                                    | ±20 μA        | ±50 μA                 | ±100 μA            | ±0.5 mA             | ±1.0 mA            | ±2.0 mA             | ±4.0 mA      |                  |  |  |  |
| Typical Noise without Ripple<br>(10 Hz to 10 MHz, RMS)                   | <1.0 µA       | <0.2 μA                |                    |                     | <5 μΑ              | <15 μA              | <50 μΑ       | P                |  |  |  |
| Typical Ripple (50/60 Hz, RMS)                                           | <0.5 μA       | <0.5 μA                | <1.5 μA            | < 2 µA              | <3 μA              | <5 μA               | <8 μA        |                  |  |  |  |
| Fransients (Typical)                                                     | <10 µA        | <10 µA                 | <0.2 mA            | < 0.5 mA            | <1 mA              | <2 mA               | <4 mA        | LED              |  |  |  |
| Typical Drift in 24 hours<br>0-10 Hz at Constant<br>Ambient Temperature) | <1 μA         | <2 μA                  | <3 μA              | <10 µA              | <20 µА             | <100 μA             | <200 μA      | LED              |  |  |  |
| Temperature Coefficient                                                  |               |                        |                    | <50 ppm/°C          |                    |                     | (            | See Page<br>1192 |  |  |  |
| Current Limit (CC Mode)                                                  |               |                        |                    |                     |                    |                     |              | 1192             |  |  |  |
| Setting Range (20-Turn Trim Pot)                                         | 0 to ≥20 mA   | 0 to ≥100 mA           | 0 to ≥200 mA       | 0 to ≥500 mA        | 0 to ≥1 A          | 0 to ≥2 A           | 0 to ≥4 A    |                  |  |  |  |
| Resolution                                                               | 1.0 µA        | 10 µA                  | 10 µA              | 10 µA               | 100 µA             | 100 µA              | 100 µА       |                  |  |  |  |
| Accuracy                                                                 | ±50 μA        | ±200 μA                | ±500 μA            | ±1.5 mA             | ±2.5 mA            | ±5 mA               | ±10 mA       |                  |  |  |  |
| Power Control (PC Mode)                                                  | 1             | I                      |                    |                     | I                  |                     | <b>\</b>     |                  |  |  |  |
| Photocurrent Control Range                                               | 5 µA to 2 mA  |                        | 25 µA to 10 mA     |                     |                    | 50 µA to 20 mA      |              |                  |  |  |  |
| Photocurrent Resolution                                                  | 0.1 μA        |                        | 1 μA               |                     |                    | 1 μA                |              | Laser and        |  |  |  |
| Photocurrent Accuracy                                                    | ±2 μA         |                        | ±10 μA             |                     |                    | ±20 μA              |              | Tempertur        |  |  |  |
| Analog Modulation Input                                                  | · · ·         |                        |                    |                     | 1                  |                     |              | Control          |  |  |  |
| nput Resistance                                                          |               |                        |                    | 10k Ω               |                    |                     |              | System Kit       |  |  |  |
| 3 dB Bandwidth, CC**                                                     | DC-100 kHz    | DC-0.2 kHz             | DC-250 kHz         | DC-150 kHz          | DC-100 kHz         | DC-50 kHz           | DC-30 kHz    |                  |  |  |  |
| Modulation Coefficient, CC                                               | 2 mA/V ±5%    | 10 mA/V ±5%            | 20 mA/V ±5%        | 50 mA/V ±5%         | 100 mA/V ±5%       | 200 mA/V ±5%        | 400 mA/V ±5% |                  |  |  |  |
| Modulation Coefficient, CP                                               | 0.2 mA/V ±5%  |                        | 1 mA/V ±5%         |                     |                    | 2 mA/V ±5%          |              |                  |  |  |  |
| General Data                                                             |               |                        |                    |                     |                    |                     |              |                  |  |  |  |
| Safety Features                                                          | Sc            | ft Start, Interlock, S | Short Circuit when | Laser is Off, Laser | Current Limit, Ope | en Circuit Detectio | n            |                  |  |  |  |
| Display                                                                  |               |                        |                    | LED, 5 Digits       |                    |                     |              |                  |  |  |  |
| Connectors, Back Panel                                                   | 9-Pin D-Sub ( | F) for Laser, BNC      | for Remote Laser C | Dn/Off TTL Input,   | BNC for Modulati   | on, and BNC for I   | aser Monitor |                  |  |  |  |
| Operating Temperature                                                    |               | 0 to 40 °C             |                    |                     |                    |                     |              |                  |  |  |  |
| Line Voltage/Frequency                                                   |               |                        | 100 V, 115 V, 23   | 30 V, +15%/-10% a   | nd 50 to 60 Hz     |                     |              |                  |  |  |  |
| Warm-up Time                                                             |               | 10 Minutes             |                    |                     |                    |                     |              |                  |  |  |  |
| Storage Temperature                                                      |               |                        |                    | -40 to 70 °C        |                    |                     |              |                  |  |  |  |
| Dimensions (W x H x D)                                                   |               | 5.75" x 2.60"          | x 11.42"(146 mm    | x 66 mm x 290 mr    | n), Box Only, No K | Knobs or Feet       |              |                  |  |  |  |
| Weight                                                                   |               |                        |                    | <3.1 kg             |                    |                     | <3.3 kg      |                  |  |  |  |

| ITEM#    | \$             |   | £      |   | €        |   | RMB       | DESCRIPTION                                       |
|----------|----------------|---|--------|---|----------|---|-----------|---------------------------------------------------|
| LDC200CV | \$<br>998.00   | £ | 691.90 | € | 886,10   | ¥ | 8,427.20  | Laser Diode Controller, 20 mA for VCSEL           |
| LDC201CU | \$<br>998.00   | £ | 691.90 | € | 886,10   | ¥ | 8,427.20  | Laser Diode Controller, 100 mA Ultra-Low Noise    |
| LDC202C  | \$<br>950.00   | £ | 658.60 | € | 843,50   | ¥ | 8,021.90  | Laser Diode Controller, 200 mA                    |
| LDC205C  | \$<br>950.00   | £ | 658.60 | € | 843,50   | ¥ | 8,021.90  | Laser Diode Controller, 500 mA                    |
| LDC210C  | \$<br>998.00   | £ | 691.90 | € | 886,10   | ¥ | 8,427.20  | Laser Diode Controller, 1 A                       |
| LDC220C  | \$<br>1,100.00 | £ | 762.60 | € | 976,60   | ¥ | 9,288.50  | Laser Diode Controller, 2 A                       |
| LDC240C  | \$<br>1,195.00 | £ | 828.40 | € | 1.061,00 | ¥ | 10,091.00 | Laser Diode Controller, 4 A                       |
| CAB400   | \$<br>66.00    | £ | 45.80  | € | 58,60    | ¥ | 557.40    | LDC200C Series to LD Mount, 9-Pin D-Sub Connector |

TECHNOLOGY V

Light

CHAPTERS V

Covega

**Coherent Sources** 

**Incoherent Sources** 

**Drivers/Mounts** 

### Light CHAPTERS

**Coherent Sources** 

Incoherent Sources

Covega

**Drivers/Mounts** 

Accessories

V SECTIONS
 Laser Diode
 Controllers
 Temperature/TEC
 Controllers
 LD/TEC
 Controllers
 LD/TEC
 Platforms
 LD Mounts
 LED Drivers

LED Mounts

# Laser Diode Controllers, 5 A and 20 A (Page 1 of 2)



Includes power cord, connection cable for our laser mounts, Sub-D connector kit, and USB cable.

The LDC4000 Series of Laser Diode Current Controllers provide precise and stable current for driving high-power laser diodes with injection currents up to 20 A. It supports all laser diode and monitor diode pin configurations and features a constant current or constant power mode. This benchtop controller is designed for stand-alone operation and is controlled via front panel keys and intuitive operation menus on a large and easy-to-read graphic LC display. Additionally the LDC4000 Series can be fully remote controlled via an SCPI-compatible USB Interface. A higher setting and measurement resolution is offered via remote control\*.

Compared to the LDC200C Series, the LDC4000 Series offers higher injection currents plus additional features like the Quasi-Continuous Wave (QCW) operation mode, an internal modulation generator, a thermopile input, laser voltage measurement, and an optical power limit. These features

together with the new design, which offers silent and efficient operation, make the LDC4000 Series Laser Diode Controllers an ideal choice for most applications.

**Constant Current and Constant Power Modes** 

The laser diodes can be driven in either constant current (CC) or constant power (CP) mode. In CC mode, the laser current is held precisely at the level set by the user. The CC mode is ideal when the lowest noise and highest response speed is required. In CP mode, the monitoring optical sensor is used to actively stabilize the output power of the laser. A feedback circuit controls the output power of the laser. A power limit can be set to restrict the control loop to a maximum laser output power. To ensure best possible performance, laser diodes are driven with respect to ground, offering significant advantages regarding noise, transient suppression, and stability.

### Photodiode and Thermopile Monitor Input

The LDC4000 Series allows the user to select photodiodes or thermopiles as the sensor for monitoring the laser diode power output. For each, a monitor input is provided. The photodiode input provides two ranges: 2 mA or 20 mA maximum current. An adjustable-bias voltage can be applied to the photodiode to improve the linearity. The thermopile input provides four ranges: 10 mV, 100 mV, 1 V, or 10 V maximum voltage. Instead of bare thermopile sensors, sensor amplifiers or power meters with analog voltage output can be connected here as well. Both monitor inputs can be calibrated by a sensor response parameter to directly display the optical power in milliwatts.

### Features

- Two Models for 5 A and 20 A LD Currents and 10 V Compliance Voltage
- Operate with Anode- or Cathode-Grounded Laser Diodes and Photodiodes
- Constant Current (CC) and Constant Power (CP) Control Modes
- Continuous Wave (CW) or Quasi-Continuous Wave (QCW) Operation
- Internal Function Generator for Analog Modulation
- External Modulation Input
- Analog Monitor Output for the Laser Current
- Compatible Optical Detectors: Photodiodes, Thermopiles, Common Sensor Amplifiers and Power Meters with Voltage Output
- Laser Diode Voltage Measurement
- Enable Key Switch and Interlock
- Enhanced Laser Diode Protection
- SCPI-Compliant USB Interface and Driver Set
- Power Efficient by Active Power Management

| ITEM#                                                      | LDC                                                        | 4005                                 | LDC                          | 4020                                 |  |  |  |
|------------------------------------------------------------|------------------------------------------------------------|--------------------------------------|------------------------------|--------------------------------------|--|--|--|
| Specifications                                             | Front Panel*                                               | Remote*<br>Control                   | Front Panel*                 | Remote*<br>Control                   |  |  |  |
| Current Control (Constant Cu                               | rrent Mode)                                                |                                      |                              |                                      |  |  |  |
| Control Range                                              | 0 to                                                       | ±5 A                                 | 0 to ±                       | 20 A                                 |  |  |  |
| Compliance Voltage                                         |                                                            | >10                                  | ) V                          |                                      |  |  |  |
| Setting/Measurement Resolution                             | 1 mA                                                       | 80 µA                                | 1 mA                         | 320 µA                               |  |  |  |
| Accuracy                                                   | ±(0.1%)                                                    | + 2 mA)                              | ±(0.1%                       | + 8 mA)                              |  |  |  |
| Noise and Ripple<br>(10 Hz to 10 MHz, rms, Typ.)           | <1.5                                                       | mA                                   | <10                          | mA                                   |  |  |  |
| Drift, 24 hrs (0-10 Hz, Typ.,<br>at Constant Ambient Temp) | <300                                                       | ) μΑ                                 | <1 :                         | mA                                   |  |  |  |
| Temperature Coefficient <50 ppm/°C                         |                                                            |                                      |                              |                                      |  |  |  |
| Current Limit                                              |                                                            |                                      |                              |                                      |  |  |  |
| Setting Range                                              | 0 to                                                       | 5 A                                  | 0 to 20 A                    |                                      |  |  |  |
| Resolution                                                 | 1 mA                                                       | 80 µA                                | 1 mA                         | 320 µA                               |  |  |  |
| Accuracy                                                   | $\pm (0.12\% + 3 \text{ mA}) \pm (0.12\% + 12 \text{ mA})$ |                                      |                              |                                      |  |  |  |
| Power Monitor Input - Photoe                               | liode                                                      |                                      |                              |                                      |  |  |  |
| Photocurrent<br>Measurement Ranges                         | 2 mA / 20 mA                                               |                                      |                              |                                      |  |  |  |
| Photocurrent<br>Measurement Resolution                     | 1 μΑ / 10 μΑ                                               | 32 nA / 320 nA                       | 1 μΑ / 10 μΑ                 | 32 nA / 320 nA                       |  |  |  |
| Photocurrent Accuracy                                      |                                                            | ±(0.08%                              | +0.5 μA)                     |                                      |  |  |  |
| Photodiode Reverse Bias Voltage                            |                                                            | 0 to                                 | 10 V                         |                                      |  |  |  |
| Power Monitor Input - Therm                                | opile**                                                    |                                      |                              |                                      |  |  |  |
| Sensor Voltage Measurement Ranges                          |                                                            | 10 mV, 100 n                         | nV, 1 V, 10 V                |                                      |  |  |  |
| Sensor Voltage<br>Measurement Resolution                   | 1 μV, 10 μV,<br>100 μV, 1 mV                               | 0.16 μV,<br>1.6 μV, 16 μV,<br>160 μV | 1 μV, 10 μV,<br>100 μV, 1 mV | 0.16 μV,<br>1.6 μV, 16 μV,<br>160 μV |  |  |  |
| Sensor Voltage                                             | ±(0.1% + 1                                                 | 0 μV), ±(0.1% +                      | 100 µV), ±(0.19              | 6 + 1 mV),                           |  |  |  |
| Measurement Accuracy                                       |                                                            | ±(0.1% -                             | + 5 mV)                      |                                      |  |  |  |
| Constant Power Control                                     |                                                            |                                      |                              |                                      |  |  |  |
| Photocurrent Control Ranges                                |                                                            | 1 µA to 2 mA, 1                      | 0 µA to 20 mA                |                                      |  |  |  |
| Voltage Control Ranges                                     | 1 µV to 10 mV                                              | , 10 μV to 100 m                     | V, 100 µV to 1V,             | 1 mV to 10 V                         |  |  |  |
| *The front panel resolution is limited by th               | e display. A higher se                                     | tting and measureme                  | nt resolution is offered     | l via remote control.                |  |  |  |

\*The front panel resolution is limited by the display. A higher setting and measurement resolution is offered via remote control \*\*The Thermopile Power Monitor Input can also be used for sensor amplifiers and power meters with voltage output.

# Laser Diode Controllers, 5 A and 20 A (Page 2 of 2)

### External and Internal Analog Modulation

The analog modulation input enables the external modulation of the laser diode in constant current as well as in constant power mode. Alternatively an internal function generator offers sine, triangle, or square waveform modulation.

# Continuous Wave (CW) or Quasi-Continuous Wave (QCW) Operation

The LDC4000 Series can be operated in continuous wave (CW) or quasi-CW (QCW) mode. An integrated pulse generator can be triggered internally with an adjustable repetition rate or externally via a BNC jack at the rear of the unit.

# Enhanced Protection Features for the Laser Diode

For optimal LD protection, the LDC4000 Series offers a set of enhanced protection features. Independent of operation mode or compliance voltage, a precisely adjustable current limit ensures that the maximum allowed laser current cannot be exceeded. The LDC will return an error signal whenever this pre-set limit is reached by user settings or external modulation. The soft start feature ensures a slow increase of the laser current without voltage peaks after the device is switched on. Voltage peaks on the AC line are effectively suppressed by electrical filters and by careful grounding of the chassis. Even in the case of power line failure, the laser current remains transient-free. When the output is disabled, the laser is additionally protected by an electronic output short circuit. If the connection between current source and laser diode is interrupted, or the laser voltage exceeds the adjustable voltage protection threshold, the laser current is switched off.



| ITEM#                                                           | LDC                                                                  | 4005                                                         | LDC               | 4020              |  |  |  |  |
|-----------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|-------------------|-------------------|--|--|--|--|
| Specifications                                                  | Front Panel*                                                         | Remote<br>Control                                            | Front Panel*      | Remote<br>Control |  |  |  |  |
| Power Limit                                                     |                                                                      |                                                              |                   |                   |  |  |  |  |
| Photocurrent Limit Ranges                                       |                                                                      | 1 µA to 2 mA, 1                                              | 10 µA to 20 mA    |                   |  |  |  |  |
| Sensor Voltage Limit Ranges                                     | $1 \ \mu V$ to $10 \ mV$                                             | 10 µV to 100 mV                                              | 1                 | 1 mV to 10 V      |  |  |  |  |
| Laser Voltage Measurement                                       |                                                                      |                                                              |                   |                   |  |  |  |  |
| Measurement Principle                                           |                                                                      | 4-V                                                          | Vire              |                   |  |  |  |  |
| Measurement Resolution                                          | 1 mV 160 μV 1 mV 160 μ <sup>V</sup>                                  |                                                              |                   |                   |  |  |  |  |
| Accuracy                                                        |                                                                      | ±10                                                          | mV                |                   |  |  |  |  |
| Laser Overvoltage Protection                                    | •                                                                    |                                                              |                   |                   |  |  |  |  |
| Setting Range                                                   |                                                                      | 1 to                                                         | 10 V              |                   |  |  |  |  |
| Laser Current Monitor Outpu                                     | ıt                                                                   |                                                              |                   |                   |  |  |  |  |
| Load Resistance                                                 |                                                                      | >10                                                          | kΩ                |                   |  |  |  |  |
| Transmission Coefficient                                        | 2 V/A                                                                | ±5%                                                          | 500 mV            | /A ±5%            |  |  |  |  |
| External Modulation Input                                       |                                                                      |                                                              |                   |                   |  |  |  |  |
| Input Impedance                                                 |                                                                      | 10                                                           | kΩ                |                   |  |  |  |  |
| Small Signal 3 dB Bandwidth,<br>CC Mode                         | DC to 1                                                              | 00 kHz                                                       | DC to             | 50 kHz            |  |  |  |  |
| Modulation Coefficient,<br>CC Mode                              | 500 mA                                                               | /V ±5%                                                       | 2 A/V             | ±5%               |  |  |  |  |
| Internal Modulation                                             |                                                                      |                                                              |                   |                   |  |  |  |  |
| Waveforms                                                       |                                                                      | Sine, Squa                                                   | re, Triangle      |                   |  |  |  |  |
| Frequency Range                                                 | 20 Hz to                                                             | 100 kHz                                                      | 20 Hz to          | 50 kHz            |  |  |  |  |
| Modulation Depth                                                |                                                                      | 1 to 1                                                       | 100%              |                   |  |  |  |  |
| QCW Mode                                                        |                                                                      |                                                              |                   |                   |  |  |  |  |
| Pulse Width Range                                               |                                                                      | 0.1 t                                                        | o 1 s             |                   |  |  |  |  |
| Pulse Width Resolution                                          |                                                                      | 1                                                            | μs                |                   |  |  |  |  |
| Repetition Rate Range                                           |                                                                      | 1 ms to 5 s (0.2                                             | 2 Hz to 1 kHz)    |                   |  |  |  |  |
| Repetition Rate Resolution                                      |                                                                      | 10                                                           | μs                |                   |  |  |  |  |
| Trigger                                                         |                                                                      |                                                              |                   |                   |  |  |  |  |
| Input                                                           | Rising Edge Triggered, Starts QCW Pulse with Internal Adjusted Width |                                                              |                   |                   |  |  |  |  |
| Input Level                                                     | TTL or 5 V CMOS                                                      |                                                              |                   |                   |  |  |  |  |
| Output                                                          | Active High, Tracks Pulse Width                                      |                                                              |                   |                   |  |  |  |  |
| Output Level                                                    | TTL or 5 V CMOS                                                      |                                                              |                   |                   |  |  |  |  |
| Digital I/O Port                                                |                                                                      |                                                              |                   |                   |  |  |  |  |
| Number of I/O Lines                                             | 4 (Separately Configurable)                                          |                                                              |                   |                   |  |  |  |  |
| Interface                                                       |                                                                      |                                                              |                   |                   |  |  |  |  |
| USB2.0                                                          | According to U                                                       | SBTMC/USBTM                                                  | IC-USB488 Specif  | fication Rev. 1.  |  |  |  |  |
| Protocol                                                        |                                                                      | SCPI Complian                                                | t Command Set     |                   |  |  |  |  |
| Drivers                                                         |                                                                      | A VXI pnp™, №<br>udio.net™, Lab                              |                   |                   |  |  |  |  |
| General Data                                                    |                                                                      |                                                              |                   |                   |  |  |  |  |
| Safety Features                                                 | Limit, Soft Star                                                     | it, Keylock Switch,<br>t, Short Circuit<br>ge Protection, Ov | when Laser off, A | Adjustable Las    |  |  |  |  |
| Display                                                         |                                                                      | -                                                            |                   |                   |  |  |  |  |
| Connector for Laser, Photodiode,<br>Interlock & Laser On Signal | LCD 320 x 240 Pixel<br>13W3 Mixed D-Sub Jack (female)                |                                                              |                   |                   |  |  |  |  |
| Connectors for Control<br>Input / Output                        | BNC                                                                  |                                                              |                   |                   |  |  |  |  |
| Connector for USB-Interface                                     | USB Type B                                                           |                                                              |                   |                   |  |  |  |  |
| Line Voltage / Frequency                                        | 100 to 120 V and 200 to 240 V ±10%, 50 to 60 Hz                      |                                                              |                   |                   |  |  |  |  |
| Maximum Power Consumption                                       |                                                                      |                                                              |                   |                   |  |  |  |  |
| Operating Temperature                                           |                                                                      | 0 to 4                                                       |                   |                   |  |  |  |  |
|                                                                 |                                                                      |                                                              |                   |                   |  |  |  |  |
| Dimensions (W x H x D)                                          | 10.35" x 4.8" x 12.09"<br>(263 mm x 122 mm x 307 mm)                 |                                                              |                   |                   |  |  |  |  |

\* Measurement Resolution is limited by display

| ITEM#   | \$          | £          | €          | RMB         | DESCRIPTION                                           |
|---------|-------------|------------|------------|-------------|-------------------------------------------------------|
| LDC4005 | \$ 2,000.00 | £ 1,386.50 | € 1.775,50 | ¥ 16,889.00 | Benchtop Laser Diode Controller, ±5 A                 |
| LDC4020 | \$ 2,700.00 | £ 1,871.50 | € 2.397,00 | ¥ 22,799.00 | Benchtop Laser Diode Controller, ±20 A                |
| CAB4005 | \$ 80.65    | £ 56.00    | € 71,70    | ¥ 681.10    | Cable for LDC4000 Series, 5 A, 13W3 to D-Sub-9, 1.5 m |
| CAB4006 | \$ 80.65    | £ 56.00    | € 71,70    | ¥ 681.10    | Cable for LDC4000 Series, 20 A, 13W3 to 13W3, 1.5 m   |
| CON4005 | \$ 14.50    | £ 10.05    | € 12,90    | ¥ 122.50    | Connector Kit for LDC4000 Series, 20 A, 13W3 Male     |

TECHNOLOGY **T**Light

### Covega

### Drivers/Mounts

### Accessories

### SECTIONS V

Laser Diode Controllers

| lem | perature/IEC |  |
|-----|--------------|--|
|     | Controllers  |  |

LD/TEC Controllers

LD/TEC Platforms

LD Mounts

LED Drivers

LED Mounts

### Light

▼ CHAPTERS Coherent Sources

Incoherent Sources

Covega

**Drivers/Mounts** 

Accessories

V SECTIONS
Laser Diode
Controllers
Temperature/TEC
Controllers
LD/TEC
Controllers
LD/TEC
Platforms
LD Mounts

LED Drivers

**LED Mounts** 

Expanded Selection of Laser Diodes



# T-Cube USB Laser Diode Controller



uble Wide T-Cube Footprint: 4.72" x 2.36" x 1.85" 120 mm x 60 mm x 47 mm

### Overview

The TLD001 T-Cube is a full-featured, compact, stand-alone laser diode/LED controller for use with devices that have a compliance voltage of 10 V or less. The output connector is a 9-Pin, D-type connector that is compatible with Thorlabs' entire line of laser diode mounts. The TLD001 unit is double the width of the standard T-Cube footprint. As a result, the TLD001 will take up two ports when used with the T-Cube hub featured on page 546.

### Operation

The TLD001 T-Cube Laser Diode/LED Driver can be controlled by the manual interface on the top of each unit or via a USB connection to a computer running the included apt<sup>TM</sup> software or ActiveX<sup>®</sup> command modules. The apt software is a stand-alone program that provides an intuitive graphical command interface for all of the T-Cubes currently connected to the computer running the software. The laser diode/LED driver T-Cube supports constant current and constant power modes of operation, has an input to allow the diode output to be modulated by an external source, and comes with a removable key to power the unit on or off. A separate enable button controls when the laser diode is being powered. In addition, the TLD001 has an input jack that allows an interlock device to be used for safety purposes. The software suite included with the unit contains all of the ActiveX controls required to create customized advanced control sequences. The functionality of the ActiveX controls and apt software are the same for the entire line of T-Cubes, which greatly simplifies the integration of other T-Cube products into any setup that utilizes the TLD001 laser diode controller.

### **Power Supply Options**

The TLD001 T-Cube can be powered using either a TPS002 power supply or a TCH002 T-Cube hub and power supply. The TPS002 power supply plugs into a standard wall outlet and provides +5, +15, and -15 VDC to the TLD001. The TCH002 consists of two parts: a hub that can support up to six standard footprint T-Cubes and a power supply that plugs into a standard wall outlet and powers the hub, which, in turn, powers all of the T-Cubes connected to the hub. In addition, the hub's single USB connection provides USB connectivity to all the T-Cubes plugged into the hub.

| ITEM#  | \$        | £        | €        | RMB        | DESCRIPTION                                                            |
|--------|-----------|----------|----------|------------|------------------------------------------------------------------------|
| TLD001 | \$ 750.00 | £ 520.00 | € 665,90 | ¥ 6,333.10 | T-Cube™ Laser Diode Controller                                         |
| TPS101 | \$ 25.00  | £ 17.40  | € 22,20  | ¥ 211.20   | 5 V Power Supply Unit for a Single T-Cube, 1.6 A                       |
| TPS002 | \$ 105.00 | £ 72.80  | € 93,30  | ¥ 886.70   | ±15 V/5 V Power Supply Unit for up to 2 T-Cubes                        |
| TCH002 | \$ 726.90 | £ 504.00 | € 645,40 | ¥ 6,138.00 | T-Cube™ Controller Hub and Power Supply Unit                           |
| CAB400 | \$ 66.00  | £ 45.80  | € 58,60  | ¥ 557.40   | Cable for Laser Diode Current Controller, 9-Pin D-Sub Connector, 1.5 m |

TCH002

# Thorlabs' Selection of Laser Diodes and Laser Diode Mounts are found on Pages 1215-1222.

### Features

- Constant Current and Constant Power Modes
- Five-Digit LED Display
- Removable On/Off Key
- Enable Laser Button
- Safety Interlock Input
- Manual and USB Interfaces
- External Modulation Input
- Flexible Software Libraries

### Specifications

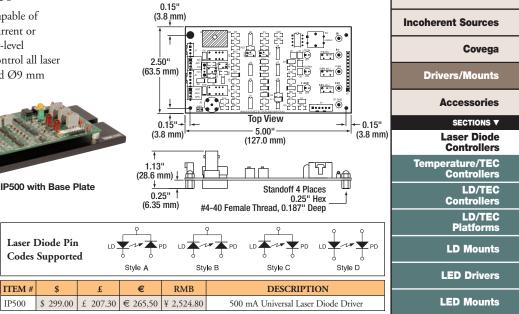
- Laser Diode (LD) Output: 9-Pin D-Type
- Operating Current Range: 20 mA to 200 mA
- LD Compliance Voltage: >8 V
- LD Current Setting Resolution: 10 µA
- LD Power Setting Resolution: 1 µW
- LD Current/Power Measurement Resolution: 10 μA (14-Bit)
- Temperature Drift: <70 ppm/°C (Typ.)
- LD Current Noise: <3 µA RMS (Typ.)
- Supported LD/PD Configurations: All
- LD Protection: Relay - Open Circuit, Under/Over Voltage
- Operating Modes: Constant Current or Constant Power
- Modulation Input (SMA) Range: 0 10 V
- **Modulation Bandwidth:** 20 kHz
- Interlock Input: 3.5 mm Jack Socket
- **Power Input:** +15 V, -15 V, +5 V
- Dimensions (W x D x H): 120 x 60 x 47 mm (4.90" x 2.40" x 1.85")

**TPS101** 

CHAPTERS V

**Coherent Sources** 

# Liaht


# 500 mA Laser Diode Driver

The IP500 is a universal 500 mA board-level driver capable of supporting all pin configurations in either constant current or constant power mode. Designed for use within higher-level assemblies, this versatile device can easily and safely control all laser diode/photodiode pin configurations in Ø5.6 mm and Ø9 mm laser packages.

The driver accepts photodiode feedback currents up to 2.0 mA. Pin configurations and operating modes are easily set using onboard jumpers. Three indicators display whether the laser is enabled, operating at current limit, or in an alarm shutdown condition. There is also no need to power down the entire unit because a separate enable switch turns the laser on and off. Connections are provided for remote interlocks and remote monitoring. Wire harnesses for all required connections are provided with the unit.

### **IP500** Features

- Supports all LD/PD Pin Configurations
- Constant Current and Constand Power Operations
- User-Configurable Current and Power Limits
- Laser Diode Inputs Shorted During Idle Operation to Protect the Device
- Auto Alarm Shutdown when Laser Connection is Open or Reversed
- Includes Input and Output Wires
- Test Points for Laser Diode Current, Monitor Photodiode Current, Current Limit, and Power Limit Setpoint
- OEM Plug-In Version Available (Call for Details)



### **IP500 Specifications**

■ Input Power: ±5 VDC @ 600 mA

### **Constant Current Mode**

- Control Range: 0 to ±500 mA
- Setting Accuracy: ±0.5 mA
- Compliance Voltage: >3.0 VDC
- Ripple and Noise (10 Hz to 10 MHz): <10 µA RMS
- **Short Time Fluctuations** (<15 s, <10 Hz): <50 μA
- Temperature Coefficient: <100 ppm/°C
- Drift (30 min, <10 Hz): <100 µA
- Limit Adjust Range: 0 to >500 mA
- Limit Accuracy: ±1% of Limit Setpoint

### **Constant Power Mode**

- Photodiode Current Range: 5 µA to 2 mA
- Setting Accuracy: ±2 µA
- Drift (30 min, <10Hz): <1 µA
- Limit Adjust Range: 0 to >2.5 mA
- Limit Accuracy: ±2 µA

### Analog Modulation/ Control Voltage

- **Input Resistance:** 10 k $\Omega$
- Bandwidth: DC to 50 kHz
- Transfer Function (ACC Mode): 50 mA/V
- Input Range: 0-10 V

# 250 mA Blue-Violet Laser Diode Driver



The IP250-BV is a medium-power, board-level laser diode controller optimized for the higher operating voltages of blue and blue-violet laser diodes. The driver is in the form of a PCB assembly and is easily integrated into other higher-level assemblies. It can accommodate only common cathode (cathode-grounded) laser diode pin-out configurations and allows control of the laser by means of either constant current or constant power modes. The driver contains circuitry for complying with the various laser safety requirements as well as protection circuitry for the laser diode.

### Features

- 250 mA Blue Laser Diode Driver
- Optimized for Lasers with Vop Less than 8 VDC
- Input Power: ±12 VDC @ 275 mA
- Control Range: 0 to ±250 mA (CC), 5 µA to 2 mA (CP)
- 0-10 V Analog Modulation Bandwidth: DC to 50 kHz

The driver has a maximum injection current of 250 mA, and the operating modes are easily set using on-board jumpers. It automatically shuts itself down when laser connections are open or reversed. Laser diode inputs are shorted during idle operation to protect the device. The end user must provide DC power and the proper connections between the unit and the laser diode. They are also responsible for the proper limit settings needed for their particular laser diode and its application.



### Light

# ▼ CHAPTERS

### **Coherent Sources**

#### **Incoherent Sources**

#### Covega

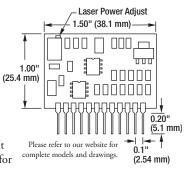
**Drivers/Mounts** 

Accessories

SECTIONS Laser Diode Controllers Temperature/TEC Controllers

LD/TEC Controllers LD/TEC

Platforms


LD Mounts

**LED Drivers** 

**LED Mounts** 

LD1100

The LD1100 Laser Diode Driver is a constant-power laser driver module, driving lasers up to 250 mA. It featuresan on-board, 12-turn trim pot for continuous laser output adjustment,



pin-programmable feedback gain, On/Off control input, and current monitor output for observing the laser drive current. With dimensions of only 1.0" x 1.5" (25.4 mm x 38.1 mm), the LD1100 is a compact module that can be embedded into a custom design. All input and output signals are provided on

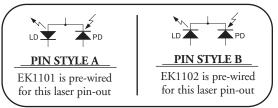
Constant Power Laser Diode Driver

a 12-pin SIP connector, which allows simple integration into a printed circuit design.

The EK1100 Series of Evaluation Kits are ready-to-use, pre-assembled LD1100 Laser Drivers with an evaluation PCB (EB1100), a cable with laser socket (S8060), and a power supply cable (9 V battery clip). Some soldering is necessary. Simply attach the laser and battery, set the gain-setting jumper, and operate the laser.

### **LD1100** Features

- APC (Automatic Power Control) CW Operation
- 0-250 mA Drive Current
- Pin-Programmable Feedback Gain
- Supports Monitor Photodiode Currents from 5 µA to 5 mA
- 12-Turn Power Adjustment
- Output Current Monitor
- External On/Off Control


LD2000R Features

and Current Limit

- Compact 1.0" x 1.5"(25.4 x 38.1 mm) SIP Package
- Single Supply Operation (8-12 VDC)

### LD1100 Supports Laser Pin Configurations:

Common Laser Anode - Photodiode Cathode Common Laser Cathode - Photodiode Cathode



Constant Power Mode from 20 µA to 125 µA

Laser Drive Currents from 0 - 100 mA

Low-Noise/Ultra-Stable Laser Control

Slow Start for Diode Protection

On-Board Trim Pots Control Laser Power

Compact 2.05" x 1.30" (52.1 x 33 mm) Design

| ITEM#   | \$       | £       | €       | RMB      | DESCRIPTION                                |
|---------|----------|---------|---------|----------|--------------------------------------------|
| LD1100* | \$ 79.60 | £ 55.20 | € 70,70 | ¥ 672.20 | APC Laser Driver, 0-250 mA                 |
| EK1101* | \$ 99.90 | £ 69.30 | € 88,70 | ¥ 843.60 | Driver Kit Pre-Wired for Laser Pin Style A |
| EK1102* | \$ 99.90 | £ 69.30 | € 88,70 | ¥ 843.60 | Driver Kit Pre-Wired for Laser Pin Style B |
| LDS2    | \$ 83.10 | £ 57.70 | € 73,80 | ¥ 701.70 | 9 VDC Power Supply for EK1101 and EK1102   |

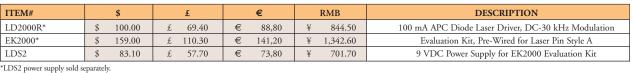
\* LDS2, 9 VDC Power Supply Sold Separately (see below)

EK1102

# **Constant Power Laser Diode Driver with Analog Modulation**

LD2000R 2.0" x 1.3" x 0.5"

(50.8 mm x 33.0 mm x 12.7 mm) Supports Pin Configuration A


. PD PIN STYLE A Supports common laser diode anode and photodiode cathode

The LD2000R low-noise, ultra-stable laser diode current source can be operated with laser diodes that have a common laser diode anode and monitor photodiode cathode. The driver

> operates in an automatic power control (APC) mode using the built-in monitor photodiode integrated in the laser diode for feedback. On-board trim pots are provided for controlling the laser power and current limit,

**FK2000** Power Supply Sold Separately

which can also be controlled via an external voltage source. The LD2000R supports pin style A laser diodes (common laser diode anode and photodiode cathode) with drive currents up to 100 mA and photodiode currents from 20 µA to 125 µA. The LD2000R also has an external input for support of applications requiring modulation of the laser output.



LDS2

Power Supply



# 250 mA Ultra-Stable Constant Current Laser Driver

1185

TECHNOLOGY V Liaht

CHAPTERS V

**Coherent Sources** 

### Light **V** CHAPTERS

**Coherent Sources** 

**Incoherent Sources** 

### Covega

**Drivers/Mounts** 

Accessories

SECTIONS Laser Diode Controllers

Temperature/TEC Controllers LD/TEC Controllers LD/TEC Platforms **LD Mounts LED Drivers LED Mounts** 

OEM VCSEL Diode Driver with Current Modulator: 1 Hz to 10 kHz



This Laser Diode Controller is ideally suited for powering anode grounded VCSEL diodes. The VCSEL laser diodes can be plugged sockets. Any other VCSEL diodes

with grounded laser anode can be operated

using a shielded DB9 cable. This controller is designed to supply the low-drive current typical of a VCSEL. Special attention has been paid to ensure an extremely clean, low-noise drive current to prevent damage to highly sensitive VCSEL diodes.

An integrated current modulation feature allows high-speed sweeping of the wavelength of the VCSEL for spectroscopy applications. Alternatively, an analog input enables external modulation of the wavelength. An adjustable upper limit on the modulation current protects the laser diode from accidental damage when using either of these features. A temperature window indicator LED shows when the diode leaves a desired operation temperature range. This indicates a potential occurence of a wavelength shift. Two other

features, an open circuit detector and an interlock, enhance the safe operation of a sensitive VCSEL diode.

directly into the on-board

 Monitor Current Output On-Board Laser Diode Socket

1 Hz to 10 kHz

Temperature Control:

 Open Output Detection and Safety Interlock

10-40° C (VITC002 only)

Adjustable Hardware Current Limit

OEM VCSEL Diode Drivers

Integrated Current Modulator:

■ Output Current: 0-25 mA

Compliance Voltage: >5 V

 Complete with Universal Input 5 VDC Power Supply

| ITEM#   | 5    | \$    |   | £      |   | €      |   | RMB      | DESCRIPTION                      |
|---------|------|-------|---|--------|---|--------|---|----------|----------------------------------|
| VITC002 | \$ 4 | 28.40 | £ | 297.00 | € | 380,40 | ¥ | 3,617.50 | VCSEL Driver w/ Temp. Controller |

# Laser Diode Bias-T PCB

A bias-T makes it possible to superimpose a modulation current onto the laser diode DC-supply current. This three-port bias-T is useful for modulation frequencies in the 10 kHz to 1 GHz range. The actual frequency range is determined by the properties of the impedance network surrounding the laser diode. The transmission line from the coaxial connecter (SMD) has a characteristic

impedance of 50  $\Omega.$  To protect the laser diode, there is a DC blocking capacitor and a reverse bias protection diode included.

### Features

- Modulation Frequencies from 10 kHz to 1 GHz
- 50 Ω Impedance

| ITEM# | \$ £ |        | € |       | RMB |       | DESCRIPTION |        |                        |
|-------|------|--------|---|-------|-----|-------|-------------|--------|------------------------|
| T1G   | \$   | 112.20 | £ | 77.80 | €   | 99,70 | ¥           | 947.50 | Laser Diode Bias-T PCB |

# **OEM 3 W TEC Controller Module**

The TCM1000T TEC Controller Module regulates current through a Thermalelectric cooler (TEC), maintaining a constant temperature of a device, typically a laser diode.

### Features

- High-Precision Temperature Control
- TEC Power of 3 W (Max)
- TEC Current of 1 A (Max)
- Compatible Temperture Sensors: 10 k $\Omega$  NTC Type Thermistor Sensors
- Temperature Control Range: 5 to 10 kΩ Max.
- Interface Cables Included
- OEM Plug-In Version Available (Call for Details)

### Specifications

- **TEC Current Range:** -1 to 1 A
- Max Output Power: 3 W
- Compliance Voltage: >3 V
- Stability: ±0.1 °C (24 hrs @ Fixed Ambient Temp)
- Input Power: +5 VDC @ 1.25 A Max

### TCM1000T

Includes Interface Cables (Power Supply Not Included)

DESCRIPTION ITEM# RMB € TCM1000T \$ 243.80 £ 169.10 € 216,50 ¥ 2,058.70 3 W TEC Control Module

1186

Hechanical

WER

# **T-Cube™ USB-Based TEC Controller**



### Overview

The TTC001 T-Cube TEC Controller is designed to monitor and precisely control the temperature of small, thermally sensitive components like laser diodes and CCD arrays. The unit is capable of supplying a maximum current of  $\pm 1$  A (4 W Max) to a Peltier effect thermoelectric heater/cooler or a resistive heating cartridge while simultaneously monitoring the signal from a standard thermistor or IC temperature sensor in order to provide closed-loop temperature regulation.

### Operation

The TTC001 T-Cube can be controlled by the manual interface on the top of the unit or via a USB connection to a computer running the included apt<sup>TM</sup> software or ActiveX<sup>®</sup> command modules. The apt software included with the unit provides the same functionality as the manual controls on the unit, while the ActiveX command modules can be used to create customized advanced control sequences like temperature cycling for reliability testing. Independent of the method used to control the TTC001, various parameters such as the temperature setpoint, current limit, temperature sensor type, and PID (Proportional-Integral-Derivative) parameters can be set. The TTC001 is compatible with the LM14S2 and TCLDM9 thermoelectrically cooled laser diode mounts. It can also be used with the TEC3-2.5 thermoelectric cooler and TH10K thermistor (see page 380). The connection to the heating/cooling element and the temperature sensor is through a 15-pin D-sub connector located on the side of the T-Cube.

### **Power Supply Options**

The TTC001 may be mounted directly onto an optical table and operated as a stand-alone unit with the included 5 V, 500 mA power supply. Alternately, the TEC controller can be connected using our T-Cube Controller Hub (TCH002). The TCH002 provides power and USB connectivity for up to six T-Cube devices and includes a power supply that plugs into a standard wall outlet, which powers the hub as well as all of the T-Cubes connected to the hub. In addition, the hub's single USB connectivity to all the T-Cubes plugged into the hub.

### Features

- Highly Compact T-Cube Footprint
- Microcontroller-Based PID Temperature Control
- Five-Digit LED Display
- Temperature and Current Limit Setpoints
- Manual and USB Interfaces

### Specifications

- Current Measurement Range: 100 nA to 10 mA
- **TEC Output:** -1 to 1 A
- **Compliance Voltage:** 4 V
- Output Power (Max): 4 W
- **TEC Connection:** 15-Pin D-Sub
- **Thermistor:** 20 k $\Omega$ /200 k $\Omega$
- Control Input: 0 5 V SMA
- Power Supply: 5 VDC
- Dimensions (W x D x H): 2.36" x 2.36" x 1.85" (60 mm x 60 mm x 47 mm)

The T-Cube Laser Diode Driver is an ideal companion to this TEC controller. Please see page 1182 for details on the Laser Diode Driver.



TCLDM9 Controlled with TLD001 and TTC001 T-Cubes.

| ITEM#  | \$        | £        | €        | RMB        | DESCRIPTION                                  |
|--------|-----------|----------|----------|------------|----------------------------------------------|
| TTC001 | \$ 637.00 | £ 441.60 | € 565,60 | ¥ 5,378.90 | T-Cube™ TEC Controller                       |
| TCH002 | \$ 726.90 | £ 504.00 | € 645,40 | ¥ 6,138.00 | T-Cube™ Controller Hub and Power Supply Unit |

# Thorlabs' Selection of Laser Diodes and Laser Diode Mounts are Found on Pages 1032-1053 and 1215-1222, Respectively.

TECHNOLOGY V

# Light

CHAPTERS V

**Coherent Sources** 

**Incoherent Sources** 

### Covega

Drivers/Mounts

### Accessories

Laser Diode Controllers Temperature/TEC

Controllers

LD/TEC Controllers

LD/TEC Platforms

LD Mounts

LED Drivers

**LED Mounts** 

### Ø5.6 mm and Ø9 mm TEC Laser Mounts



See Page 1216-1222

### Light CHAPTERS

**Coherent Sources** 

Incoherent Sources

### Covega

**Drivers/Mounts** 

Accessories

▼ SECTIONS Laser Diode Controllers

Temperature/TEC

Controllers LD/TEC Controllers

LD/TEC

Platforms

LD Mounts

LED Drivers

LED Mounts



Benchtop Temperature Controller, ±2 A, 12 W (Page 1 of 2)

# TED200C Highly Stable, Low Noise ±2 A Thermoelectric Temperature Controller

# Introduction

The TED200C is a precision temperature controller designed to drive thermoelectric cooler (TEC) elements with currents up to ±2 A. It is equipped with a PID feedback circuit that allows independent setting of the P (proportional) gain, the I (integral) offset control, and the D (differential) rate, thereby allowing the user to adjust theTED200C to obtain the optimal performance for a wide variety of thermal loads.

### FEATURES

### Temperature Display/Setpoint:

The illuminated 5-digit LED display can show the set temperature, the actual temperature, the heating or cooling current, and the current limit for the TE cooler. The temperature is displayed with a resolution of 0.01 °C when used with an AD590 temperature sensor or when used with a thermistor with a resolution of either 1  $\Omega$  using the 0 to 20 k $\Omega$  range or a resolution of 10  $\Omega$  using the 0 to 200 k $\Omega$  range.

The temperature setpoint can be designated either by adjusting the front panel control knob or by sending a control signal to the analog input connector at the rear of the unit. This feature is used for adjusting the wavelength of the laser diode via the laser temperature in a control loop.

**TEC Protection:** The TED200C is designed for maximum protection of the TEC element. An adjustable TEC output current limit can be set anywhere within the controller's range to prevent the controller from overdriving the TEC element.

### **OPERATION**

### Adaptability to Different Thermal Loads:

The TED200C can easily be adapted to different thermal loads. For example, with optimum PID adjustment, the settling time for a temperature change from 30 °C to 20 °C is less than two seconds for a laser in a butterfly package (mounted in our LM14S2 laser diode mount). The PID controls are located on the front panel for easy access when optimizing the response. The proportional gain optimizes the response time of the feedback loop while the integral gain provides precise zero-offset regulation. The derivative gain optimizes the dynamic response of the feedback loop to account for rapid changes in the thermal load.

### Why temperature control a laser diode? The characteristics and the efficiency of a laser diode strongly depend on the temperature of the laser chip. For example, in the case of a typical GaAlAs diode, the wavelength increases by about 0.25 nm for every 1 °C increase in temperature. With a single mode laser diode, this change in wavelength can result in undesirable mode hopping, which results in both frequency and intensity noise. Output power is proportional to laser temperature; therefore, fluctuating temperature can lead to premature failure of the laser if it is running near its maximum power.

# Highlights

- ±2 A/12 W Low Noise TEC Output
- Temperature Stability ≤0.002 °C
- Can be Operated with All Common Sensors (Thermistor, AD590, AD592, LM135/LM335)
- Wide Temperature Range from -45 to 145 °C (IC-sensor) or 10 Ω to 200 kΩ (thermistor)
- Separate Control of the P, I, and D Gains for Perfect Adaptation to the Thermal Load
- 5-Digit Display with a Resolution of 0.01 °C (IC-Sensor) or 1 Ω (Thermistor)
- Analog Control via the TUNE IN Input
- CSA Approved and CE Certified

### Applications

- Stabilization of Laser Diodes for Interferometry and Spectroscopy
- Cooling of Detectors for Noise Reduction
- Temperature Stabilization of Nonlinear Crystals and Industrial Systems

### Fault Indication:

For safe and continuous operation at ambient temperatures up to 40 °C, the TED200C is equipped with a cooling fan and overtemperature protection. The system detects incorrect or missing temperature sensors and connection problems between sensor and controller. In these cases, the output gets switched off and an LED fault indicator is lit. All LED faults are accompanied by a short audible warning signal.

### **Temperature Monitor Output:**

The TED200C provides an output monitoring voltage signal that is proportional to the actual temperature being measured. The signal is accessed via a BNC connector located on the back panel. This feature allows the long-term recording of the temperature of a device.

# Benchtop Temperature Controller, ±2 A, 12 W (Page 2 of 2)

### Supported Temperature Sensors:

The TED200C temperature controller controls common temperature sensors, thermistors up to 200 k $\Omega$ , or temperature-sensing IC such as the following: AD590, AD592, LM135, and LM335. When a thermistor is selected, the temperature is displayed as the resistance value of the thermistor with a control range from 10  $\Omega$  to 200 k $\Omega$ .

When an AD590, an AD592, or an LM335 is selected, the temperature is displayed directly in °C with a resolution of 0.01 °C. The temperature control range of the controller is from -45 to 145 °C when IC sensors rated for this range are used.

### **Companion Products:**

The LDC200C family of Laser Diode Controllers are ideal companions for the TED200C. When combined with our laser mounts that contain TEC elements, the TED200C is capable of achieving 1 mK stability. This temperature stability when combined with our low-noise laser diode controllers, provides the precision needed for demanding applications such as diode laser wavelength tuning and atomic absorption cell spectroscopy. See pages 1176-1214 for our selection of laser drivers and pages 1215-1222 for our selection of TEC laser mounts. Please call Thorlabs or visit our website for more information.

### **Specifications**

### **TEC Output**

- Control Range of TEC Current: -2 A to 2 A
- Compliance Voltage: >6 V
- Maximum Output Power: 12 W
- Measurement Resolution TEC Current: 1 mA
- Measurement Accuracy TEC Current: ±10 mA
- Noise and Ripple (Typ.): <1 mA

### **Temperature Sensors Thermistor**<sup>a</sup>

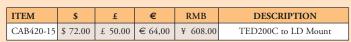
- Control Ranges (Switchable): 10 Ω to 20 kΩ, 100 Ω to 200 kΩ
- Resolution: 1 Ω, 10 Ω
- Accuracy: ±10 Ω, 100 Ω
- Stability: <0.5 Ω, 5 Ω</p>

### IC-Sensors (AD590/AD592, LM135/LM335)

- Control Range: -45 to 145 °C<sup>b</sup>
- Resolution: 0.01 °C
- Accuracy: ±0.1 °C
- Stability (24 Hours): <0.002 °C

### **TEC Current Limit**

- **Setting Range:** 0 to  $\ge 2$  A
- Resolution: 1 mA
- Setting Accuracy: ±20 mA


### **Temperature Control Input**

- **Input Resistance:**  $10 \text{ k}\Omega$
- Control Voltage: -10 to 10 V
- Transmission Coefficient IC-Sensors: 20 °C/V ±5%
- Transmission Coefficient Thermistor, 20 kΩ and 200 kΩ Range: 2 kΩ/V and 20 kΩ/V ±5%

# CAB420-15 TED200C Interface Cable

All of our benchtop temperature controllers come with the necessary cable for connecting to our laser diode mounts with a DB9 interface. We also have a full line of additional cables or replacement cables from which to choose.

### See Page 377



### **Temperature Control Output**

- Load Resistance: >10 k Ω
- Transmission Coefficient IC Sensors: 50 mV/°C ±5%
- Transmission Coefficient Thermistor, (±5%) 20 kΩ and 200 kΩ Range: 500 mV/kΩ and 50 mV/kΩ

### Connectors

- Sensor, TE Cooler, TEC ON Signal: 15-pin D-Sub Plug
- Control Input: BNC
- Control Output: BNC
- Chassis Ground: 4 mm Banana Jack

### **General Data**

- Line Voltage (Switchable): 110 V +15% 10%, 115 V +15%/-10%, 230 V +15% - 10 %
- Line Frequency: 50 60 Hz
- Maximum Power Consumption: 60 VA
- **Operating Temperature:** 0 to 40 °C
- Storing Temperature: -40 to 70 °C
- Warm-up Time for Rated Accuracy: 10 min
- Weight: <3.1 kg
- Dimensions (W x H x D):<sup>c</sup> 5.75" x 2.60" x 1.42" (146 mm x 66 mm x 290 mm)

<sup>a</sup>Setting 1 and Setting 2 <sup>b</sup>Range is limited by rating of sensors and by thermal setup <sup>c</sup>Without Operating elements

| ITEM    | \$        | £        | €        | RMB        | DESCRIPTION                       |
|---------|-----------|----------|----------|------------|-----------------------------------|
| TED200C | \$ 968.00 | £ 671.10 | € 859,40 | ¥ 8,173.90 | Benchtop TEC Controller ±2 A/12 W |

### 

# Light

### CHAPTERS V

Covega

**Coherent Sources** 

**Incoherent Sources** 

**Drivers/Mounts** 

Temperature/TEC Controllers

Accessories

SECTIONS ▼ Laser Diode Controllers

LD/TEC

Controllers LD/TEC Platforms LD Mounts

**LED Drivers** 

**LED Mounts** 

### Light CHAPTERS

**Coherent Sources** 

### Incoherent Sources

#### Covega

**Drivers/Mounts** 

Accessories

▼ SECTIONS Laser Diode Controllers

Temperature/TEC Controllers

LD/TEC Controllers

LD/TEC

Platforms

LD Mounts

LED Drivers

LED Mounts



Temperature Controller, 15 A, 225 W (Page 1 of 2)

Includes power cord, connection cable for our laser mounts, Sub-D connector kit, and USB cable.

The TED4015 is a high performance digital temperature controller designed to drive thermoelectric cooler (TEC) elements with currents up to ±15 A. It supports most common temperature sensors and can be adapted to different thermal loads. The TED4015 can be fully controlled via its robust SCPI-compatible USB Interface. The digital PID control offers an auto PID setting function for separate control of the P, I, D parameters. The TED4015 boasts an excellent temperature stability of 0.002 °C within 24 hrs, enhanced safeguard features, and error indicators, making this device ideal for cooling very sensitive devices where high stability, reliability, and precision is required.

Compared to the TED200 Series, the TED4015 Controller offers a wider TEC current range plus additional features like full digital control, easy auto PID settings, constant TEC current mode, set temperature protection, TEC voltage measurement, and adjustable temperature window protection. These features together with the new design, which offer silent and efficient operation, make the TED4015 Laser Diode Controller an ideal choice for demanding applications.

### Adaptability to Different Thermal Loads

The TED4015 can easily be adapted to different thermal loads by a digital PID loop. The P (proportional) gain, the I (integral) offset control, and the D (derivative or differential) rates can be individually adjusted by the user or by the auto PID function. With optimum PID parameters, the settling time for a temperature change of 1 °C for a laser mounted in our LM14S2 Laser Diode Mount is less than 2 seconds.

### **Supported Temperature Sensors**

Features

- For TEC Elements up to 15 A, 225 W
- Excellent Temperature Stability of 0.002 °C (24 hrs)
- Digital PID Control with Auto PID Setting Function
- Temperature Display in °C, °F, or K
- Adjustable Temperature Sensor Offset
- Supports all Common Temperature Sensors; NTC Termistor, IC Sensors, Pt100/Pt1000 RTD Sensors
- Constant Temperature and Constant Current Control Modes
- Enhanced TEC Element Protection
- SCPI-Compliant USB Interface and Driver Set
- Power Efficient by Active Power Management

### Applications

- Precise Temperature Stabilization of Laser Diodes for use in Interferometry and Spectroscopy
- Cooling of Detectors for Noise Reduction
- Temperature Stabilization of Nonlinear Crystals
- Temperature Stabilization of Industrial Systems

The TED4015 Temperature Controller supports almost all common temperature sensors. A sensor selection in the Temperature Control Menu allows thermistors up to 1000 k $\Omega$ , the use of a temperature sensing ICs (AD590, AD592, LM335 LM235, LM135, LM35) or Platinum RTD sensors like Pt100 or Pt1000. The temperature can be displayed in Celsius, Fahrenheit, or Kelvin. For thermistors, two temperature calculation methods can be selected: the Steinhart-Hart or the exponential method. The maximum control range is -55 to 150 °C, limited by the rated temperature range of the connected sensor and thermal setup.

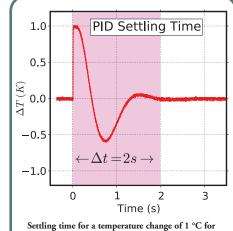
### **Enhanced Security Features**

The TED4015 is designed for maximum TEC element protection and stable as well as reliable operation. An adjustable TEC output current limit prevents the controller from overdriving the TEC element. This limit can be set from 0.1 A to the current range of the controller. Adjustable temperature limits and the temperature window protection provide alerts if the temperature of the TEC element exceeds certain values.

The system indicates the presence of an incorrect or missing temperature sensor and a failed connection between sensor and controller by an LED placed on the TEC "On" key and an audible warning signal. The TEC current is automatically switched off if an error occurs.

### **Temperature Monitor Output**

The TED4015 provides a monitoring signal proportional to the difference between actual and set temperature. An oscilloscope or an analog data acquisition card can be connected directly to the rear panel BNC connector to monitor the settling behavior with different thermal loads.


# Temperature Controller, 15 A, 225 W (Page 2 of 2)

### **Companion Products**

The LDC4000 Laser Diode Controller Series and the LDC200C Laser Diode Controller Series are an ideal companion for the TED4015 (See page 1190). When combined with our TEC laser mounts (see page 1215), the TED4015 can achieve a thermal stability of 0.002 °C. This temperature stability is required for applications like diode laser wavelength tuning and atomic absorption cell spectroscopy.

The TED4015 ships complete with a Laser Mount Cable CAB4000 (5 A, 17W2, D-Sub-9), a Mixed D-Sub Connector CON4001 (17W2, male, including two high current contacts, 20 A), and a USB Cable A-B with a length of 2 m.

| SPECIFICATIONS                              | FRONT PANEL*                                                   | REMOTE CONTRO                         |  |  |  |  |
|---------------------------------------------|----------------------------------------------------------------|---------------------------------------|--|--|--|--|
| TEC Current Output                          |                                                                |                                       |  |  |  |  |
| Control Range                               | -15                                                            | to 15 A                               |  |  |  |  |
| Compliance Voltage                          | >15 V                                                          |                                       |  |  |  |  |
| Maximum Output Power                        | >2                                                             | 25 W                                  |  |  |  |  |
| Resolution                                  | 1 mA                                                           | 0.1 mA                                |  |  |  |  |
| Constant Current Mode)                      | 1 mA                                                           | 0.1 mA                                |  |  |  |  |
| ccuracy                                     | ±(0.2%                                                         | + 20 mA)                              |  |  |  |  |
| loise and Ripple (Typical)                  | <10                                                            | mA rms                                |  |  |  |  |
| EC Current Limit                            |                                                                |                                       |  |  |  |  |
| etting Range                                | 0.1 1                                                          | to 15 A                               |  |  |  |  |
| esolution                                   | 1 mA                                                           | 0.1 mA                                |  |  |  |  |
| ccuracy                                     | ±(0.2%                                                         | + 10 mA)                              |  |  |  |  |
| TC Thermistor Sensors                       |                                                                |                                       |  |  |  |  |
| esistance<br>leasurement Range              | 100 $\Omega$ to 100 k $\Omega$ / 1                             | kΩ to 1 MΩ (2 Ranges)                 |  |  |  |  |
| ontrol Range (Max)**                        | -55 tr                                                         | o 150 °C                              |  |  |  |  |
| esolution (Temperature)                     |                                                                | 01 °C                                 |  |  |  |  |
| esolution (Resistance,                      |                                                                |                                       |  |  |  |  |
| 0 kΩ/1 MΩ Range)                            | 0.1 Ω/1 Ω                                                      | 0.03 Ω/0.3 Ω                          |  |  |  |  |
| ccuracy<br>00 kΩ/1 MΩ Range)                | $\pm(0.06\%+1~\Omega/5~\Omega)$                                |                                       |  |  |  |  |
| emperature Stability<br>4 Hours (Typical)** | <0.002 °C                                                      |                                       |  |  |  |  |
| emperture Coefficient                       | <5 mK/°C                                                       |                                       |  |  |  |  |
| C Sensors                                   | -                                                              |                                       |  |  |  |  |
| pported IC                                  | AD590 AD                                                       | 1592 (Current):                       |  |  |  |  |
| mperature Sensors                           | AD590, AD592 (Current);<br>LM335, LM235, LM135, LM35 (Voltage) |                                       |  |  |  |  |
| Control Ranges                              |                                                                | ng on Connected IC Sensor             |  |  |  |  |
| solution                                    | 0.001 °C                                                       | 0.0001 °C                             |  |  |  |  |
| curacy                                      |                                                                | 8 μA) for AD590;<br>V) for LM335/LM35 |  |  |  |  |
| èmperature Stability<br>4 Hours             | <0.0                                                           | 002 °C                                |  |  |  |  |
| emperature Coefficient                      | <51                                                            | mK/°C                                 |  |  |  |  |
| t100/Pt1000 RTD Sensor                      |                                                                |                                       |  |  |  |  |
| emperature Control<br>ange                  | -55 to 150 °C                                                  |                                       |  |  |  |  |
| Resolution                                  | 0.001 °C                                                       | 0.0003 °C                             |  |  |  |  |
| ccuracy Pt100/Pt1000<br>4-Wire Measurement) | ±0.3 °C                                                        | C/±0.1 °C                             |  |  |  |  |
| Femperature Stability<br>24 Hours           | <0.0                                                           | <0.005 °C                             |  |  |  |  |
| emperture Coefficient                       | <20                                                            | mK/°C                                 |  |  |  |  |
| mperature Window Prote                      |                                                                |                                       |  |  |  |  |
| tting Range T <sub>win</sub>                |                                                                | 100.0 °C                              |  |  |  |  |
| mperature Control Outp                      |                                                                |                                       |  |  |  |  |
| ad Resistance                               | 1                                                              | 0 kΩ                                  |  |  |  |  |
|                                             | ut<br>>10 kΩ<br>ΔT * 5V / Twin ±0.2 % (Temperature Deviation   |                                       |  |  |  |  |





| SPECIFICATIONS                                    | FRONT PANEL*                                                                                                                                                                         | <b>REMOTE CONTROL*</b>                |  |  |  |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|--|
| TEC Voltage Measurement                           |                                                                                                                                                                                      |                                       |  |  |  |
| Measurement Principle                             | 4-Wir                                                                                                                                                                                | e/2-Wire                              |  |  |  |
| Resolution                                        | 100 mV                                                                                                                                                                               | 40 mV                                 |  |  |  |
| Accuracy (with 4-Wire<br>Measurement)             | ±5                                                                                                                                                                                   | 0 mV                                  |  |  |  |
| Digital I/O Port                                  |                                                                                                                                                                                      |                                       |  |  |  |
| Number of I/O Lines                               | 4 (Separately                                                                                                                                                                        | 7 Configurable)                       |  |  |  |
| Interface                                         |                                                                                                                                                                                      |                                       |  |  |  |
| USB2.0                                            |                                                                                                                                                                                      | to USBTMC<br>8 Specification Rev. 1.0 |  |  |  |
| Protocol                                          | SCPI-Complia                                                                                                                                                                         | int Command Set                       |  |  |  |
| Drivers                                           | VISA VXI pnp <sup>™</sup> , MS Visual Studio <sup>™</sup> , MS Visual Studio.net <sup>™</sup> , LabVIEW <sup>™</sup> , Labwindows/CVI <sup>™</sup>                                   |                                       |  |  |  |
| General Data                                      |                                                                                                                                                                                      |                                       |  |  |  |
| Safety Features                                   | TEC Current Limit, Sensor Fault Protection,<br>Short Circuit when TEC Off, Open Circuit Protection,<br>Temperature Setpoint Limit, Window Protection,<br>Over Temperature Protection |                                       |  |  |  |
| Display                                           | LCD 320                                                                                                                                                                              | x 240 Pixels                          |  |  |  |
| Connectors Deviation Out<br>Window Protection Out | 17W2 Mixed D-Sub Jack (Female)                                                                                                                                                       |                                       |  |  |  |
| Connector for Sensor, TE<br>Cooler, TEC On Signal | BNC                                                                                                                                                                                  |                                       |  |  |  |
| Connector for<br>USB Interface                    | USB                                                                                                                                                                                  | Туре В                                |  |  |  |
| Line Voltage/Frequency                            | 100 to 120 V / 200 to 240 V ±10%,<br>50 to 60 Hz                                                                                                                                     |                                       |  |  |  |
| Maximum Power<br>Consumption                      | 600 VA                                                                                                                                                                               |                                       |  |  |  |
| Operating Temperature                             | 0 to 40 °C                                                                                                                                                                           |                                       |  |  |  |
| Dimensions (W x H x D)<br>w/o Operating Elements  | 10.35" x 4.80" x 12.09"<br>(263 mm x 122 mm x 307 mm)                                                                                                                                |                                       |  |  |  |

TECHNOLOGY V

# Light

CHAPTERS V

Coherent Sources

Incoherent Sources

**NEW** product

Covega

Drivers/Mounts

### Accessories

SECTIONS V Laser Diode Controllers Temperature/TEC Controllers LD/TEC Controllers LD/TEC Platforms LD Mounts

LED Drivers

LED Mounts

| *Via the front panel, the resolution is limited by the display. Via Remote Control, a higher r |
|------------------------------------------------------------------------------------------------|
| **Control range and thermal stability depend on thermistor parameters.                         |

| ITEM    | \$          | £          | €          | RMB         | DESCRIPTION                                   |
|---------|-------------|------------|------------|-------------|-----------------------------------------------|
| TED4015 | \$ 2,700.00 | £ 1,871.50 | € 2.397,00 | ¥ 22,799.00 | Benchtop Temperature Controller ±15 A / 225 W |
| CAB4000 | \$ 65.00    | £ 45.10    | € 57,80    | ¥ 548.90    | Cable for TED4000, 5 A, 17W2, D-Sub-9         |
| CAB4001 | \$ 170.00   | £ 117.90   | € 151,00   | ¥ 1,435.50  | Cable for TED4000, 20 A, 17W2, 17W2           |
| CON4001 | \$ 14.50    | £ 10.05    | € 12,90    | ¥ 122.50    | Connector Kit for TED4000, 20 A, 17W2 Male    |

### Light CHAPTERS

**Coherent Sources** 

Incoherent Sources

#### Covega

**Drivers/Mounts** 

Accessories

▼ SECTIONS Laser Diode Controllers

Temperature/TEC

Controllers LD/TEC Controllers

LD/TEC

Platforms <u>LD Mo</u>unts

LED Drivers

**LED Mounts** 



1054

Laser and Temperature Control System



Includes All Cables and Accessories

# The complete system is shown in the photograph and includes the diffraction-limited aspheric collimation optic.

Our popular LDC205C Laser Diode Controller, TED200C Temperature Controller, and TCLDM9 TEC laser diode mount are now available in a bundled package, complete with all necessary cables to connect both controllers to the mount, plus all accessories shown above. When purchased together, you will save 10% over the cost of buying each product separately! This package is a versatile, easy-to-use laser diode operating system. The 500 mA LDC205C has been a favorite laser controller of ours for years, offering precise control of a laser diode's power in either a constant current mode or constant power mode. The new "C" version offers a higher compliance voltage. The 12 W TED200C has been our mainstay temperature controller, providing current and stability to the two TEC elements incorporated into our TCLDM9 mount.

For more detailed specifications, see pages 1178-1179 for the LDC205C, page 1188 for the TED200C, and page 1218 for the TCLDM9, or visit www.thorlabs.com.

A wide selection of Ø5.6 mm and Ø9 mm laser diodes is available starting on page 1032. Both sizes are compatible with our TCLDM9 mount.

### **TED200C** Highlights

- ±2 A/12 W Low Noise TEC Output
- Temperature Stability <0.002 °C
- Compatible with All Common Sensors (Thermistor, AD590/AD592/LM335)
- Wide Temperature Range from -45 to 145 °C (IC-sensor) or 10 kΩ to 200 kΩ (Thermistor)
- Separate Control of the P-, I-, and D-Gains for Perfect Adaptation to the Thermal Load
- 5-Digit Display with a Resolution of 0.01 °C (IC-Sensor) or 1 Ω (Thermistor)
- Analog Control via the TUNE IN Input

# Buy the Complete Kit and Save 10%



### Specifications for LTC100-B

- LDC205C Laser Diode Controller (See Page 1178)
- TED200C Temperature Controller (See Page 1188)
- TCLDM9 TEC-Cooled LD Mount (See Page 1218)
- Includes All Necessary Cables
- SM1NT, SPW909, S1TM09, SPW301, ESD Wrist Strap, Post, Post Holder, and Base Included
- AR Coated: 600 1050 nm Lens (C230TME-B)

# Specifications for LTC100-C

- LDC205C Laser Diode Controller (See Page 1178)
- TED200C Temperature Controller (See Page 1188)
- TCLDM9 TE-Cooled LD Mount (See Page 1218)
- Includes All Necessary Cables
- SM1NT, SPW909, S1TM09, SPW301, ESD Wrist Strap, Post, Post Holder, and Base Included
- AR-Coated: 1050-1600 nm Lens (C230TME-C)

### LDC205C Highlights

- Low Noise
- Five-Digit Display with 100 μA Resolution
- Analog Control Input and Analog Monitor Output
- Reliable Laser Diode Protection
- Operates with All Polarities of Laser Diode and Photodiode
- Maximum Laser Current of ±500 mA
- Compliance Voltage >10 V
- Drift (24 hrs 0 10 Hz typ.) <10 μA</p>
- Accuracy ±100 µA

| ITEM     | \$          | £          | €          | RMB         | DESCRIPTION                                                |
|----------|-------------|------------|------------|-------------|------------------------------------------------------------|
| LTC100-B | \$ 2,293.00 | £ 1,589.50 | € 2.035,50 | ¥ 19,363.00 | LD and Temperature Control System, AR-Coated: 600-1050 nm  |
| LTC100-C | \$ 2,293.00 | £ 1,589.50 | € 2.035,50 | ¥ 19,363.00 | LD and Temperature Control System, AR-Coated: 1050-1600 nm |

# Laser Diode and Temperature Controllers, 20 A (Page 1 of 3)



### Includes power cord, connection cable for our laser mounts, Sub-D connector kit, and USB cable.

The ITC4000 Series is a laser diode current controller combined with a TEC elements controller, which is a combination of a LDC4000 series current controller and a TEC4020 temperature controller. It has been designed to provide a precise, stable current for laser diodes with injection currents of 1 A up to 20 A and an excellent temperature stabilization of 0.002 °C within 24 hrs. It supports all laser diode and monitor diode pin configurations and features a constant current (CC) or constant power (CP) mode. Most common temperature sensors can be used, and the ITC4000 can be adapted to different thermal loads via a digital PID controller. It offers an auto PID setting function or separate control of the P, I, and D parameters. The ITC4000 device is controlled via front panel keys and intuitive operation menus on a large and easy-to-read graphic LCD display. Additionally, the ITC4000 can be controlled by a SCPIcompatible USB Interface. A higher setting and measurement

resolution is offered via remote control operation.\* Many

### Features

- 3 Models for Laser Currents of ±1 A, ±5 A, and ±20 A at 10 V and TEC Currents of ±12 A and ±15 A at 15 V
- Excellent Temperature Stability of 0.002 °C (24 hrs)
- For Anode- and Cathode-Grounded Laser Diodes and Photodiodes
- Constant Current (CC) and Constant Power (CP) Control Modes
- Continuous Wave (CW) or Quasi-Continuous Wave (QCW) Operation
- Modulation via Internal Function Generator or External Modulation Input
- Analog Laser Current Monitor Output
- Supports Photodiodes, Thermopiles, Sensor Amplifiers, and Power Meters with Voltage Output for Optical Power Control
- Sensor Calibration for Power Display in mW
- Supports Thermistor, RTD, and IC Temperature Sensors
- Enable Key Switch and Interlock
- Enhanced Laser Diode and TEC Element Protection
- Digital PID Control with Auto PID Setting Function
- SCPI-Compliant USB Interface and Driver Set
- Power Efficient by Active Power Management

enhanced features like the Quasi-Continuous Wave (QCW) operation mode, an internal modulation generator, easy auto PID setting, and diverse laser diode and TEC element protection features are provided. These features, together with the new design, provide silent and power-efficient operation, making the ITC4000 Series an ideal choice for most applications.

### Laser Diode Operation Modes

The laser diodes can be driven in either constant current (CC) mode, where the laser current is held precisely at the level adjusted by the user, or constant power (CP) mode, where an optical power sensor is used to monitor the output power of the laser for active power control. The ITC4000 Series offers two independent monitor inputs: one for photodiodes and one for thermopiles, both of which can be chosen for controlling the laser diode.

The analog modulation via external input or the internal function generator allows modulation of the laser diode in CC and CP modes. A control output voltage proportional to the laser current is provided for monitoring purposes.

Depending on the application, the ITC4000 Series of laser diode drivers can be operated in continuous wave (CW) or quasi-CW (QCW) mode. The integrated pulse generator can be triggered internally with an adjustable repetition rate or externally via a BNC jack at the rear of the unit. (see page 1178 and page 1180 for more details about the operation modes)

### Enhanced Protection Features for the Laser Diode

The maximum allowed laser current, which is set as a precisely adjustable current limit, cannot be exceeded in any operation mode or for any compliance voltage. Electrical filters, careful grounding of the chassis, electronic output short-circuit, and the soft start feature ensure that the laser current remains transient-free in any case, even in the case of power line failure. (see page 1178 for details about the protection features)

### **TEC Controller**

The ITC4000 Series contains a high-performance digital TEC controller for currents up to  $\pm 15$  A. It offers an excellent temperature stability of 0.002 °C within 24 hrs together with the same enhanced safeguard and operation features similar to the TED4015 Series. The digital PID controller can adapt to different thermal loads by individual adjustable parameters or by the auto PID function. (For more details see page 1190). The ITC4000 Series supports thermistors up to 1000 k $\Omega$ , temperature sensing ICs or Platinum RTD sensors with a maximum control range of -55 to 150 °C. This temperature range is only a theoretical value; the actual rated temperature range is limited by the connected sensor and thermal setup.

For maximum TEC element protection, the ITC offers the same features as the TED4015. These protection features include an adjustable TEC output current limit, temperature sensor operation alerts, and monitoring of the actual and set temperature by an ouput signal.

\*The front panel resolution is limited by the display. A higher setting and measurement resolution is offered via remote control.

...continued on next page

CHAPTERS V

TECHNOLOGY **T**Light

Coherent Sources

Incoherent Sources

#### Covega

Drivers/Mounts

### Accessories

SECTIONS ▼ Laser Diode Controllers

Controllers Temperature/TEC Controllers

## LD/TEC

Controllers LD/TEC

Platforms LD Mounts

LED Drivers

```
LED Mounts
```

### 

## Light CHAPTERS

**Coherent Sources** 

# Laser Diode and Temperature Controllers, 20 A (Page 2 of 3)

|                          | ITEM#                                 | ITC                                                                          | 24001                              | ITC                           | 4005                               | ITC4020                       |                                |  |
|--------------------------|---------------------------------------|------------------------------------------------------------------------------|------------------------------------|-------------------------------|------------------------------------|-------------------------------|--------------------------------|--|
| ega                      | Specifications                        | Front Panel*                                                                 | Remote<br>Control <sup>*</sup>     | Front Panel*                  | Remote<br>Control <sup>*</sup>     | Front Panel*                  | Remote<br>Control <sup>*</sup> |  |
| ers/Mounts               | Current Control (Constant Current Mod | 1                                                                            |                                    | 1                             |                                    | 1                             |                                |  |
|                          | Control Range                         | 0 to                                                                         | 9 ±1 A                             |                               | ±5 A                               | 0 to :                        | ±20 A                          |  |
| essories                 | Compliance Voltage                    |                                                                              |                                    | >1                            | 0 V                                |                               |                                |  |
| CTIONS                   | Setting/Measurement Resolution        | 100 µA                                                                       | 16 µA                              | 1 mA                          | 80 µA                              | 1 mA                          | 320 μA                         |  |
| er Diode                 | Accuracy                              | ±(0.1%                                                                       | + 500 μA)                          | ±(0.1%                        | + 2 mA)                            | ±(0.1%                        | + 8 mA)                        |  |
| trollers                 | Noise and Ripple (rms, Typ.)          | <1                                                                           | mA                                 | <1.                           | 5 mA                               | <10                           | mA                             |  |
|                          | Drift, 24 Hours (0-10 Hz, Typ.)       | <10                                                                          | 00 μA                              | <30                           | 0 μA                               | <1                            | mA                             |  |
| perature/TEC<br>trollers | Temperature Coefficient               |                                                                              |                                    | <50 p                         | pm/°C                              |                               |                                |  |
|                          | Current Limit                         |                                                                              |                                    |                               |                                    |                               |                                |  |
| TEC<br>trollers          | Setting Range                         | 0 t                                                                          | to 1A                              | 0 t                           | o 5A                               | 0 to                          | 20A                            |  |
|                          | Resolution                            | 100 µA                                                                       | 16 µA                              | 1 mA                          | 80 µA                              | 1 mA                          | 320 μA                         |  |
| EC                       | Accuracy                              | ±(0.12%                                                                      | + 800 µA)                          | ±(0.12%                       | 5 + 3 mA)                          | ±(0.12%)                      | + 12 mA)                       |  |
| forms                    | Power Monitor Input - Photodiode      | 1 · ·                                                                        |                                    | · ·                           | ·                                  |                               |                                |  |
| lounts                   | Photocurrent Measurement Ranges       |                                                                              |                                    | 2 mA                          | / 20 mA                            |                               |                                |  |
| nounts                   | Photocurrent Measurement Resolution   | 1 μA / 10 μA                                                                 | 32 nA / 320 nA                     | 1 μA / 10 μA                  | 32 nA / 320 nA                     | 1 μA / 10 μA                  | 32 nA / 320 r                  |  |
| - ·                      | Photocurrent Accuracy                 | 1 μ27 10 μ21                                                                 | 52 1017 520 101                    |                               | $) / \pm (0.08\% + 5 \mu A)$       | 1 μ1/10 μ1                    | 52 10 1 520 1                  |  |
| Drivers                  |                                       |                                                                              |                                    |                               |                                    |                               |                                |  |
|                          | Photodiode Reverse Bias Voltage       | I                                                                            |                                    | 0 to                          | 10 V                               |                               |                                |  |
| Mounts                   | Power Monitor Input - Thermopile**    | 1                                                                            |                                    | 10 17/100                     | MI I MI I SO M                     |                               |                                |  |
|                          | Voltage Measurement Ranges            |                                                                              | 1                                  | 10 mV / 100 r                 | nV / 1 V / 10 V                    | 1                             | 1                              |  |
|                          | Voltage Measurement Resolution        | 1 μV / 10 μV<br>100 μV / 1 mV                                                | 0.16 μV / 1.6 μV<br>16 μV / 160 μV | 1 μV / 10 μV<br>100 μV / 1 mV | 0.16 μV / 1.6 μV<br>16 μV / 160 μV | 1 μV / 10 μV<br>100 μV / 1 mV | 0.16 μV / 1.6<br>16 μV / 160 μ |  |
|                          | Voltage Accuracy                      |                                                                              | ±(0.1% + 10 µV)                    | / ±(0.1% + 100 μV             | $) / \pm (0.1\% + 1 \text{ mV})$   | / ±(0.1% + 5 mV)              |                                |  |
|                          | Constant Power Control                |                                                                              |                                    |                               |                                    |                               |                                |  |
|                          | Photocurrent Control Ranges           |                                                                              |                                    | 1 µA to 2 mA /                | 10 µA to 20 mA                     |                               |                                |  |
|                          | Photocurrent Setting Resolution       | 1 μA / 10 μA                                                                 | 32 nA / 320 nA                     | 1 μA / 10 μA                  | 32 nA / 320 nA                     | 1 μA / 10 μA                  | 32 nA / 320 i                  |  |
|                          | Voltage Control Ranges                | 1 μ21/ 10 μ21                                                                |                                    | 1 1 1                         | nV / 100 µV to 1V /                | 1 1 1                         | 52 1117 5201                   |  |
|                          | voltage Control Ranges                |                                                                              | 1 µv to 10 m                       | ν / 10 μν to 100 Π            | Ιν / 100 μν το 1ν /                |                               | 1                              |  |
|                          | Voltage Setting Resolution            | 1 μV / 10 μV<br>100 μV / 1 mV                                                | 0.16 μV / 1.6 μV<br>16 μV / 160 μV | 1 μV / 10 μV<br>100 μV / 1 mV | 0.16 μV / 1.6 μV<br>16 μV / 160 μV | 1 μV / 10 μV<br>100 μV / 1 mV | 0.16 μV / 1.6<br>16 μV / 160   |  |
|                          | Power Limit                           |                                                                              |                                    |                               |                                    |                               |                                |  |
|                          | Photocurrent Limit Range              |                                                                              |                                    | 1 µA to 2 mA /                | 10 µA to 20 mA                     |                               |                                |  |
|                          | Sensor Voltage Limit Range            | 1 $\mu V$ to 10 mV / 10 $\mu V$ to 100 mV / 100 $\mu V$ to 1 V / 1 mV to10 V |                                    |                               |                                    |                               |                                |  |
|                          | Laser Voltage Measurement             |                                                                              |                                    |                               |                                    |                               |                                |  |
|                          | Measurement Principle                 |                                                                              |                                    | 4-1                           | Wire                               |                               |                                |  |
|                          | Laser Overvoltage Protection          | 1                                                                            |                                    |                               |                                    |                               |                                |  |
|                          | Setting Range                         |                                                                              |                                    | 1 V +                         | o 10 V                             |                               |                                |  |
|                          | Laser Current Monitor Output          |                                                                              |                                    | 1 V U                         | 0 10 V                             |                               |                                |  |
|                          |                                       | [                                                                            |                                    |                               | 10                                 |                               |                                |  |
|                          | Load Resistance                       |                                                                              |                                    | >1(                           | ) kΩ                               |                               |                                |  |
|                          | External Modulation Input             | 1                                                                            |                                    | 1                             |                                    | 1                             |                                |  |
|                          | Small Signal 3 dB Bandwidth, CC Mode  | DC to                                                                        | 100 kHz                            | DC to                         | 100 kHz                            | DC to                         | 50 kHz                         |  |
|                          | Internal Modulation                   | 1                                                                            |                                    | 1                             |                                    | 1                             |                                |  |
|                          | Waveforms                             |                                                                              |                                    | Sine, Squa                    | ire, Triangle                      |                               |                                |  |
|                          | Frequency Range                       | 20 Hz to 100 kHz                                                             |                                    | 20 Hz to 100 kHz              |                                    | 20 Hz to 50 kHz               |                                |  |
|                          | Modulation Depth                      |                                                                              |                                    | 0.1 to 100%                   |                                    |                               |                                |  |
|                          | QCW Mode                              |                                                                              |                                    |                               |                                    |                               |                                |  |
|                          | Pulse Width Range                     | 100 µs to 1 s                                                                |                                    |                               |                                    |                               |                                |  |
|                          | Pulse Width Resolution                | 1 μs                                                                         |                                    |                               |                                    |                               |                                |  |
|                          | Repetition Rate Range                 | i i                                                                          |                                    |                               |                                    |                               |                                |  |
|                          | 0                                     | 1 ms to 5 s (0.2 to 1000 Hz)<br>10 μs                                        |                                    |                               |                                    |                               |                                |  |
|                          | Repetition Rate Resolution            | 1                                                                            |                                    | П                             | , њ <u>э</u>                       |                               |                                |  |
|                          | Trigger                               |                                                                              |                                    |                               | W CM CS                            |                               |                                |  |
|                          | Input and Output Level                |                                                                              |                                    | 1 TL or 5                     | 5V CMOS                            |                               |                                |  |
|                          | TEC Current Output                    | 1                                                                            |                                    |                               |                                    |                               |                                |  |
|                          | Control Range                         |                                                                              | to 15 A                            | -15 to 15 A                   |                                    | -12 to 12 A                   |                                |  |
|                          | Compliance Voltage                    | >1                                                                           | 15 V                               | >15 V                         |                                    | >1                            | 5 V                            |  |
|                          | Maximum Output Power                  | >22                                                                          | 25 W                               | >225 W                        |                                    | >18                           | 0 W                            |  |
|                          | Resolution (Constant Current Mode)    | 1 mA                                                                         | 0.1 mA                             | 1 mA                          | 0.1 mA                             | 1 mA                          | 0.1 mA                         |  |
|                          | Accuracy                              |                                                                              | + 20 mA)                           |                               | + 20 mA)                           |                               | + 20 mA)                       |  |
|                          | TEC Current Limit                     |                                                                              |                                    |                               |                                    |                               | -/                             |  |
|                          |                                       |                                                                              |                                    |                               |                                    |                               |                                |  |
|                          | Setting Range                         | 014                                                                          | to 15 A                            | 014                           | to 15 A                            | 014                           | to 12 A                        |  |

...continued on next page

# Laser Diode and Temperature Controllers, 20 A (Page 3 of 3)

| ITEM#                                                       | ITC                                                                                                  | 4001                  | ITC                   | 4005                      | ITC                 | ITC4020                        |  |  |  |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|---------------------------|---------------------|--------------------------------|--|--|--|
| Specifications                                              | Front Panel*                                                                                         | Remote<br>Control*    | Front Panel*          | Remote<br>Control*        | Front Panel*        | Remote<br>Control <sup>*</sup> |  |  |  |
| NTC Thermistor Sensors                                      |                                                                                                      |                       |                       |                           |                     |                                |  |  |  |
| Resistance Measurement Range                                |                                                                                                      | 10                    | 0 Ω to 100 kΩ / 1 k   | Ω to 1 MΩ (2 Ran          | ges)                |                                |  |  |  |
| Control Range (Max)                                         |                                                                                                      |                       | -55 to                | 150 °C                    |                     |                                |  |  |  |
| Resolution (Temperature)                                    |                                                                                                      | 0.001 °C              |                       |                           |                     |                                |  |  |  |
| Resolution (Resistance, 100 k $\Omega$ /1 M $\Omega$ Range) | 0.1 Ω / 1 Ω                                                                                          | 0.03 Ω / 0.3 Ω        | 0.1 Ω / 1 Ω           | 0.03 Ω / 0.3 Ω            | 0.1 Ω / 1 Ω         | 0.03 Ω / 0.3 Ω                 |  |  |  |
| IC Sensors                                                  |                                                                                                      |                       |                       |                           |                     |                                |  |  |  |
| Supported Temperature Sensors                               |                                                                                                      | AD590, AD59           | 2 (Current); LM335    | , LM235, LM135,           | LM35 (Voltage)      |                                |  |  |  |
| Control Range with AD590                                    |                                                                                                      |                       | -55 to                | 150 °C                    |                     |                                |  |  |  |
| Control Range with AD592                                    |                                                                                                      |                       | -25 to                | 105 °C                    |                     |                                |  |  |  |
| Control Range with LM335                                    |                                                                                                      |                       | -40 to                | 100 °C                    |                     |                                |  |  |  |
| Control Range with LM235                                    |                                                                                                      |                       | -40 to                | 125 °C                    |                     |                                |  |  |  |
| Control Range with LM135                                    |                                                                                                      |                       | -55 to                | 150 °C                    |                     |                                |  |  |  |
| Control Range with LM35                                     |                                                                                                      |                       | -55 to                | 150 °C                    |                     |                                |  |  |  |
| Resolution                                                  | 0.001 °C                                                                                             | 0.0001 °C             | 0.001 °C              | 0.0001 °C                 | 0.001 °C            | 0.0001 °C                      |  |  |  |
| Pt100/Pt1000 RTD Sensors                                    |                                                                                                      | 1                     | 1                     |                           |                     |                                |  |  |  |
| Temperature Control Range                                   |                                                                                                      |                       | -55 to                | 150 °C                    |                     |                                |  |  |  |
| Resolution                                                  | 0.001 °C                                                                                             | 0.0003 °C             | 0.001 °C              | 0.0003 °C                 | 0.001 °C            | 0.0003 °C                      |  |  |  |
| Temperature Window Protection                               |                                                                                                      |                       |                       |                           |                     |                                |  |  |  |
| Setting Range Twin                                          |                                                                                                      |                       | 0.01 to               | 100.0 °C                  |                     |                                |  |  |  |
| Protection Reset Delay                                      |                                                                                                      |                       | 0 s to                |                           |                     |                                |  |  |  |
| Window Protection Output                                    | BNC, TTL                                                                                             |                       |                       |                           |                     |                                |  |  |  |
| Temperature Control Output                                  |                                                                                                      |                       |                       | ,                         |                     |                                |  |  |  |
| Load Resistance                                             | >10 kΩ                                                                                               |                       |                       |                           |                     |                                |  |  |  |
| Transmission Coefficient                                    | $\Delta T * 5 \text{ V} / \text{T} \pm 0.2 \%$ (Temperature Deviation, scaled to Temperature Window) |                       |                       |                           |                     |                                |  |  |  |
| TEC Voltage Measurement                                     |                                                                                                      |                       |                       | ,                         | 1                   | ,                              |  |  |  |
| Measurement Principle                                       |                                                                                                      |                       | 4-Wire                | /2-Wire                   |                     |                                |  |  |  |
| Resolution                                                  | 100 mV                                                                                               | 40 mV                 | 100 mV                | 40 mV                     | 100 mV              | 40 mV                          |  |  |  |
| Accuracy (with 4-Wire Measurement)                          |                                                                                                      | 1                     | ±50                   | mV                        | 1                   |                                |  |  |  |
| Digital I/O Port                                            |                                                                                                      |                       |                       |                           |                     |                                |  |  |  |
| Number of I/O lines                                         |                                                                                                      |                       | 4 (Separately         | Configurable)             |                     |                                |  |  |  |
| Input Level                                                 |                                                                                                      | T                     | TL or CMOS, Volta     | 0                         | 4 V                 |                                |  |  |  |
| Output Level (Source Operation)                             |                                                                                                      |                       | TTL or 5 V CM         | 0 1                       |                     |                                |  |  |  |
| Output Level (Sink Operation)                               |                                                                                                      | 0                     | pen Collector, up to  | 24 V, 400 mA MA           | X.                  |                                |  |  |  |
| Interface                                                   |                                                                                                      |                       | <u> </u>              |                           |                     |                                |  |  |  |
| USB2.0                                                      |                                                                                                      | According to          | USBTMC/USBTM          | C-USB488 Specific         | cation Rev. 1.0     |                                |  |  |  |
| Protocol                                                    |                                                                                                      |                       | SCPI Complian         | t Command Set             |                     |                                |  |  |  |
| Drivers                                                     |                                                                                                      | VISA VXI p            | np™, MS Visual Sti    |                           | Studio.net™,        |                                |  |  |  |
| Drivers                                                     |                                                                                                      | 1                     | LabVIEW™, Lab         | Windows/CVI <sup>TM</sup> |                     |                                |  |  |  |
| General Data                                                |                                                                                                      |                       |                       |                           |                     |                                |  |  |  |
|                                                             | Int                                                                                                  | erlock, Inhibit, Kevl | lock Switch, Laser C  | urrent Limit, Laser       | Power Limit, Soft S | tart,                          |  |  |  |
| Safety Features                                             |                                                                                                      |                       | when Laser off, Adjus |                           |                     |                                |  |  |  |
|                                                             |                                                                                                      |                       | erature Protection, T |                           | 0                   |                                |  |  |  |
| Display                                                     | LCD 320 x 240 Pixel                                                                                  |                       |                       |                           |                     |                                |  |  |  |
| Line Voltage / Frequency                                    |                                                                                                      | 100 to                | o 120 V and 200 to 1  | 240 V ±10%, 50 to         | 60 Hz               |                                |  |  |  |
| Operating Temperature                                       |                                                                                                      |                       |                       | 40 °C                     |                     |                                |  |  |  |
| Dimensions (W x H x D)<br>without Operating Elements        |                                                                                                      | 10.35" x              | x 4.80" x 12.09" (26  | 3 mm x 122 mm x           | 307 mm)             |                                |  |  |  |

\*The front panel resolution is limited by the display. A higher setting and measurement resolution is offered via remote control.

| ITEM#   | \$          | £          | €          | RMB         | DESCRIPTION                                           |  |
|---------|-------------|------------|------------|-------------|-------------------------------------------------------|--|
| ITC4001 | \$ 2,500.00 | £ 1,733.00 | € 2.219,50 | ¥ 21,111.00 | Benchtop Laser Diode and TEC Controller ±1 A          |  |
| ITC4005 | \$ 2,800.00 | £ 1,941.00 | € 2.486,00 | ¥ 23,644.00 | Benchtop Laser Diode and TEC Controller, ±5 A         |  |
| ITC4020 | \$ 3,200.00 | £ 2,218.50 | € 2.841,00 | ¥ 27,021.00 | Benchtop Laser Diode and TEC Controller, ±20 A        |  |
| CAB4005 | \$ 80.65    | £ 56.00    | € 71,70    | ¥ 681.10    | Cable for LDC4000 Series, 5 A, 13W3 to D-Sub-9, 1.5 m |  |
| CAB4006 | \$ 80.65    | £ 56.00    | € 71,70    | ¥ 681.10    | Cable for LDC4000 Series, 20 A, 13W3 to 13W3, 1.5m    |  |
| CON4005 | \$ 14.50    | £ 10.05    | € 12,90    | ¥ 122.50    | Connector Kit for LDC4000 Series, 20 A, 13W3 male     |  |
| CAB4000 | \$ 65.00    | £ 45.10    | € 57,80    | ¥ 548.90    | Cable for TED4000, 5 A, 17W2, D-Sub-9                 |  |
| CAB4001 | \$ 170.00   | £ 117.90   | € 151,00   | ¥ 1,435.50  | Cable for TED4000, 20 A, 17W2, 17W2                   |  |
| CON4001 | \$ 14.50    | £ 10.05    | € 12,90    | ¥ 122.50    | Connector Kit for TED4000, 20 A, 17W2 male            |  |

CHAPTERS V
Coherent Sources
Incoherent Sources
Covega
Drivers/Mounts
Accessories
SECTIONS V
Laser Diode
Controllers
Temperature/TEC
Controllers
LD/TEC
Platforms

TECHNOLOGY **TECHNOLOGY** 

LED Drivers

**LD Mounts** 

LED Mounts

THORLARS

### Light ▼ CHAPTERS

**Coherent Sources** 

**Incoherent Sources** 

### Covega

**Drivers/Mounts** 

Accessories

▼ SECTIONS Laser Diode Controllers

Temperature/TEC Controllers

LD/TEC Controllers LD/TEC

Platforms

**LD Mounts** 

**LED Drivers** 

**LED Mounts** 



### Introduction

15-Pin

User

ITC110 Shown with Heatsink Removed





ITC110 with Optional ITC100D **Display Module ITC100F Front** Panel, and Heatsink

### Highlights

- Excellent Temperature Stability of <0.004 °C
- Supports All Laser Diode Pin Configurations
- Supports AD590, AD592, and LM335 IC and Common NTC Thermistors as Temperature Sensor
- Extensive Laser Diode Protection Features
- Individually Adjustable P, I, and D Parameters
- Analog Modulation of Laser Power up to 200 kHz

The ITC100 Series combines a low-noise, low-drift current controller with a precise thermoelectric cooler (TEC) controller on a single eurocard-sized board, which can be extended by the optional display unit ITC100D.

Laser Diode/TEC Controllers (Page 1 of 2)

The ITC100 Series includes three controller models for laser currents up to ±200 mA, ±1 A, and ±3 A. All three models feature bipolar temperature control with TEC current/power up to ±2 A/12 W, ±2 A/12 W, and ±3 A/18 W, respectively. To operate the ITC133 version with a laser current of ±3 A and a TEC current of ±3 A, forced cooling or a bigger heat sink is required.

### **FEATURES**

### **Constant Current and Constant Power Modes**

The ITC100 Series offers constant current (CC) and constant power (CP) operation modes and supports all laser diode and photodiode pin configurations. For temperature control, all common NTC thermistors and IC temperature sensors (AD590, AD592, and LM335) can be used. The temperature displays in  $k\Omega$  when using a thermistor and in °C when using temperature sensor ICs.

### Adaptable PID Temperature Control Loop

The TEC controller features a full PID feedback loop with independent P, I, and D

### **External Modulation**

All ITC100 Series controllers can be externally modulated in constant current (CC) or constant power (CP) mode.

### **Extensive Laser Protection Features**

After the module is powered on, a soft-start circuit ensures a slow increase in laser current without voltage peaks. The laser is also protected when the laser controller is turned off by an automatic shorting of the laser diode to ground. A built-in protection feature prevents the laser current limits from being exceeded, even while using external modulation. Additional protection features includeover and under temperature protection, a supply voltage monitor to ensure appropriate supply voltage, and a safety interlock signal that can be used to shut down the laser. This is often required for higher power lasers.

settings for temperature stabilization. When tuned correctly, the PID circuit typically settles to the desired temperature setpoint within seconds.

### **Temperature Window Protection**

To additionally safeguard the laser diode, the ITC100 series provides an adjustable temperature window that allows both an upper and lower temperature limit to be set. If the actual laser temperature departs from the preset window, the laser diode injection current will automatically be switched off. When the laser temperature returns back to the set window, the laser current will be soft started again.

### System Integration

Setting up the ITC100 Series modules requires solid knowledge and skills in electronics and laser diode control techniques. This OEM board is ideal for system integrators experienced in this technology.

Two electrical connectors are provided to facilitate integrating these OEM drivers into larger systems. A 15-pin D-sub connector located along the front edge of the main board provides all the required connections to operate the laser diode and TEC element. The optional CAB430 Series Y cable can be used to connect to Thorlabs Laser Mounts. The 64-pin DIN connector located along the back edge of the board provides access to the full array of Input/Output functions of the ITC100 series for the laser diode, a photodiode for power monitoring, and the TEC element.

### **Contact Thorlabs Technical Support**

To get further information and facilitate the integration of the OEM ITC100 Series into your system, please contact our technical support group at any of the offices listed on the back cover of this catalog.

# Laser Diode/TEC Controllers (Page 2 of 2)

# **ITC100 Laser Controller Specifications**

|                                                                  | ITC102                                             | ITC110                        | ITC133                   |  |  |  |
|------------------------------------------------------------------|----------------------------------------------------|-------------------------------|--------------------------|--|--|--|
| Current Control<br>Control Range of Laser Current                | 0 to ±200 mA                                       | 0 to ±1 A                     | 0 to ±3 A*               |  |  |  |
| Compliance Voltage                                               | >4 V                                               |                               |                          |  |  |  |
| Setting Accuracy/Repeatability (Full Scale)                      |                                                    | ±2% (Typical)/±0.1%           |                          |  |  |  |
| Noise (10 Hz to 10 MHz, rms)                                     | <2 µA                                              | <6 μA                         | <25 µA                   |  |  |  |
| Drift (30 min., 0-10 Hz, Typ.)                                   | <20 µA                                             | <100 µA                       | <300 µA                  |  |  |  |
| Temperature Coefficient                                          |                                                    | <50 ppm/°C                    | 1000 µ1                  |  |  |  |
| Power Control<br>Control Range Photocurrent                      |                                                    | 5 μA to 2 mA                  |                          |  |  |  |
| Accuracy / Repeatability (Full Scale)                            |                                                    | ±2% (Typical)/±0.1%           |                          |  |  |  |
| Current Limit                                                    |                                                    | /( () pread) // (             |                          |  |  |  |
| Setting Range                                                    | 0 to >200 mA                                       | 0 to >1 A                     | 0 to >3 A                |  |  |  |
| Setting Accuracy/Repeatability (Full Scale)                      |                                                    | ±2% (Typical)/±0.1%           | 1                        |  |  |  |
| Analog Modulation Input                                          |                                                    |                               |                          |  |  |  |
| Input Resistance                                                 |                                                    | 10 kΩ                         |                          |  |  |  |
| Modulation Coefficient, CC                                       | 40 mA/V ±5%                                        | 200 mA/V ±5%                  | 600 mA/V ±5%             |  |  |  |
| Small Signal 3 dB Bandwidth, CC                                  | DC to 200 kHz                                      | DC to 50 kHz                  | DC to 20 kHz             |  |  |  |
| Modulation Coefficient, CP                                       |                                                    | 0.4 mA/V ±5%                  |                          |  |  |  |
| TTL Modulation Input                                             |                                                    |                               |                          |  |  |  |
| Rise/Fall time                                                   | <10 µs                                             | <50 μs                        | <100 µs                  |  |  |  |
| General Data<br>Supply Voltage/Current                           | ±12 to ±15 V/2.3 A                                 | ±12 to ±15 V/3.1 A            | ±12 to ±15 V/3.1 A       |  |  |  |
| Operating Temperature                                            | 0 to 40 °C                                         |                               |                          |  |  |  |
| Dimensions (W x H x D)                                           | 3.94" x 1.64" x 6.30" (100 mm x 42 mm x 160 mm), E |                               |                          |  |  |  |
| <b>FEC Output</b><br>Control Range of TEC current                | -2 to 2 A                                          | -2 to 2 A                     | -3 to 3 A*               |  |  |  |
| Compliance Voltage                                               |                                                    | >6 V                          |                          |  |  |  |
| Thermistor Temperature Sensors<br>Control Range                  |                                                    | 100 $\Omega$ to 80 k $\Omega$ |                          |  |  |  |
| Setting Accuracy (Full Scale)                                    |                                                    | ±2% (Typical)                 |                          |  |  |  |
| Repeatability (Full Scale)                                       |                                                    | ±0.1%                         |                          |  |  |  |
| Temperature Stability (Typ)                                      |                                                    | <2 Ω                          |                          |  |  |  |
| IC Temperature Sensors<br>AD590, AD592, & LM335<br>Control Range |                                                    | -20 to 80 °C                  |                          |  |  |  |
| Setting Accuracy (Full Scale)                                    |                                                    | ±2% (Typical)                 |                          |  |  |  |
| Repeatability (Full Scale)                                       |                                                    | ±2.1%                         |                          |  |  |  |
| Temperature Stability (Typ)                                      |                                                    | <0.004 °C                     |                          |  |  |  |
| 1 , , , 1                                                        |                                                    | <0.004 C                      |                          |  |  |  |
| TEC Current Limit                                                | 0 to ≥2 A                                          | 0 to ≥2 A                     | 0 to ≥3 A                |  |  |  |
| Setting Range                                                    | 0 10 22 A                                          |                               | $0 \ 10 \ge j \ \Lambda$ |  |  |  |
| Accuracy                                                         |                                                    | ±5%                           |                          |  |  |  |
| <b>Temperature Control Inputs</b><br>ITL Control Input           | TEC ON                                             |                               |                          |  |  |  |
| Analog Control Input                                             | T <sub>SET</sub> / R <sub>SET</sub>                |                               |                          |  |  |  |
| Input Resistance                                                 |                                                    | 10 kΩ                         |                          |  |  |  |
| Input Coefficient Thermistor                                     |                                                    | 16 kΩ/V                       |                          |  |  |  |
| Input Coefficient IC-Sensor                                      |                                                    | 20 °C/V                       |                          |  |  |  |

\*The total combined current for the ITC133 is limited by the total thermal dissipation loss. Optimized cooling by fan or bigger heat sink allows 3 A LD and 3 A TEC at the same time provided the power supply provides 6.1 A

| ITEM    | \$        | £        | €        | RMB        | DESCRIPTION                                             |  |
|---------|-----------|----------|----------|------------|---------------------------------------------------------|--|
| ITC102  | \$ 569.20 | £ 394.60 | € 505,40 | ¥ 4,806.40 | LD and TEC Controller, LD 200mA, TEC 12 W               |  |
| ITC110  | \$ 569.20 | £ 394.60 | € 505,40 | ¥ 4,806.40 | LD and TEC Controller, LD 1 A, TEC 12 W                 |  |
| ITC133  | \$ 599.80 | £ 415.80 | € 532,60 | ¥ 5,064.80 | LD and TEC Controller, LD 3 A, TEC 18 W                 |  |
| ITC100D | \$ 153.00 | £ 106.10 | € 135,90 | ¥ 1,292.00 | ITC100 Display Control Module, Removable                |  |
| ITC100F | \$ 49.00  | £ 34.00  | € 43,60  | ¥ 413.80   | ITC100 Series Front Panel                               |  |
| ITC100P | \$ 18.40  | £ 12.80  | € 16,40  | ¥ 155.40   | 64-Pin Female DIN Connector                             |  |
| CAB430  | \$ 120.00 | £ 83.20  | € 106,60 | ¥ 1,013.30 | 15-Pin to 9-Pin D-Sub Y-Cable for LD and TEC Controller |  |

TECHNOLOGY V Light

CHAPTERS V

**Coherent Sources** 

**Incoherent Sources** 

Covega

**Drivers/Mounts** 

#### Accessories

SECTIONS V

Laser Diode Controllers

Temperature/TEC Controllers

LD/TEC Controllers

LD/TEC Platforms

**LD Mounts** 

**LED Drivers** 

**LED Mounts** 

# Rack Systems: Laser Diode/TEC Controller Overview

# **Modular Platform Solutions**

Thorlabs offers different platforms for modular, easy-to-customize instrumentation. The PRO8 and TXP platforms are described in this section. For details about our compact T-Cube platform, please see pages 542-547.



The PRO8 platform has become a mainstay for many laser diode manufacturing and test facilities. It offers a selection of laser diode controller modules, WDM laser source modules, photodiode amplifiers, and a series of optical switch modules. The PRO8 platform is available as a rack version (PRO8000) for up to eight modules and a benchtop version (PRO800) for up to two modules, both of which can be operated as a stand-alone system without a PC or remotely controlled via IEEE or RS-232.



The TXP5000 platform is targeted at broader test and measurement applications. The system offers compatible WDM laser sources, laser diode modules, a tunable laser, and high-performance polarization analysis and control modules. The TXP5000 system is available as a rackcompatible version that mounts up to 16 modules or as a benchtop version that can mount up to 4 modules and a single module interface (TXP5001AD). The TXP series are remotely controlled by PC via a USB or TCP/IP interface.

### PRO8 Modular Laser Diode Current and Temperature Controller

- The LDC8000 Series modules offer laser diode drivers for almost any application from 100 mA up to 8 A. These drivers provide many of the same features and capabilities as our benchtop units.
- The MLC8000 Series modules are highdensity laser diode controller modules. Each can power up to eight laser diodes. This family of plug-ins are ideally suited for OEM applications that require testing and characterization of large volumes of laser diodes.

### PRO8 Modular Laser Diode Temperature Controllers



The TED8000 series of temperature controllers provide excellent temperature stabilization of laser diodes as well as other temperature-sensitive devices. Typically the temperature stability will be in the ±0.001 °C range. Three modules with up to 8 A/64 W of TEC power are offered.

### PRO8 and TXP Modular Combined Laser Diode Current and Temperature Controller



- The ITC8000 Series of modules for the PRO8 platform are designed for applications that require temperature stabilization and laser diode control. The modules offer maximum laser drive currents from 200 mA to 1 A. All modules offer 2 A/16 W of TEC power.
- The ITC5000 for the TXP Platform allows space-saving simultaneous current and temperature control of a laser diode with a single module. This series offers three current ranges (±200 mA, ±500 mA, and ±1 A) and incorporates a TEC controller that provides up to 1.5 A/5.25 W. The modules can be modulated internally or externally.



THORLARS

1198

# **Laser/TEC Drivers-Platform Selection Guide**

Pages 1199-1214



### Modular Systems: PRO8

- Stand-Alone Operation or Remote Control via IEEE-488 Interface
- 2 Chassis Versions with 2 or 8 Plug-in Modules
- Control Features Accessed via Front Panel or IEEE-488 Interface

Laser Current Controller Modules: LDC8000

Driver Suited for Most Laser Diode Applications

# See Pages 1200-1201

Current Range of 100 mA to 8 A

See Pages 1202-1203





# Laser Current Controller, 8-Channel Modules: **MLC8000**

- Powers up to 8 Laser Diodes
- For High-Throughput Testing of Many Laser Diodes

# See Pages 1204-1205



# **Temperature Control Modules: TED8000**

- Excellent Temperature Stabilization of Laser Diodes
- Temperature Stability Typically ±0.001 °C
- Three Models for up to ±8 A/64 W of TEC Power

# See Pages 1206-1207







# **Combination Laser Diode/TEC Controller Modules: ITC8000**

- Powers up to 8 Lasers and TEC Elements
- For Laser Diode Control with Temperature Stabilization
- Maximum TEC Current/Power of ±2 A/16 W

# See Pages 1208-1209

### **Test and Measurement Platform: TXP5000**

- 3 Chassis Versions for 1, 4, and 16 Slots
- For Remote Control via USB or TCP/IP

# See Pages 1210-1211

### Laser Sources and TEC Controller: ITC5000

- For Laser Diode Control with Temperature Stabilization
- 3 Models for Laser Diode Currents of ±200 mA, ±500 mA, or ±1 A

# See Pages 1212-1214

### Light CHAPTERS

**Coherent Sources** 

Incoherent Sources

### Covega

**Drivers/Mounts** 

Accessories

▼ SECTIONS Laser Diode Controllers

Temperature/TEC Controllers

LD/TEC Controllers

LD/TEC

Platforms

LD Mounts

LED Drivers

LED Mounts



PRO8000 Modular Controller Systems (Page 1 of 2)

PRO8000 Chassis for up to 8 Modules (Modules Sold Separately)

### Introduction

The PRO8 Series is a modular platform that provides a flexible solution to almost all laser diode control requirements. It is available in two versions: a compact benchtop unit for two modules (PRO800) or a 19" rack versions for up to eight modules (PRO8000). Together with an extensive range of modules (i.e., single or multi-channel current and temperature controllers, switches, photocurrent amplifiers, and laser sources), a PR08 system can be configured for almost any application.

The PR08 Series offers solutions to operate anywhere from one to hundreds of laser diodes. For example, a single PRO8000 19" rack with eight modules of our eight-channel drivers can drive 64 laser diodes. For a flexible controller system for one or two lasers, the PRO800 is the ideal choice.

The standard PRO8000 can supply up to 16 A of total driving current for all

installed modules; for larger applications, we offer the PRO8000-4, which can supply up to 32 A.

### **User-Friendly Controls**

The PRO8 display menu allows easy configuration of any module in the chassis. Mnemonic symbols provide user-friendly access to all operational parameters. All settings are retained in memory and automatically recalled upon powering on the mainframe as long as modules are not moved to different slots during power down. Individual modules are automatically identified and, when selected, can be configured and controlled using the softkeys.



PRO8000-Compatible Modules Laser Diode Controllers - See Page 1202 100 mA to 8 A Multi-Channel Laser Diode Controllers See Pages 1204-1205

■ 5 mA to 200 mA

Temperature Controllers - See Page 1206 2 A to 8 A

Combination LD and TEC Controllers See Page 1208

200 mA to 1 A Laser/2 A TEC

**Optical Switches - See Pages 991-992** ■ 1 x 2, 2 x 2, 1 x 4, and 1 x 8

Photodiode Amplifier - See Page 990
10 nA to 10 mA

DFB WDM Laser Sources

See Pages 986-989

ITU Precision Sources

Stand-Alone Operation without PC, IEEE 488.2, and RS-232 Interfaces



- Modular Controllers with a Bright 4 x 20 Character Vacuum-Fluorescence Display
- Universal Platform Interchangeable Modules Include Laser Diode Controllers, TEC Controllers, WDM Sources, Photocurrent Measurement Modules, and Optical Switches
- Current Modules from 100 mA to 8 A (16-Bit), Temperature Modules up to 8 A/64 W (16-Bit), Combination Modules up to 1 A Current Plus 2 A/16 W Temperature
- Control Eight Lasers from One Module: VCSEL, Fabry-Perot, or DFB.
- Combine Eight Modules in One Chassis for 64 Lasers from a Single Chassis
- Burn-in and Test Station
- Macro Functions for Fast Acquisition of P/I Curves
- Fast IEEE-488.2 and RS-232 Interfaces
- Instrument Drivers for LabVIEW<sup>TM</sup> and LabWindows<sup>TM</sup>/CVI

### Interchangeable Modules

All modules can be driven in the compact PRO800, the standard PRO8000, and the fullsize 19" PRO8000-4 units. Aside from the size difference of the PRO800 and the heavy-duty power supply of the PRO8000-4, all the chassis utilize the same operating system and protocols. All chassis models can power any of the plug-in modules that are found in this section, as well as our selection of DFB laser modules found on our website.

Each system is assembled and tested to your specific configuration. Contact our technical support team for expert advice on optimum solutions for your needs.

### TECHNOLOGY V

# Light

Covega

# CHAPTERS V

**Coherent Sources** 

**Incoherent Sources** 

# **PRO8 Modular Controller Systems (Page 2 of 2)**

All PRO8 series controllers are equipped with IEEE-488.2 and RS-232 interfaces. Each system is delivered with LabVIEW<sup>TM</sup> and LabWindows<sup>TM</sup>/CVI drivers to support the individual modules, as well as their integration into a comprehensive test and measurement system.

### **Easy Operation**

All modules are self-identifying and are operated via menudriven softkeys; the analog values are set with a rotary knob on the front panel.



**Modules Sold Separately** 



**LD Mounts** 

**LED Drivers** 

**LED Mounts** 

**Drivers/Mounts** 



SEL ON ERR MOD IN

### **PRO800 Bench Top Chassis**

The smaller PRO800 is the benchtop version of the PRO8 system offering slots for two modules. It is menu driven, flexible, and supports a multitude of electrical and optical modules. The PRO800 is ideal for crowded lab environments and offers the same features as the larger eight-slot chasis **PRO8000.** 

All values are displayed by a 4 x 20 character alphanumeric display. The functions of the softkeys change in accordance with the activated module. A key-operated power switch protects the PRO8000 series against unauthorized use.

### Additional Modules for the PRO8 Series:

- DWDM Laser Sources in the C- and L-Band (See Pages 986-989)
- Optical Switch Modules (See Pages 991-992)

| Specifications                         | PRO800                                         | PRO8000                                         | <b>PRO8000-4</b>                                |  |  |
|----------------------------------------|------------------------------------------------|-------------------------------------------------|-------------------------------------------------|--|--|
| Slots (Maximum Number of Modules)      | 2                                              | 8                                               | 8                                               |  |  |
| Maximum Output Current for All Modules | 8 A                                            | 16 A                                            | 32 A                                            |  |  |
| Maximum Power Consumption              | 220 VA                                         | 500 VA                                          | 800 VA                                          |  |  |
| Display                                | Alphan                                         | umeric Display with 4 x 20 C                    | haracters                                       |  |  |
| Operation                              |                                                | Menu Driven                                     |                                                 |  |  |
| Setting                                | I                                              | Function Keys and Rotary Kno                    | ob                                              |  |  |
| Protection Features                    |                                                | Key-Operated Power Switch                       |                                                 |  |  |
| TTL Modulation Frequency Range*        |                                                | DC to 10 kHz                                    |                                                 |  |  |
| TTL Duty Cycle*                        | Selectable                                     |                                                 |                                                 |  |  |
| TTL Modulation Input (Max 5 V)         | BNC                                            |                                                 |                                                 |  |  |
| TTL Trigger Output (Max 5 V)           | BNC                                            |                                                 |                                                 |  |  |
| IEEE-488.2 Interface                   | 24-Pin IEEE Jack (Rear Panel)                  |                                                 |                                                 |  |  |
| RS-232 Interface                       | 9-Pin D-sub Plug (Rear Panel)                  |                                                 |                                                 |  |  |
| Chassis Ground                         | 4 mm Banana (Rear Panel)                       |                                                 |                                                 |  |  |
| Line Voltage                           | 100 V, 115 V and 230 V AC ± 10%                |                                                 |                                                 |  |  |
| Line Frequency                         | 50 to 60 Hz                                    |                                                 |                                                 |  |  |
| Operating Temperature                  | 0 to 40 °C                                     |                                                 |                                                 |  |  |
| Storage Temperature                    | -40 to 70 °C                                   |                                                 |                                                 |  |  |
| Relative Humidity                      | < 80% up to 31 °C, Decreasing to 50% @ 40 °C   |                                                 |                                                 |  |  |
| Dimensions (Chassis Only)              | 9.13" x 5.79" x 15.59"<br>(232 x 147 x 396 mm) | 17.68" x 5.79" x 15.59"<br>(449 x 147 x 396 mm) | 17.68" x 6.97" x 17.95"<br>(449 x 177 x 456 mm) |  |  |
| Weight (Chassis Only)                  | <9 kg                                          | <17 kg                                          | <21 kg                                          |  |  |

\*External synchronous current modulation for all cards in the chassis

| ITEM#       | \$          | £          | €          | RMB         | DESCRIPTION                            |
|-------------|-------------|------------|------------|-------------|----------------------------------------|
| PRO800      | \$ 1,798.80 | £ 1,247.00 | € 1.597,00 | ¥ 15,190.00 | 2-Slot Modular Benchtop Chassis        |
| PRO8000     | \$ 2,470.80 | £ 1,713.00 | € 2.193,50 | ¥ 20,864.00 | 8-Slot Modular Rack Chassis            |
| PRO8000-4   | \$ 3,336.00 | £ 2,312.50 | € 2.961,50 | ¥ 28,170.00 | 8-Slot High-Power Modular Rack Chassis |
| PRO8000-R32 | \$ 64.30    | £ 44.60    | € 57,10    | ¥ 543.00    | 19" Mounting Kit for PRO8000           |
| PRO8000-R42 | \$ 89.00    | £ 61.70    | € 79,10    | ¥ 751.60    | 19" Mounting Kit for PRO8000-4         |
| PRO8000-C   | \$ 24.80    | £ 17.20    | € 22,10    | ¥ 209.50    | PRO800 / PRO8000 Front Cover Plate     |

### Light CHAPTERS

### **Coherent Sources**

Incoherent Sources

### Covega

**Drivers/Mounts** 

#### Accessories

▼ SECTIONS Laser Diode Controllers

Temperature/TEC Controllers LD/TEC

Controllers

#### LD/TEC Platforms

LD Mounts

**LED Drivers** 

**LED Mounts** 

Highlights

■ 100 mA, 200 mA, 500 mA,

16-Bit Resolution

Sensor Linearity

1 A, 2 A, 4 A, and 8 A Modules

Ultra-Stable Current Control with

Extensive Laser Diode Protection Features

Switchable Photodiode Bias for Improved

Easily Configured Self-Identifying Modules

External Modulation of Laser Output





PRO8 Laser Controller Modules (Page 1 of 2)







500 mA

100 mA

### Introduction

The modular laser diode current controllers of the LDC8 series provide optimal performance. All of these current controller modules offer extremely low noise and drift, resulting in exceptional laser stability.

4 A

### Seven Current Ranges

Seven different current controller modules are available, with maximum output currents ranging from 100 mA up to 8 A (10 A upon request). The drive current can be set precisely with 16-bit resolution (i.e., one part in 65,000). An analog control

input allows all current modules to be operated in either constant current (CC) or constant power (CP) mode. The maximum modulation frequency is dependent on the mode used.

### **User-Friendly Controls**

After installing a new module into a PRO8 chassis, the front-panel control screen is used to configure the plug in. The softkeys are used to scroll through the slot location to access the basic settings. The operational settings are easily accessed; displayed mnemonic symbols and simple prompts provide for user-friendly operation. All settings are retained in memory and automatically recalled upon powering the mainframe.

#### Laser Diode Protection Features

The LDC8000 Series current modules incorporate laser protection features to safeguard sensitive laser diodes. An advanced circuit design ensures that AC power line transients or power outage, as well as RF pickup, cannot affect the laser diode.

For each current module, three independent limits can be set to safeguard the laser. Two of the limits are programmable, which prevent the laser current and the laser power from exceeding the user-defined maximum values.

The third limit is set via a recessed front panel trim pot that sets a "hardware" current limit and protects against programming errors and accidental adjustment of the front panel knob. Even while externally modulating the laser, it is not possible to exceed the hard or soft limits.

After activating the laser diode, a soft-start function slowly increases the laser current without voltage overshoots.

Even in the case of AC power fluctuation, the laser current remains transient free. Voltage peaks on the AC line are effectively suppressed by electronic filters, shielding of the transformer, and careful grounding of the modules and chassis. The LDC8000 series meets the international requirements regarding laser protection (e.g., CDRH US21, CFR 1040.10). Furthermore, the module's operation is protected by the PRO8 system's key-operated power switch, its interlock, and a delay of the output current, plus many additional features.

### **Protection Features**

 Soft Start Slowly Increases Laser Drive Current

200 mA

- Programmable Limits for Current and Optical Power
- Hardware Current Limit for Protection Against Errors Through Programming, Modulation, and Wrong Settings
- Extensive AC Power Filtering Eliminates Transients
- Temperature Window Protection with TED8000 Card
- Meets Applicable CDRH and CE Regulations

### **External Modulation of Laser Output**

An analog control input enables the modulation of the laser diode in constant current or constant power mode. The maximum modulation frequency depends on the current module used. See the specifications table on the next page.



THORLABS

# **PRO8 Laser Controller Modules (Page 2 of 2)**

# Laser Diode Controllers Specifications

|                                                     | LDC8001         | LDC8002         | LDC8005            | LDC8010             | LDC8020              | LDC8040        | LDC8080                |
|-----------------------------------------------------|-----------------|-----------------|--------------------|---------------------|----------------------|----------------|------------------------|
| Current Control                                     |                 |                 |                    |                     |                      |                |                        |
| Control Range (Continuous)                          | 0 to ±100 mA    | 0 to ±200 mA    | 0 to ±500 mA       | 0 to ±1 A           | 0 to ±2 A            | 0 to ±4 A      | 0 to ±8 A <sup>a</sup> |
| Compliance Voltage                                  | >2.5 V          | >5 V            | >5 V               | >5 V                | >5 V                 | >5 V           | >5 V                   |
| Resolution                                          | 1.5 μA          | 3 µA            | 7.5 μA             | 15 µA               | 30 µA                | 70 µA          | 130 µA                 |
| Accuracy (Full Scale)                               | ±0.05%          | ±0.05%          | ±0.05%             | ±0.1%               | ±0.1%                | ±0.1%          | ±0.3%                  |
| Noise Without Ripple<br>10 Hz to 10 MHz, RMS, Typ.) | <1 µA           | <3 µA           | <5 µA              | <10 μA              | <20 μA               | <50 μA         | <100 μA                |
| Ripple (50/60 Hz, RMS, Typ.)                        | <0.8 µA         | <1 µA           | <1 µA              | <1.5 μA             | <3 µA                | <4 µA          | <8 µA                  |
| Fransients (Processor, Typ.)                        | <10 µA          | <15 μA          | <30 µA             | <50 μA              | <80 µA               | <120 μA        | <200 µA                |
| Fransients (Other, Typical)                         | <100 µA         | <200 µA         | <500 μA            | <1 mA               | <2 mA                | <4 mA          | <8 mA                  |
| Drift 60 min/24 hr (Typ., 0-10 Hz,                  |                 |                 |                    |                     |                      |                |                        |
| t Constant Ambient Temp)                            | <0.5 μA/<1.5 μA | <0.5 μA/<1.5 μA | <2 μA/<4 μA        | <5 μA/<20 μA        | <15 μA/<100 μA       | <25 μA/<150 μA | <100 μA/<200 μA        |
| emperature Coefficient                              |                 |                 |                    | <50 ppm/°C          |                      |                |                        |
| Power Control<br>Control Range of Photocurrent      |                 |                 | 10 µA to 5 mA (0   | Other Ranges Availa | ble upon Request)    |                |                        |
| Reverse Bias Voltage                                |                 |                 |                    | (Can be Switched    |                      |                |                        |
| Resolution                                          |                 |                 |                    | 100 nA              | - ,                  |                |                        |
| Accuracy (Full Scale)                               |                 |                 |                    | ±0.05%              |                      |                |                        |
| Current Limit                                       |                 |                 |                    |                     |                      |                |                        |
| Setting Range (20-Turn Trim Pot)                    | 0 to ≥100 mA    | 0 to ≥200 mA    | 0 to ≥500 mA       | 0 to ≥1 A           | 0 to ≥2 A            | 0 to ≥4 A      | 0 to ≥8 A              |
| Resolution                                          | 3 μΑ            | 6 µA            | 15 µA              | 30 µA               | 60 µA                | 130 µA         | 250 μA                 |
| Accuracy                                            | ±100 μA         | ±200 μA         | ±500 μA            | ±2 mA               | ±4 mA                | ±8 mA          | ±50 mA                 |
| Power Limit<br>Photocurrent Range                   |                 |                 |                    | 0 to 5 mA           |                      |                |                        |
| Resolution                                          |                 |                 |                    | 1.25 μA             |                      |                |                        |
| Accuracy                                            |                 |                 |                    | ±50 μA              |                      |                |                        |
| aser Voltage Measurement                            |                 |                 |                    |                     |                      |                |                        |
| Measurement Principle                               |                 | 4-W             | ire (Improves Accu | racy by Compensati  | ng for Cable Resista | ance)          |                        |
| Measurement Range                                   |                 |                 |                    | 0 to 5 V            | 0                    |                |                        |
| Resolution                                          |                 |                 |                    | 0.2 mV              |                      |                |                        |
| Accuracy                                            |                 |                 |                    | ±5 mV               |                      |                |                        |
| Analog Modulation Input<br>nput Resistance          |                 |                 |                    | 10 kΩ               |                      |                |                        |
| B dB-Bandwidth, CC <sup>b</sup>                     | DC to 2.5 kHz   | DC to 200 kHz   | DC to 100 kHz      | DC to 50 kHz        | DC to 30 kHz         | DC to 20 kHz   | DC to 10 kHz           |
| Modulation Coefficient, CC                          | 10 mA/V ± 5%    | 20 mA/V ± 5%    | 50 mA/V ± 5%       | 100 mA/V ± 5%       | 200 mA/V ± 5%        | 400 mA/V ± 5%  | 800 mA/V ± 5%          |
| Modulation Coefficient, CP                          |                 |                 |                    | 0.5 mA/V ±5%        |                      |                |                        |
| Rise and Fall Time, Typical <sup>C</sup>            | <100 µs         | <2 µs           | <4 µs              | <5 µs               | <6 µs                | <9 µs          | <15 µs                 |
| General Data                                        |                 |                 |                    |                     |                      |                | ·                      |
| Card Width                                          |                 |                 | 1.5                | Slot                |                      |                | 2 Slots                |
| Connector                                           |                 |                 |                    | P-Sub (f)           |                      |                | 15-Pin HD D-Sub        |
| Weight                                              |                 | < 300 g         | ,                  |                     | 00 g                 | < 750 g        |                        |
| Operating Temperature                               |                 | 0               |                    | 0 to +40 °C         | 0                    |                | 1                      |
| Storage Temperature                                 | -40 to +70 °C   |                 |                    |                     |                      |                |                        |

### Drive up to 64 Lasers from 1 Chassis – See Next Page

| ITEM#   | \$          | £        | €          | RMB         | DESCRIPTION                             |
|---------|-------------|----------|------------|-------------|-----------------------------------------|
| LDC8001 | \$ 1,100.40 | £ 762.90 | € 977,00   | ¥ 9,291.90  | PRO8000 LD Control Module, 100 mA       |
| LDC8002 | \$ 1,039.20 | £ 720.40 | € 922,70   | ¥ 8,775.10  | PRO8000 LD Control Module, 200 mA       |
| LDC8005 | \$ 1,063.70 | £ 737.40 | € 944,40   | ¥ 8,982.00  | PRO8000 LD Control Module, 500 mA       |
| LDC8010 | \$ 1,075.90 | £ 745.90 | € 955,20   | ¥ 9,085.00  | PRO8000 LD Control Module, 1 A          |
| LDC8020 | \$ 1,160.40 | £ 804.50 | € 1.030,30 | ¥ 9,798.50  | PRO8000 LD Control Module, 2 A          |
| LDC8040 | \$ 1,170.20 | £ 811.30 | € 1.039,00 | ¥ 9,881.20  | PRO8000 LD Control Module, 4 A          |
| LDC8080 | \$ 1,215.50 | £ 842.70 | € 1.079,20 | ¥ 10,264.00 | PRO8000 LD Control Module, 8 A, 2 Slots |
| CAB400  | \$ 66.00    | £ 45.80  | € 58,60    | ¥ 557.40    | DB9 Cable, LDC8000 Module to LD Mount   |

TECHNOLOGY V

Light

CHAPTERS V

**Coherent Sources** 

**Incoherent Sources** 

Covega

**Drivers/Mounts** 

### Accessories

SECTIONS V

Laser Diode Controllers

Temperature/TEC Controllers

LD/TEC Controllers

# LD/TEC Platforms

LD Mounts

**LED Drivers** 

**LED Mounts** 

# Light

# **V** CHAPTERS

**Coherent Sources** 

**Incoherent Sources** 

Covega

### **Drivers/Mounts**

#### Accessories

▼ SECTIONS Laser Diode Controllers

Temperature/TEC Controllers

LD/TEC Controllers

### LD/TEC

Platforms

# LD Mounts

**LED Drivers** 

**LED Mounts** 

# PRO8 High-Density Laser Controllers (Page 1 of 2)

### Introduction

The MLC8000 Series laser diode controllers have been field proven in demanding applications for many years. They are designed to control up to eight lasers from a single module. When fully populated, a PRO8000 chassis can simultaneously power up to 64 laser diodes.

Designed to support high-density laser diode test and burn-in, this series provides eight different maximum drive current ranges. The PRO8000 chassis can support up to a total of 16 A of laser diode drive current (i.e., the sum of the output drive currents from all the installed cards) and therefore can easily support the demands of driving 64 lasers at 200 mA each.





100 mA

The MLC8000 Series meets the international requirements regarding laser protection (e.g., CDRH US21 CFR 1040.10). Furthermore, the modules' operation is protected by the PRO8 systems' key-operated power switch, its interlock, and a delay of the output current, in addition to many other features.

### System Applications

The MLC8000 Series is an ideal choice for burn-in applications due to its high-density (64 lasers per PRO8000 chassis) drive capability coupled with the user-friendly advanced control features.

For technical support and advice about specific system configurations, please contact our Technical Support Team.

### **Easy User Interface**

Each plug-in is automatically identified upon plugging in the module. A brightly lit 4 x 20 characters fluorescent display allows the user to select any of the installed modules. When selected, the control parameters can be changed quickly.



### Laser Diode Grounding

The MLC8000 controllers are divided into two groups: one for grounded laser cathodes and one for grounded anodes. Each supports both PD polarities. Under all conditions, the laser diode is driven with respect to ground, ensuring maximum protection for the laser diode.

### Highlights

- Drives Eight Lasers from a Single Module and 64 Lasers from a Single MLC Chassis
- 5 mA, 10 mA, 25 mA, 50 mA, 100 mA, and 200 mA Ranges
- Ultra-Stable Current Control with 12-Bit Resolution
- Extensive Laser Diode Protection Features
- Improved Sensor Linearity
- Easily Configured Self-Identifying Modules

#### **Intuitive User-Friendly Controls**

Each module provides eight independent outputs, all operating within the same set parameters (current range, current limit, and constant current or constant power operating mode). The laser drive current for each output, however, can be individually set. The various modules of the MLC8000 series can be used interchangeably, along with other PRO8 modules, in any of the three chassis to implement a large variety of systems.

After installing a new module into a PRO8 chassis, the front-panel control screen is used to configure the plug in. The softkeys are used to scroll through the slot locations to access the settings for the individual modules. The operational parameters are easily accessed using mnemonic symbols and simple prompts. All settings are retained in memory and automatically recalled upon powering on the mainframe.

The polarity of the laser diodes, either anode or cathode ground, is factory fixed. The eight outputs are switched on together, but the current control or power control is independent for each channel.

### Laser Diode Protection

The MLC8000 Series of modules incorporate proven laser protection features to safeguard sensitive laser diodes. These features include a hardware current limit, a soft-start circuit, and an interrupt sensing circuit that shuts down the laser upon detecting a break in the electrical connection to the laser diode. Additionally, extensive precautions have been taken to protect the laser diodes during AC power fluctuation or outages.

The current limit is accessed only via a front-panel trim-pot to prevent the risk of accidental adjustment. All eight output channel current limits are identical for an individual card. After activating the laser power, a soft-start function slowly increases the laser current, preventing overshoots.

Even in the case of an AC power fluctuation, the laser current remains transient free. Voltage peaks on the AC line are effectively suppressed by electronic filters, shielding of the transformer, and careful grounding of the modules and chassis.

## 

# Light

# CHAPTERS V

Covega

**Coherent Sources** 

**Incoherent Sources** 

# **PRO8 High-Density Laser Controllers (Page 2 of 2)**



### Burn-In Station: Pictured System Powers 512 Lasers

The MLC8000 Series modules are designed to simultaneously supply drive current to eight laser diodes. Therefore, up to 64 laser diodes can be operated by a single PRO8000 chassis.

An automated test station for hundreds of laser diodes can be set up by connecting many PRO8000 systems via the IEEE-488 interface. High-level software macros speed the process of developing automated burn-in and final test routines.

## **LDC Series Interface Cable**

LDC modules ending in 8001 to 8040 with 9-pin D-Sub connectors can be connected directly to Thorlabs' laser diode mounts with DB9 interface using a shielded CAB400 cable (not included with the module). For additional or replacement cables, we have a full line from which to choose.



Accessories SECTIONS V Laser Diode Controllers

**Drivers/Mounts** 

Temperature/TEC Controllers LD/TEC

Controllers LD/TEC Platforms

LD Mounts

LED Drivers

**LED Mounts** 

| MLC8000 Series-High Density Laser Diode Controllers Specification |
|-------------------------------------------------------------------|
|-------------------------------------------------------------------|

|                                                                                                                         | MLC8200-8                                                                       |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Current Control (Two Ranges):                                                                                           | 0 to 50 mA                                                                      |
| Control Ranges Switchable                                                                                               | and                                                                             |
| (8 Channels Per Module)                                                                                                 | 0 to 200 mA                                                                     |
| Laser Diode Polarity                                                                                                    | Fixed, Either Anode Ground (AG)* or Cathode Ground (CG)**                       |
| Compliance Voltage                                                                                                      | >4 V                                                                            |
| Accuracy                                                                                                                | ±150 μA/±600 μA                                                                 |
| Resolution                                                                                                              | 12 μA/50 μA                                                                     |
| Noise w/o Ripple (10 Hz to 10 MHz), Typ.                                                                                | <0.5 μA/<1.5 μA                                                                 |
| Ripple (50/60 Hz, RMS), Typical                                                                                         | <0.5 μA/<1 μA                                                                   |
| Transients (Other, Typical)                                                                                             | <200 µA                                                                         |
| Drift (30 min, 0 to 10 Hz), Typical                                                                                     | <1.5 μA/<5 μA                                                                   |
| Temperature Coefficient                                                                                                 | <50 ppm/°C                                                                      |
| Power Control                                                                                                           | 5 4 . 2 4                                                                       |
| Control Range of Photocurrent                                                                                           | 5 µA to 2 mA                                                                    |
| Accuracy                                                                                                                | ±6 μΑ                                                                           |
| Resolution Photocurrent                                                                                                 | 0.5 μΑ                                                                          |
| Reverse Bias Voltage                                                                                                    | 0 V/5 V (Wireable)                                                              |
| Current limit                                                                                                           |                                                                                 |
| Setting Range (20-Turn Pot)                                                                                             | 0 to 50 mA / 0 to 200 mA                                                        |
| Resolution                                                                                                              | 12 µA /50 µA                                                                    |
| Accuracy                                                                                                                | ±0.5 mA /±1 mA                                                                  |
| General Data<br>Connector                                                                                               | 44-Pin HD D-Sub (F) (For Laser Diode, Photodiode, and General Interlocks, etc.) |
| Card Width                                                                                                              | 1 Slot                                                                          |
| Weight                                                                                                                  | <500 g                                                                          |
| Operating Temperature                                                                                                   | 0 to 40 °C                                                                      |
| Storage Temperature                                                                                                     | -40 to 70 °C                                                                    |
| *AG: Laser Anode Grounded<br>**CG: Laser Cathode Grounded<br>All data valid at 23 ± 5 °C and 45 ± 15% relative humidity |                                                                                 |

| ITEM#       | \$          | £        | €          | RMB         | DESCRIPTION                                  |
|-------------|-------------|----------|------------|-------------|----------------------------------------------|
| MLC8200-8AG | \$ 1,222.80 | £ 847.70 | € 1.085,70 | ¥ 10,326.00 | PRO8 Multi-Channel LD Controller, 200 mA, AG |
| MLC8200-8CG | \$ 1,222.80 | £ 847.70 | € 1.085,70 | ¥ 10,326.00 | PRO8 Multi-Channel LD Controller, 200 mA, CG |

| ECH  | N() | <b>TOI</b> G | v |
|------|-----|--------------|---|
| <br> |     | -            | - |

## Light

# ▼ CHAPTERS

**Coherent Sources** 

#### **Incoherent Sources**

Covega

### **Drivers/Mounts**

Accessories

▼ SECTIONS Laser Diode Controllers

Controllers

Temperature/TEC Controllers

LD/TEC

Controllers

LD/TEC Platforms

LD Mounts

LED Drivers

**LED Mounts** 

# **PRO8 Temperature Control Modules (Page 1 of 2)**

### Introduction

A range of thermoelectric temperature control modules is available from  $\pm 2$  A/16 W to  $\pm 8$  A/64 W with 16-bit resolution. For optimal laser operation in applications that require precise thermal control, the TED8000 Series of modules provide excellent temperature stabilization, typically <0.001 °C when using an AD590 thermal sensor. This facilitates highly stable operation of temperature-sensitive components, such as optical nonlinear birefringent crystal experiments.

Separate adjustment of the P, I, and D settings of the PID servo loop enable optimal settling times for different thermal loads.

The temperature controllers in the TED8000 series operate within our PRO8 series mainframe and are ideal companions to our LDC8000 laser diode current controller modules shown on page 1202.

### High-Power/Channel Count Laser Systems

With up to 64 W of cooling power, the TED8080 is well matched to our LDC8080 laser diode control module, which provides 8 A of laser drive current (see page 1202). Laser diodes typically operate at approximately 2 to 3 V forward bias. Operation at 8 A results in an overestimated thermal load of 16 to 24 W, assuming 0% lasing efficiency and that all the electrical energy is converted to thermal energy.

When using our eight-channel laser controller (MLC8000 series), the TED8080 is an ideal choice to temperature stabilize a large number of lasers mounted on a common cooling plate.

| <b>TED8000</b> | Series | Temperature | Control |
|----------------|--------|-------------|---------|
|                |        |             |         |

|                                | <b>TED8020</b>                 | <b>TED8040</b>            | TED8080 |  |
|--------------------------------|--------------------------------|---------------------------|---------|--|
| Type of Controller             |                                | PID with Adjustable Share |         |  |
| PID-Share 12-Bit Control Range |                                |                           |         |  |
| Card Width                     | 1 Slot                         | 1 Slot                    | 2 Slots |  |
| Connector                      | 15-Pin D-Sub (F)               |                           |         |  |
| Weight                         | <500 g                         | <600 g                    | <700 g  |  |
| Operating Temperature          |                                | 0 to 40 °C                |         |  |
| Storage Temperature            | prage Temperature -40 to 70 °C |                           |         |  |
| ÷ -                            |                                |                           |         |  |

### **Protection Features**

Damage to the TE cooler is prevented by setting an adjustable TEC current limit. This can be set via a recessed potentiometer on the module front panel (hardware limit), the front panel softkeys, or one of the standard interfaces (software limit).

When used with our laser diode current controllers, the temperature window protection safety feature can be enabled. If the laser temperature departs from the preset temperature window, the laser current will be switched off immediately. The temperature modules of the TED8000 series meet extremely high standards regarding precision and drift performance and provide a low noise, bipolar output, enabling extremely stable wavelength control and safe thermal load management.

### Choice of Temperature Sensors

The temperature modules of the TED8000 series can be operated with thermistors, AD590/AD592 IC sensors, and LM135/LM335 transducers. When operated with a thermistor, the thermistor calibration constant can be set so that all applicable settings and displays are given directly in degrees celsius rather than in ohms.

With the modules of the TED8000PT series, a Pt100 temperature sensing element can be operated, replacing the IC sensor.

For extremely low temperature applications, such as the operation of lead-salt lasers, a cryogenic option is offered for all models. As a Pt1000 sensor is used for operating temperatures in the range of 20 to 310 K, the controller is modified to control a heating element.



### **PID Control System Functionality**

The P, I, and D settings of the temperature control loop can be set via menu-driven softkeys or via the remote interface. Optimized adjustment ensures fast laser temperature settling times and long-term temperature stability of better than 1 mK.

A PID control system combines three different control strategies into one feedback loop. The PID refers to how the error signal (i.e., the difference between the actual temperature and the set current) is processed prior to being fed back to the driving element responsible for changing the system. The purely proportional controller simply scales the error signal by some number prior to feeding it back to the drive element.

> Use the PRO800 chassis with one of our LDC8000 and TED8000 Series modules to set up a space-saving laser current and temperature controller. Also see page 1208 for the ITC8000 Combination Series or page 1293 for benchtop devices.



# **PRO8 Temperature Control Modules (Page 2 of 2)**

The PID control loop involves three separate parameters: the Proportional (P), the Integral (I), and the Derivative (D) parameter. The P value determines the reaction to the current temperature error, the I value determines the reaction based on the sum of recent temperature errors, and the D value determines the reaction based on the rate at which the temperature error has been changing. The weighted sum of these three terms is used to adjust the temperature via the current supply of a cooling/heating element (TEC element).

By "tuning" the values for these three parameters independently, the PID controller can be optimized to the setup and requirements of the application (e.g., minimizing temperature settling time for each specific thermal load and temperature level). The response of the PID controller can be described in terms of the responsiveness of the controller to an error, the degree to which the controller overshoots the setpoint, and the degree of system oscillation.

You can deactivate P, I, or D by setting it to zero (i.e., for using the controller only as PI controller just set the D value to zero). This may be useful in a noisy environment since derivative action is very sensitive to measurement noise. Deactivating the I value may prevent the system from reaching its target temperature and is therefore not recommended.

|                                         | <b>TED8020</b>            | <b>TED8040</b>             | TED8080                    |  |  |  |
|-----------------------------------------|---------------------------|----------------------------|----------------------------|--|--|--|
| Control Range                           | -2 to 2 A                 | -4 to 4 A                  | -8 to 8 A                  |  |  |  |
| Compliance Voltage                      |                           | >8 V                       |                            |  |  |  |
| Maximum Output Power                    | 16 W                      | 32 W                       | 64 W                       |  |  |  |
| Measurement Resolution I <sub>TEC</sub> | 0.07 mA                   | 0.15 mA                    | 0.3 mA                     |  |  |  |
| Measurement Accuracy I <sub>TEC</sub>   | ±10 mA                    | ±20 mA                     | ±50 mA                     |  |  |  |
| Measurement Resolution U <sub>TEC</sub> |                           | 0.3 mV                     |                            |  |  |  |
| Measurement Accuracy U <sub>TEC</sub>   |                           | ± 20 mV                    |                            |  |  |  |
| Noise and Ripple (Typical)              | <1 mA                     | <2 mA                      | <4 mA                      |  |  |  |
| Temperature Sensors: Thermis            | tor (TED80x0 a            | nd TED80x0PT)              |                            |  |  |  |
| Control Range                           | 5Ω to 2                   | 0 k $\Omega$ Switchable 50 | $\Omega$ to 200 k $\Omega$ |  |  |  |
| Calibration                             | Expon                     | ential Form, Steinha       | rt-Hart                    |  |  |  |
| Resolution                              |                           | 0.3 Ω/3 Ω                  |                            |  |  |  |
| Accuracy                                |                           | ±2.5 Ω/±25 Ω               |                            |  |  |  |
| Stability (Typical)                     |                           | <0.5 Ω/<5 Ω                |                            |  |  |  |
| <b>Temperature Sensor: IC-Senso</b>     | rs (AD590/AD5             | 92/LM135/LM335)            | (TED80x0)                  |  |  |  |
| Control Range                           |                           | -12.375 to 90 °C           |                            |  |  |  |
| Calibration                             |                           | 2-Point Linearization      | 1                          |  |  |  |
| Resolution                              |                           | 0.0015 °C                  |                            |  |  |  |
| Accuracy                                |                           | ±0.1 °C                    |                            |  |  |  |
| Stability (Typical)                     |                           | <0.001 °C                  |                            |  |  |  |
| Temperature Sensor Pt100 Pla            | tinum: Optiona            | l Feature (PT) for T       | `ED80x0                    |  |  |  |
| Control Range                           |                           | -12.375 to 90 °C           |                            |  |  |  |
| Resolution                              |                           | 0.0015 °C                  |                            |  |  |  |
| Accuracy                                |                           | ±0.3 °C                    |                            |  |  |  |
| Stability (Typical)                     |                           | <0.005 °C                  |                            |  |  |  |
| Temperature Sensor Pt1000 K             | RYO: Optional             | Feature (KRYO) for         | TED8020                    |  |  |  |
| Control Range                           |                           | 20 to 310 K                |                            |  |  |  |
| Resolution                              | 2 1                       | nK (Within 20-155          | K)                         |  |  |  |
| Accuracy                                | ±2 K (Within 20-155 K)    |                            |                            |  |  |  |
| Stability (Typical)                     | 0.005 K (Within 20-155 K) |                            |                            |  |  |  |
| TEC Current Limit                       |                           |                            |                            |  |  |  |
| Setting Range (20-Turn Pot)             | 0 to $\geq 2$ A           | 0 to ≥4 A                  | 0 to $\ge 8$ A             |  |  |  |
| Resolution D/A Converter                | 0.5 mA                    | 1 mA                       | 2 mA                       |  |  |  |
| Accuracy                                | ±20 mA                    | ±40 mA                     | ±80 mA                     |  |  |  |

| Light             |
|-------------------|
| CHAPTERS <b>V</b> |
|                   |

TECHNOLOGY V

**Coherent Sources** 

Incoherent Sources

### Covega

Drivers/Mounts

### Accessories

SECTIONS V

Laser Diode Controllers

Temperature/TEC Controllers

LD/TEC

Controllers

#### LD/TEC Platforms

LD Mounts

```
LED Drivers
```

LED Mounts

| ITEM#   | \$        | £        | €        | RMB        | DESCRIPTION               |
|---------|-----------|----------|----------|------------|---------------------------|
| TED8020 | \$ 610.80 | £ 423.50 | € 542,30 | ¥ 5,157.70 | PRO8 TEC Controller, 16 W |
| TED8040 | \$ 610.80 | £ 423.50 | € 542,30 | ¥ 5,157.70 | PRO8 TEC Controller, 32 W |
| TED8080 | \$ 732.40 | £ 507.80 | € 650,30 | ¥ 6,184.50 | PRO8 TEC Controller, 64 W |

### Laser Mount Connection Cable CAB420-15 Series

All modules in the TED8000 Series, except PT or KRYO options, can be connected to Thorlabs' laser diode mounts with a DB9 interface using a shielded CAB420-15 cable (not included with module). For additional or replacement cables, we have a full line from which to choose.

| ITEM#     | \$          |   | £     | €      |    |   | RMB    | DESCRIPTION             |
|-----------|-------------|---|-------|--------|----|---|--------|-------------------------|
| CAB420-15 | \$<br>72.00 | £ | 50.00 | € 64,0 | 00 | ¥ | 608.00 | DB9(F) to DB15(M) Cable |



### Light CHAPTERS

**Coherent Sources** 

### Incoherent Sources

### Covega

**Drivers/Mounts** 

#### Accessories

v SECTIONS Laser Diode Controllers Temperature/TEC Controllers

LD/TEC Controllers

LD/TEC

Platforms

LD Mounts

LED Drivers

LED Mounts







**PRO8 Combination – Laser Diode & TEC Controllers (Page 1 of 2)** 

### ITC8000 Combination Laser Diode and TEC Controllers 3 Models ILD = ±200 mA to ±1 A ITEC = ±2 A/16 W

### Laser Diode Protection Features

The modules incorporate proven laser diode protection features. Aside from common protection functions such as current limits, laser current soft start, and interrupt protection, an advanced circuit design ensures that AC power line transients, power outages, and RF pickup cannot affect the laser diode.

Additionally, a temperature window can be set that will shut the laser down in the event the high or low thresholds of the window are exceeded.

The ITC8000 Series meets the international requirements regarding laser protection (i.e., CDRHUS21 CFR 1040.10). Furthermore, the module's operation is protected by the PRO8 system's key-operated power switch, its interlock, and a delay of the output current, in addition to many other features.

#### Calibrating the Power Display

The display of the laser power can be easily calibrated with respect to the laser's monitorphotodiode current to provide a readout directly in milliwatts. This is accomplished by adjusting the "CALPD" calibration constant that is accessed via the front-panel softkeys or the computer interface. Please note that an optical power meter is required.

### Setting the Temperature Control Loop

The P (gain), I, and D settings of the PID control loop can each be set independently to optimize the temperature response of the system to different thermal loads.



### Introduction

The ITC8000 series for the PRO8 platform incorporates a laser current controller combined with a TEC temperature controller in one space-saving module. Three models are available offering laser drive current ranges of 0 to  $\pm 200$  mA, 0 to  $\pm 500$  mA, and 0 to  $\pm 1$  A. All three incorporate a TEC controller that provides up to  $\pm 2$  A/16 W.

Each module comes in two versions: the ITC8000 with a 9-pin connector for laser current output and a 15-pin connector for TEC current output. Alternatively, the ITC8000DS15 has a common 15-pin connector for both laser and TEC current output.

All of the ITC8000 modules offer the same exceptional performance as our separate laser controller and temperature controller modules. All laser diode and photodiode pin configurations are supported.

### Extremely Low Noise

The ITC8000 Series modules feature exceptionally low laser current noise (from 2 - 10  $\mu$ A depending on the model, see table on next page) and outstanding temperature stability of better than <0.001 °C when an AD590 temperature sensor is used. The performance of the ITC8000 modules is independent of the operation mode (constant current or constant power).

### **User-Friendly Controls**

After installing a new module into a PRO8 chassis, the module can be configured via the front-panel softkey controls or via one of the remote computer interfaces. The softkeys on the PRO8 are used to scroll through the slot locations to access all the module settings. Alternatively, the IEEE-488.2 interface also provides convenient access to the controller settings. Once set, all the settings are retained in memory and automatically recalled upon powering up the mainframe.

### **ITC8000 Series of Interface Cables**

Thorlabs offers three cables that can be used to connect the ITC8000 combination modules to our laser diode mounts with DB9 interface: the CAB400 for all DB9 outputs of the LDC controllers, the CAB420-15 for all DB15 TEC controller outputs, and the CAB430 for all ITC8000DS15 modules. These cables are not included with the modules. For additional or replacement cables, we have a full line to choose from with same-day delivery.

| ITEM#     | \$        | £       | €       | RMB        | DESCRIPTION                      |
|-----------|-----------|---------|---------|------------|----------------------------------|
| CAB400    | \$ 66.00  | £ 45.80 | € 58,60 | ¥ 557.40   | DB9(M) to DB9(M) Cable           |
| CAB420-15 | \$ 72.00  | £ 50.00 | € 64,00 | ¥ 608.00   | DB9(F) to DB15(M) Cable          |
| CAB430    | \$ 120.00 | £ 83.20 | €106,60 | ¥ 1,013.30 | DB9(M) & DB9(F) to DB15(M) Cable |

# **PRO8** Combination – Laser Diode & TEC Controllers (Page 2 of 2)

| Specifications                                                              |                                                   |                          |                              |  |  |
|-----------------------------------------------------------------------------|---------------------------------------------------|--------------------------|------------------------------|--|--|
| -1                                                                          | ITC8022                                           | ITC8052                  | ITC8102                      |  |  |
| Laser Controller: Current Control                                           |                                                   |                          |                              |  |  |
| Control Range of Injection Current                                          | 0 to ±200 mA                                      | 0 to ±500 mA             | 0 to ±1 A                    |  |  |
| Compliance Voltage                                                          |                                                   | >5 V                     |                              |  |  |
| Resolution                                                                  | 3 µA                                              | 7.5 μA                   | 15 μA                        |  |  |
| Accuracy (Full Scale)                                                       | ±0.0                                              | 05%                      | ±0.1%                        |  |  |
| Noise w/o Ripple (10 Hz to 10 MHz, RMS, Typ.)                               | <2 µA                                             | <5 µA                    | <10 µA                       |  |  |
| Ripple (50 Hz, RMS, Typ.)                                                   | <1                                                | μΑ                       | <1.5 µA                      |  |  |
| Transients (Processor, Typ.)                                                | <15 µA                                            | <30 μA                   | <50 μA                       |  |  |
| Transients (Other, Typ.)                                                    | <200 µA                                           | <500 µA                  | <1 mA                        |  |  |
| Drift (24 hrs, at Constant Ambient Temperature, Typ.)                       | <3 µA                                             | <10 µA                   | <25 μA                       |  |  |
| Temperature Coefficient                                                     |                                                   | <50 ppm/°C               |                              |  |  |
| Laser Controller: Power Control<br>Control Range of Photocurrent            |                                                   | 10 µA to 2 mA            |                              |  |  |
| Reverse Bias Voltage                                                        |                                                   | 0 to 10 V (Adjustable)   |                              |  |  |
| Resolution Photocurrent                                                     |                                                   | 30 nA                    |                              |  |  |
| Accuracy (Typ.)                                                             |                                                   | ±0.1%                    |                              |  |  |
| Laser Controller: Current Limit<br>Setting Range                            | 0 to ≥200 mA                                      | 0 to ≥500 mA             | $0 \text{ to} \ge 1\text{A}$ |  |  |
| Resolution                                                                  | 6 μA                                              | 15 μA                    | 30 μA                        |  |  |
| Accuracy                                                                    | ±200 μA                                           | ±500 μA                  | ±2 mA                        |  |  |
| Laser Voltage Measurement                                                   | ľ                                                 |                          |                              |  |  |
| Measurement Principle                                                       | 4-wire (Improves Ac                               | curacy by Compensating f | or Cable Resistance)         |  |  |
| Measurement Range                                                           |                                                   | 0 to 10 V                |                              |  |  |
| Resolution                                                                  |                                                   | 0.3 mV                   |                              |  |  |
| Accuracy                                                                    |                                                   | ±5 mV                    |                              |  |  |
| Temperature Controller: Output<br>Control Range of TEC Current              |                                                   | -2 to 2 A                |                              |  |  |
| Compliance Voltage                                                          |                                                   | >8 V                     |                              |  |  |
| Maximum Output Power                                                        |                                                   | 16 W                     |                              |  |  |
| Measurement Resolution of TEC                                               | 0.07 r                                            | mA (Current) / 0.3 mV (V | oltage)                      |  |  |
| Noise and Ripple Typical                                                    |                                                   | <1 mA                    |                              |  |  |
| <b>Temperature Controller: Current Limit</b><br>Setting Range (20-Turn Pot) |                                                   | 0 to $\ge 2A$            |                              |  |  |
| Resolution                                                                  |                                                   | 0.5 mA                   |                              |  |  |
| Setting Accuracy                                                            | ±20 mA                                            |                          |                              |  |  |
| Temperature Controller: Sensor Data<br>Thermistor:                          |                                                   |                          |                              |  |  |
| Control Range                                                               | 200 Ω to 40 kΩ (10 kΩ Nominal Resistance @ 25 °C) |                          |                              |  |  |
| Resolution                                                                  | 0.7 Ω                                             |                          |                              |  |  |
| Accuracy                                                                    | ±10 Ω                                             |                          |                              |  |  |
| Stability                                                                   | <1 Ω                                              |                          |                              |  |  |
| AD590, AD592, and LM335:<br>Control Range                                   |                                                   | -12.375 to 90 °C         |                              |  |  |
| Resolution                                                                  | 0.0015 °C                                         |                          |                              |  |  |
| Accuracy                                                                    | ±0.1 °C                                           |                          |                              |  |  |
| Temperature Stability (Typical)                                             | <0.001 °C                                         |                          |                              |  |  |
| Connector: LD/TEC                                                           | 9-Pin (LD)/15-Pin (TEC) D-Sub (ITC8000)           |                          |                              |  |  |

Incoherent Sources
Covega
Drivers/Mounts
Accessories
Laser Diode
Controllers
Temperature/TEC
Controllers
LD/TEC
Controllers
LD/TEC
Platforms
LD Mounts
LED Drivers

TECHNOLOGY V Light CHAPTERS V

**Coherent Sources** 

LED Mounts

| ITEM#   | \$          | £          | €          | RMB         | DESCRIPTION                                                            |
|---------|-------------|------------|------------|-------------|------------------------------------------------------------------------|
| ITC8022 | \$ 1,713.60 | £ 1,188.00 | € 1.521,50 | ¥ 14,470.00 | PRO8 LD and TEC Controller, 200 mA/16 W, 9-Pin/15-Pin D-Sub Connector  |
| ITC8052 | \$ 1,854.00 | £ 1,285.00 | € 1.646,00 | ¥ 15,656.00 | PRO8 LD and TEC Controller, 500 mA/16 W, 9-Pin/15-Pin D-Sub Connector  |
| ITC8102 | \$ 2,080.80 | £ 1,442.50 | € 1.847,50 | ¥ 17,571.00 | PRO8 LD and TEC Controller, 1000 mA/16 W, 9-Pin/15-Pin D-Sub Connector |

#### Light ▼ CHAPTERS

**Coherent Sources** 

#### **Incoherent Sources**

#### Covega

**Drivers/Mounts** 

#### Accessories

▼ SECTIONS Laser Diode Controllers Temperature/TEC Controllers LD/TEC Controllers LD/TEC

Platforms

LD Mounts

**LED Drivers** 

**LED Mounts** 





Test and Measurement Platform (Page 1 of 2)

XP5016 Chassis Modules Sold Separately, Laptop not Included

#### Introduction

The TXP5000 Series is a flexible platform that allows you to combine different modules to quickly build the specific test and measurement system that your application requires. The broad range of available modules for this platform cover many optical disciplines (e.g., polarization analysis and control, laser diode current control, optical signal generation, and monitoring).

#### Benchtop and Rack Version

The three available TXP versions also offer great flexibility regarding size, complexity, and connectivity of the system. The TXP5016 rack version for up to 16 modules includes a TCP/IP port and is optimized for larger and complex systems in industrial environments. The TXP5004 benchtop version for up to four modules is controlled via a USB port and is targeted for R&D test and measurement applications in lab environments. The TXP5001AD single module interface offers low-cost evaluation with full functionality for a single module with USB connectivity.

# The family of plug and play modules for a broad range of photonic applications include integrated laser drivers and TEC controllers, DWDM DFB laser sources, tunable lasers, and advanced polarimetry

control and measurement devices. All modules are interchangeable and can be integrated with LabVIEW<sup>TM</sup> and LabWindows<sup>TM</sup>/CVI control. The TXP5000 platform incorporates an efficient architecture that shares common functionality within the mainframe. Only building blocks required for specific functionality or for real-time applications are implemented into the module itself.

#### **Typical Applications**

Typical applications of TXP systems span from qualification, test, and burn-in systems for optical equipment in manufacturing environments to PMD analysis in complex network architectures. High-performance polarization analysis and control is an application where the TXP system especially excels.

#### **User-Friendly Controls**

The TXP5000 system utilizes USB and TCP/IP protocol for communication, which offers easy connection to PCs and integration into networks. The TXP5004 benchtop is controlled by a connected PC via USB, whereas the TXP5016 rack unit offers direct connection to Ethernet networks by an embedded server. The system is easily configured through the TXP Explorer, a control tool similar to Windows™ Explorer, that comes with all TXP5000 systems. The TXP Explorer makes local or remote administering very easy, and since it is completely network based, it enables worldwide access to the system.

#### Modularity, Interchangeability, and Flexibility

The "hot swap" feature of the TXP5000 system allows any module to be replaced without interrupting other modules in the same mainframe that are in operation. Arbitrary module assemblies can be pooled together into individual systems by specialized software modules, allowing them to perform new and more complex tasks through a single interface or GUI. This facilitates the ever-changing requirements and the reuse of existing hardware for customized and more specialized applications. A customer who already owns the necessary modules needs only the software module to run that application. The internet-embedded architecture allows new or upgraded GUIs, software tools, and firmware to be easily downloaded and installed into the system.

#### Security Interlock

The TXP chassis provide global interlocks to secure setups involving the TXP against external events, such as opening of lab doors or pushing of emergency switches. The reaction of the TXP depends on the type of card inserted. Besides the global interlock, some TXP cards have an individual interlock line.

#### **Three Chassis Versions**

- TXP5004: 4 Slots with USB Control
- TXP5016: 16 Slots with Ethernet Control
- TXP5001AD: Single Module Adapter with Desktop Power Supply and USB Control (See Next Page)

#### **Available Modules**

- **ITC5000:** Combination Laser Diode Current and TEC Temperature Control (See Page 1212)
- LS5000: Optical Sources from 1470 - 1620 nm (See Page 1072)
- IPM5300: High-Speed Inline Polarimeter (See Page 1329)
- DPC5500: Inline Deterministic Polarization Controller (See Page 1331)
- ECL5000D: Continuously Tunable External Cavity Diode Laser (See Page 1087).
- **PAX5710/5720:** Rotating  $\lambda/4$  Wave Plate Polarimeter for VIS and NIR (See Page 1326)



# **Test and Measurement Platform (Page 2 of 2)**

|                           | TXP5016                                                        | TXP5004                                      | TXP5001AD*                                 |  |  |
|---------------------------|----------------------------------------------------------------|----------------------------------------------|--------------------------------------------|--|--|
| Maximum Power Consumption | 400 VA                                                         | 150 VA                                       | 75 VA                                      |  |  |
| Number of Slots           | 16 Slots                                                       | 4 Slots                                      | 1 Slot                                     |  |  |
| Operation                 |                                                                | GUI on Remote PC                             |                                            |  |  |
| Remote Interface          | Ethernet 10BaseT                                               | USB 2.0                                      | USB 2.0                                    |  |  |
| Remote Drivers            | LabVIEW <sup>TM</sup> , LabWindows/CVI <sup>TM</sup> , and C++ |                                              |                                            |  |  |
| Chassis Ground            | 4 mm Banana 4.8 mm Fast-On                                     |                                              |                                            |  |  |
| Line Voltage              |                                                                | 100 to 240 VAC ±10%                          |                                            |  |  |
| Line Frequency            |                                                                | 50 to 60 Hz ± 5%                             |                                            |  |  |
| Operating Temperature     |                                                                | 0 to 40 °C                                   |                                            |  |  |
| Storage Temperature       |                                                                | -40 to 70 °C                                 |                                            |  |  |
| Dimensions                | 17.68" x 5.83" x 17.13"<br>449 x 148 x 435 mm                  | 6.61" x 5.83" x 12.40"<br>168 x 148 x 315 mm | 4.88" x 0.91" x 4.41"<br>124 x 23 x 112 mm |  |  |
| Weight (w/o Modules)      | 7 kg                                                           | 3 kg                                         | 0.2 kg                                     |  |  |

| 1 | 2 Versions of ' | TXP5000 Ser | ies Chassis: | 4-Slot and 16 | 6-Slot Systems |  |
|---|-----------------|-------------|--------------|---------------|----------------|--|
|   |                 |             |              |               |                |  |

| ITEM#   | \$          | £          | €          | RMB         | DESCRIPTION                                   |
|---------|-------------|------------|------------|-------------|-----------------------------------------------|
| TXP5004 | \$ 1,222.80 | £ 847.70   | € 1.085,70 | ¥ 10,326.00 | TXP5000 4 Slot Chassis with USB Control       |
| TXP5016 | \$ 3,549.60 | £ 2,460.50 | € 3.151,50 | ¥ 29,973.00 | TXP5000 16 Slot Chassis with Ethernet Control |

#### **TXP Series Accessories and Replacement Items**

| ITEM#       | \$       | £       | €       | RMB      | DESCRIPTION                                        |
|-------------|----------|---------|---------|----------|----------------------------------------------------|
| TXP5000C    | \$ 47.00 | £ 32.60 | € 41,80 | ¥ 396.90 | Front Cover Plate for TXP Chassis                  |
| TXP5000-R32 | \$ 70.40 | £ 48.90 | € 62,60 | ¥ 594.50 | Rack Mounting Kit, 19" for TXP5016                 |
| TXP5016-IBC | \$ 23.50 | £ 16.30 | € 20,90 | ¥ 198.50 | TXP5016 Interlock Bypass Connector                 |
| TXPCABCRO   | \$ 23.50 | £ 16.30 | € 20,90 | ¥ 198.50 | TXP5016 Crosslink Cable, 2 m                       |
| TXPCABETH   | \$ 23.50 | £ 16.30 | € 20,90 | ¥ 198.50 | TXP5016 Ethernet Cable, 2m                         |
| TXPCABSER   | \$ 29.40 | £ 20.40 | € 26,20 | ¥ 248.30 | TXP5016 Serial Service Cable for Software Upgrades |
| TXPCABUSB   | \$ 29.40 | £ 20.40 | € 26,20 | ¥ 248.30 | TXP5004 USB Cable, 2m                              |

# **Single Module Interface**

- Power/Control any Module for TXP5000 Series
- Ideal for Test Bench Operation of a Single Module
- USB Interface for Direct PC Connection and Control
- Also Available as an OEM Integration Tool for TXP5000 Technology
- USB Cable and External Power Supply Included



The TXP5001AD is a low-cost adapter for any TXP5000 Series module. It provides a USB interface and allows a single module to

be operated without any additional equipment except a PC. The adapter comes with the TXP5000 software installation package including LabVIEW<sup>TM</sup> and LabWindows/CVI<sup>TM</sup> drivers. The connection to the user PC is accomplished via the included USB cable. The adapter offers the easiest and most cost-effective way to start using the modules of the TXP5000 series, such as laser diode controllers, optical signal sources/controllers, and polarimetric controllers and analyzers. A 48 V power supply is included that operates from 100 - 240 VAC, 50 - 60 Hz.

TXP5001AD shown here with a TXP5000 Module (not included). See the following pages for details on TXP laser controllers, TEC controllers, and laser sources.

| ITEM      | \$        | £        | €        | RMB        | DESCRIPTION                                      |
|-----------|-----------|----------|----------|------------|--------------------------------------------------|
| TXP5001AD | \$ 275.40 | £ 191.00 | € 244,60 | ¥ 2,325.50 | TXP5000 Single Module Interface with USB Control |

# TXP5001AD

www.thorlabs.com

#### TECHNOLOGY **V**

# Light

Covega

LD/TEC Controllers LD/TEC Platforms LD Mounts

LED Drivers

# CHAPTERS V

Coherent Sources

**Drivers/Mounts** 

Temperature/TEC Controllers

Accessories SECTIONS V Laser Diode Controllers

**Incoherent Sources** 

| V | TE | C | HN | 0 | LO | G١ |
|---|----|---|----|---|----|----|
|   |    |   |    |   |    |    |

#### Light

Covega

**Coherent Sources** 

**Drivers/Mounts** 

Accessories

Laser Diode Controllers

Temperature/TEC Controllers

▼ SECTIONS

LD/TEC

LD/TEC

Platforms

LD Mounts

**LED Drivers** 

**LED Mounts** 

Controllers

**Incoherent Sources** 

# Combination Laser/TEC Controller (Page 1 of 2)

#### Introduction

The ITC5000 series combines current and temperature controller modules for the TXP5000 series. They allow space saving simultaneous current and temperature control of a laser diode by a single module. The ITC5000 series offers three current ranges (±200 mA,  $\pm 500$  mA, and  $\pm 1$  A) that support all laser diode and photodiode polarities. These modules can be modulated externally or internally. All three models incorporate a TEC controller that provides up to  $\pm 1.5$  A/5.25 W.

Besides common protection functions such as interlock and soft start, an advanced circuit design ensures that transient spikes cannot affect the laser current.

The temperature controller, identical for all modules, is designed to keep the laser temperature constant for highly stable power and wavelength operation. Separate adjustment of the P, I, and D parameters of the integrated PID control loop minimize temperature settling times. An additional temperature window protection circuit switches the laser current off if the laser temperature leaves a preset temperature range.

The ITC5000 models offer exceptional noise and stability performance. All laser diode and photodiode pin configurations are supported.

#### **Extremely Low Noise**

The combination controller modules of the ITC5000 series all feature exceptionally low laser current noise (from 2 µA to 20 µA depending on the model, see table on next page) and exceptional temperature stability of

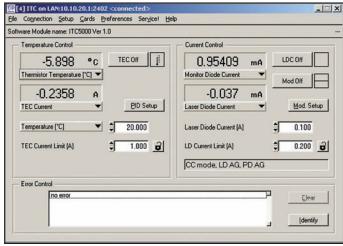
better than 0.002 °C at 20 °C. The performance of the ITC5000 Series is independent of the operation mode - constant current (CC) or constant power (CP).

#### **User-Friendly Controls**

After installing a new module into any TXP5000 chassis, the modules can be configured via remote computer interface. All settings can be stored on the computer and recalled the next time it is powered on.

#### Laser Diode Protection Features

The ITC5000 series modules incorporate proven laser protection features to safeguard sensitive laser diodes. Besides common protection functions, such as current limits, laser current soft start, and interrupt protection, an advanced circuit design ensures that AC power line transients or power outages, as well as RF pickup, cannot affect the laser diode.


A laser current limit can be set to safeguard the laser diode. To protect the Peltier element,

a TEC current limit is also provided. Additionally, a temperature window can be set that will shut the laser down in the event that the high or low thresholds of the window are exceeded. The limits and the window can be set independently for each installed module.

All ITC5000 modules also include an interlock and a delay of the output current.

#### Highlights

- Simultaneous Current and Temperature Control
- Low Noise and Ultra-Stable Control of Injection Current
- Constant Current and Constant Power Operation
- Laser Driven with Respect to Ground
- Protected Analog Modulation of the Laser Diode
- Extensive Protection Features
- Safe and Ultra-Stable User Diode Operation



GUI for the ITC5000 Series Module

| ITEM#   | \$          | £          | €          | RMB         | DESCRIPTION                                               |
|---------|-------------|------------|------------|-------------|-----------------------------------------------------------|
| ITC5022 | \$ 2,080.80 | £ 1,442.50 | € 1.847,50 | ¥ 17,571.00 | TXP5000 Laser Diode Current/TEC Controller, ±200 mA/1.5 A |
| ITC5052 | \$ 2,080.80 | £ 1,442.50 | € 1.847,50 | ¥ 17,571.00 | TXP5000 Laser Diode Current/TEC Controller, ±500 mA/1.5 A |
| ITC5102 | \$ 2,080.80 | £ 1,442.50 | € 1.847,50 | ¥ 17,571.00 | TXP5000 Laser Diode Current/TEC Controller, ±1 A/1.5 A    |



▼ CHAPTERS

# Combination Laser/TEC Controller (Page 2 of 2)

#### Specifications

| specifications                                                   | ITC5022                      | ITC5052                    | ITC5102               |  |  |
|------------------------------------------------------------------|------------------------------|----------------------------|-----------------------|--|--|
| Laser Controller: Current Control                                |                              |                            |                       |  |  |
| Current Range                                                    | 0 to ±200 mA                 | 0 to ±500 mA               | 0 to ±1 A             |  |  |
| Compliance Voltage                                               |                              | >2.5 V (Typical >3 V)      |                       |  |  |
| Resolution                                                       | 4 μΑ                         | 10 µA                      | 20 µA                 |  |  |
| Accuracy (Typ. Full Scale)                                       | ±100 μA                      | ±250 μA                    | ±1 mA                 |  |  |
| Noise Without Ripple (10 Hz to 10 MHz, RMS, Typ.)                | <2 µA                        | <7 µA                      | <20 µA                |  |  |
| Ripple (50 Hz, RMS, Typ.)                                        |                              | <0.5 μA                    | 1                     |  |  |
| Transients (Processor, Typ.)                                     | <15 μA                       | <30 μA                     | <50 μA                |  |  |
| Transients (Other, Typ.)                                         | <200 μA                      | <500 μA                    | <1 mA                 |  |  |
| Drift (24 hrs, at Constant Ambient Temperature, Typ.)            | <2 µA                        | <5 μA                      | <20 µA                |  |  |
| Temperature Coefficient                                          |                              | <50 ppm/°C                 |                       |  |  |
| Laser Controller: Power Control<br>Control Range of Photocurrent |                              | 10 $\mu A$ to 5 mA         |                       |  |  |
| Reverse Bias Voltage                                             |                              | 0 to 4 V (Adjustable)      |                       |  |  |
| Resolution Photocurrent                                          |                              | 0.1 μΑ                     |                       |  |  |
| Accuracy (Typ.)                                                  |                              | ±5 μA                      |                       |  |  |
| Laser Controller: Current Limit<br>Setting Range                 | 0 to >200 mA                 | 0 to >500 mA               | 0 to >1 A             |  |  |
| Resolution                                                       | 50 µA                        | 125 μA                     | 250 μA                |  |  |
| Accuracy                                                         | ±200 μA                      | ±500 μA                    | ±2 mA                 |  |  |
| Laser Voltage Measurement<br>Measurement Principle               | 4-Wire (Improves A           | Accuracy by Compensating   | for Cable Resistance) |  |  |
| Measurement Range                                                |                              | 0 to 4 V                   |                       |  |  |
| Resolution                                                       | 0.15 mV                      |                            |                       |  |  |
| Accuracy                                                         | ±5 mV                        |                            |                       |  |  |
| Analog Modulation<br>Input Impedance                             |                              | 10 kΩ                      |                       |  |  |
| Modulation Coefficient CC                                        | 20 mA/V ±10%                 | 50 mA/V ±10%               | 100 mA/V ±10%         |  |  |
| Small Signal 3 dB-Bandwidth at CC                                | 200 kHz                      |                            |                       |  |  |
| Modulation Coefficient CP                                        |                              | 0.5 mA/V ±10%              |                       |  |  |
| Internal Modulation<br>Form                                      |                              | Sinusoidal, Triangle, Squa | re                    |  |  |
| Frequency                                                        |                              | 0.02 kHz to 20 kHz         |                       |  |  |
| Rise/Fall Time                                                   |                              | 4 μs                       |                       |  |  |
| Temperature Controller: Output<br>Range of TEC Current           |                              | -1.5 to 1.5 A              |                       |  |  |
| Compliance Voltage                                               |                              | >3.5 V                     |                       |  |  |
| Maximum Output Power                                             | 5.25 W                       |                            |                       |  |  |
| Measurement Resolution of TEC Current                            | 5.25 W<br>60 uA              |                            |                       |  |  |
| Measurement Range TEC Voltage                                    |                              | -4 to 4 V                  |                       |  |  |
| Measurement Resolution of TEC Voltage                            | 0.2 mV                       |                            |                       |  |  |
| Noise and Ripple Typical                                         |                              | <1 mA                      |                       |  |  |
| Temperature Sensors: Thermistor<br>Control Range                 |                              | 0.2 to 40 kΩ               |                       |  |  |
| Resolution                                                       |                              | 0.8 Ω                      |                       |  |  |
| Accuracy                                                         | $0.8 \Omega$<br>±10 $\Omega$ |                            |                       |  |  |
| Stability (24 hrs.)                                              | $\pm 10.92$<br>1 $\Omega$    |                            |                       |  |  |
| General Data                                                     |                              |                            |                       |  |  |
| Common LD/TEC Connector                                          |                              | 15-Pin D-Sub               |                       |  |  |
| LD MOD IN Connector                                              |                              | SMA                        |                       |  |  |
| Size                                                             |                              | 1 Slot                     |                       |  |  |
| 3126                                                             |                              |                            |                       |  |  |

TECHNOLOGY **V** 

#### Light

CHAPTERS V

**Coherent Sources** 

Incoherent Sources

#### Covega

Drivers/Mounts

#### Accessories

SECTIONS ▼ Laser Diode Controllers Temperature/TEC Controllers

LD/TEC Controllers

LD/TEC Platforms

# LD Mounts

LED Drivers

**LED Mounts** 

#### ▼ TECHNOLOGY Light **V** CHAPTERS TXP DWDM Laser Sources – LS5000 Series **Coherent Sources** LS5000 DFB Laser Source Module for TXP Platform **Incoherent Sources** Ge Covega DFB SOURCE **Ordering Information** LECT O Features **Drivers/Mounts** ON O The item name for the order of your laser source can CW DFB Laser Source 0 Accessories be obtained from the ITU Grid on page 1071 in the L- and C-Band on 100 GHz ITU Grid\* same way as for the WDM8 sources. Just replace ▼ SECTIONS ■ 20 mW Optical Power WDM8 by LS5. Laser Diode Excellent Wavelength and Power Stability Controllers BAND CODE (C or L) Temperature/TEC Controllers (±2 pm, ±0.01 dB for 24 hrs.) ITU GRID COLUMN (A, B\*, C\*, or D\*) Wavelength Tuning (±0.85 nm) LD/TEC Controllers ■ Power Tuning (>6 dB, Typical 10 dB) 20-NM LS5-Versatile Coherence Control LD/TEC Platforms CHANNEL CODE \*Depending on Laser Diode Availability, 50 GHz and 25 GHz (01...50) grid upon request. \*Columns B, C, and D upon request LD Mounts **LED Drivers** The TXP5000 system offers an extensive range of DFB laser source modules for the DWDM domain, covering the 1530.33 - 1611.79 nm wavelength range on the 100 GHz ITU grid.\* They provide 20 mW of output, power **LED Mounts** tuning in excess of 6 dB (typ. 10 dB), and wavelength tuning over ±0.85 nm. The light source modules have been designed for excellent stability in power and wavelength for reliable measurement results as required in test setups to characterize BER (Bit Error Rate) performance and EDFA parameters. The modules feature internal modulation capabilities for flexible coherence control to suppress coherent optical effects, especially the triangular modulation format for efficient suppression of Stimulated Brillouin Scattering in fibers.

\*Depending on Laser Diode Availability, 50 GHz and 25 GHz grid upon request.

#### For More Information and Pricing, Please See Pages 1070-1073

| ITEM#           | \$          | £          | €          | RMB         | DESCRIPTION                                  |
|-----------------|-------------|------------|------------|-------------|----------------------------------------------|
| LS5-X-XXX-20-NM | \$ 2,754.00 | £ 1,909.00 | € 2.445,00 | ¥ 23,255.00 | WDM Laser Source 20 mW, No Direct Modulation |







www.thorlabs.com

# **TXP Series Polarimeter Modules**

# Inline Deterministic Polarization Controller

The DPC5500-T, an in-line deterministic polarization controller, combines deterministic state of polarization control, high speed, low loss, and high accuracy in a unique and unprecedented way. It is a versatile solution that may be utilized in many applications, ranging from R&D and manufacturing to industrial applications.



Our PAX5700 series rotating wave plate-based polarimeter for freespace and fiber applications offers precision State of Polarization (SOP) measurements. It has a high dynamic range of up to 70 dB in the wavelength range of 400 - 1700 nm. It is designed for lab and industry application measurements. The modular design of the PAX5700

series allows easy integration into setups for Jones/Mueller Matrix analysis.

# **Inline Polarimeter**

The IPM5300-T fiber-optic polarimeter module enables high-speed measurements of the State of Polarization (SOP).

See Polarization Tools on Pages 1323-1336



# **Laser Diode Mount Selection Guide**

#### Pages 1215-1222















#### **Butterfly Laser and Electro-Optic Package Mounts**

- Zero Insertion Force (ZIF) Sockets
- Compact Low-Profile Design
- Compatible with One- and Two-Port Devices

#### See Page 1216

#### **Complete LD/TEC Controllers with Mount**

- Laser Diode Driver Integrated with TEC Controller
- Choose from 14-Pin Butterfly or DIL Mount
- Suited for use with BOAs, SOAs, SLDs, and FPLs

#### See Page 1217

#### Mounts for $\emptyset$ 5.6 mm and $\emptyset$ 9 mm Laser Packages

- Controls Temperature of Ø5.6 mm and Ø9 mm Laser Diode Packages
- Includes TEC Lockout Circuitry
- Completely Compatible with Our Line of Laser Diode and TEC Controllers

#### See Pages 1218-1219

#### **Collimation and Focusing Tubes with Optics**

- For Ø5.6 mm and Ø9 mm Laser Packages
- Laser Diodes can be Easily Replaced
- Lens Mounts with Adjustable Focus

#### See Page 1220

#### **Universal and SM Series Laser Diode Mounts**

- Ø5.6 mm and Ø9 mm Table-Mountable Packages
- SM05 and SM1 Lens Tube Mounting Packages
- Ø5.6 mm and Ø9 mm Mounting Packages

# See Page 1221

#### **Strain Relief and ESD Protection**

- Includes Laser Socket and Shielded Cable
- Threads into LT Series Housing, Secures Laser Socket
- Available with DB9 Connector

#### See Page 1221

#### **Collimation Packages and Laser Mounts**

- Ø5.6 mm and Ø9 mm Universal Laser Mount
- TO-3 Collimation Package and Laser Mount
- Ø5.6 mm and Ø9 mm Collimation Packages
- See Page 1222

#### Light

▼ CHAPTERS

**Coherent Sources** 

**Incoherent Sources** 

#### Covega

#### **Drivers/Mounts**

#### Accessories

V SECTIONS Laser Diode Controllers Temperature/TEC Controllers

LD/TEC Controllers LD/TEC

# Platforms

LED Drivers

LED Mounts

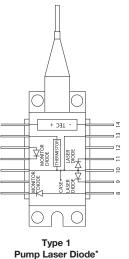
#### Butterfly Mounts



The LM14S2 Butterfly Mount is designed to operate with all lasers and two-port electrooptic devices in a 14-pin butterfly package. The top surface includes heat sink fins and a recessed region to mount the laser diode, resulting in a very low-profile package. The LM14S2 includes a laser diode TEC lockout feature, which disables the laser when the TEC Controller is not active.\* It is designed to allow up to 5 A of laser currrent and 5 A of TEC currrent. This mount also provides Zero

Insertion Force Sockets (ZIF), a remote interlock connection, and an LED to indicate that the laser diode is enabled. This package comes with two adapter cards, each plugging into the connector at the bottom of the mount. The first module is preconfigured for both type-1 and type-2 lasers, and the second is user-configured to allow custom wiring of the mount. A Bias-T Adapter is also included with the product, allowing for RF modulation of butterfly lasers specifically designed with this capability. The LM14S2 is pin-for-pin compatible with all Thorlabs' Benchtop Laser Diode Controllers, eliminating the need for custom-made interface cables.

Features


- Compatible with all Commercially Available Laser Modules in 14-Pin Butterfly Packages and Electro-Optic Devices
- Zero Insertion Force (ZIF) Sockets
- Easy Intergration with Thorlabs' Laser Diode and TEC Controllers
- Compact, Low-Profile Design
- TEC Lockout Protection Circuit
- Compatible with One and Two Port Devices

\* TEC lockout, which is easily bypassed if not required, only functions with Thorlabs' lasers and TEC controllers. The TEC controller requires that the laser package have an integrated TEC and thermal sensor.

LM14S2:

Shown with a Two Port Electro-Optic Device

| Electrical Parameter                                           | Value                         |
|----------------------------------------------------------------|-------------------------------|
| Maximum Laser Current                                          | 5 A                           |
| Polarity of Laser Diode                                        | AG                            |
| Polarity of Monitor Diode                                      | Floating                      |
| Maximum TEC Current                                            | 5 A                           |
| Temperature Sensor                                             | Thermistor*                   |
| Temperature Range <sup>*,**</sup>                              | 0 to 70 °C                    |
| Temperature Coefficient of Heat Sink                           | 3 °C/W                        |
| Dimensions                                                     | 3.50" x 3.50" x 1.25"         |
| Dimensions                                                     | 88.7 mm x 88.9 mm x 31.8 mm   |
| *At 25 °C with 2 A TEC current, integrated into laser package. | **Depends on laser diode used |



\*View shows alternate locations for monitor and laser diodes Please refer to our website for complete models and drawings.

| Pin# | Connector (Type 1) | Connector (Type 2) |  |  |
|------|--------------------|--------------------|--|--|
| 1    | TEC Anode          | Thermistor Ground  |  |  |
| 2    | Thermistor         | Thermistor         |  |  |
| 3    | PD Anode           | LD Cathode (Dc)    |  |  |
| 4    | PD Cathode         | PD Anode           |  |  |
| 5    | Thermistor Ground  | PD Cathode         |  |  |
| 6    | n.c                | TEC Anode          |  |  |
| 7    | PD Cathhode        | TEC Cathode        |  |  |
| 8    | PD Anode           | LD Anode, Ground   |  |  |
| 9    | LD Cathode         | LD Anode, Ground   |  |  |
| 10   | LD Anode, Ground   | n.c                |  |  |
| 11   | LD Cathode         | LD Anode, Ground   |  |  |
| 12   | N.C.               | LD Cathode (Rf)    |  |  |
| 13   | LD Anode, Ground   | LD Anode, Ground   |  |  |
| 14   | TEC Cathode        | N.C.               |  |  |

#### Universal Adapter Card for Custom PIN Configuration

The LM14S2 eliminates the restriction of fixed pin configurations by using swappable configuration cards that plug into a connector located on the bottom of the mount. Two cards are delivered with the LM14S2. One card is pre-configured for both type 1 and type 2

pre-configured for both type 1 and type 2 lasers. The second card is a user-configurable card (LM14S2-UA)

designed to allow custom wiring of the mount.

| -         |           |          |          |            |                                                            |
|-----------|-----------|----------|----------|------------|------------------------------------------------------------|
| ITEM#     | \$        | £        | €        | RMB        | DESCRIPTION                                                |
| LM14S2    | \$ 321.30 | £ 222.80 | € 285,30 | ¥ 2,713.10 | Universal 14-Pin Butterfly Laser Diode Mount               |
| LM14S2-UA | \$ 28.60  | £ 19.90  | € 25,40  | ¥ 241.50   | LM14S2 Universal Adapter Card for Custom PIN Configuration |



# **Complete LD/TEC Controllers with Mount**



The LDC1300 Series of Laser Diode Controllers combines a laser driver, thermoelectric cooler (TEC) controller, and either a butterfly or Dual in-line (DIL) mount into a compact package that can be controlled through an RS-232 interface. The controller is well suited for use with our Fabry-Perot Lasers, Superluminescent Diodes, Semiconductor Optical Amplifiers (SOAs), and Booster Optical Amplifiers (BOAs)

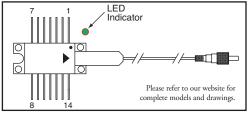
that have an integrated TEC in a 14-pin butterfly or dual in-line package. The LDC drive board can deliver source currents up to 1 A and TEC currents of 2.5 A. The controller is adjusted for stable operation at 25 °C, assuming adequate heat sinking of the device. An LED indicator light is illuminated when the laser diode is enabled. The controller is also equipped with a monitor photodiode sensor that has an FC mating port that can be used to measure the output power of the device (in either dBm or mW).

| _ |          |
|---|----------|
| - | LD1300D  |
|   | LD 1300D |

|                          |       | VALUE                     |         |  |  |  |  |  |  |  |
|--------------------------|-------|---------------------------|---------|--|--|--|--|--|--|--|
| ELECTRICAL PARAMETER     | MIN   | TYP.                      | MAX     |  |  |  |  |  |  |  |
| Supply Current           | -     | -                         | 2.4 A   |  |  |  |  |  |  |  |
| Supply Voltage           | 4.5 V | 5.0 V                     | 5.5 V   |  |  |  |  |  |  |  |
| Drive Current            | -     | -                         | 1000 mA |  |  |  |  |  |  |  |
| Drive Current Resolution | -     | 16 Bit                    | _       |  |  |  |  |  |  |  |
| TEC Setpoint             | 10 °C | -                         | 40 °C   |  |  |  |  |  |  |  |
| TEC Step                 |       | 0.1 °C                    |         |  |  |  |  |  |  |  |
| Update Rate              |       | 3 Hz                      |         |  |  |  |  |  |  |  |
| Operation Temperature    |       | 25 °C                     |         |  |  |  |  |  |  |  |
| Dimensions               | 85 m  | 1 m x 140 mm (3.35" x 5.5 | 1")     |  |  |  |  |  |  |  |
| COMPUTER INTERFACE       |       |                           |         |  |  |  |  |  |  |  |
| Compatibility            | Wind  | lows 95, 98, NT, 2000, or | XP      |  |  |  |  |  |  |  |
| Interface                |       | RS-232                    |         |  |  |  |  |  |  |  |

#### **PC Software Interface**

- Accurate Temperature and Current Control: Real-time temperature and current stability plots are displayed on the screen.
- TEC Safety Lockout Mechanism: Reduces the risk of damage by runaway heating due to improper TEC controller settings, incorrect TEC wiring, or inadequate heat sinking.
- Standalone Driver Configuration: Save the settings and the driver will boot up in this state every time power is applied.
- Optical Power Voltage Current Graphs: Can be viewed on screen or exported in .csv (comma separated value) format for use with other programs such as Microsoft Excel.




| ITEM#    | \$          | £          | €          | RMB         | DESCRIPTION                                            |
|----------|-------------|------------|------------|-------------|--------------------------------------------------------|
| LDC1300B | \$ 1,885.00 | £ 1,306.50 | € 1.673,50 | ¥ 15,917.00 | Laser Diode Controller for Butterfly Packages          |
| LDC1300D | \$ 1,885.00 | £ 1,306.50 | € 1.673,50 | ¥ 15,917.00 | Laser Diode Controller for DIL (Dual In-Line) Packages |

#### Features

- Laser Diode Driver Integrated with TEC Controller
- Choose from 14-Pin Butterfly or DIL Mount
- Controlled via RS-232 Interface
- Laser-Enabled LED Indicator
- Suited for use with BOAs, SOAs, SLDs, and FPLs

#### **Pigtail PIN Orientation to Mount**



Please note that the device is mounted on the LDC board such that the output of the device is oriented towards the LED on the LDC board.

| PIN# | PIN-TO-CONNECTOR CONFIGURATION |  |  |  |  |  |  |  |
|------|--------------------------------|--|--|--|--|--|--|--|
| 1    | TEC Anode                      |  |  |  |  |  |  |  |
| 2    | Thermistor                     |  |  |  |  |  |  |  |
| 3    | No Contact                     |  |  |  |  |  |  |  |
| 4    | No Contact                     |  |  |  |  |  |  |  |
| 5    | Thermistor                     |  |  |  |  |  |  |  |
| 6    | No Contact                     |  |  |  |  |  |  |  |
| 7    | No Contact                     |  |  |  |  |  |  |  |
| 8    | No Contact                     |  |  |  |  |  |  |  |
| 9    | No Contact                     |  |  |  |  |  |  |  |
| 10   | Device Anode                   |  |  |  |  |  |  |  |
| 11   | Device Cathode                 |  |  |  |  |  |  |  |
| 12   | No Contact                     |  |  |  |  |  |  |  |
| 13   | Case                           |  |  |  |  |  |  |  |
| 14   | TEC Cathode                    |  |  |  |  |  |  |  |

Incoherent Sources

**Coherent Sources** 

#### Covega

Drivers/Mounts

TECHNOLOGY V Light CHAPTERS V

#### Accessories

SECTIONS V Laser Diode Controllers Temperature/TEC Controllers LD/TEC Controllers LD/TEC Platforms

#### LD Mounts

LED Drivers

LED Mounts

#### Light

▼ CHAPTERS Coherent Sources

#### Incoherent Sources

#### Covega

**Drivers/Mounts** 

Accessories

▼ SECTIONS Laser Diode Controllers Temperature/TEC Controllers

LD/TEC Controllers LD/TEC <u>Platforms</u>

LD Mounts

LED Drivers

LED Mounts

# 

The TCLDM9 mount is ideal for temperature-controlled operation of all 3- and 4-pin laser diodes in Ø9 mm (TO-18) and Ø5.6 mm (TO-46) packages, as well as our fibercoupled pigtailed lasers. It includes a Bias-T for RF modulation of the laser current up to 500 MHz and can be easily integrated into any existing optical setup. The

LD Mou

Mounts for Ø5.6 mm and Ø9 mm Laser Packages

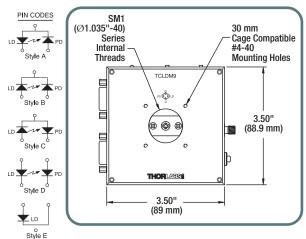
mount can be adapted to the polarity of the laser and monitor diodes by miniature switches located at the top.

User-protection features of the TCLDM9 mount include an LED located on the top that indicates an enabled laser and a remote interlock connector located on the side. The bottom surface features #8-32 and M4 x 0.7 mounting holes, and the front plate features tapped holes to mount our ER-Series Cage Assembly Rods (see page 155). A laser diode can be changed quickly by simply inserting the laser diode into the socket according to the imprinted pin assignment and fastening the clamp ring with two screws. The diode socket is located very close to the front of the cold plate, making the connection of short lead devices easier. The pass-through design of the socket allows installation of long lead diodes [up to 3/4" (19.1 mm)] without trimming. Laser protection features include optional grounding configurations and the TEC Lockout circuit\* that prevents the laser from being enabled when the TEC controller is inactive. The built-in TEC facilitates temperature-controlled operation of the laser diode, which is protected against air drafts by the clamp ring.

\*TEC Lockout only functions with Thorlabs lasers' and TEC controllers and can be easily bypassed if not required.

ee Our LD/TEC Controllers for ils on these Specialized Produ

#### See Page 1192


#### **LTC100 Series Kits**

The LTC100 Series Kit includes a current controller, temperature controller, and the TCLDM9 mount featured on this page. In addition, the kit includes a mounted aspheric lens, ESD wrist strap, aspheric lens adapter, and two spanner wrenches for tightening the adapter and aspheric lens. The kit price is 10% lower than the total price of the individual components.



#### Features

- Integrated TEC Element for Temperature-Controlled Operation of the Laser Diode
- Compatible with 3- and 4- Pin Laser Diodes in Ø9 mm (TO-18) and Ø5.6 mm (TO-46) Packages
- Compatible with Thorlabs' SM Pigtailed Laser Diodes and PM Pigtailed Laser Diodes
- Integrated Bias-T Adapter Allows for RF Modulation of the Laser Current up to 500 MHz
- 30 mm Cage System Compatible
- SM1 Lens Tube Compatible
- Integrate TEC Lockout Circuit to Protect LD (Can be Disabled)
- #8-32 and M4 x 0.7 Tapped Holes for Easy Mounting on a Post



See Our Selection of ER Series Cage Assembly Rods on Page 155

#### Please refer to our website for complete models and drawings.

| ELECTRICAL PARAMETER                              | VALUE                       |  |  |  |
|---------------------------------------------------|-----------------------------|--|--|--|
| Laser Diode Package                               | Ø5.6 mm and Ø9 mm           |  |  |  |
| Support Pin Configurations                        | A, B, C, and Most D         |  |  |  |
| Maximum Laser Current                             | 2 A                         |  |  |  |
| Polarity of Laser Diode                           | Selectable                  |  |  |  |
| Polarity of Monitor Diode                         | Selectable                  |  |  |  |
| Maximum RF Power                                  | 200 mW, RMS                 |  |  |  |
| RF Input Resistance (Bias-T)                      | 50 Ω                        |  |  |  |
| Modulation Frequency (Bias-T)                     | 0.2 - 500 MHz               |  |  |  |
| Maximum TEC Current                               | 5 A                         |  |  |  |
| Maximum TEC Voltage                               | 4 V                         |  |  |  |
| TEC Heating / Cooling Capacity                    | 20 W                        |  |  |  |
| TEC Interface                                     | DB9 Male                    |  |  |  |
| Temperature Sensor                                | AD592, 10k Thermistor       |  |  |  |
| Temperature Range (at 25 °C with 2 A TEC Current) | 5 - 70 °C                   |  |  |  |
| Dimensions                                        | 3.50" x 3.50" x 2.0"        |  |  |  |
|                                                   | 8.89 mm x 88.9 mm x 50.8 mm |  |  |  |

| ITEM#  | \$        | £        | €        | RMB        | DESCRIPTION                                     |
|--------|-----------|----------|----------|------------|-------------------------------------------------|
| TCLDM9 | \$ 440.70 | £ 305.60 | € 391,30 | ¥ 3,721.30 | TEC LD Mounts, Ø5.6 mm and Ø9 mm Laser Packages |

# Miniature TEC-Cooled Laser Diode Mount

#### **Specifications**

- Laser Diode Packages: Ø5.6 mm and Ø9 mm
- Maximum Laser Current: 1 A
- Polarity of Laser Diode: Selectable
- Polarity of Monitor Diode: Selectable
- Maximum TEC Current: 5 A
- Temperature Sensor: 10 kΩ Thermistor
- Temperature Range: 20 30 °C
- Laser Interface: Female DB9
- Temperature Interface: Male DB9

1.75 Mounting Holes for Cage Rods (44.5 mm) 4 Places 0.87" (22.2 mm) 1.75" **(**) (44.5 mm) SM1 Threading aser Diode 1.63" Mounting Flange (41.4 mm)

Please refer to our website for complete models and drawings

The LDM21 Miniature TEC-Cooled Laser Diode Mount measures half the size of our TCLDM9 mount and is capable of accepting both Ø5.6 mm and Ø9 mm laser diode packages. With an integrated thermal electric cooler element and a 10 k $\Omega$  thermistor, this mount keeps laser wavelengths stabilized by precisely holding the case temperature to within 0.002 °C.

Completely compatible with our extensive line of laser diode and TEC controllers, the small size of the LDM21 makes this mount ideal for optical setups where space is limited. It can be used with all standard laser diode pin configurations.

The front side of the mount has a standard 1.035"-40 thread, making it

compatible with all our SM1-threaded optomehanical components and allowing for the addition of collimating or focusing optics. The front of the mount also has #4-40 taps, making it

> compatible with our 30 mm cage systems. The back side of the mount accepts DB9 inputs from a laser current source and TEC controller.

# See Our SM1 Accessories

#### Laser Diodes Sold Separately. See Page 1032

| ITEM#  | \$               |      | £      |   | €      |   | RMB      | DESCRIPTION                                                   |
|--------|------------------|------|--------|---|--------|---|----------|---------------------------------------------------------------|
| LDM21* | \$<br>305.00     | £    | 211.50 | € | 270,80 | ¥ | 2,575.50 | Miniature TEC-Cooled Laser Diode Mount                        |
| S1TM09 | \$<br>20.10      | £    | 14.00  | € | 17,90  | ¥ | 169.80   | SM1 to Ø9 mm Lens Cell Adapter                                |
| SM1NT  | \$<br>5.90       | £    | 4.10   | € | 5,30   | ¥ | 49.90    | SM1 (Ø1.035"-40) Locking Ring, 1.25" (31.8 mm) Outer Diameter |
| *U-:   | <br>Mania Camari | 1.1. |        |   |        |   |          |                                                               |

Universal Design is Imperial and Metric Compatible

# **Laser Scanning Microscopy and Accessories**

Our new Video-Rate Confocal Imaging System is a compact, modular design that provides a high degree of configuration flexibility. Various add-on detection and source options, including our new four-channel fiber-coupled laser source, are available. Z-axis scanning is possible using the optional, software-controlled, voice coildriven Z translation stage. Other optional acessories include a beam combiner and pinhole selector. Together, these components allow you to create a truly customized solution for your confocal laser scanning needs.

# See Page 1394



www.thorlabs.com

LDM21

Not Included

Optics and Adapter

Liaht

# CHAPTERS V

TECHNOLOGY V

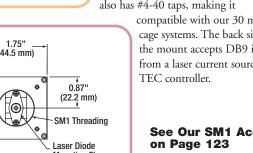
**Coherent Sources** 

**Incoherent Sources** 

#### Covega

**Drivers/Mounts** 

#### Accessories


SECTIONS V Laser Diode Controllers Temperature/TEC Controllers LD/TEC Controllers LD/TEC Platforms

#### **LD Mounts**

LED Drivers

**LED Mounts** 





#### Light

#### ▼ CHAPTERS

**Coherent Sources** 

**Incoherent Sources** 

#### Covega

#### **Drivers/Mounts**

#### Accessories

▼ SECTIONS Laser Diode Controllers Temperature/TEC Controllers LD/TEC Controllers

LD/TEC Platforms

**LD Mounts** 

**LED Drivers** 

**LED Mounts** 

#### **Collimation Tubes with Optics for** Ø5.6 mm and Ø9 mm Laser Packages











**Collimation and Focusing Tube** 

For Ø5.6 mm and Ø9 mm Packages

For Focus Adjustment of Our Collimation Package

Thorlabs' line of collimation and focusing tubes with optics offer precision mounts for standard Ø9 mm and Ø5.6 mm laser packages. Lasers can be easily replaced, and the lens mounts have an adjustable focus. The packages include a main tube, an optic, a retaining ring, a rubber O-ring, and an adapter (for the Ø5.6 mm packages). The collimation tubes feature a diffraction-limited aspheric optic with a multilayer broadband AR coating.

# Mechanical WEB

#### **Collimation Tubes and Optics**

| ITEM#    | \$           |   | £     |   | €      |   | RMB      | WAVELENGTH<br>RANGE | PACKAGE<br>LENGTH | NUMERICAL<br>APERTURE | f (mm) |
|----------|--------------|---|-------|---|--------|---|----------|---------------------|-------------------|-----------------------|--------|
| LT110P-B | \$<br>111.00 | £ | 77.00 | € | 98,60  | ¥ | 937.30   | 650 - 1050 nm       | 0.85"             | 0.40                  | 6.24   |
| LT220P-B | \$<br>111.00 | £ | 77.00 | € | 98,60  | ¥ | 937.30   | 650 - 1050 nm       | 1.00"             | 0.25                  | 11.0   |
| LT230P-B | \$<br>111.00 | £ | 77.00 | € | 98,60  | ¥ | 937.30   | 650 - 1050 nm       | 0.75"             | 0.55                  | 4.5    |
| LT240P-B | \$<br>143.00 | £ | 99.20 | € | 127,00 | ¥ | 1,207.50 | 650 - 1050 nm       | 0.95"             | 0.50                  | 8.0    |

#### **Focusing Tubes and Optics**

| ITEM#                                                                                         | \$         | £         | €        | RMB       | DESCRIPTION                           | L     |  |  |  |
|-----------------------------------------------------------------------------------------------|------------|-----------|----------|-----------|---------------------------------------|-------|--|--|--|
| LT230220P-B                                                                                   | \$ 228.00  | £ 158.10  | € 202,50 | ¥1,925.30 | Laser Tube with C230220P-B Optic Pair | 0.24" |  |  |  |
| LT230260P-B \$ 228.00 £ 158.10 € 202,50 ¥1,925.30 Laser Tube with C230260P-B Optic Pair 0.55" |            |           |          |           |                                       |       |  |  |  |
| *Compatible with                                                                              | SPW301 and | AD15E sho | wn above |           |                                       |       |  |  |  |

|   | ITEM#  | \$          |   | £     |   | €     |   | RMB    | DESCRIPTION                                   |   |
|---|--------|-------------|---|-------|---|-------|---|--------|-----------------------------------------------|---|
|   | SPW301 | \$<br>14.00 | £ | 9.70  | € | 12,50 | ¥ | 118.30 | Spanner Wrench for LT110P, LT220P, and LT230P |   |
| ) | SPW302 | \$<br>14.50 | £ | 10.05 | € | 12,90 | ¥ | 122.50 | Spanner Wrench for LT240P                     |   |
|   | AD15F  | \$<br>29.90 | £ | 20.80 | € | 26,60 | ¥ | 252.50 | Adapter for Collimation Tubes to SM1 Thread   | 1 |

# Adaptive Optics Toolkit

#### **Features**

SPW301

- Out-of-the-Box Functionality for Real-Time, High-Precision Wavefront Control
- MEMS-Based DM Achieves High Spatial Resolution Due to High Actuator Count and Low Inter-Actuator Coupling
- Shack-Hartmann Wavefront Sensor with High Resolution CCD Camera and High-Quality Microlens Array
- Includes Light Source, Imaging Optics, and Associated Mounting Hardware

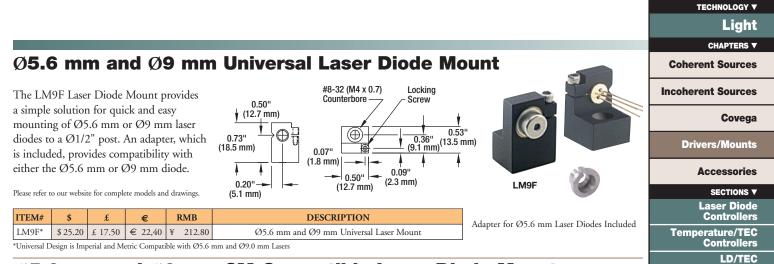
Thorlabs' new Adaptive Optics (AO) Toolkits removes the barrier for entry into adaptive optics, making this real-time wavefront-correcting technology accessible to researchers and OEM users alike. The kit includes Boston Micromachines Corporation's state of-the-art, 140-element, 3.5 micron stroke, MEMS-based deformable mirror. Also included is a Thorlabs' WFS150C Shack-Hartmann wavefront sensor, all necessary imaging optics and mounting hardware, fully functional stand-alone control software for immediate control of the system, and a low-level support library to assist with tailored applications authored by the end user. In addition, since the kit ships as three pre-aligned optomechanical sections that only need to be arranged on a user-supplied breadboard, our adaptive optics toolkits provide a near out-of-the-box solution for real-time wavefront compensation.

#### Features

- Precision Mount for Standard Ø9 mm and Ø5.6 mm Laser Packages
- Threaded Retaining Ring for Holding Laser
- Easily Replace Laser Diodes
- Lens Mount with Adjustable Focus

Lens Tube with Strain Relief and ESD Protection Cable

#### C230220P-B


Details on these molded glass aspheres as well as our entire selection of these products can be found on pages 626-643.



D15F Mounting adapter to ntegrate collimation ubes into our SM1-



See Pages 1406-1411



# Ø5.6 mm and Ø9 mm SM-Compatible Laser Diode Mounts

These laser diode mounts are designed for mounting  $\emptyset$ 5.6 mm or  $\emptyset$ 9 mm laser diodes directly into our SM05 or SM1 lens tube systems, respectively. The mounts come packaged with one aluminum adapter and two retaining rings; if using the mount with a  $\emptyset$ 9 mm diode, simply use the thinner black retaining ring to secure the diode into place. Alternatively, if the mount is to be used with a  $\emptyset$ 5.6 mm diode, the aluminum adapter is first placed inside the main housing; then, the  $\emptyset$ 5.6 mm diode is secured into place using the thicker black retaining ring.



| ITEM#  | \$          |   | £     |   | €     |   | RMB    | DESCRIPTION                                          |
|--------|-------------|---|-------|---|-------|---|--------|------------------------------------------------------|
| S1LM9  | \$<br>26.80 | £ | 18.60 | € | 23,80 | ¥ | 226.30 | SM1 Series Mount for Ø5.6 mm and Ø9 mm Laser Diodes  |
| S05LM9 | \$<br>22.00 | £ | 15.30 | € | 19,60 | ¥ | 185.80 | SM05 Series Mount for Ø5.6 mm and Ø9 mm Laser Diodes |

# **Strain Relief and ESD Protection**

#### Features

- Includes Laser Socket and 2' of Shielded Cable
- Threads into LT Housing, Secures Laser Socket
- Includes Clamping and Reverse Protection Diodes to Suppress ESD
- Available with DB9 Connector for Mating Directly with all LDC Series Drivers and ITC5XX Series Laser Diode and Temperture Controllers

The SR9 Series of strain relief and ESD protection products offer a convenient and safe means of connecting a Ø5.6 mm or Ø9 mm laser diode to our line of Laser Diode Controllers. Each model comes with a laser socket mounted

SR9A-DB9

to a small printed circuit board (PCB). The PCB contains a Schottky diode to clamp any reverse voltages that might occur across the laser diode, as well as a 3.3 V Zener diode to shunt any excessive voltages or ESD away from the diode. Each model of the SR9 Series corresponds to one of the standard pin styles for laser diodes (see the diagram below) and is compatible with our LT Series of Collimation Tubes presented on the

facing page. The SR9HB is especially designed for blue laser diodes with built-in photodiodes that support pin style B.

The SR9HE is specifically designed to work with our new, 3-pin blue laser diodes that have no built-in photodiodes. Both can be used with a maximum laser diode forward voltage of 7.5 V. The series is available with or without a DB9 connector. All SR9x-DB9 models are pin compatible with all LDC Series Drivers and ITC5XX Series Laser Diode and Temperture Controllers.

| ITEM#     | \$       | £       | €       | RMB      | DESCRIPTION                                                      |
|-----------|----------|---------|---------|----------|------------------------------------------------------------------|
| SR9A      | \$ 42.90 | £ 29.80 | € 38,10 | ¥ 362.30 | ESD Protection and Strain Relief, Pin Style A                    |
| SR9A-DB9  | \$ 45.90 | £ 31.90 | € 40,80 | ¥ 387.60 | ESD Protection and Strain Relief, Pin Style A with DB9           |
| SR9B      | \$ 42.90 | £ 29.80 | € 38,10 | ¥ 362.30 | ESD Protection and Strain Relief, Pin Style B                    |
| SR9B-DB9  | \$ 45.90 | £ 31.90 | € 40,80 | ¥ 387.60 | ESD Protection and Strain Relief, Pin Style B with DB9           |
| SR9C      | \$ 42.90 | £ 29.80 | € 38,10 | ¥ 362.30 | ESD Protection and Strain Relief, Pin Style C                    |
| SR9C-DB9  | \$ 45.90 | £ 31.90 | € 40,80 | ¥ 387.60 | ESD Protection and Strain Relief, Pin Style C with DB9           |
| SR9D      | \$ 42.90 | £ 29.80 | € 38,10 | ¥ 362.30 | ESD Protection and Strain Relief, Pin Style D                    |
| SR9D-DB9  | \$ 45.90 | £ 31.90 | € 40,80 | ¥ 387.60 | ESD Protection and Strain Relief, Pin Style D with DB9           |
| SR9HB     | \$ 42.90 | £ 29.80 | € 38,10 | ¥ 362.30 | ESD Protection and Strain Relief, Pin Style B, 7.5 V             |
| SR9HB-DB9 | \$ 45.90 | £ 31.90 | € 40,80 | ¥ 387.60 | ESD Protection and Strain Relief, Pin Style B, 7.5 V with DB9    |
| SR9HE     | \$ 42.90 | £ 29.80 | € 38,10 | ¥ 362.30 | ESD Protection and Strain Relief, Blue LD w/o PD, 7.5 V          |
| SR9HE-DB9 | \$ 45.90 | £ 31.90 | € 40,80 | ¥ 387.60 | ESD Protection and Strain Relief, Blue LD w/o PD, 7.5 V with DB9 |

Controllers

Platforms

LD Mounts

LED Drivers

**LED Mounts** 

#### Light

▼ CHAPTERS Coherent Sources

Incoherent Sources

#### Covega

#### Drivers/Mounts

Accessories

| T CENTIONS |  |
|------------|--|

Laser Diode Controllers

Temperature/TEC Controllers

LD/TEC

Controllers

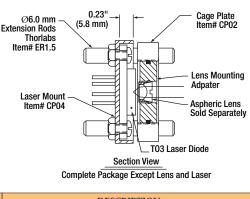
LD/TEC Platforms

LD Mounts

LED Drivers

LED Mounts

TO3 Collimation Package




Laser Sold Separately

Ideal for Collimating High-Power Laser Diodes

- Complete Package (as Shown in the Photograph Above)
- Each Unit is Shipped Assembled Less the Laser and the Aspheric Lens
  Compatible with Our Extensive Line of Ø1" SM1 Series Lens Tubes (See Page 123)
- Broad Selection of Collimation Optics (Sold Separately, See Page 626)

The LDH3 TO3 Collimation Package can be used one of two ways. If the laser output power is low and no heat sinking is required, the laser can be mounted directly to the LDH3 (as shown in the photograph). For higher power lasers or where temperature regulation is required, the LDH3 can be mounted directly onto any heatsink that is designed to accept TO3 laser packages.

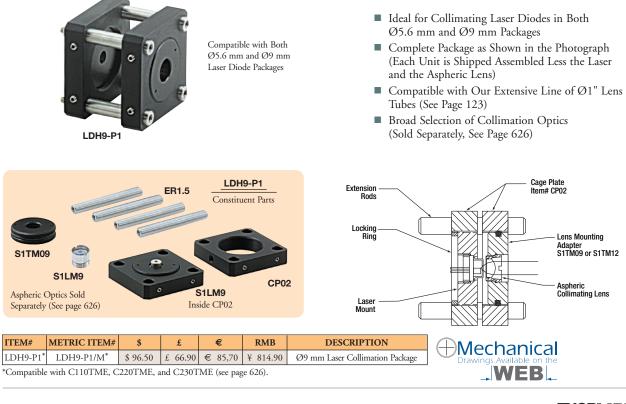


Optics Sold Separately See Selection Guide on

Page 626.

**CP02** 

S1TM09


**CP04** 

LDH3-P1 Constituent Parts

ER1.5

| ITEM#                                                          | METRIC ITEM# | \$        | £       | €        | RMB        | DESCRIPTION             |  |  |
|----------------------------------------------------------------|--------------|-----------|---------|----------|------------|-------------------------|--|--|
| LDH3-P1*                                                       | LDH3-P1/M*   | \$ 119.90 | £ 83.20 | € 106,50 | ¥ 1,012.50 | TO3 Collimation Package |  |  |
| *Compatible with C110TME, C220TME, and C230TME (See page 626). |              |           |         |          |            |                         |  |  |

# Ø5.6mm and Ø9mm Collimation Packages



THORLABS

# **LED Drivers**

#### Pages 1223-1228











#### **Compact Benchtop LED Controllers**

- 700 mA and 1000 mA Output Currents
- Constant Current and Pulsed Current Modes
- Compact Footprint
- External Pulse Width and Frequency Control

#### See Page 1224

#### **High-Power LED Driver with Pulse Modulation**

- 2 A Output Current and up to 24 V Forward Voltage
- Three Operation Modes
  - Constant Current Mode
  - Pulse Width Modulation Mode
  - Customizable External Trigger Mode with Adjustable Modulation Frequency

#### See Page 1225

#### **4-Channel Benchtop LED Driver**

- 4 Independent Adjustable Channels with up to 1 A Each
- Three Operation Modes
  - Constant Current Mode for Current Settings in mA
  - Brightness Mode for Current Settings in Percent
  - External Control Mode for Simultaneous Modulation of all Channels via External Trigger Voltage

#### See Page 1226

#### **Fast Modulating LED Source**

- Complete System with Driver and Mounted LED
- Three Operation Modes
  - Fast Internal Modulation for 100 MHz Max
  - Customizable External Trigger Mode for 100 kHz Max
  - Constant Adjustable Current up to 1 A

#### See Page 1227

#### **OEM Laser Diode and LED Drivers**

- Drivers with Different Features and Footprints
- Constant Current and Constant Power Diode Drivers for 100 mA, 250 mA, 500 mA, and 2.5 A
- Drivers with Modulation
- Drivers for Different Diode and Sensor PIN Styles

#### **See Page 1228**

#### Light **V** CHAPTERS

**Coherent Sources** 

**Incoherent Sources** 

#### Covega

**Drivers/Mounts** 

#### Accessories

▼ SECTIONS Laser Diode

Controllers

Temperature/TEC Controllers

LD/TEC Controllers

LD/TEC Platforms

**LD Mounts** 

I FD Drivers

**LED Mounts** 



LEDD1A T-Cube LED Driver with Cable Included (Power Supply Sold Separately)

#### Features

- Easy-to-use LED Driver
- Constant Current and Pulsed Current Modes
- Compact T-Cube Footprint
- Pulse Width and Frequency Controllable via External 0 - 5 V TTL Signal

The T-Cube LEDD1 Series is a variable intensity, compact LED driver that can drive the most recent generation of high-power, low compliance voltage LEDs available on the market (e.g., Philips/ Lumiled LEDs). Combined with the Thorlabs LED collimator assembly (see page 1109) or a Koehler Illuminator, the LEDD1 makes a cost-effective light source for microscopy (including fluorescence microscopy).

The LED brightness can be adjusted via a potentiometer, which

# NEW

#### ITEM# LEDD1 LEDD1A 1000 mA Output Current 700 mA Maximum Forward Voltage 13 V 10 V Maximum Flash Frequency 10 kHz Minimum Strobe Pulse Width 50 µs Strobe Turn-On / Turn-Off Time <25 µs 15 VDC Power Supply Operating Temperature 0 to 40 °C -40 to 70 °C Storage Temperature 2.4" x 2.4" x 1.8" (60 mm x 60 mm x 47 mm) Physical Size



regulates the LED current up to a maximum of 700 mA (LEDD1) or 1 A (LEDD1A). This adjuster also turns the controller on and off. The LEDD1 Series offers a continuous current mode and an externally triggered pulsed mode (via BNC 5 V TTL input). This makes the LEDD1 an ideal choice for imaging with CCD cameras or photodiodes (CW mode) or for applications that strobe the LED with pulse width modulation.

Each controller is shipped attached to a removable base plate that allows the T-Cube to be secured to an optical table. To attach the unit to a T-Cube Controller Hub, the base plate must be removed.

| ITEM#  | \$        | £        | €        | RMB        | DESCRIPTION                                    |
|--------|-----------|----------|----------|------------|------------------------------------------------|
| LEDD1  | \$ 249.00 | £ 172.70 | € 221,10 | ¥ 2,102.60 | T-Cube LED Driver, 700 mA Drive Current (Max)  |
| LEDD1A | \$ 269.00 | £ 186.50 | € 238,90 | ¥ 2,271.50 | T-Cube LED Driver, 1000 mA Drive Current (Max) |

# T-Cube LED Driver Power Supply Options

The LEDD1 and LEDD1A can be powered using a TPS001 Single-Channel T-Cube Power Supply, a TPS008 8-Channel Power Supply, or the TCH002 T-Cube Hub and Power Supply. TPS001 and TPS008 plug into a standard wall outlet and provide +15 VDC. The TCH002 Hub and Power Supply consists of two parts: the hub, which can support up to six standard-footprint T-Cubes, and a power supply that plugs into a standard wall outlet and powers the hub, which in turn powers all the T-Cubes connected to the hub.

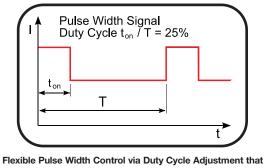


| ITEM#  | \$        | £        | €        | RMB        | DESCRIPTION                                  |
|--------|-----------|----------|----------|------------|----------------------------------------------|
| TPS001 | \$ 25.00  | £ 17.40  | € 22,20  | ¥ 211.20   | 15 V Power Supply Unit for a Single T-Cube   |
| TPS008 | \$ 175.00 | £ 121.40 | € 155,40 | ¥ 1,477.80 | 15 V Power Supply Unit for up to 8 T-Cubes   |
| TCH002 | \$ 726.90 | £ 504.00 | € 645,40 | ¥ 6,138.00 | T-Cube™ Controller Hub and Power Supply Unit |



# **High-Power LED Driver with Pulse Modulation**




Thorlabs' new DC2100 LED Driver provides up to 2 A output current for very high-power LEDs with a maximum forward voltage up to 24 V. The pulse width modulation feature offers flexible pulse control: pulse height via LED current, pulse frequency, duty cycle, and number of pulses down to single pulse operation. The LED current can be controlled via an external trigger input voltage as well, which allows modulation up to 100 kHz.

The DC2100 is ultra stable and designed for applications that are sensitive to even small high-frequency brightness fluctuations. If connected to our MxxxL1 Series of Mounted LEDs (see page 1102), the DC2100 automatically reads the stored LED data from the EEPROM (e.g., maximum current to avoid LED damage) and adjusts the controller's settings accordingly.

The DC2100 can operate in three modes:

- Constant Current Mode: For visual inspection, the LED current can be adjusted from 0 to 2 A in 1 mA increments.
- Pulse Width Modulation Mode: Enables single LED pulses with adjustable LED current (0 - 2 A), pulse frequency (1 Hz - 10 kHz), duty cycle (1% - 100%), and number of pulses (1 - 100 or continuous pulse emission).
- **External Control Mode:** Customizable external trigger with adjustable modulation frequency up to 100 kHz, input voltage from 0 V to 10 V (1 V corresponds to 200 mA LED current).

The DC2100 can be connected to a PC using a USB 2.0 interface. The unit comes with a GUI interface and drivers.



is Defined as ton / T

| ITEM#  | \$          | £          | €          | RMB         | DESCRIPTION                                                       |
|--------|-------------|------------|------------|-------------|-------------------------------------------------------------------|
| DC2100 | \$ 1,750.00 | £ 1,213.00 | € 1.553,50 | ¥ 14,778.00 | High-Power, 1-Channel LED Driver with Pulse Modulation, 2 A, 24 V |

#### Features

- Ideal for LED Currents up to 2 A and Voltages up to 24 V
- Modulation Frequency up to 100 kHz, Sine Wave
  - Three Modes of Operation
  - Constant Current Mode
  - Pulse Width Modulation Mode
  - · Customizable External Trigger Mode with Adjustable Modulation Frequency
- USB 2.0 Interface for PC Control

#### **Applications:**

- Operation of Very High-Power LEDs or High-Power LED Arrays
- LED Characterization
- Microscopy Applications with Trigger or Pulse Control Requirements

| ITEM#                                                | DC2100                                                           |  |  |  |  |
|------------------------------------------------------|------------------------------------------------------------------|--|--|--|--|
| Constant Current Mode                                |                                                                  |  |  |  |  |
| LED Current Range                                    | 0 - 2 A (1 mA Resolution)                                        |  |  |  |  |
| LED Current Resolution                               | 1 mA                                                             |  |  |  |  |
| LED Current Accuracy                                 | ±20 mA                                                           |  |  |  |  |
| LED Forward Voltage                                  | 24 V                                                             |  |  |  |  |
| Pulse Width Modulation Mode                          |                                                                  |  |  |  |  |
| PWM Frequency Range                                  | 1 Hz - 10 kHz                                                    |  |  |  |  |
| PWM Frequency Resolution                             | 1 Hz (for Frequencies <1 kHz)<br>100 Hz (for Frequencies >1 kHz) |  |  |  |  |
| Duty Cycle                                           | 1 - 100%                                                         |  |  |  |  |
| Duty Cycle Resolution                                | 1%                                                               |  |  |  |  |
| External Control Mode                                |                                                                  |  |  |  |  |
| Modulation Frequency Range                           | 0 - 100 kHz, Sine Wave                                           |  |  |  |  |
| Modulation                                           | Arbitrary                                                        |  |  |  |  |
| Trigger Input (Max)                                  | 10 V<br>1 V Corresponds to 200 mA                                |  |  |  |  |
| General                                              |                                                                  |  |  |  |  |
| Operating<br>Temperature Range*                      | 0 to 40 °C                                                       |  |  |  |  |
| Storage Temperature Range                            | -40 to 70 °C                                                     |  |  |  |  |
| Dimensions (W x H x D) without<br>Operating Elements | 160 mm x 80 mm x 150 mm                                          |  |  |  |  |
| Dimensions (W x H x D) with<br>Operating Elements    | 160 mm x 80 mm x 168 mm                                          |  |  |  |  |
| Warm-up Time for Rated Accuracy                      | <10 min                                                          |  |  |  |  |
| Weight                                               | <1 kg                                                            |  |  |  |  |
| Non-Condensing                                       |                                                                  |  |  |  |  |

#### **Coherent Sources**

TECHNOLOGY Light CHAPTERS V

**Incoherent Sources** 

#### Covega

**Drivers/Mounts** 

#### Accessories

SECTIONS V Laser Diode Controllers Temperature/TEC Controllers

LD/TEC

Controllers LD/TEC Platforms

LD Mounts

#### **LED Drivers**

**LED Mounts** 

#### Light CHAPTERS

**Coherent Sources** 

**Incoherent Sources** 

#### Covega

**Drivers/Mounts** 

#### Accessories

v SECTIONS
 Laser Diode
 Controllers
 Temperature/TEC
 Controllers
 LD/TEC
 Controllers
 LD/TEC
 Platforms

LD Mounts

**LED Drivers** 

**LED Mounts** 

#### ESC Channel 2 Constituent Co

4-Channel LED Driver

This new 4-Channel LED Controller can drive up to four high-power LEDs simultaneously with independent current settings for each channel from 0 to 1000 mA. All channels can be modulated simultaneously via an external voltage with a maximum frequency of 100 kHz. Additionally each channel can be individually switched on and off with a typical switching time of 25 µs. Typical applications are fluorescence microscopy or other applications that need to quickly switch between up to four different wavelengths. It is the ideal driver for the LED4C Series of Four-Wavelength LED Sources (see page 1106). Via the optional DC4100-HUB, it also can drive four highpower LEDs simultaneously (see pages 1107).

The DC4100 is ultra stable and designed for applications that are sensitive to even small high-frequency brightness fluctuations. It has a compact housing with a backlit, easy-to-read LCD display and a wheel selector.

- Constant Current Mode: The LED current is kept constant at a preset current value. This mode is ideal for general illumination applications. LED current can be individually set for each LED.
- Brightness Mode: Controls the LED current at a set percentage of the maximum current. This mode is optimal for fluorescence microscopy applications. LED current percentage can be individually set for each LED.
- External Control Mode: Enables control of all LED currents via a single external trigger voltage (10 V). 1 V corresponds to an LED current of 100 mA. This mode allows customers to set custom modulation settings of the LED current. All activated LEDs are simultaneously controlled, but individual LEDs can be deactivated.

The DC4100 can be connected to a PC using a USB2.0 interface. The unit comes with a GUI interface and drivers.



you to connect four individual high brightness LEDs like Thorlabs' Mounted LEDs of the MxxxL1-series or MxLEDseries to the DC4100. Each LED is connected by a standard M8x1 sensor circular connector.

#### Features

- Controls up to 4 Individual LEDs or Thorlabs' 4-Wavelength LED4C Source
- Individual Current Settings per Channel up to 1 A
- 3 Modes of Operation
  - Constant Current Mode for Current Settings in mA
  - Brightness Mode for Current Settings in %
  - External Control Mode for Simultaneous Modulation of all Channels via External Trigger Voltage
- USB 2.0 Interface for PC Control

#### Applications

- Driver for 4-Wavelength LED Source (LED4C)
- Fluorescence Microscopy with Multiple Wavelength Requirements

| ITEM#                                                | DC4100                                          |  |  |  |
|------------------------------------------------------|-------------------------------------------------|--|--|--|
| Constant Current Mode                                |                                                 |  |  |  |
| LED Current Range                                    | 0 - 1000 mA                                     |  |  |  |
| LED Current Resolution                               | 1 mA                                            |  |  |  |
| LED Current Accuracy                                 | ±10 mA                                          |  |  |  |
| LED Forward Voltage                                  | 5 V                                             |  |  |  |
| Brightness Mode                                      |                                                 |  |  |  |
| LED Current Range                                    | 1 - 100%                                        |  |  |  |
| LED Current Resolution                               | 0.1% (1 mA Min)                                 |  |  |  |
| LED Current Accuracy                                 | ±10 mA                                          |  |  |  |
| LED Forward Voltage                                  | 5 V                                             |  |  |  |
| Modulation                                           |                                                 |  |  |  |
| Modulation Frequency Range                           | 0 - 100 kHz, Sine Wave                          |  |  |  |
| Modulation                                           | Arbitrary                                       |  |  |  |
| External Trigger Input (Max)                         | 10 V<br>1 V Corresponds to 100 mA               |  |  |  |
| General                                              |                                                 |  |  |  |
| Operating Temperature Range*                         | 0 to 40 °C                                      |  |  |  |
| Storage Temperature Range                            | -40 to 70 °C                                    |  |  |  |
| Dimensions (W x H x D)<br>without Operating Elements | 160 mm x 80 mm x 150 mm<br>(6.3" x 3.1" x 5.9") |  |  |  |
| Warm-up Time for Rated Accuracy                      | 10 min                                          |  |  |  |
| Weight                                               | <1 kg                                           |  |  |  |

| ITEM#      | \$          | £          | €          | RMB         | DESCRIPTION                     |
|------------|-------------|------------|------------|-------------|---------------------------------|
| DC4100     | \$ 2,495.00 | £ 1,729.50 | € 2.215,00 | ¥ 21,068.00 | 4-Channel LED Driver, 1 A, 5 V  |
| DC4100-HUB | \$ 150.00   | £ 104.00   | € 133,20   | ¥ 1,266.70  | DC4100 Single LED Connector Hub |





Thorlabs' Modulated LED Sources in the DC3100 series are designed for frequency domain Fluorescence Lifetime Imaging FLIM and other microscopy applications that require advanced, modulated, high-brightness LED sources. This compact LED source consists of a high-current, highpower driver and a LED head with modulating electronics that are designed for high-brightness LEDs with high thermal dissipation losses. The LED is included in the head. There are four standard wavelengths available: 365 nm, 405 nm, 470 nm, and 630 nm (other wavelengths upon request). Collimated mounting adapters for Olympus BX and IX, Leica DMI, Nikon Eclipse (Bayonet-Mount), and Zeiss Axioskop Microscopes are available as optional accessories (see pages 1109).

The DC3100 Series is from our new line of ultra-stable HB-LED drivers and light sources for demanding scientific applications that suffer when even the smallest high-frequency brightness fluctuation occurs.

The DC3100 can be connected to a PC using a USB2.0 interface. The unit comes with a GUI interface and drivers.

| SPECIFICATIONS                                    |                                              |  |  |  |  |  |
|---------------------------------------------------|----------------------------------------------|--|--|--|--|--|
| LED Current Range                                 | 0 - 1000 mA                                  |  |  |  |  |  |
| INTERNAL MODULATION MODE                          |                                              |  |  |  |  |  |
| Modulation Frequency Range                        | 10 - 100 MHz in 0.1 MHz Steps*               |  |  |  |  |  |
| Modulation Depth                                  | 0 - 100 %                                    |  |  |  |  |  |
| Trigger Output                                    | Sine Wave                                    |  |  |  |  |  |
| EXTERNAL MODULATION MODE                          |                                              |  |  |  |  |  |
| Modulation Frequency Range                        | 0 - 100 kHz, Sine Wave                       |  |  |  |  |  |
| Modulation                                        | Arbitrary<br>10 V, 1 V Corresponds to 100 mA |  |  |  |  |  |
| Trigger Input, Max                                |                                              |  |  |  |  |  |
| GENERAL TECHNICAL DATA                            |                                              |  |  |  |  |  |
| Operating Temperature Range                       | 0 to 40 °C                                   |  |  |  |  |  |
| Dimensions (W x H x D) with<br>Operating Elements | 160 mm x 80 mm x 168 mm                      |  |  |  |  |  |
| Warm Up Time for Rated Accuracy                   | <10 min                                      |  |  |  |  |  |
| Weight                                            | <1 kg                                        |  |  |  |  |  |

#### Features

- Very-Stable, Non-Switching, High-Brightness LED Driver
- Modulation Frequency: 10 100 MHz Sine Wave
- LED Current up to 1 A
- 3 Modes of Operation
  - Internal Modulation Mode for FLIM Applications

Separately, on page 1109)

- External Trigger Mode for Non-FLIM Applications
- · Constant Current Mode for Visual Inspection
- SM2 Head Mounting Option Compatible with Thorlabs' Lens Tubes
- Optional Adapters for Olympus BX and IX, Leica DMI, Nikon Eclipse (Bayonet-Mount), and Zeiss Axioskop Microscopes
- USB2.0 Interface for PC Control



| ITEM#      | CENTER<br>WAVELENGTH PEAK | I (MAX) | CUTOFF<br>FREQUENCY |
|------------|---------------------------|---------|---------------------|
| DC3100-365 | 365 nm                    | 700 mA  | 90 MHz              |
| DC3100-405 | 405 nm                    | 1000 mA | 95 MHz              |
| DC3100-470 | 470 nm                    | 1000 mA | 80 MHz              |
| DC3100-630 | 630 nm                    | 1000 mA | 70 MHz              |

\*LED Dependent

For the DC3100 LED Head, Optional Microscopy Adapters are Available (See Page 1109)

| ITEM#      | \$          | £          | €          | RMB         | DESCRIPTION                                     |
|------------|-------------|------------|------------|-------------|-------------------------------------------------|
| DC3100-365 | \$ 1,950.00 | £ 1,352.00 | € 1.731,00 | ¥ 16,466.00 | Modulated LED Source for FLIM with Head, 365 nm |
| DC3100-405 | \$ 1,650.00 | £ 1,144.00 | € 1.465,00 | ¥ 13,933.00 | Modulated LED Source for FLIM with Head, 405 nm |
| DC3100-470 | \$ 1,650.00 | £ 1,144.00 | € 1.465,00 | ¥ 13,933.00 | Modulated LED Source for FLIM with Head, 470 nm |
| DC3100-630 | \$ 1,650.00 | £ 1,144.00 | € 1.465,00 | ¥ 13,933.00 | Modulated LED Source for FLIM with Head, 630 nm |

TECHNOLOGY V Liaht

LD/TEC Platforms

LD Mounts

**LED Drivers** 

**LED Mounts** 

#### Light CHAPTERS

**Coherent Sources** 

Incoherent Sources

#### Covega

**Drivers/Mounts** 

#### Accessories

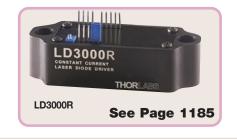
▼ SECTIONS Laser Diode Controllers Temperature/TEC Controllers

LD/TEC Controllers LD/TEC

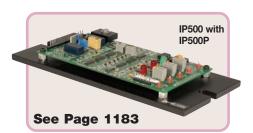
Platforms

LD Mounts

**LED Drivers** 


LED Mounts

#### LED Drivers: OEM Solutions






# LD1255R with LD1255P See Page 1185







#### 100 mA, 5.5 V Constant Power with Modulation LED Driver

- Constant Power Driver Module
- Low Noise / Ultra-Stable Control
- Slow Start for Diode Protection

The EK2000 Series Evaluation Kit allows users to quickly set up the LD2000R with a laser diode/LED and a DC power supply. All of the LD2000R features are supported with convenient, easy-to-use connector interfaces.

#### **250 mA Constant Power LED Driver**

- Constant-Power Driver Module
- Automatic Power Control (APC), CW Operation
- Single Supply Operation, 8 12 VDC

The EK1100 Series Evaluation Kit is a ready-to-use, preassembled LD1100 Diode/LED Driver with an evaluation PCB (LD1100), cable with socket (S8060), and a power supply cable (9 V battery clip).

#### 250 mA, 3.3 V Precision, Constant-Current LED Driver

- Low Noise, Low Temperature Drift
- External Input for Laser-Current Control
- Monitor Outputs for Laser Current and Photodiode Current

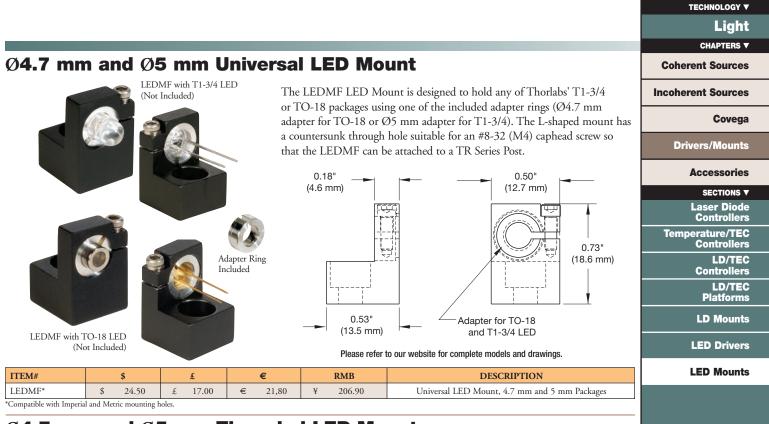
The LD1255R is low-noise, ultra-stable constant-current laser diode driver. This 250 mA driver supports both LEDs as well as diode lasers.

#### 2.5 mA, 7.7 V Constant Current LED Driver

- Low Noise, Ultra-Stable, High Power Constant Current Driver
- Small Aluminum Housing Provides Additional Heat Sinking
- Monitor Outputs for Laser Current and Photodiode Current

The LD3000 is a higher power, 2.5 A version of the LD1255R. The LD3000 utilizes high-current components and an aluminum housing that provides an additional heat sink to enable a high-power laser diode/LED driver in a relatively small package.

#### 250 mA, 8 V Constant Current / Power LED Driver


- Optimized for Diodes with Higher Voltages
- Automatic Power Control (APC)
- Modulation Bandwidth of 0 50 kHz

This medium power driver is in the form of a PCB assembly and can be mounted into other higher level assemblies. It can accommodate only common cathode (cathode grounded) laser diode/LED pin-out configurations, and it allows control of the laser/LED by means of either constant current or constant power modes.

#### 500 mA, 3 V Constant Current / Power LED Driver


- Constant Power and Constant Current Mode
- Test Points for Diode Current, Monitor Photodiode Current, and Current Limit and Power Limit Setpoints
- Modulation Bandwidth of 0 50 kHz

Designed for use within higher level assemblies while also being value priced as a laboratory diode/LED driver. This versatile device can easily and safely control all Laser Diode/LED pin configurations in Ø5.6 mm and Ø9 mm packages.



# Ø4.7 mm and Ø5 mm Threaded LED Mount





#### Light

#### **V** CHAPTERS **Coherent Sources**

#### **Incoherent Sources**

#### Covega

#### **Drivers/Mounts**

#### Accessories

▼ SECTIONS Laser Diode Controllers

Temperature/TEC Controllers

LD/TEC Controllers

LD/TEC Platforms

LD Mounts

**LED Drivers** 

**LED Mounts** 

# Lens Tube Slip Rings

#### Features

- SM1RC is Compatible with Our Mounted LEDs (See Pages 1092-1103)
- SM2RC is Compatible with the LEDC Family of Collimated LEDs
- Slim Body Size to Conserve Space
- Flat Sides Facilitate Mounting Several Slip Rings Side by Side
- Locking Screw Secures LEDs in Slip Ring



SM1RC

AD38

KS2, LED,

Included

and Post Not

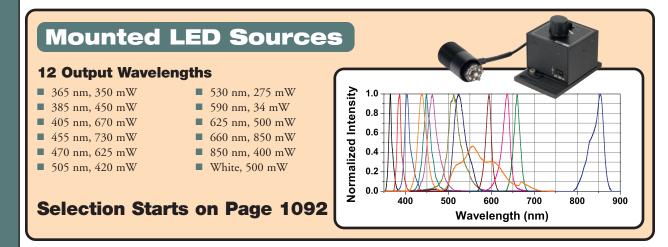
LED and Post

Not Included

These slip rings are designed to mount preassembled optical lens tube systems by passing the lens tube through the mounting ring and securing it with a locking screw. Their small-body design and flat sides make them more versatile in optical assemblies. The locking screw is conveniently located along the top surface of the mount for easy access. The SM slip rings can easily be mounted to any of our posts using the #8-32 (M4 x 0.7) mounting hole on the bottom.

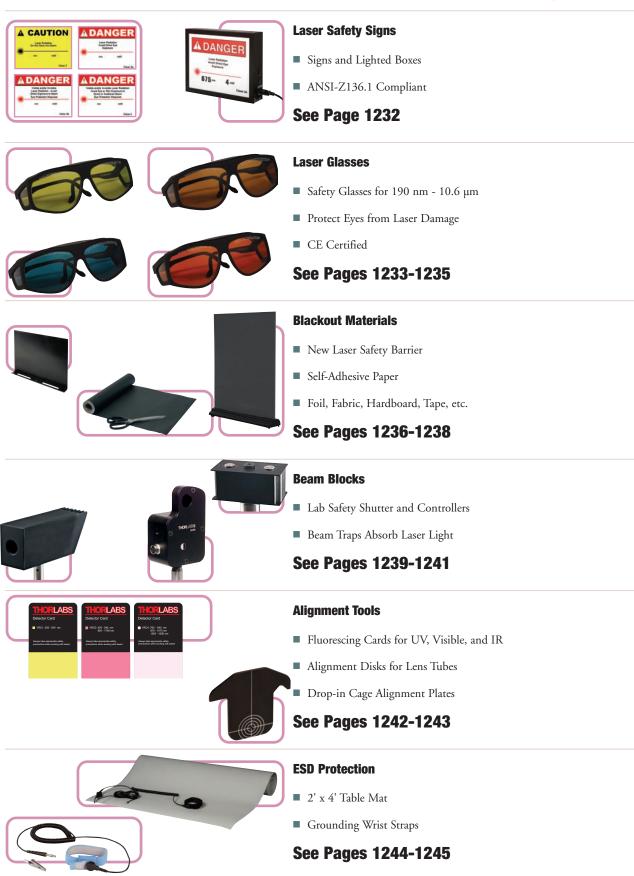
| Į. | ITEM# | METRIC ITEM# | \$       | £       | €       | RMB      | DESCRIPTION               |
|----|-------|--------------|----------|---------|---------|----------|---------------------------|
|    | SM1RC | SM1RC/M      | \$ 22.00 | £ 15.30 | € 19,60 | ¥ 185.80 | SM1 Series Slim Slip Ring |
| Í. | SM2RC | SM2RC/M      | \$ 26.75 | £ 18.60 | € 23,80 | ¥ 225.90 | SM2 Series Slim Slip Ring |

# Ø2" LIU Series Mount


#### Features

- 2" Outer Diameter to Fit Standard Optic Mounts
- Compatible with SM2 Lens Tube using an SM2RR Retaining Ring
- Nylon-Tipped Setscrew to Secure LIU LED in Place
- 1.5" (38 mm) Inner Diameter Compatible with LIU
- Housing and Ø1.5" (Ø38 mm) Optics




The AD38 adapter allows our LIU series of LED light sources to be mounted in Ø2" lens tubes or optic mounts. The inner diameter accepts the LIU housing or Ø1.5" (Ø38 mm) optics and secures them with a nylon-tipped setscrew.

| ITEM# | \$          |   | £     |   | €       |  | RMB    | DESCRIPTION                   |
|-------|-------------|---|-------|---|---------|--|--------|-------------------------------|
| AD38  | \$<br>16.00 | £ | 11.10 | € | € 14,30 |  | 135.20 | External Ø2" LIU Series Mount |



# **Accessories Selection Guide**

Pages 1231-1245



THORLABS

#### Light ▼ CHAPTERS

**Coherent Sources** 

**Incoherent Sources** 

Covega

**Drivers/Mounts** 

Accessories

**V** SECTIONS

Laser Safety Signs

Laser Glasses

**Blackout Materials** 

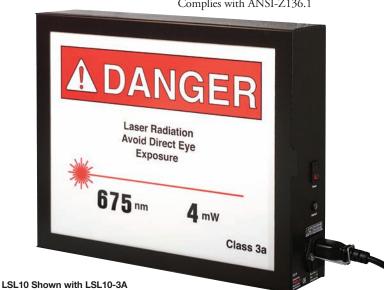
**Beam Blocks** 

**Alignment Tools** 

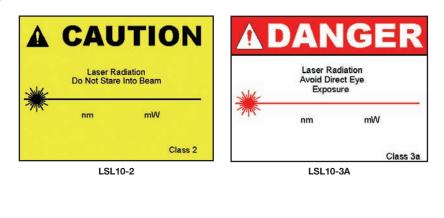
**ESD** Protection

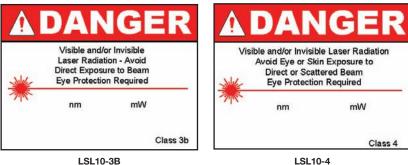
# Laser Safety Signs

The LSL10 Laser Safety Box provides a clear and concise indication that a laser system is in use, illuminating the appropriate user-chosen warning message and laser classification. Designed to meet ANSI Z136.1, the ANSI Standard for Safe Use of Lasers, the box operates from 110 VAC or 220 VAC and has safety interlock features that prevent the use of interlock-equipped laser systems unless the safety light is turned on.


#### Features

- Provides a Clear and Concise Indication that a Laser is in Use
- Four Signs Available
  - Dimensions: 10" x 12" x 3" (254 mm x 305 mm x 76 mm)


Measuring 10" x 12" (254 mm x 305 mm), these illuminated signs are large enough to be read in all laboratories where safe laser operation is a must. The LSL10 series of signs are useful tools for any research or manufacturing facility.


The LSL10 accepts any one of the four signs available for covering Laser Classes 2 through 4. Each sign comes with a set of alpha-numeric labels enabling each user the ability to customize the sign for a specific wavelength and output power, as required by ANSI Z136.1 and other pertinent laser safety specifications.

These laser safety signs can be displayed on desktops or benchtops, or they can be mounted to any wall. A convenient line cord latch prevents the AC line cord from disengaging from the unit.

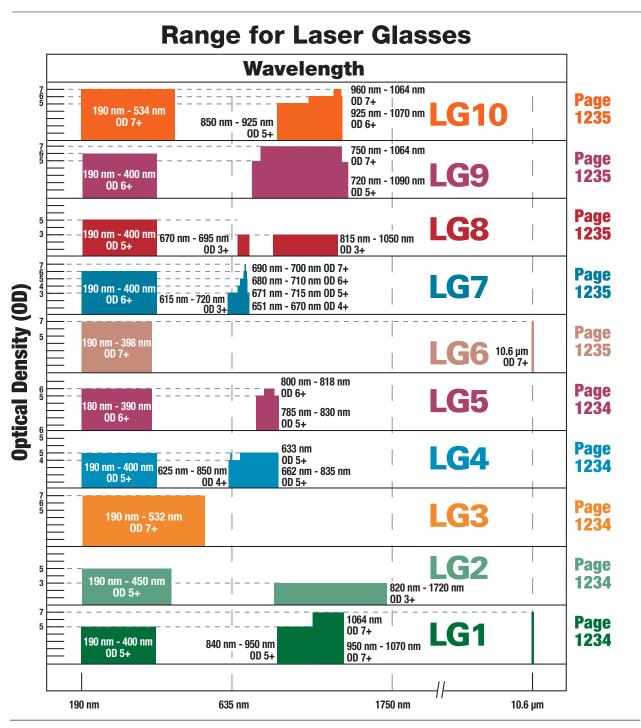


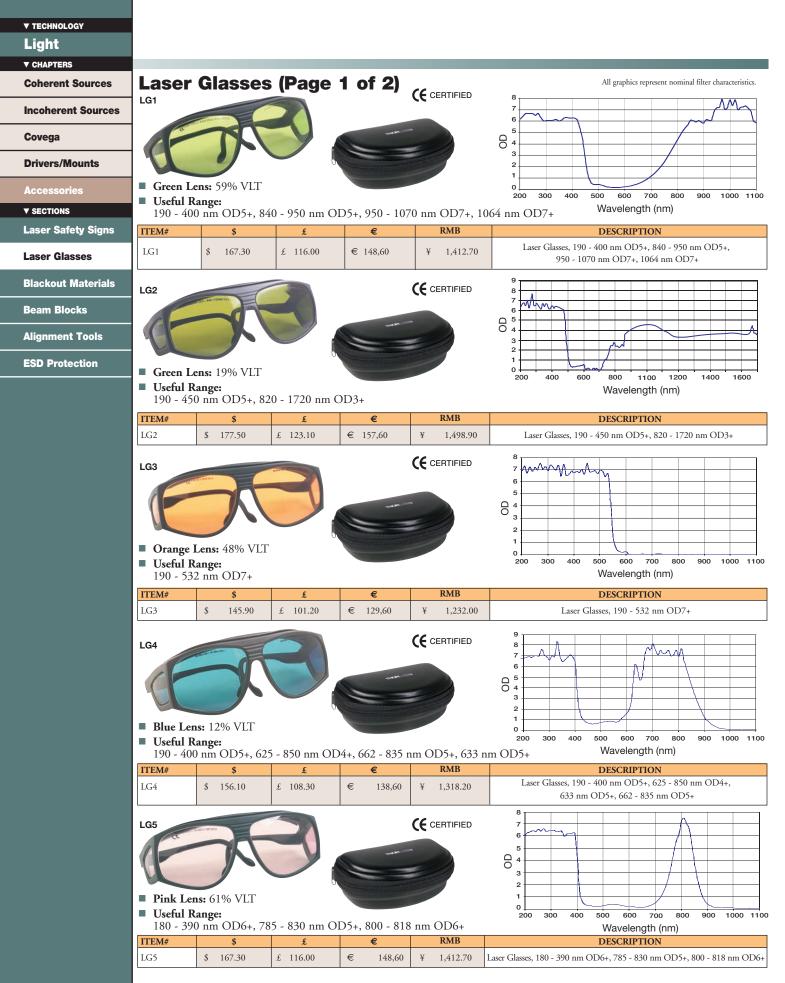
(H x W x D): 10" x 12" x 3" (254 mm x 305 mm x 76 mm)

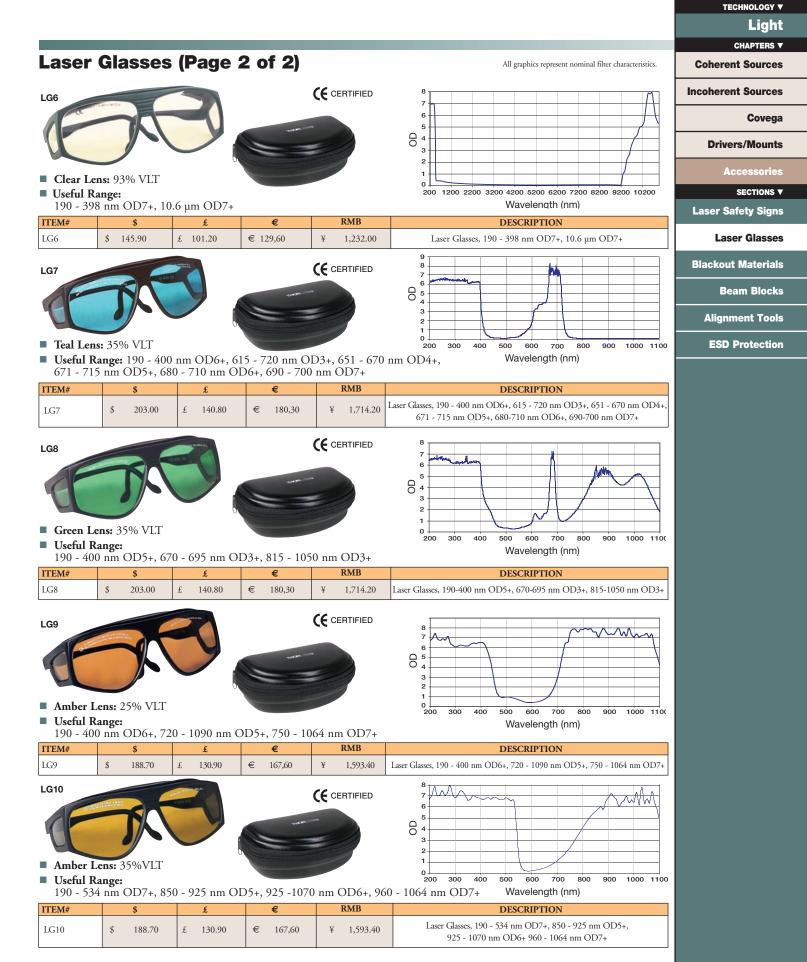




| ITEM#    | \$           |    | £      |   | €      | RMB       |   | DESCRIPTION                             |  |  |
|----------|--------------|----|--------|---|--------|-----------|---|-----------------------------------------|--|--|
| LSL10    | \$<br>235.70 | £1 | 163.40 | € | 209,30 | ¥ 1,990.3 | 0 | Lighted Laser Safety Box, 110 VAC Input |  |  |
| LSL10-EC | \$<br>246.90 | £1 | 171.20 | € | 219,20 | ¥ 2,084.9 | 0 | Lighted Laser Safety Box, 220 VAC Input |  |  |
| LSL10-2  | \$<br>45.00  | £  | 31.20  | € | 40,00  | ¥ 380.0   | 0 | Class 2 Laser Safety Sign               |  |  |
| LSL10-3A | \$<br>45.00  | £  | 31.20  | € | 40,00  | ¥ 380.0   | 0 | Class 3A Laser Safety Sign              |  |  |
| LSL10-3B | \$<br>45.00  | £  | 31.20  | € | 40,00  | ¥ 380.0   | 0 | Class 3B Laser Safety Sign              |  |  |
| LSL10-4  | \$<br>45.00  | £  | 31.20  | € | 40,00  | ¥ 380.0   | 0 | Class 4 Laser Safety Sign               |  |  |


Complies with ANSI-Z136.1


# **Laser Glasses Selection Guide**




- Top and Side Shield Protection
- A Variety of Laser Glasses that Protect from 190 nm to 10.6 μm
- Comfortable Frame Style can be used Over Prescription Glasses
- All Laser Glasses are CE Certified and EN207 Compliant

Thorlabs offers a variety of laser safety glasses for protection in the 190 nm to 10.6 µm range. These laser glasses are available in a comfortable frame style to avoid any inconvenience to the user in a lab environment. Every pair of Thorlabs' laser glasses received the CE certification mark, ensuring the end user protection from the wavelengths that have been specified for each of the glasses.







THORLAES

#### Light

#### ▼ CHAPTERS **Coherent Sources**

**Incoherent Sources** 

Covega

#### **Drivers/Mounts**

Accessories

▼ SECTIONS

Laser Safety Signs

Laser Glasses

#### **Blackout Materials**

**Beam Blocks** 

**Alignment Tools** 

**ESD** Protection

#### **Black Aluminum Foil**

This black foil material is mainly used to block out light. It has a matte black finish to absorb any reflective light from an ambient or conventional light source. The foil is ideal for masking light leaks and/or eliminating unwanted reflections. It can be quickly

molded to form blackout covers, dark rooms, laser channels, or other configurations. Lightweight, yet durable, it can be quickly

> positioned in place with tape, staples, or adhesives.

- Ideal for Masking Light Leaks
- Eliminate Unwanted Reflections
- High Flexibility and Lightweight
- Corrosion and Abrasion Resistant
- For Use with a Wide Range of Radiation Sources (Including X-Ray, UV, etc.)

BKF12

| ITEM# | \$       |   | £     | € |       | RMB |        | DESCRIPTION                                    |  |  |
|-------|----------|---|-------|---|-------|-----|--------|------------------------------------------------|--|--|
| BKF12 | \$ 27.60 | £ | 19.20 | € | 24,60 | ¥ź  | 233.10 | 1' x 50' (305 mm x 15.2 m) Black Aluminum Foil |  |  |
| BKF24 | \$ 27.60 | £ | 19.20 | € | 24,60 | ¥ź  | 233.10 | 2' x 25' (609 mm x 7.62 m) Black Aluminum Foil |  |  |

# **Black Rubberized Fabric**



Black rubberized fabric provides an easy method for protecting light-sensitive equipment. The rubberized coating prevents light from penetrating through the weave of the fabric.

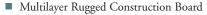
- Not Intended for use in Laser Curtain Applications
- Double-Layer use for Extremely Sensitive Applications
- Custom Lengths Available

ITEM#

\$

DESCRIPTION




| BK5*        | \$ 44.20                                                                                       | £ 30.70 | € 39,30 | ¥ 373.30 | 60" x 3 yds (1.5 m x 2.7 m) |  |  |  |  |  |  |
|-------------|------------------------------------------------------------------------------------------------|---------|---------|----------|-----------------------------|--|--|--|--|--|--|
| *Eor longon | For langer langers add \$14.25 per additional word, and request a quetation from task support. |         |         |          |                             |  |  |  |  |  |  |

£

# **Black Hardboard**

This material is a heavy-duty construction board consisting of a dense foam core sandwiched between two plastic-coated cardboard outer layers with a thickness of 5 mm; the material can be easily cut with a utility knife for easy construction of lightweight boxes. We recommend using our 2" wide black masking tape (T137-2.0) for corners and other joints to eliminate the passage of light through those areas. Custom sizes are available.

RMB



Dense, Durable, and Moisture-Resistant

€

£ 42.30 € 54,10 ¥ 514.30

- Hard, Smooth Finish
- Lightweight Polystyrene Foam Core
- Custom Sizes Available

\$

\$ 60.90

ITEM#

TB4







Light CHAPTERS V Black Poster Board **Coherent Sources Application Idea** Lightly **Incoherent Sources** Score Covega 1/16" (1.6 mm) Thick Solid **Drivers/Mounts** Black Board Build Light-Tight Boxes Accessories Score and Fold SECTIONS V Thick Outer Skin Holds Box Laser Safety Signs Together Laser Glasses These 1/16" thick panels are ideal for building light-tight enclosures. Simply score the board with a utility knife and fold to make light-tight corners. **Blackout Materials** ITEM# DESCRIPTION € RMB **Beam Blocks** TB5 42.10 29.20 \$ £ € 37,40 ¥ 355.50 5 Sheets, 20" x 30" (50 cm x 76 cm) **Alignment Tools** Black, Flocked, Self-Adhesive Paper **ESD** Protection **Economical Solution** for Eliminating Stray Light Self-Adhesive Does Not Shed Dust or Lint virtually 100% of the light that strikes it. In addition, the fibers will Image contrast can suffer when stray light reaches the focal plane of an application where the light path travels through a tube or other not shed dust or lint, unlike some velvet and felt materials. This enclosed area. Although applying a flat, black paint to the inside may flocked paper is 0.015" (0.381 mm) thick with the backing and help, a textured, matte, black surface is much more effective. For 0.012" (0.305 mm) thick without the backing. Caution: Do not large angles of incidence, this flocked, self-adhesive paper absorbs cut the BFP1 with a laser cutting tool. ITEM# RMB DESCRIPTION \$ € £ BFP1 \$ 28.40 £ 19.70 € 25,30 ¥ 239.90 1 Sheet, Black Flock Paper, 30" x 30" (76 cm x 76 cm) **Black Masking and Colored Vinyl Tape** 



General-purpose black masking tape is often used along with our blackout materials to form temporary light-tight coverings for sensitive equipment.



1/2" (12.7 mm) Wide Vinyl Tape
36 Yard (33 m) Roll
Red, Green, and Yellow Colors

Keep track of lab tools and coordinate application setups by using our colored rolls of vinyl tape to color-code fibers, cables, samples, and optomechanics. Besides color-coding, the user can make notes on the semi-gloss finish of the vinyl tape with a permanent marker. Although the tape can be used in the 4 to 75 °C range, it is best to apply the tape at room temperature.

| ITEM#    | \$          |   | £    | €       | RMB      | DESCRIPTION                                      |
|----------|-------------|---|------|---------|----------|--------------------------------------------------|
| T137-1.0 | \$<br>8.10  | £ | 5.60 | € 7,20  | ¥ 68.40  | 1.0" x 60 Yd. (25 mm x 55 m), Black Masking Tape |
| T137-2.0 | \$<br>14.20 | £ | 9.85 | € 12,70 | ¥ 120.00 | 2.0" x 60 Yd. (50 mm x 55 m), Black Masking Tape |
| VTG-050  | \$<br>3.59  | £ | 2.50 | € 3,20  | ¥ 30.30  | 1/2" x 36 Yd. (12.7 mm x 33 m) Green Vinyl Tape  |
| VTR-050  | \$<br>3.59  | £ | 2.50 | € 3,20  | ¥ 30.30  | 1/2" x 36 Yd. (12.7 mm x 33 m) Red Vinyl Tape    |
| VTY-050  | \$<br>3.59  | £ | 2.50 | € 3,20  | ¥ 30.30  | 1/2" x 36 Yd. (12.7 mm x 33 m) Yellow Vinyl Tape |

#### Light CHAPTERS

#### Coherent Sources

Incoherent Sources

\_\_\_\_\_

Covega

**Drivers/Mounts** 

Accessories

Laser Safety Signs

Laser Glasses

#### **Blackout Materials**

**Beam Blocks** 

**Alignment Tools** 

**ESD** Protection

# Laser Safety Barrier Features 5' x 6' (1.5 m x 1.8 m) Laser Safety Barrier High Damage Threshold Includes Strip of Material for Coupling Barriers Side-by-Side Wheels Provide Mobility Leveling Feet for Stationary Stability No-Trip Design Base Eliminates Cross-Feet All Components are Stored Within Base Simple to Assemble



Laser safety barriers are an essential laser safety component for use in many highpower laser labs where scattered light must be blocked to avoid the potential for irreparable eye damage. Please check our website for detailed damage threshold information and ANSI certification.

#### Compact Design

The 5' x 6' (1.5 m x 1.8 m) barrier is supported by a base with a footprint of only 60.13" x 12.3" (1.5 m x 30.8 cm). By not using cross-feet, the base eliminates the tripping hazard that many other laser barriers create. Mobility is provided via two fixed wheels on one end and two leveling feet on the other end. When one side of the barrier is lifted, it can be easily transported around your lab. When lowered, the leveling feet ensure that the barrier will remain stationary.

All construction components are stored in the base upon shipment. The barrier is bolted together using locking collars and 1/4"-20 cap screws. The barrier material simply wraps around the construction rods and is secured onto the rods using hook and loop fasteners.

#### **Coupling Multiple Barriers Together**

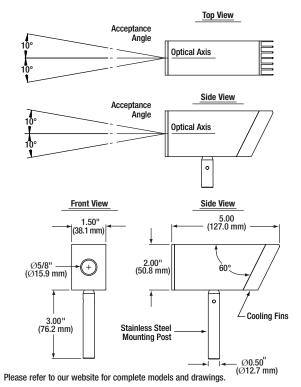
When a longer barrier is needed, place multiple SB5X6 barriers side-by-side and use the included strip of safety material to couple the SB5X6's together. These strips attach to the barrier using hook and loop fasteners so that larger safety barriers are simple to construct. If a different laser barrier configuration is needed for your lab, please contact our Technical Support team to discuss our custom capabilities.

| ITEM# | \$          | £        | €        | RMB        | DESCRIPTION                                   |
|-------|-------------|----------|----------|------------|-----------------------------------------------|
| SB5X6 | \$ 1,098.00 | £ 761.20 | € 974,90 | ¥ 9,271.60 | Laser Safety Barrier, 5' x 6' (1.5 m x 1.8 m) |

# **Table Mounted Protective Screens**

#### Features

- Three Sizes Available
  - TPS1: 8" x 6" (203 mm x 152 mm)
  - TPS2: 12" x 12" (300 mm x 300 mm)
  - TPS3: 12" x 24" (300 mm x 600 mm)
- Screens Bolt Directly to Breadboard or Optical Table
- Slotted Mounting Holes Provide Mounting Flexibility


Thorlabs' protective screens shield optical experiments from unwanted light. These screens are constructed with black anodized aluminum, making them lightweight, while minimizing reflected light. Mounting is simple using the slotted through holes for 1/4" or M6 cap screws. The TPS1 has the added benefit that it is post mountable via a through hole for #8-32 or M4 x 0.6 cap screws.



|   | ITEM# | \$          |   | £     |   | €     |   | RMB DESCRIPTION |                                               |
|---|-------|-------------|---|-------|---|-------|---|-----------------|-----------------------------------------------|
| L | TPS1  | \$<br>29.00 | £ | 20.20 | € | 25,80 | ¥ | 244.90          | 8" x 6" (203 mm x 152 mm) Protective Screen   |
| L | TPS2  | \$<br>42.00 | £ | 29.20 | € | 37,30 | ¥ | 354.70          | 12" x 12" (300 mm x 300 mm) Protective Screen |
|   | TPS3  | \$<br>56.00 | £ | 38.90 | € | 49,80 | ¥ | 472.90          | 12" x 24" (300 mm x 600 mm) Protective Screen |

NEW

# **Beam Trap**



# Features Minimize Scattered Laser Beam Energy ±10° Acceptance Angle Ø0.625" (Ø15.9 mm) Aperture 3" (75 mm) Post Included

Beam traps are common laser lab safety devices that are designed to absorb a laser beam's energy. To use, simply aim a beam into the  $\emptyset 0.625"$  ( $\emptyset 15.9$  mm) entrance aperture. The trap has a  $\pm 10^{\circ}$ entrance angle to simplify the alignment process. One TR3 (TR75/M) post is included with each beam trap.

| ITEM#                                      | BT500                 | BT510                                                                           |  |  |
|--------------------------------------------|-----------------------|---------------------------------------------------------------------------------|--|--|
| Wavelength Range                           | 200 -1500 nm          | 400 – 1500 nm                                                                   |  |  |
| Laser Type                                 | CW & Pulsed           | Pulsed & CW                                                                     |  |  |
| Max Average Power                          | $40 \text{ W}^{a}$    | 30 W                                                                            |  |  |
| Max Average<br>Power Density               | 70 W/cm <sup>2</sup>  | 15 W/cm <sup>2</sup>                                                            |  |  |
| Max Average<br>Energy Density <sup>b</sup> | 30 mJ/cm <sup>2</sup> | 18.8 J/cm <sup>2</sup> (1064 nm, 20 Hz)<br>44 J/cm <sup>2</sup> (1064 nm, 5 Hz) |  |  |
| Backscatter <sup>c</sup>                   | 6 x 10 <sup>-4</sup>  | 6 x 10 <sup>-6</sup>                                                            |  |  |

a Withstands higher powers, but the BT500's temperature will be >100 °C. b Performance varies based on material variability.

c Integrated backscatter based on fraction of power from the incident beam.

| ITEM# | METRIC ITEM# | \$        | £        | €        | RMB        | DESCRIPTION                 |  |
|-------|--------------|-----------|----------|----------|------------|-----------------------------|--|
| BT500 | BT500/M      | \$ 229.50 | £ 159.10 | € 203,80 | ¥ 1,938.00 | Beam Trap for CW Lasers     |  |
| BT510 | BT510/M      | \$ 290.70 | £ 201.60 | € 258,10 | ¥ 2,454.70 | Beam Trap for Pulsed Lasers |  |

# **Beam Block**

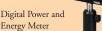
#### Features

- Absorbs CW Beams up to 10 W
- Includes 3" (75 mm) Long TR Series Post
- Large 1.4" (35.6 mm) x 0.7 " (17.8 mm) Target Area

The LB1 Beam Block is a compact solution, capable of absorbing CW laser beams up to 10 W. This beam block has a 1.4" (35.6 mm) x 0.7 " (17.8 mm) aperture, which allows for larger beams and scattered light to be absorbed. An interchangeable  $\emptyset$ 1/2" x 3" ( $\emptyset$ 12.7 mm x 75 mm) TR post (see page 88) is included with each LB1.

| ITEM# | <b>METRIC ITEM#</b> | \$          |   | £     |   | €     |   | RMB    | DESCRIPTION                                |
|-------|---------------------|-------------|---|-------|---|-------|---|--------|--------------------------------------------|
| LB1   | LB1/M               | \$<br>45.20 | £ | 31.40 | € | 40,20 | ¥ | 381.70 | 1.4" x 0.7" (35.6 mm x 17.8 mm) Beam Block |

# **OPTICAL POWER AND ENERGY METERS**


#### **Over 25 Sensors Available**

Thorlabs offers photodiode, thermal, and pyroelectric sensors for light detection in the 185 nm - 25 µm spectral range with output powers from 100 pW to 200 W.



#### **NEW C-Series Power Meter Displays**

Our new C-Series of power and energy meters are directly compatible with our large selection of photodiode, thermal, and pyroelectric sensors. Analog and digital models are available, as is a 2-channel benchtop unit and for industrial users a compact USB power meter module (no display) is ideal for use in production facilities.



LB1

Coherent Sources
Incoherent Sources
Covega
Drivers/Mounts
Accessories
SECTIONS V
Laser Safety Signs
Laser Glasses
Blackout Materials
Beam Blocks
Alignment Tools

TECHNOLOGY V Light CHAPTERS V

| V T | ECH | NO | L0 | G١ |
|-----|-----|----|----|----|
|     |     |    |    |    |

#### Light

▼ CHAPTERS

#### **Coherent Sources**

Incoherent Sources

#### Covega

**Drivers/Mounts** 

#### Accessories

▼ SECTIONS

#### Laser Safety Signs

Laser Glasses

#### **Blackout Materials**

#### **Beam Blocks**

**Alignment Tools** 

**ESD** Protection

**Beam Shutter** 

The SH05 Beam Shutter utilizes a rotary, electromechanical actuator to provide sub-millisecond shutter operation. In general operation, the shutter remains in a closed position and then opens with a pulse control signal. As long as the control voltage to the shutter remains high, the shutter will stay open; however, if the voltage drops, the shutter will close, providing inherent fail-safe operation. An optical sensor detects the shutter blade position in the housing to confirm the state of the shutter position, making it ideal in applications where a laser safety lockout is required. The rate at which the device is opened can be controlled, but the shutter is not meant for precise timing purposes.

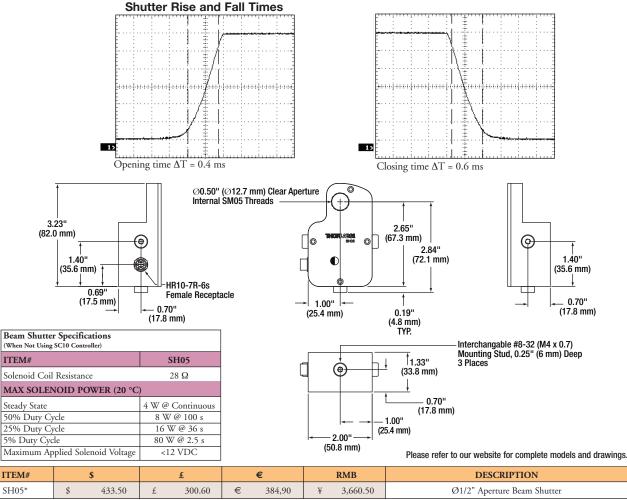


Post Assembly Not Included

THORLARS

Our SC10 and TSC001 controllers for the SH05 include an "interlock mode" incorporated into the control logic of the controller. The SH05 can also be used with a third-party controller.

The input aperture of the SH05 is threaded with Thorlabs' SM05 (Ø0.535"-40) thread to interface easily


with all of our SM05 lens tubes. The SH05 is English and Metric System compatible and comes with a 10'

#### SH05 Beam Shutter Features

cable to connect the shutter directly to the SC10 or TSC001 Controller.

- Closed Resting State
- Fast Response
- SM05-Threaded Aperture
- Laser Safety Applications
- Passive Closure Mechanism
- Compatible with the SC10 and TSC001 Controllers

| ITEM#                            | SH05                         |
|----------------------------------|------------------------------|
| Shutter Activation Time to Open  | <1 ms (Typ 20 V Pulse)       |
| Shutter Activation Time to Close | <1.5 ms (Spring Activated)   |
| Actuation Pulse                  | 8 V to 50 V (Time Dependent) |
| Holding Voltage                  | 8 V to 12 V                  |
| Aperture                         | Ø0.5" (Ø12.7 mm)             |
| Initial State                    | Normally Closed              |
| Maximum Pulse Rate               | 10 Hz Steady, 25 Hz Burst    |
| Duty Cycle                       | Optimum @ 10 Hz = 40%        |



\*Imperial and Metric Compatible

www.thorlabs.com

# **Shutter Controller**

#### Features

- Automatic, Single, Manual, Repeat, and External Gate Operation
- Safety Alarm when Coupled with SH05 Beam Shutter
- Input and Output Triggers
- Remote PC Control, LabWindow<sup>TM</sup>, and LabVIEW<sup>TM</sup> Interface



The SC10 shutter controller is a versatile instrument designed to control the SH05 Beam Shutter with millisecond accuracy. The front panel of the controller features an LED that displays the status of the shutter at a glance and an interactive LCD that provides access to the control parameters. Computer control is provided through a digital I/O, RS232 port on the back of the unit, as well as a BNC connector for a 5 V external trigger. As a special feature, the unit incorporates a laser safety interlock feature that overrides all system commands and closes the shutter. The unit must be re-enabled to resume operation.

The SC10 also doubles as a stand-alone digital delay generator with 1 ms resolution, 0.1 ms accuracy, and a TTL output trigger. The SC10 has three basic user interfaces: control from the front panel, control from a PC, and direct control from an external trigger event.

This shutter controller comes with an executable software package written in LabWindows. The libraries and function panel are included. In addition, it also comes with a library that contains VI's for LabVIEW applications.

| ITEM# | \$        | £        | €        | RMB        | DESCRIPTION                                    |
|-------|-----------|----------|----------|------------|------------------------------------------------|
| SC10  | \$ 668.50 | £ 463.50 | € 593,50 | ¥ 5,644.90 | Shutter Controller, 115 - 230 VAC @ 50 - 60 Hz |

# **T-Cube Solenoid Controller**

The T-Cube Solenoid Controller (TSC001) is an extremely compact, single-channel controller for easy manual and automated control of solenoid-operated shutters, flipper mounts, and other such devices. Designed to operate 15 V solenoid-actuated devices, this mini controller offers complete control features. Embedded software functionality allows this unit to be used to control solenoid devices manually (using panel buttons), automatically with DSPtimed operation, or via external trigger signals for operation with third-party equipment. An SMA trigger out connection allows

#### Features

- Compact T-Cube Footprint Solenoid Controller
- Automatic, Single, Manual, and Triggered Operating Modes
- Operates Thorlabs' Solenoid Operated Flippers/Shutters
- Manual- or PC-Controlled Operation via USB
- Input/Output Triggering (Daisy Chaining)
- Easy-to-Use Manual Controls via 'Mode' and 'Enable' Buttons
- Safety Enable Key Switch
- Laser Safety Interlock Jack
- Software Control Suite Included, Extensive ActiveX® Programming Interfaces
- Software Compatible with Other apt<sup>TM</sup> Controllers (Integrated Systems Development)

multiple T-Cube controllers to be connected together for multi-channel 'synchronized' operation. Please see page 579 for power supply options for the TSC001.

#### Specifications

- **Timing Resolution:** 250 µs
- **On/Off Times:** 100 ms to 10 s
- Maximum Repetition Rate: Up to 10 Hz
- **SMA Trigger În/Out:** TTL
- Output Enable: Key Switch and Interlock Jack Plug

#### **Operating Modes**

- Manual: User-Controlled On/Off
- **Single:** DSP-Controlled Single On/Off Cycle
- Auto: DSP-Controlled Multiple On/Off Cycles
- Triggered: Externally Triggered On/Off

#### **Output (6-Pin Hirose)**

- Solenoid Drive: 15 V Pulse (10 V Hold)
- Position Sensor Feedback: Photodiode

#### **Input Power Requirements:**

- **Voltage:** 15 V Regulated DC
- Current: 1 A Peak, 300 mA Steady State

#### General

- Housing Dimensions (W x D x H): 60.3 mm x 60.3 mm x 47.5 mm (2.37" x 2.37" x 1.87")
- Weight: 160 g (5.5 oz)

| ITEM#  | \$        | £        | €        | RMB        | DESCRIPTION                                                   |
|--------|-----------|----------|----------|------------|---------------------------------------------------------------|
| TSC001 | \$ 545.00 | £ 377.90 | € 483,90 | ¥ 4,602.00 | T-Cube Flipper/Shutter Controller (Power Supply Not Included) |

#### TECHNOLOGY V Light CHAPTERS V

Covega

**Coherent Sources** 

**Incoherent Sources** 

**Drivers/Mounts** 

Accessories

SECTIONS V

# Blackout Materials Beam Blocks

Laser Glasses

Laser Safety Signs

**Alignment Tools** 

**ESD** Protection

**TSC001** 

#### Light CHAPTERS

**Coherent Sources** 

Incoherent Sources

Covega

#### **Drivers/Mounts**

Accessories

Laser Safety Signs

Laser Glasses

**Blackout Materials** 

**Beam Blocks** 

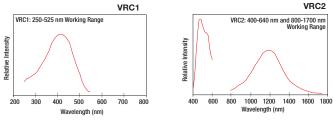
**Alignment Tools** 

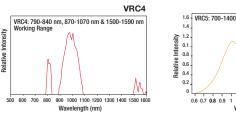
**ESD** Protection

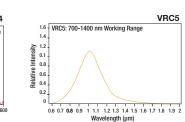
# **Viewing Cards**

#### Features

- Detects Beams as Low as 1 nW/cm<sup>2</sup>
- Minimal Optical Charging
- Free of Hazardous Reflections
- Cards for the UV, Visible, and IR





Thorlabs offers viewing cards for UV, visible, and IR beams. As UV and IR light are invisible to the human eye, these cards emit a visible spot at the location of the beam. They are commonly used for beam alignment and when collimating a laser beam.


#### VRC1, VRC2, and VRC4

The cards are made from a durable plastic with a photosensitive region adhered to the front surface of the card. The active region on the VRC1 and VRC4 is fast charging, thus emission is persistent even when used in CW applications in a darkened room. The 1.25" x 2.1"

(31.8 mm x 53.3 mm) detection region on these cards extends all the way to the edge of the card in order to facilitate its use during alignment procedures. In addition, when the card is used in a darkened room with a sufficiently bright source, the fluorescence from the activated photosensitive region can be seen through the back of the card. This is especially useful for aligning the overlap of two beams. The VRC2 is similar to the







VRC4 and VRC1 except that it requires the user to charge the card with light from a visible light source.

#### VRC5

Our VRC5 IR viewing card has a photosensitive region sandwiched between two plastic layers. The card has a smaller detection region than our other viewing cards but offers a broader working range.

| ITEM# | \$           |   | £     |   | €      | RMB |        | WORKING RANGE (nm)                 | ACTIVE AREA                    |
|-------|--------------|---|-------|---|--------|-----|--------|------------------------------------|--------------------------------|
| VRC1  | \$<br>72.00  | £ | 50.00 | € | 64,00  | ¥   | 608.00 | 250 - 525                          | 1.25" x 2.1" ( 31.8 x 53.3 mm) |
| VRC2  | \$<br>72.00  | £ | 50.00 | € | 64,00  | ¥   | 608.00 | 400 - 640, 800 - 1700              | 1.25" x 2.1" ( 31.8 x 53.3 mm) |
| VRC4  | \$<br>72.00  | £ | 50.00 | € | 64,00  | ¥   | 608.00 | 790 - 840, 870 - 1070, 1500 - 1590 | 1.25" x 2.1" ( 31.8 x 53.3 mm) |
| VRC5  | \$<br>113.00 | £ | 78.40 | € | 100,40 | ¥   | 954.20 | 700 - 1400                         | 0.75" x 1.5" ( 19.1 x 38.1 mm) |

# **IR Alignment Disks**

- Use with Ø1/2" or Ø1" Optic Mounts
- Ø2 mm Alignment Hole
- (Ø1 mm on VRC2D1) VRC2D1 Shown with LMR1 and Post (Sold Separately)



These IR alignment disks are ideally used as drop-in tools to simplify active alignment of IR and visible setups. Available as  $\emptyset 1/2$ " or  $\emptyset 1$ " drop-in disks, these disks align beams to the optical axis of our mounts or lens tubes. They are made of slow-fading phosphor that is active in the IR. See graphs above for absorption spectrums.

| ITEM#   | SIZE  | \$          |   | £     |   | €     | RMB |        | DESCRIPTION                                                                                       |  |
|---------|-------|-------------|---|-------|---|-------|-----|--------|---------------------------------------------------------------------------------------------------|--|
| VRC2D05 | Ø1/2" | \$<br>19.40 | £ | 13.50 | € | 17,30 | ¥   | 163.90 | Ø1/2" IR Alignment Disk, Working Ranges: 400-640 nm and 800-1700 nm                               |  |
| VRC2D1  | Ø1"   | \$<br>29.60 | £ | 20.60 | € | 26,30 | ¥   | 250.00 | Ø1" IR Alignment Disk, Working Ranges: 400-640 nm and 800-1700 nm                                 |  |
| VRC4D05 | Ø1/2" | \$<br>19.00 | £ | 13.20 | € | 16,90 | ¥   | 160.50 | Ø1/2" Enhanced Alignment Disk, Working Ranges:<br>790 - 840 nm, 870 - 1070 nm, and 1500 - 1590 nm |  |
| VRC4D1  | Ø1"   | \$<br>29.00 | £ | 20.20 | € | 25,80 | ¥   | 244.90 | Ø1" Enhanced Alignment Disk, Working Ranges:<br>790 - 840 nm, 870 - 1070 nm, and 1500 - 1590 nm   |  |



Our frosted glass alignment disks are made from 1500 grit ground glass diffusers. These disks are ideally suited for viewing the alignment of a visible beam that is exiting a lens tube. The ground glass allows you to see the beam's location with respect to the center-drilled hole. The centering hole has the added benefit that it allows a portion of the beam to be transmitted into the optical system during the alignment process.

These alignment disks are available with outer diameters of 1/2", 1", and 2", providing compatibility with our SM05, SM1, and SM2 series lens tubes, respectively. The  $\emptyset 1/2$ " and  $\emptyset 1$ " disks have a  $\emptyset 1$  mm centering hole, while the  $\emptyset 2$ " has a  $\emptyset 2$  mm hole.

| ITEM#        | \$£€        |   | €     |   | RMB   | DESCRIPTION |        |                                                |
|--------------|-------------|---|-------|---|-------|-------------|--------|------------------------------------------------|
| DG05-1500-H1 | \$<br>16.30 | £ | 11.30 | € | 14,50 | ¥           | 137.70 | Ø1/2" Frosted Glass Alignment Disk, Ø1 mm Hole |
| DG10-1500-H1 | \$<br>20.40 | £ | 14.20 | € | 18,20 | ¥           | 172.30 | Ø1" Frosted Glass Alignment Disk, Ø1 mm Hole   |
| DG20-1500-H2 | \$<br>32.60 | £ | 22.60 | € | 29,00 | ¥           | 275.30 | Ø2" Frosted Glass Alignment Disk, Ø2 mm Hole   |

# Visible Alignment Disks

The SM05A7 and SM1A7 Visible Alignment Disks provide a useful aid when building optical assemblies from our SM05 or SM1 series products. Both alignment disks have tick marks every 1 mm along both the X and Y axes to help locate the center of an SM05- or SM1-threaded assembly.



SM1A7



Features

- SM05- and SM1-Threaded Alignment Disks
- Alignment Tick Marks Every 1 mm

| ITEM#  | \$          |   | £     |   | €     |   | RMB    | DESCRIPTION                                     |
|--------|-------------|---|-------|---|-------|---|--------|-------------------------------------------------|
| SM05A7 | \$<br>21.50 | £ | 15.00 | € | 19,10 | ¥ | 181.60 | Externally SM05-Threaded Visible Alignment Disk |
| SM1A7  | \$<br>24.00 | £ | 16.70 | € | 21,40 | ¥ | 202.70 | Externally SM1-Threaded Visible Alignment Disk  |

SM3L10

# **Extensive Line of Lens Tubes**



- Constant Multi-Element Systems
- Available in Ø1/2', Ø1.00", Ø30.0 mm, Ø2.00" and Ø3.00"
- Adapters Available for Interchangablity
- New Lens Tubes with Internal Threads Also Available

TECHNOLOGY V

| $\mathbf{\nabla}$ | TE | CH | N | 0 | LO | C |
|-------------------|----|----|---|---|----|---|
|                   |    |    |   |   |    |   |

#### Light

#### ▼ CHAPTERS

**Coherent Sources** 

**Incoherent Sources** 

```
Covega
```

**Drivers/Mounts** 

Accessories

▼ SECTIONS

Laser Safety Signs

Laser Glasses

**Blackout Materials** 

**Beam Blocks** 

**Alignment Tools** 

**ESD** Protection

NEV VRC4CPT Features IR Disk with Absorption Bands VRC4CPT

Cage alignment plates are handy tools when building a cage system as beam alignment can be difficult. These alignment plates drop into 16, 30, or 60 mm cages and provide an alignment target for your laser beam. A Ø1 mm hole (Ø5 mm on CPA2) on each alignment plate shows the center of a cage assembly. The VRC4CPT has an IR fluorescing disk for aligning IR beams with a 30 mm cage system. Its absorption bands are 790 to 840 nm, 870 to 1070 nm, and 1500 to 1590 nm.

| •   | ITEM#   | \$          |   | £     |   | €     |   | RMB    | DESCRIPTION                                |
|-----|---------|-------------|---|-------|---|-------|---|--------|--------------------------------------------|
| NEW | SCPA1   | \$<br>8.25  | £ | 5.70  | € | 7,40  | ¥ | 69.70  | 16 mm Cage Alignment Plate with Ø1 mm Hole |
|     | CPA1    | \$<br>9.20  | £ | 6.40  | € | 8,20  | ¥ | 77.70  | 30 mm Cage Alignment Plate with Ø1 mm Hole |
|     | CPA2    | \$<br>9.20  | £ | 6.40  | € | 8,20  | ¥ | 77.70  | 30 mm Cage Alignment Plate with Ø5 mm Hole |
| NEW | VRC4CPT | \$<br>28.76 | £ | 20.00 | € | 25,60 | ¥ | 242.90 | 30 mm Cage Alignment Plate with IR Disk    |
| NEW | LCPA1   | \$<br>15.30 | £ | 10.60 | € | 13,60 | ¥ | 129.20 | 60 mm Cage Alignment Plate with Ø1 mm Hole |



Thorlabs' Grounding Wrist Straps safely remove static charges from individuals who handle laser diodes, amplified photodetectors, and other static-sensitive devices. The ground cord has a built-in 1 M $\Omega$  resistor for user safety, and the straps work with our Static Control Table Mat featured above to protect against static discharge.

**Cage Alignment Plates** 

Alignment Plates for 16, 30, and

Ranging 790 - 840 nm, 870 - 1070 nm, and 1500 - 1590 nm (Ø1/2" Active Region)

60 mm Cage Systems

Quick Drop-In Visual Aid

Features

The WS01 strap consists of an expandable, metal wristband that is flexible, durable, and comfortable, allowing for extended use. The band has a relaxed (i.e., not stretched) circumference of 5.5" and includes an alligator clip that fits over the installed banana jack on the 12' long grounding cord. The WS02 adjustable fabric strap is available in one size and includes a 6' coiled cord and alligator clip to provide ground connection.

| ITEM# | \$          |   | £     |   | €     | l | RMB    | DESCRIPTION                                          |
|-------|-------------|---|-------|---|-------|---|--------|------------------------------------------------------|
| WS01  | \$<br>30.10 | £ | 20.90 | € | 26,80 | ¥ | 254.20 | Metal Grounding Wrist Strap, 12' (3.6 m) Coiled Cord |
| WS02  | \$<br>12.20 | £ | 8.45  | € | 10,90 | ¥ | 103.10 | Fabric Grounding Wrist Strap, 6' (1.8 m) Coiled Cord |

#### TOOLS OF ТНЕ TRADE

# Fiber Launch Systems

The NanoMax 600 series has been at the forefront of nanopositioning technology for a number of years. The parallel flexure design of the platform provides an unmatched combination of high stability and resolution in a six-axis nanopositioner.

- 3- or 6-Axis Pre-Configured Solutions
- Piezo Actuators with Feedback Available for Closed-Loop Operation
- Configurations Optimized for SM or PM Fiber Launching



|                                                                                                                                                                                                                                                                                                                                                                 | CHAPTER                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| ESD Table Mat Table Mat                                                                                                                                                                                                                                                                                                                                         | Coherent Sourc                                   |
| Features 2' x 4'                                                                                                                                                                                                                                                                                                                                                | Incoherent Source                                |
| Heavy-Duty 2' x 4' (610 mm x 1219 mm) Table Mat<br>50 ms Static Charge Decay                                                                                                                                                                                                                                                                                    | Cove                                             |
|                                                                                                                                                                                                                                                                                                                                                                 | Drivers/Mour                                     |
| The Thorlabs Static Control 2' x 4' (610 mm x 1219 mm) Table Mat provides a static                                                                                                                                                                                                                                                                              | Accessori                                        |
| ssipative surface to protect sensitive optoelectronic components from damaging electrostatic scharge. These heavy-duty mats have a 50 ms static charge decay time, ensuring protection                                                                                                                                                                          | SECTION                                          |
| nder extreme conditions. The mat comes with a connector for an ESD wrist strap (available                                                                                                                                                                                                                                                                       | ESD Wrist Strap<br>Not Included Laser Safety Sig |
| parately below).<br>TEM# \$ £ € RMB DESCRIPTION                                                                                                                                                                                                                                                                                                                 | Laser Glass                                      |
| M2448\$ 78.60£ 54.50€ 69,80¥ 663.80Static Control Table Mat, 2' x 4'                                                                                                                                                                                                                                                                                            | Blackout Materia                                 |
| lean-Walk Mats                                                                                                                                                                                                                                                                                                                                                  | Beam Bloc                                        |
|                                                                                                                                                                                                                                                                                                                                                                 | Alignment Too                                    |
| eatures<br>Thin Profile Suitable for Wheeled Traffic                                                                                                                                                                                                                                                                                                            | ESD Protecti                                     |
| 18" x 36" Adhesive Mat Contains 30 Sheets                                                                                                                                                                                                                                                                                                                       |                                                  |
|                                                                                                                                                                                                                                                                                                                                                                 | DESCRIPTION                                      |
| ESD20 \$ 53.10 £ 36.90 € 47,20 ¥ 448.40 18" x 36" (457.2 mm x                                                                                                                                                                                                                                                                                                   | x 914.4 mm) Adhesive Mat (30 sheets)             |
| Workstations Frames • Tabletops •                                                                                                                                                                                                                                                                                                                               | Accessories                                      |
| Thorlabs' ScienceDesks are<br>a series of high-quality,<br>ergonomic, modular<br>workstations designed to<br>reduce vibrations common<br>to the lab environment.<br>They are ideally suited for<br>vibration-sensitive<br>microscopy applications,<br>such as those typically<br>found in the fields of high-<br>resolution microscopy,<br>confocal microscopy, | ScienceDesk<br>See Pages 25-36                   |
| scanning probe microscopy,                                                                                                                                                                                                                                                                                                                                      |                                                  |
| and electron hyviology,                                                                                                                                                                                                                                                                                                                                         |                                                  |

Configured To Satisfy Almost Any Workspace Requirements

and electrophysiology.

**Made Simple** 

TRADE