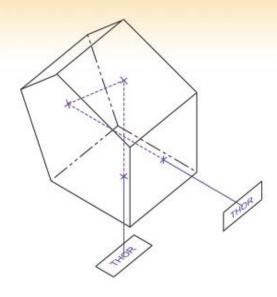


56 Sparta Avenue • Newton, New Jersey 07860 (973) 300-3000 Sales • (973) 300-3600 Fax


PS932M/M - February 1, 2016

Item # PS932M/M was discontinued on February 1, 2016. For informational purposes, this is a copy of the website content at that time and is valid only for the stated product.

MOUNTED PENTA PRISM

- 90° Deviation of Beam without Changing Handedness
- N-BK7 Prism
- 30 mm Cage Cube Mount with SM1-Threaded Ports

Hide Overview

OVERVIEW

Features

- · Deviate Beams without Changing Handedness
- Deviation is Independent of Beam/Prism Alignment
- N-BK7 Prism
- · Aluminum-Coated Reflective Faces
- Post Mountable and 30 mm Cage System Compatible

Penta prisms deviate a beam by 90° degrees without reversing or inverting an image (i.e., without changing the polarization handedness). Additionally, this deviation is independent of the alignment between the prism and input beam, making penta prisms an effective alternative to turning mirrors.

Click to Enlarge Mounted Penta Prisms are Compatible with Thorlabs' 30 mm Cage System

Thorlabs' Mounted Penta Prism is constructed of N-BK7 and has aluminized reflective faces with an inconel and black paint overcoat. It features a 12 mm x 14 mm clear aperture* and is mounted inside a standard 30 mm cage system cage cube. The prism is epoxied within the cage cube mount and cannot be removed. It provides an 8-32 (M4) tap for post mounting, SM1-threaded (1.035"-40) input and output ports, and four 4-40-tapped holes for cage rods on the entrance and exit faces. The penta prism cage cube can also be connected to other cage cubes using cage rods and ERSCA adapters. For a complete selection of our cube-mounted optics please see the *Mounted Optics Guide* tab.

We also offer 10, 20, 40, and 60 mm unmounted penta prisms. Empty 30 mm cage cubes are available for mounting our 20 mm unmounted penta prisms.

*The clear aperture of the mounted prism is specified as >60% of each face. The prism is mounted offset by 2 mm with respect to the cage housing, and thus

the effective clear aperture is approximately 12 mm x 14 mm.

	Specifications							
	opecinications							
Prism Material	N-BK7 ^a							
Reflective Coating	Aluminized with Inconel and Black Paint Overcoat							
Clear Aperture	12 mm x 14 mm ^b							
Surface Flatness	λ/10 at 632.8 nm							
Surface Quality	40-20 Scratch-Dig							
Angular Tolerances	±1 arcmin							
Beam Deviation	90° ± 1 arcmin							
	A = B = C = 20 mm							
Prism Dimensions	$L_1 = L_2 = 28.3 \text{ mm}$							
	(Click for Schematic)							
Dimensional Tolerance	±0.1 mm							

- a Click Link for Detailed Specifications on the Substrate Glass
- b The clear aperture of the mounted prism is specified as >60% of each face. The prism is mounted offset by 2 mm with respect to the cage housing, and thus the effective clear aperture is approximately 12 mm x 14 mm.

Hide Prism Guide

PRISM GUIDE

Selection Guide for Prisms

Thorlabs offers a wide variety of prisms, which can be used to reflect, invert, rotate, disperse, steer, and collimate light. For prisms and substrates not listed below, please contact Tech Support.

Beam Steering Prisms

beam Steering Frisins								
Prism	Material	Deviation	Invert	Reverse or Rotate	Illustration	Applications		
Right Angle Prisms Ge (N-BK7, UV Fused Silica, Germanium, Calcium Fluoride, or Zinc Selenide	90°	90°	No		90° reflector, independent of entrance beam angle. Used in optical systems such as telescopes and periscopes.		
		180°	180°	No		180° reflector, independent of entrance beam angle. Acts as a non-reversing mirror and can be used in binocular configurations.		
Retroreflectors	N-BK7	180°	180°	No		180° reflector, independent of entrance beam angle. Beam alignment and beam delivery. Substitute for mirror in applications where orientation is difficult to control.		

Penta Prisms and Mounted Penta Prisms	N-BK7	90°	No	No		90° reflector, without inversion or reversal of the beam profile. Can be used for alignment and optical tooling.
Roof Prisms	N-BK7	90°	90°	180º Rotation		90° reflector, inverted and rotated (deflected left to right and top to bottom). Can be used for alignment and optical tooling.
Unmounted Dove Prisms and Mounted Dove Prisms	N DV7	No	180°	2x Prism Rotation	20 40	Dove prisms may invert, reverse, or rotate an image based on which face the light is incident on. Prism in a beam rotator orientation.
	N-BK/	180°	180°	No		Prism acts as a non-reversing mirror. Same properties as a retroreflector or right angle (180° orientation) prism in an optical setup.
Wedge Prisms		Models Available from 2° to 10°	No	No		Beam steering applications. By rotating one wedged prism, light can be steered to trace the circle defined by 2 times the specified deviation angle.
	N-BK7		No	No	OB -	Variable beam steering applications. When both wedges are rotated, the beam can be moved anywhere within the circle defined by 4 times the specified deviation angle.
Coupling Prisms	Rutile (TiO ₂) or GGG	Variable ^a	No	No	Laser Fran Substrate	High index of refraction substrate used to couple light into films. Rutile used for n _{film} > 1.8 GGG used for n _{film} < 1.8

• Depends on angle of incidence and index of refraction

Dispersive Prisms

Bioperore i no						
Prism	Material	Deviation	Invert	Reverse or Rotate	Illustration	Applications
Equilateral Prisms	F2, N-SF11, Germanium, Calcium Fluoride, or Zinc Selenide	Variable ^a	No	No		Dispersion prisms are a substitute for diffraction gratings. Use to separate white light into visible spectrum.
Pellin Broca Prisms	N-BK7, UV Fused Silica, or Calcium Fluoride	90°	90°	No	D R	Ideal for wavelength separation of a beam of light, output at 90°. Used to separate harmonics of a laser or compensate for group velocity dispersion.
Dispersion Compensating Prism Pairs	Fused Silica, Calcium Fluoride, SF10, or N-SF14	Variable Vertical Offset	No	No		Compensate for pulse broadening effects in ultrafast laser systems. Can be used as an optical filter, for wavelength tuning, or dispersion compensation.

• Depends on angle of incidence and index of refraction

Beam Manipulating Prisms

Prism	Material	Deviation	Invert	Reverse or Rotate	Illustration	Applications
Anamorphic Prism Pairs	N-KZFS8 or N-SF11	Variable Vertical Offset	No	No		Variable magnification along one axis. Collimating elliptical beams (e.g., laser diodes) Converts an elliptical beam into a circular beam by magnifying or contracting the input beam in one axis.

Polarization Altering Prisms

Prism	Material	Deviation	Invert	Reverse or Rotate	Illustration	Applications
Glan-Taylor, Glan-	Glan-Taylor: Calcite	<i>p</i> -pol 0°				Double prism configuration and birefringent calcite produce extremely pure linearly polarized light.
Laser, and α-BBO	Glan-Laser:	а	No	No		Total Internal Reflection of s-

Glan-Laser Polarizers	α- BBO or Calcite	s-pol 112°			*	pol. at the gap between the prism while <i>p</i> -pol. is transmitted.
Rutile Polarizers	Rutile (TiO ₂)	s-pol 0° p-pol. absorbed by housing	No	No	Unpokarized Light S-Polarized Light	Double prism configuration and birefringent rutile (TiO ₂) produce extremely pure linearly polarized light. Total Internal Reflection of <i>p</i> -pol. at the gap between the prisms while <i>s</i> -pol. is transmitted.
Double Glan-Taylor Polarizers	Calcite	p-pol 0° s-pol. absorbed by housing	No	No	*	Triple prism configuration and birefringent calcite produce maximum polarized field over a large half angle. Total Internal Reflection of spol. at the gap between the prism while p-pol. is transmitted.
Glan Thompson Polarizers	Calcite	p-pol 0° s-pol. absorbed by housing	No	No	tiva riga	Double prism configuration and birefringent calcite produce a polarizer with the widest field of view while maintaining a high extinction ratio. Total Internal Reflection of spol. at the gap between the prism while p-pol. is transmitted.
Wollaston Prisms and Wollaston Polarizers	Calcite	Symmetric p-pol. and s-pol. deviation angle	No	No	0.65° (14mm)	Double prism configuration and birefringent calcite produce the widest deviation angle of beam displacing polarizers. s-pol. and p-pol. deviate symmetrically from the prism. Wollaston prisms are used in spectrometers and polarization analyzers.
Beam Displacing		2.7 or 4.0 mm				Single prism configuration and birefringent calcite separate an input beam into two orthogonally polarized output beams.

Prisms	Calcite	Beam Displacement	No	No	+1111	s-pol. and <i>p</i> -pol. are displaced by 2.7 or 4.0 mm. Beam displacing prisms can be used as polarizing beamsplitters where 90° separation is not possible.
Fresnel Rhomb	NI DIZZ	Linear to circularly polarization Vertical Offset	No	No	CIRCULAR OUTFUT POLARIZATION LINEAR INPUT POLARIZATION	 λ/4 Fresnel Rhomb Retarder turns a linear input into circularly polarized output. Uniform λ/4 retardance over a wider wavelength range compared to birefringent wave plates.
Fresnel Rhomb N-BK7 Retarders	N-BK/	Rotates linearly polarized light 90°	No	No		 λ/2 Fresnel Rhomb Retarder rotates linearly polarized light 90°. Uniform λ/2 retardance over a wider wavelength range compared to birefringent wave plates.

• s-polarized light is not pure and contains some p-polarized reflections.

Beamsplitter Prisms

Bournopitto i Home								
Prism	Material	Deviation	Invert	Reverse or Rotate	Illustration	Applications		
Beamsplitter Cubes	N-BK7	50:50 splitting ratio, 0° and 90° s- and p- pol. within 10% of each other	No	No		Double prism configuration and dielectric coating provide 50:50 beamsplitting nearly independent of polarization. Non-polarizing beamsplitter over the specified wavelength range.		
Polarizing Beamsplitter Cubes	N-BK7, UV Fused Silica, or N-SF1	<i>p</i> -pol 0° s-pol 90°	No	No		Double prism configuration and dielectric coating transmit <i>p</i> -pol. light and reflect s-pol. light. For highest polarization use the transmitted beam.		

Hide Mounted Optics Guide

MOUNTED OPTICS GUIDE

30 mm Cage-Cube-Mounted Optics Selection Guide

The table below provides links to all of our 30 mm Cage-Cube-Mounted optics. For our selection of 16 mm Cage-Cube-Mounted Optics, please see our 16 mm Cage Systems guide.

30 mm Cage Cube Empty Optic Mounts Selection Guide

Hide Part Numbers

Part Number	Description	Price	Availability
PS932M/M	30 mm Cage Cube-Mounted Penta Prism, 12 mm x 14 mm Clear Aperture, Metric	\$150.00	Today
PS932M	30 mm Cage Cube-Mounted Penta Prism, 12 mm x 14 mm Clear Aperture	\$150.00	Today

Visit the *Mounted Penta Prism* page for pricing and availability information: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6827