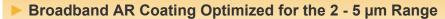
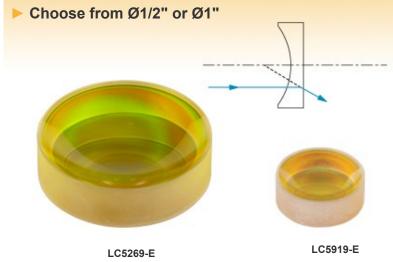
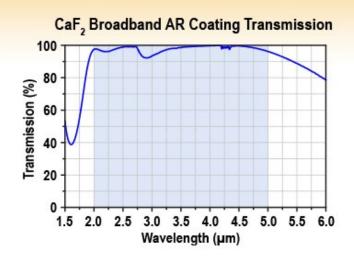


43 Sparta Avenue Newton, NJ 07860


Sales: (973) 300-3000


www.thorlabs.com


# LC5401-E - April 3, 2024

Item # LC5401-E was discontinued on April 3, 2024. For informational purposes, this is a copy of the website content at that time and is valid only for the stated product.

# CALCIUM FLUORIDE PLANO-CONCAVE LENSES, AR-COATED: 2 - 5 MM







#### **OVERVIEW**

#### **Features**

- Vacuum-Grade Calcium Fluoride Substrate
- Ø1/2" and Ø1" Versions Available
- Broadband AR Coating for the 2 -5 µm Range
- Focal Lengths from -18.0 mm to -500.0 mm

| Zemax Files                 |
|-----------------------------|
| Click on the red Document   |
| icon next to the item       |
| numbers below to access     |
| the Zemax file download.    |
| Our entire Zemax Catalog is |
| also available.             |

Thorlabs' Ø1/2" and Ø1" Calcium Fluoride (CaF<sub>2</sub>) Plano-Concave Lenses have a broadband AR coating optimized for the 2 µm to 5 µm spectral range deposited on both surfaces. This coating greatly reduces the surface reflectivity of the substrate, yielding an average transmission in excess of 97% over the entire AR coating range. See the Graphs tab for detailed information.

CaF2 is commonly used for applications requiring high transmission in the infrared and ultraviolet spectral ranges. The material exhibits a low refractive index, varying from 1.35 to 1.51 within its usage range of 180 nm to 8.0 µm. Calcium fluoride is also fairly chemically



| Common Specifications                                  |                                            |  |  |  |  |  |
|--------------------------------------------------------|--------------------------------------------|--|--|--|--|--|
| Substrate Material                                     | Vacuum-Grade Calcium Fluoride <sup>a</sup> |  |  |  |  |  |
| AR Coating Range                                       | 2 - 5 μm                                   |  |  |  |  |  |
| Reflectance over Coating Range (Avg.)                  | <1.25%                                     |  |  |  |  |  |
| Diameters Available                                    | 1/2" or 1"                                 |  |  |  |  |  |
| Diameter Tolerance +0.0/-0.1 mm                        |                                            |  |  |  |  |  |
| Thickness Tolerance                                    | ±0.1 mm                                    |  |  |  |  |  |
| Focal Length Tolerance                                 | ±1%                                        |  |  |  |  |  |
| Surface Quality                                        | 40-20 Scratch-Dig                          |  |  |  |  |  |
| Surface Flatness<br>(Plano Side)                       | λ/2                                        |  |  |  |  |  |
| Spherical Surface Power<br>(Concave Side) <sup>b</sup> | 3λ/2                                       |  |  |  |  |  |
| Surface Irregularity<br>(Peak to Valley)               | λ/2                                        |  |  |  |  |  |
| Centration                                             | <3 arcmin                                  |  |  |  |  |  |
| Clear Aperture                                         | >90% of Diameter                           |  |  |  |  |  |
| Design Wavelength                                      | 588 nm                                     |  |  |  |  |  |

inert and offers superior hardness compared to its barium fluoride, magnesium fluoride, and lithium fluoride cousins.

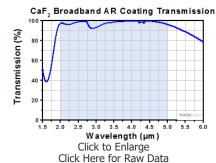
Like all plano-concave lenses, these lenses have negative focal lengths and can be used to diverge collimated beams; in this case, the curved surface should face the source in order to minimize spherical aberration. In addition, they can be employed to offset the effects of spherical aberration caused by other lenses in an optical system.

- Click Link for Detailed Specifications on the Substrate
- Much like surface flatness for flat optics, spherical surface power is a
  measure of the deviation between the surface of the curved optic and a
  calibrated reference gauge, typically for a 633 nm source, unless otherwise
  stated. This specification is also commonly referred to as surface fit.

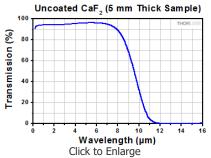
See the tables below for individual lens specifications. These lenses are also available uncoated.






|                         | Selection Guide  |                          |
|-------------------------|------------------|--------------------------|
| Calcium Fluoride Lenses | Other MIR Lenses | Other Spherical Singlets |

#### **GRAPHS**


# 

Shown above is a graph of the measured percent reflectance of the AR coating as a function of wavelength. The average reflectance in the 2 - 5 µm range is <1.25%. The blue shading indicates the region for which the AR coating is optmized. Performance outside of the specified range is not guaranteed and varies from lot to lot. The Excel file above provides the coating curve data over an extended wavelength range.

#### 2 - 5 µm AR Coating Graphs



Shown above is a graph of the measured percent transmission of the AR coating as a function of wavelength. The blue shading indicates the region for which the AR coating is optmized. Performance outside of the specified range is not guaranteed and varies from lot to lot. The Excel file above provides the coating curve data over an extended wavelength range.



Click Here for Raw Data
Shown above is a graph of the measured transmission of an uncoated, 5 mm thick sample of CaF<sub>2</sub>.

#### Total Transmission of Optic (CaF<sub>2</sub> Substrate, Uncoated)

The table below gives the approximate theoretical transmission of these uncoated optics for a few select wavelengths in the 0.18 - 8.0 µm range. To see an Excel file that lists all measured transmission values for this wavelength range, please click here.

| Wavelength<br>(µm) | Total<br>Transmission | Wavelength (µm) | Total Transmission | Wavelength (µm) | Total Transmission | Wavelength (µm) | Total Transmission |
|--------------------|-----------------------|-----------------|--------------------|-----------------|--------------------|-----------------|--------------------|
| 0.2                | 0.910                 | 2.2             | 0.939              | 4.2             | 0.943              | 6.2             | 0.947              |
| 0.4                | 0.929                 | 2.4             | 0.939              | 4.4             | 0.943              | 6.4             | 0.947              |
| 0.6                | 0.935                 | 2.6             | 0.940              | 4.6             | 0.943              | 6.6             | 0.948              |
| 0.8                | 0.937                 | 2.8             | 0.940              | 4.8             | 0.944              | 6.8             | 0.949              |
| 1.0                | 0.938                 | 3.0             | 0.940              | 5.0             | 0.945              | 7.0             | 0.949              |
| 1.2                | 0.938                 | 3.2             | 0.941              | 5.2             | 0.945              | 7.2             | 0.948              |
| 1.4                | 0.938                 | 3.4             | 0.941              | 5.4             | 0.945              | 7.4             | 0.947              |
| 1.6                | 0.938                 | 3.6             | 0.941              | 5.6             | 0.946              | 7.6             | 0.946              |
| 1.8                | 0.939                 | 3.8             | 0.942              | 5.8             | 0.946              | 7.8             | 0.945              |
| 2.0                | 0.939                 | 4.0             | 0.942              | 6.0             | 0.947              | 8.0             | 0.944              |

### **FOCAL LENGTH SHIFT**

### **Wavelength-Dependent Focal Length Shift**

The paraxial focal length of a lens is wavelength dependent. The focal length listed below for a given lens corresponds to the value at the design wavelength (i.e., the focal length at 588 nm). Since  $\text{CaF}_2$  offers high transmission from  $0.18 - 8.0 \, \mu\text{m}$ , users may wish to use these lenses at other popular wavelengths. Click on the icons below to view theoretically-calculated focal length shifts for wavelengths within the  $0.18 - 8.0 \, \mu\text{m}$  range.

The blue shading indicates the region for which the AR coating is optimized. Please see the *Graphs* tab for more information.

### Ø1/2" Plano-Concave Lenses

| Item#                                     | LC5919-E | LC5749-E |  |
|-------------------------------------------|----------|----------|--|
| Focal Length @ 588 nm                     | -18.0 mm | -25.0 mm |  |
| Focal Length Shift<br>(Click for Details) | 5        | <b>S</b> |  |
| Raw Data<br>(Click to Download)           | Data     | Data     |  |

## **Ø1" Plano-Concave Lenses**

| Item #                                    | LC5269-E | LC5401-E | LC5289-E  | LC5952-E  | LC5893-E  |
|-------------------------------------------|----------|----------|-----------|-----------|-----------|
| Focal Length @ 588 nm                     | -40.0 mm | -75.0 mm | -100.0 mm | -200.0 mm | -500.0 mm |
| Focal Length Shift<br>(Click for Details) | 5        | 5        | 4         | 5         | <u>~</u>  |
| Raw Data<br>(Click to Download)           | Data     | Data     | Data      | Data      | Data      |

#### **MOUNTING OPTIONS**





LMR1 Fixed Mount with Ø1" Lens

Click to Enlarge CXY1A Translation Mount and SM1 Lens Tube Mounted in a 30 mm Cage System





Click to Enlarge Ø1" Optic Mounted in a ST1XY-S XY Translator

|                   |          | Recommended Mounting Options for Thorlabs Lenses                                      |  |  |  |  |  |
|-------------------|----------|---------------------------------------------------------------------------------------|--|--|--|--|--|
| Ite               | m #      | Mounts for Ø2 mm to Ø10 mm Optics                                                     |  |  |  |  |  |
| Imperial          | Metric   | mounts to be fall to be to fill opines                                                |  |  |  |  |  |
| (Vai              | rious)   | Fixed Lens Mounts and Mini-Series Fixed Lens Mounts for Small Optics, Ø5 mm to Ø10 mm |  |  |  |  |  |
| (Vai              | rious)   | Small Optic Adapters for Use with Standard Fixed Lens Mounts, Ø2 mm to Ø10 mm         |  |  |  |  |  |
| Ite               | m #      | Marinto for CA12" (CA2.7 mars) Option                                                 |  |  |  |  |  |
| Imperial          | Metric   | Mounts for Ø1/2" (Ø12.7 mm) Optics                                                    |  |  |  |  |  |
| LMR05             | LMR05/M  | Fixed Lens Mount for Ø1/2" Optics                                                     |  |  |  |  |  |
| MLH05             | MLH05/M  | Mini-Series Fixed Lens Mount for Ø1/2" Optics                                         |  |  |  |  |  |
| LM05XY            | LM05XY/M | Translating Lens Mount for Ø1/2" Optics                                               |  |  |  |  |  |
| SC                | P05      | 16 mm Cage System, XY Translation Mount for Ø1/2" Optics                              |  |  |  |  |  |
| (\/a-             | rious)   | Ø1/2" Lens Tubes,                                                                     |  |  |  |  |  |
| (Various)         |          | Optional SM05RRC Retaining Ring for High-Curvature Lenses (See Below)                 |  |  |  |  |  |
| Ite               | m #      | Mounts for Ø1" (Ø25.4 mm) Optics                                                      |  |  |  |  |  |
| Imperial          | Metric   | (920.4 mm) Optics                                                                     |  |  |  |  |  |
| LMR1              | LMR1/M   | Fixed Lens Mount for Ø1" Optics                                                       |  |  |  |  |  |
| LM1XY             | LM1XY/M  | Translating Lens Mount for Ø1" Optics                                                 |  |  |  |  |  |
| ST1XY-S ST1XY-S/M |          | Translating Lens Mount with Micrometer Drives (Other Drives Available)                |  |  |  |  |  |
| CX                | Y1A      | 30 mm Cage System, XY Translation Mount for Ø1" Optics                                |  |  |  |  |  |
| (Va)              | rious)   | Ø1" Lens Tubes,                                                                       |  |  |  |  |  |
| (                 | 1040)    | Optional SM1RRC Retaining Ring for High-Curvature Lenses (See Below)                  |  |  |  |  |  |
| Ite               | m #      | Mount for Ø1.5" Optics                                                                |  |  |  |  |  |
| Imperial          | Metric   | <u> </u>                                                                              |  |  |  |  |  |
| LMR1.5            | LMR1.5/M | Fixed Lens Mount for Ø1.5" Optics                                                     |  |  |  |  |  |
| (Vai              | rious)   | Ø1.5" Lens Tubes,                                                                     |  |  |  |  |  |
|                   | ·        | Optional SM1.5RR Retaining Ring for Ø1.5" Lens Tubes and Mounts                       |  |  |  |  |  |
|                   | m #      | Mounts for Ø2" (Ø50.8 mm) Optics                                                      |  |  |  |  |  |
| Imperial          | Metric   | Fig. 11 At 15 CON 5 II                                                                |  |  |  |  |  |
| LMR2              | LMR2/M   | Fixed Lens Mount for Ø2" Optics                                                       |  |  |  |  |  |
| LM2XY             | LM2XY/M  | Translating Lens Mount for Ø2" Optics                                                 |  |  |  |  |  |
| C                 | KY2      | 60 mm Cage System, XY Translation Mount for Ø2" Optics                                |  |  |  |  |  |
| (Vai              | rious)   | Ø2" Lens Tubes, Optional SM2RRC Retaining Ring for High-Curvature Lenses (See Below)  |  |  |  |  |  |
| Ite               | m #      | Adjustable Ontic Mounts                                                               |  |  |  |  |  |
| Imperial          | Metric   | Adjustable Optic Mounts                                                               |  |  |  |  |  |

| LH1    | LH1/M    | Adjustable Mount for Ø0.28" (Ø7.1 mm) to Ø1.80" (Ø45.7 mm) Optics                            |
|--------|----------|----------------------------------------------------------------------------------------------|
| LH2    | LH2/M    | Adjustable Mount for Ø0.77" (Ø19.6 mm) to Ø2.28" (Ø57.9 mm) Optics                           |
| VG100  | VG100/M  | Adjustable Clamp for Ø0.5" (Ø13 mm) to Ø3.5" (Ø89 mm) Optics                                 |
| SCL03  | SCL03/M  | Self-Centering Mount for Ø0.15" (Ø3.8 mm) to Ø1.77" (Ø45.0 mm) Optics                        |
| SCL04  | SCL04/M  | Self-Centering Mount for Ø0.15" (Ø3.8 mm) to Ø3.00" (Ø76.2 mm) Optics                        |
| LH160C | LH160C/M | Adjustable Mount for 60 mm Cage Systems,<br>Ø0.50" (Ø13 mm) to Ø2.00" (Ø50.8 mm) Optics      |
| SCL60C | SCL60C/M | Self-Centering Mount for 60 mm Cage Systems,<br>Ø0.15" (Ø3.8 mm) to Ø1.77" (Ø45.0 mm) Optics |

#### **Mounting High-Curvature Optics**

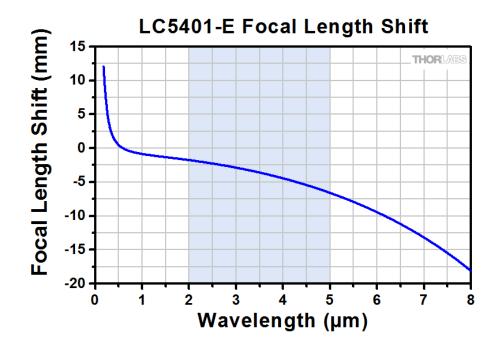
Thorlabs' retaining rings are used to secure unmounted optics within lens tubes or optic mounts. These rings are secured in position using a compatible spanner wrench. For flat or low-curvature optics, standard retaining rings manufactured from anodized aluminum are available from Ø5 mm to Ø4". For high-curvature optics, extra-thick retaining rings are available in Ø1/2", Ø1", and Ø2" sizes.

Extra-thick retaining rings offer several features that aid in mounting high-curvature optics such as aspheric lenses, short-focal-length plano-convex lenses, and condenser lenses. As shown in the animation to the right, the guide flange of the spanner wrench will collide with the surface of high-curvature lenses when using a standard retaining ring, potentially scratching the optic. This contact also creates a gap between the spanner wrench and retaining ring, preventing the ring from tightening correctly. Extra-thick retaining rings provide the necessary clearance for the spanner wrench to secure the lens without coming into contact with the optic surface.

# Ø1/2" CaF<sub>2</sub> Plano-Concave Lenses, AR-Coated: 2 - 5 μm

| Item #                | Diameter       | Focal Length | Diopter <sup>a</sup> | Radius of Curvature | Center Thickness | Edge Thickness <sup>b</sup> | Back Focal Length <sup>c</sup> | Reference<br>Drawing |
|-----------------------|----------------|--------------|----------------------|---------------------|------------------|-----------------------------|--------------------------------|----------------------|
| LC5919-E <sup>d</sup> | 1/2" (12.7 mm) | -18.0 mm     | -55.6                | -7.8 mm             | 2.0 mm           | 5.3 mm                      | -19.4 mm                       |                      |
| LC5749-E <sup>e</sup> | 1/2" (12.7 mm) | -25.0 mm     | -40.0                | -10.8 mm            | 2.5 mm           | 4.6 mm                      | -26.7 mm                       | •                    |

- a. Reciprocal of the Focal Length in Meters
- b. Edge Thickness Given Before 0.2 mm at 45°
- c. Typical Chamfer Measured at the Design Wavelength, 588 nm
- d. Suggested Fixed Lens Mounts: LMR05(/M) & SM05L03
- e. Suggested Fixed Lens Mount: LMR05(/M)


| Part Number | Description Price Av                                                         |          |       |  |
|-------------|------------------------------------------------------------------------------|----------|-------|--|
| LC5919-E    | Ø1/2" CaF <sub>2</sub> Plano-Concave Lens, f = -18.0 mm, AR-Coated: 2 - 5 μm | \$197.20 | Today |  |
| LC5749-E    | Ø1/2" CaF <sub>2</sub> Plano-Concave Lens, f = -25.0 mm, AR-Coated: 2 - 5 μm | \$185.31 | Today |  |

### Ø1" CaF<sub>2</sub> Plano-Concave Lenses, AR-Coated: 2 - 5 μm

| Item #                | Diameter     | Focal Length | Diopter <sup>a</sup> | Radius of Curvature | Center Thickness | Edge Thickness <sup>b</sup> | Back Focal Length <sup>c</sup> | Reference<br>Drawing |
|-----------------------|--------------|--------------|----------------------|---------------------|------------------|-----------------------------|--------------------------------|----------------------|
| LC5269-E <sup>d</sup> | 1" (25.4 mm) | -40.0 mm     | -25.0                | -17.4 mm            | 2.0 mm           | 7.5 mm                      | -41.4 mm                       |                      |
| LC5401-E <sup>e</sup> | 1" (25.4 mm) | -75.0 mm     | -13.3                | -32.5 mm            | 2.5 mm           | 5.1 mm                      | -76.8 mm                       |                      |
| LC5289-E <sup>e</sup> | 1" (25.4 mm) | -100.0 mm    | -10.0                | -43.4 mm            | 3.0 mm           | 4.9 mm                      | -102.1 mm                      | 0                    |
| LC5952-E <sup>e</sup> | 1" (25.4 mm) | -200.0 mm    | -5.0                 | -86.8 mm            | 3.5 mm           | 4.4 mm                      | -202.4 mm                      |                      |

- a. Reciprocal of the Focal Length in Meters
- b. Edge thickness given before 0.2 mm at 45° typical chamfer.
- c. Measured at the design wavelength, 588 nm.
- d. Suggested Fixed Lens Mounts: LMR1(/M) & SM1L05
- e. Suggested Fixed Lens Mount: LMR1(/M)

| Part Number | Description                                                                 | Price    | Availability |
|-------------|-----------------------------------------------------------------------------|----------|--------------|
| LC5269-E    | Ø1" CaF <sub>2</sub> Plano-Concave Lens, f = -40.0 mm, AR-Coated: 2 - 5 μm  | \$256.59 | Today        |
| LC5401-E    | Ø1" CaF <sub>2</sub> Plano-Concave Lens, f = -75.0 mm, AR-Coated: 2 - 5 μm  | \$244.70 | Today        |
| LC5289-E    | Ø1" CaF <sub>2</sub> Plano-Concave Lens, f = -100.0 mm, AR-Coated: 2 - 5 μm | \$238.78 | Today        |
| LC5952-E    | Ø1" CaF <sub>2</sub> Plano-Concave Lens, f = -200.0 mm, AR-Coated: 2 - 5 μm | \$230.46 | Today        |
| LC5893-E    | Ø1" CaF <sub>2</sub> Plano-Concave Lens, f = -500.0 mm, AR-Coated: 2 - 5 μm | \$224.51 | Today        |

