PS705 - March 22, 2018

Item \# PS705 was discontinued on March 22, 2018. For informational purposes, this is a copy of the website content at that time and is valid only for the stated product.

RIGHT-ANGLE PRISMS

Hide Overview

OVERVIEW

Features

- Sizes Ranging from 3 mm to 60 mm
- Fabricated from N-BK7, UV Fused Silica, CaF_{2}, ZnSe , or Ge
- N-BK7 Prisms Available with an AR Coating on the Hypotenuse or Both Legs

Available in sizes ranging from 3 mm to 60 mm , Thorlabs' high precision Right-Angle Prisms can be used to deviate a light path by 90° or 180°, depending on which surface is used as the input for the light source. These prisms are fabricated from N-BK7, UV fused silica, CaF_{2}, ZnSe, or Ge. Our $\mathrm{N}-\mathrm{BK} 7$ prisms are available uncoated or with one of our three standard broadband antireflection coatings (-A: 350-700 nm, -B: 650-1050nm, -C: 1050-1700 nm) on either the hypotenuse or both legs, thereby reducing surface losses.

Due to total internal reflection (TIR), Video 1 (to the left below) demonstrates how the right angle prism can be used as a 90° reflector. When the input light is incident on one of the prism's legs, it undergoes TIR at the glass/air boundary of the hypotenuse and exits via the other prism leg. This 90° deviation of the input light makes the right angle prism a suitable alternative for a mirror.

Video 2 (to the right below) shows how the right-angle prism can be used as a 180° retroreflector. When the input light is incident on the face of the hypotenuse, it undergoes TIR at the glass/air boundary at the prism legs. It undergoes TIR a second time at the next prism leg and exits the hypotenuse in a path parallel to that of the input beam. Like the retroreflector, the 180° deviation of the light path is independent of the angle at which the light enters the prism.

Please refer to the Prism Guide tab above for assistance in selecting the appropriate prism for your application. For additional antireflecton coating requests, please contact Tech Support.

Video 1. Right Angle Prism Acting as a 90° Reflector
Video 2. Right Angle Prism Acting as a 180° Retroreflector

[^0]SPECS

Material	UV Fused Silica ${ }^{\text {b }}$	N-BK7 ${ }^{\text {a, }}$ b	$\mathrm{CaF}_{2}{ }^{\text {b }}$	ZnSe ${ }^{\text {b }}$	Germanium ${ }^{\text {b }}$
Clear Aperture	70\% of Face Length and Width				
Surface Quality	40-20 Scratch-Dig			60-40 Scratch-Dig	
Surface Flatness @ 633 nm	N/10		N/2		
Number of Polished Faces	3 (Triangular Faces are Fine Ground)				

a. For the PS911K, please see the specifications listed to the right.
b. Click Link for Detailed Specifications on the Substrate Glass

PS911K Knife-Edge Prism Specifications	
Material	N-BK7 ${ }^{\text {a }}$
Clear Aperture (Legs)	Entire Face Length And Width Excluding a 1.25 mm Border Along Beveled Edges (No Bevel Between the Two Legs)
Clear Aperture (Hypotenuse)	90\% of Face Length and Width
Surface Quality	20-10 Scratch-Dig
Surface Flatness @ 633 nm	N/8
Number of Polished Faces	3 (Triangular Faces are Fine Ground)

a. Click Link for Detailed Specifications on the Substrate Glass

Uncoated Prisms

Item \#	Material	$\begin{aligned} & A=B \\ & (\mathrm{~mm}) \end{aligned}$	$\underset{(\mathrm{mm})}{\mathrm{C}}$	$\underset{(\mathrm{mm})}{\mathrm{H}}$	Angle Tolerance	Dimensional Tolerance
PS605	UV Fused Silica ${ }^{\text {a }}$	3	4.2	3	± 10 arcmin	$\pm 0.2 \mathrm{~mm}$
PS609		5	7.1	5	± 3 arcmin	$\pm 0.2 \mathrm{~mm}$
PS610		10	14.1	10	± 3 arcmin	$\pm 0.2 \mathrm{~mm}$
PS614		12.5	17.7	12.5	± 3 arcmin	$\pm 0.2 \mathrm{~mm}$
PS615		15	21.2	15	± 3 arcmin	$\pm 0.2 \mathrm{~mm}$
PS608		20	28.3	20	± 3 arcmin	$\pm 0.2 \mathrm{~mm}$
PS611		25	35.4	25	$\pm 3 \mathrm{arcmin}$	$\pm 0.2 \mathrm{~mm}$
PS612		40	56.6	40	± 3 arcmin	$\pm 0.2 \mathrm{~mm}$
PS613		60	84.9	60	± 3 arcmin	$\pm 0.2 \mathrm{~mm}$
PS905	N-BK7	3	4.2	3	± 10 arcmin	$\pm 0.1 \mathrm{~mm}$
PS909		5	7.1	5	± 3 arcmin	$\pm 0.1 \mathrm{~mm}$
PS910		10	14.1	10	± 3 arcmin	$\pm 0.1 \mathrm{~mm}$
PS914		12.5	17.7	12.5	± 3 arcmin	$\pm 0.2 \mathrm{~mm}$
PS915		15	21.2	15	± 3 arcmin	$\pm 0.2 \mathrm{~mm}$
PS908		20	28.3	20	± 3 arcmin	$\pm 0.1 \mathrm{~mm}$
PS911		25	35.4	25	± 3 arcmin	$\pm 0.1 \mathrm{~mm}$
PS912		40	56.6	40	± 3 arcmin	$\pm 0.1 \mathrm{~mm}$
PS913		60	84.9	60	± 3 arcmin	$\pm 0.1 \mathrm{~mm}$
PS703	CaF_{2}	10	14.1	10	± 10 arcmin	+0.0/-0.3 mm
PS706		12.5	17.7	12.5	± 10 arcmin	$\pm 0.2 \mathrm{~mm}$
PS707		15	21.2	15	± 10 arcmin	$\pm 0.2 \mathrm{~mm}$
PS704		25	35.4	25	± 10 arcmin	+0.0/-0.3 mm
PS701	ZnSe	10	14.1	10	± 10 arcmin	+0.0/-0.3 mm
PS702		25	35.4	25	± 10 arcmin	+0.0/-0.3 mm
PS705	Ge	25	35.4	25	± 10 arcmin	+0.0/-0.3 mm

a Corning Code 7980 Standard Grade Fused Silica

Coated Prisms

Hide Graphs

G R A P H S

Hide Prism Guide
PRISM GUIDE

Selection Guide for Prisms

Thorlabs offers a wide variety of prisms, which can be used to reflect, invert, rotate, disperse, steer, and collimate light. For prisms and substrates not listed below, please contact Tech Support.

Beam Steering Prisms

Prism	Material	Deviation	Invert	Reverse or Rotate	Illustration	Applications
Right Angle Prisms	N-BK7, UV Fused Silica, Germanium, Calcium Fluoride, or Zinc Selenide	90°	90°	No		90° reflector used in optical systems such as telescopes and periscopes.
		180°	180°	No		180° reflector, independent of entrance beam angle. Acts as a non-reversing mirror and can be used in binocular configurations.
Unmounted Retroreflectors and Mounted Retroreflectors	N-BK7	180°	180°	No		180° reflector, independent of entrance beam angle. Beam alignment and beam delivery. Substitute for mirror in applications where orientation is difficult to control.
Unmounted Penta Prisms and Mounted Penta Prisms	N-BK7	90°	No	No		90° reflector, without inversion or reversal of the beam profile. Can be used for alignment and optical tooling.
Roof Prisms	N-BK7	90°	90°	180° Rotation		90° reflector, inverted and rotated (deflected left to right and top to bottom). Can be used for alignment and optical tooling.

a. Depends on Angle of Incidence and Index of Refraction

Dispersive Prisms

Prism	Material	Deviation	Invert	Reverse or Rotate	Illustration	Applications
Equilateral Prisms	F2, N-SF11, Calcium Fluoride, or Zinc Selenide	Variable ${ }^{\text {a }}$	No	No		Dispersion prisms are a substitute for diffraction gratings. Use to separate white light into visible spectrum.
Dispersion Compensating Prism Pairs	Fused Silica, Calcium Fluoride, SF10, or N-SF14	Variable Vertical Offset	No	No		Compensate for pulse broadening effects in ultrafast laser systems. Can be used as an optical filter, for wavelength tuning, or dispersion compensation.

Pellin Broca Prisms	N-BK7, UV Fused Silica, or Calcium Fluoride	90°	90°	No		Ideal for wavelength separation of a beam of light, output at 90°. Used to separate harmonics of a laser or compensate for group velocity dispersion.
a. Depends on Angle of Incidence and Index of Beam Manipulating Prisms						
Prism	Material	Deviation	Invert	Reverse or Rotate	Illustration	Applications
Anamorphic Prism Pairs	N-KZFS8 or N-SF11	Variable Vertical Offset	No	No		Variable magnification along one axis. Collimating elliptical beams (e.g., laser diodes) Converts an elliptical beam into a circular beam by magnifying or contracting the input beam in one axis.
Axicons	UV Fused Silica	Variable ${ }^{\text {a }}$	No	No		Creates a conical, nondiverging beam with a Bessel intensity profile from a collimated source.

a. Depends on Prism Physical Angle

Polarization Altering Prisms

Prism	Material	Deviation	Invert	Reverse or Rotate	Illustration	Applications
Glan-Taylor, GlanLaser, and a-BBO Glan-Laser Polarizers	Glan-Taylor: Calcite Glan-Laser: $\alpha-$ BBO or Calcite	$\begin{aligned} & p \text {-pol. }-0^{\circ} \\ & s \text {-pol. }-112^{\circ \mathrm{a}} \end{aligned}$	No	No		Double prism configuration and birefringent calcite produce extremely pure linearly polarized light. Total Internal Reflection of s pol. at the gap between the prism while p-pol. is transmitted.
Rutile Polarizers	Rutile (TiO_{2})	$\begin{gathered} s \text {-pol. }-0^{\circ} \\ p \text {-pol. absorbed } \\ \text { by housing } \end{gathered}$	No	No		Double prism configuration and birefringent rutile $\left(\mathrm{TiO}_{2}\right)$ produce extremely pure linearly polarized light. Total Internal Reflection of p pol. at the gap between the prisms while s-pol. is transmitted.
Double Glan-Taylor Polarizers	Calcite	$p \text {-pol. }-0^{\circ}$ s-pol. absorbed by housing	No	No		Triple prism configuration and birefringent calcite produce maximum polarized field over a large half angle. Total Internal Reflection of s pol. at the gap between the prism while p-pol. is

a. s-polarized light is not pure and contains some p-polarized reflections.

Beamsplitter Prisms

Prism	Material	Deviation	Invert	Reverse or Rotate	Illustration	Applications
Beamsplitter Cubes	N-BK7	50:50 splitting ratio, 0° and 90° s - and p - pol. within 10% of each other	No	No		Double prism configuration and dielectric coating provide 50:50 beamsplitting nearly independent of polarization. Non-polarizing beamsplitter over the specified wavelength range.
Polarizing Beamsplitter Cubes	N-BK7, UV Fused Silica, or N-SF1	$\begin{aligned} & p-\text { pol. }-0^{\circ} \\ & s-\text { pol. }-90^{\circ} \end{aligned}$	No	No		Double prism configuration and dielectric coating transmit p pol. light and reflect s-pol. light. For highest polarization use the transmitted beam.

Hide UV Fused Silica Right-Angle Prisms. Uncoated (185 nm - $2.1 \mu \mathrm{~m}$)

UV Fused Silica Right-Angle Prisms, Uncoated (185 nm-2.1 $\mu \mathrm{m}$)

Choose a UV Fused Silica Right-Angle Prism if your application would benefit from higher transmission in the UV or a lower coefficient of thermal expansion. UV-grade fused silica offers high transmission in the deep UV and exhibits virtually no laser-induced fluorescence (as measured at 193 nm), making it an ideal choice for applications from the UV to the near IR. For a given wavelength, UV fused silica also has a lower index of refraction than N-BK7. Please see the Graphs tab for a graph of index of refraction vs wavelength for UV fused silica.
 Click Here for Raw Data

Part Number	Description	Price	Availability
PS605	UV Fused Silica Right Angle Prism, Uncoated, 3 mm	\$59.93	Today
PS609	UV Fused Silica Right-Angle Prism, Uncoated, 5 mm	\$63.50	Today
PS610	UV Fused Silica Right-Angle Prism, Uncoated, 10 mm	\$70.38	Today
PS614	Customer Inspired!UV Fused Silica Right-Angle Prism, Uncoated, 12.5 mm	\$72.93	Today
PS615	Customer Inspired!UV Fused Silica Right-Angle Prism, Uncoated, 15 mm	\$75.23	Today
PS608	UV Fused Silica Right-Angle Prism, Uncoated, 20 mm	\$77.52	Today
PS611	UV Fused Silica Right-Angle Prism, Uncoated, 25 mm	\$87.98	Today
PS612	UV Fused Silica Right-Angle Prism, Uncoated, 40 mm	\$207.06	Today
PS613	UV Fused Silica Right-Angle Prism, Uncoated, 60 mm	\$399.84	Today

Hide N-BK7 Right-Angle Prisms, Uncoated ($350 \mathrm{~nm}-2 \mu \mathrm{~m}$)

N-BK7 Right-Angle Prisms, Uncoated ($350 \mathrm{~nm}-2 \mu \mathrm{~m}$)

Choose an N-BK7 Right-Angle Prism if the additional benefits of fused silica are not required. N-BK7 provides excellent transmittance in the visible and near infrared portions of the spectrum. Please see the Graphs tab for a graph of index of refraction vs wavelength for N-BK7. Additionally, N-BK7 is a viable choice for UV applications down to 350 nm . For applications that demand maximum transmission, please see our AR-coated N -BK7 prisms below.

Our PS911K Knife-Edge prism offers the same features as our standard N-BK7 right angle prisms but features an unbeveled, precision 90° edge between the two legs. This means that the clear aperture reaches across this surface, making this prism ideal for applications where a larger clear aperture is beneficial. It also offers enhanced surface flatness and quality; see the Specs tab for Details

Part Number	Description	Price	Availability
PS905	N-BK7 Right-Angle Prism, Uncoated, 3 mm	\$37.23	Today
PS909	N-BK7 Right-Angle Prism, Uncoated, 5 mm	\$38.51	Today
PS910	N-BK7 Right-Angle Prism, Uncoated, 10 mm	\$43.10	Today
PS914	Customer Inspired! -BK7 Right-Angle Prism, Uncoated, 12.5 mm	\$44.63	Today
PS915	Customer Inspired!N-BK7 Right-Angle Prism, Uncoated, 15 mm	\$47.18	Today
PS908	N-BK7 Right-Angle Prism, Uncoated, 20 mm	\$48.71	Today

PS911	N-BK7 Right-Angle Prism, Uncoated, 25 mm	\$55.59	Today
PS911K	Customer Inspired!N-BK7 Knife-Edge Right-Angle Prism, Uncoated, 25 mm	\$108.12	Today
PS912	N-BK7 Right-Angle Prism, Uncoated, 40 mm	\$95.12	Today
PS913	N-BK7 Right-Angle Prism, Uncoated, 60 mm	\$143.82	Today

Hide CaF_{2} Right-Angle Prisms, Uncoated ($180 \mathrm{~nm}-8 \mu \mathrm{~m}$)

CaF_{2} Right-Angle Prisms, Uncoated (180 nm - $8 \mu \mathrm{~m}$)

Choose a CaF_{2} Right-Angle Prism for applications requiring high transmission in the $180 \mathrm{~nm}-8 \mu \mathrm{~m}$ range. The material exhibits a low refractive index, varying from 1.35 to 1.51 within its usage range of 180 nm to $8.0 \mu \mathrm{~m}$, as well as an extremely high laser damage threshold. Please see the Graphs tab for a graph of index of refraction vs wavelength for calcium fluoride. Calcium fluoride is also fairly chemically inert and offers superior hardness compared to its barium fluoride, magnesium fluoride, and lithium fluoride cousins.

Click to Enlarge
Transmission data is for two 25 mm right-angle prisms contacted into a cube. Click here for raw data.

Part Number	Description	Price	Availability
PS703	CaF_{2} Right-Angle Prism, Uncoated, 10 mm	\$324.36	Today
PS706	Customer Inspired! CaF_{2} Right-Angle Prism, Uncoated, 12.5 mm	\$376.38	Today
PS707	Customer Inspired!CaF 2 Right-Angle Prism, Uncoated, 15 mm	\$401.88	Today
PS704	CaF_{2} Right-Angle Prism, Uncoated, 25 mm	\$506.94	Today

Hide ZnSe Right-Angle Prisms, Uncoated ($600 \mathrm{~nm}-16 \mu \mathrm{~m}$)

ZnSe Right-Angle Prisms, Uncoated (600 nm-16 $\boldsymbol{\mu m}$)

Zinc Selenide is ideal for use in the $600 \mathrm{~nm}-16 \mu \mathrm{~m}$ range. It features low absorption (including in the red visible wavelength range) and high resistance to thermal shock. ZnSe is ideal for use in CO_{2} laser systems operating at $10.6 \mu \mathrm{~m}$, including those with HeNe alignment lasers. Please see the Graphs tab for a graph of index of refraction vs wavelength for ZnSe .

When handling optics, one should always wear gloves. This is especially true when working with zinc selenide, as it is a hazardous material. For your safety, please follow all proper precautions, including wearing gloves when handling these prisms and thoroughly washing your hands afterward. Due to the low hardness of ZnSe , additional care should be taken to not damage these prisms. Click here to download a pdf of the MSDS for ZnSe.

Thorlabs will accept all ZnSe prisms back for proper disposal. Please contact Tech Support to make arrangements for this service.

Click to Enlarge
Transmission data is for two 25 mm right-angle prisms contacted into a cube. Click here for raw data.

| Part Number | Description | Price | Availability |
| :--- | :--- | :--- | :--- | :--- |
| PS701 | ZnSe Right-Angle Prism, Uncoated, 10 mm | $\$ 554.88$ | Today |
| PS702 | ZnSe Right-Angle Prism, Uncoated, 25 mm | $\$ 938.40$ | Today |

Hide Ge Right-Angle Prisms, Uncoated (2-16 $\mu \mathrm{m}$)

Ge Right-Angle Prisms, Uncoated (2-16 $\mu \mathrm{m}$)

Due to its broad transmission range (2-16 $\mu \mathrm{m}$) and opacity in the visible portion of the spectrum, Germanium is well suited for IR applications. It is also inert to air, water, alkalis, and acids (except nitric acid). Germanium's transmission properties are highly temperature sensitive. Germanium is nearly opaque at $100^{\circ} \mathrm{C}$ and completely non-transmissive at $200^{\circ} \mathrm{C}$. Please see the Graphs tab for a graph of index of refraction vs wavelength for germanium.

When handling optics, one should always wear gloves. This is especially true when working with germanium, as dust from the material is hazardous. For your safety, please follow all proper precautions, including wearing gloves when handling these prisms and thoroughly washing your hands afterward.

Click to Enlarge
Transmission data is for two 25 mm right-angle prisms contacted into a cube. Click here for raw data.

This item will be retired without Limited replacement when stock is depleted. If you require this part for line production, please contact our OEM Team.

Part Number		Description	Price
PS705	Ge Right Angle Prism, Uncoated, 25 mm	Availability	

Hide N-BK7 Right-Angle Prisms, AR-Coated Hypotenuse

N-BK7 Right-Angle Prisms, AR-Coated Hypotenuse

Choose an N-BK7 Right-Angle Prism with the appropriate AR Coating on the hypotenuse if you wish to use your prism as a retroreflector and you want to reduce surface reflections over the specified wavelength range of the coating.

 Click to Enlarge

 Click Here for Raw DataThe blue shaded region indicates the specified $350-700 \mathrm{~nm}$ wavelength range for optimum performance.

Click to Enlarge
Click Here for Raw Data
The blue shaded region indicates
the specified 650-1050 nm wavelength range for optimum
performance.

Click to Enlarge Click Here for Raw Data
The blue shaded region indicates
the specified 1050-1620 nm wavelength range for optimum performance.

Part Number	Description	Price	Availability
PS910H-A	N-BK7 Right-Angle Prism, 10 mm , AR Coating on Hypotenuse: $350-700 \mathrm{~nm}$	\$70.13	Today
PS910H-B	N-BK7 Right-Angle Prism, 10 mm , AR Coating on Hypotenuse: 650-1050 nm	\$70.13	Today
PS910H-C	N-BK7 Right-Angle Prism, 10 mm , AR Coating on Hypotenuse: $\mathbf{1 0 5 0 - 1 7 0 0 ~ n m}$	\$70.13	Today
PS914H-A	Customer Inspired!N-BK7 Right-Angle Prism, 12.5 mm , AR Coating on Hyp.: 350-700 nm	\$71.66	Today
PS914H-B	Customer Inspired!N-BK7 Right-Angle Prism, 12.5 mm , AR Coating on Hyp.: 650-1050 nm	\$71.66	Today
PS914H-C	Customer Inspired!N-BK7 Right-Angle Prism, 12.5 mm , AR Coating on Hyp.: 1050-1700 nm	\$71.66	3-5 Days
PS915H-A	Customer Inspired!N-BK7 Right-Angle Prism, 15 mm , AR Coating on Hyp.: 350-700 nm	\$74.21	Today
PS915H-B	Customer Inspired! ${ }^{\text {-BK7 Right-Angle Prism, } 15 \mathrm{~mm} \text {, AR Coating on Hyp.: 650-1050 nm }}$	\$74.21	Today
PS915H-C	Customer Inspired!N-BK7 Right-Angle Prism, 15 mm , AR Coating on Hyp.: 1050-1700 nm	\$74.21	Today
PS908H-A	Customer Inspired!N-BK7 Right-Angle Prism, 20 mm , AR Coating on Hypotenuse: 350-700 nm	\$75.99	Today
PS908H-B	Customer Inspired! ${ }^{\text {-BK7 Right-Angle Prism, }} \mathbf{2 0} \mathbf{m m}$, AR Coating on Hypotenuse: 650-1050 nm	\$75.99	Today
PS908H-C	Customer Inspired!N-BK7 Right-Angle Prism, 20 mm, AR Coating on Hypotenuse: 1050-1700 nm	\$75.99	Today

Hide N-BK7 Right-Angle Prisms. AR-Coated Legs

N-BK7 Right-Angle Prisms, AR-Coated Legs

Choose an N-BK7 Right-Angle Prism with the appropriate AR Coating on the legs if you wish to use your prism as a 90 degree reflector and you want to reduce surface reflections over the specified wavelength range of the coating.

Click to Enlarge Click Here for Raw Data The blue shaded region indicates the specified $350-700 \mathrm{~nm}$ wavelength range for optimum
performance.

Click to Enlarge Click Here for Raw Data The blue shaded region indicates the specified 650-1050 nm wavelength range for optimum performance.

Click to Enlarge
Click Here for Raw Data
The blue shaded region indicates the specified 1050-1620 nm wavelength range for optimum performance.

Part Number	Description	Price	Availability
PS910L-A	N-BK7 Right-Angle Prism, 10 mm , AR Coating on Legs: 350-700 nm	\$83.39	Today
PS910L-B	N-BK7 Right-Angle Prism, 10 mm , AR Coating on Legs: 650-1050 nm	\$83.39	Today
PS910L-C	N-BK7 Right-Angle Prism, 10 mm , AR Coating on Legs: 1050-1700 nm	\$83.39	3-5 Days
PS914L-A	Customer Inspired!N-BK7 Right-Angle Prism, 12.5 mm , AR Coating on Legs: 350-700 nm	\$85.17	Today
PS914L-B	Customer Inspired!n-BK7 Right-Angle Prism, 12.5 mm , AR Coating on Legs: 650-1050 nm	\$85.17	Today
PS914L-C	Customer Inspired!N-BK7 Right-Angle Prism, 12.5 mm , AR Coating on Legs: 1050-1700 nm	\$85.17	Today
PS915L-A	Customer Inspired!N-BK7 Right-Angle Prism, 15 mm , AR Coating on Legs: $\mathbf{3 5 0 - 7 0 0 ~ n m}$	\$87.72	Today
PS915L-B	Customer Inspired! -BK7 Right-Angle Prism, 15 mm , AR Coating on Legs: 650-1050 nm	\$87.72	Today
PS915L-C	Customer Inspired!N-BK7 Right-Angle Prism, 15 mm , AR Coating on Legs: 1050-1700 nm	\$87.72	Today
PS908L-A	Customer Inspired!N-BK7 Right-Angle Prism, 20 mm , AR Coating on Legs: 350-700 nm	\$89.51	Today
PS908L-B	Customer Inspired!N-BK7 Right-Angle Prism, 20 mm , AR Coating on Legs: 650-1050 nm	\$89.51	Today

[^0]: Hide Specs

