

MAX341 - OCT 31, 2018

Item # MAX341 was discontinued on OCT 31, 2018. For informational purposes, this is a copy of the website content at that time and is valid only for the stated product.

3-AXIS NANOMAX FLEXURE STAGES

Features

- · 4 mm of X, Y, and Z Travel
- · Flexure Design Ensures Smooth Continuous Motion and Long-Term Stability
- · Grooved Top Plate Ensures Alignment of Multi-Axis Stage Accessories
- · Compact Size Measuring 112.0 mm x 112.0 mm (4.41" x 4.41") Without Drives
- All Adjusters Coupled to the Base to Minimize Crosstalk
- Piezo Options Provide up to 5 nm Resolution in Closed Loop
- · Modular Design for Interchanging Actuators

Thorlabs' 3-axis NanoMax Flexure Stages are ideal for use in fiber launch systems or applications that require sub-micron resolution. The parallel flexure design ensures precise. smooth, continuous motions with negligible friction. Each unit provides 4 mm (0.16") of X, Y, and Z travel with a maximum load capacity of 1 kg (2.2 lbs). The nominal deck height of the stage is 62.5 mm (2.46"), which matches that of our 3-Axis MicroBlock compact flexure stages and RollerBlock long travel stages. Adapter plates are available for mounting our NanoMax stages to a wide range of other Thorlabs rotation and long travel linear stages.

Precision Drives

The modular design of our 3-axis NanoMax stages allows the drives to be removed and replaced at any time. For all of our compatible drive options, please see the Drives tab. Pre-configured stages are also offered that have differential micrometers or stepper motor actuators for out-ofthe-box manual or motorized operation, respectively. All drives are coupled directly to the base to minimize any unwanted motion in the system. This feature is ideal for any application requiring sub-micron resolution. For nanopositioning applications we have versions with internal piezoelectric actuators

Click to

Enlarge APY002 Pitch & Yaw Stage Shown Mounted on a 3-Axis Flexure Stage, Thereby Enabling 5-Axis Control

Enlarge 3-Axis Flexure Stage Mounted Directly to a PY004 High-Load Pitch and Yaw Stage for 5-Axis Control

Common Specifications ^a					
Travel		4 mm			
Travel Mecha	nism	Parallel Flexure			
Deck Height	(Nominal)	62.5 mm (2.46")			
Optical Axis	Height (Nominal)	75 mm (2.95")			
Load Capacit	ty (Max)	1 kg (2.2 lbs)			
Thermal Stab	oility	1 μm/°C			
Parallelism o	f Top Plate	<100 µm			
Top Plate Mounting Holes	Imperial Plate (Item # MMP1)	0			
	Metric Plate (Item # MMP1/M)	0			

· Please see the Specs Tab for Complete Specifications

Click to

Enlarge Using AM010 Cleats for Fiber Launch Applications

The option for open- or closed-loop piezos allows these stages to achieve nanometer resolution. The piezoelectric actuators are built into the stage, have 20 µm of travel, and can be controlled using many of our open- or closed-loop piezo controllers (see the Specs tab for all compatible controllers). When these stages are coupled with a NanoTrak controller (BNT001/IR, MNA601/IR, or TNA001/IR), the system becomes a powerful auto-alignment solution that maintains optical throughput and eliminates coupling efficiency loss due to thermal drift or other external forces. These piezo stages include three PAA100 Drive Cables and, in the case of closed-loop systems, three PAA622 Feebabck Converter Cables

HCS013 Objective Mount and HFF001 Quick-Release Fiber Clamp Accessories Attached to the Top Plate gauge displacement sensor and are ideal for applications gauge displacement sensor and are ideal for applications requiring positioning resolution down to 20 nm. Versions with closed-loop piezo actuators have internal strain gauge

displacement sensors that provide a feedback voltage signal that is linearly proportional to the displacement of the piezoelectric element. This feedback signal increases the resolution to 5 nm and can be used to compensate for the hysteresis, creep, and thermal drift that is inherent in all piezoelectric elements, making these stages an excellent choice for applications requiring nanometer resolution.

Click to Enlarge

Please note that the piezo mechanism uses contact with the micrometer drives in order to move the top platform. If for any reason the stage is operated with the micrometer drives removed, blanking plugs must be fitted before the piezo actuators can function. To order blanking plugs, please contact Tech Support.

Easy Alignment of Accessories

Two central keyways in the top platform allow for rapid system reconfiguration while maintaining accessory alignment (see the image above and to the left). The crossed pattern allows for changing the orientation of the stage for right- and left-handed use. A wide range of accessories is available to mount items such as microscope objectives, collimation packages, wave guides, fiber, and much more. If options are required for off-center mounting of components, the grooved top plate can be replaced with the RB13P1 adapter plate (sold at the bottom of this page), which has an array of 1/4"-20 (M6) and 8-32 (M4) mounting holes

Multi-Axis Stage Accessories										
313						7 11 to	100			C.
Fiber	Fiber	Waveguide	Diode	Fixed	Kinematic	Тор	Extension	Fiber	Slide	Kinematic
Mounts	Rotators	Mounts	Mounts	Mounts	Mounts	Plates	Platforms	Chucks	Holders	Platforms

SPECS	
T.	

			Stage Sp	ecification	s	_		
Item #	MAX313D(/M)	MAX312D(/M)	MAX311D(/M)	MAX343(/M)	MAX341(/M)	MAX303(/M)	MAX302(/M)	MAX301(/M)
Included Drives	DRV3 D	ifferential Micron	neter Drives	, ,	/001 Stepper .ctuators		N/A	
Travel				4 m	m			
Deck Height (Nominal)				62.5 mm	(2.46")			
Optical Axis Height (Nominal)				75 mm ((2.95")			
Load Capacity (Max)				1 kg (2.	2 lbs)			
Thermal Stability				1 µm.	/°C			
Parallelism of Top Plate				<100	μm			
Piezo Specifications								
Control		Open Loop	Closed Loop		Closed Loop		Open Loop	Closed Loop
Drive Voltage Range		0 -	- 75 V		0 - 75 V	0 - 75 V		
Range		2	0 μm		20 μm		20 μm	
Capacitance		3	.6 μF		3.6 µF		3.6 µF	
Theoretical Resolution		20 nm	5 nm		5 nm		20 nm	5 nm
Bidirectional Repeatability		0.2 μm	0.05 μm		0.05 µm		0.2 μm	0.05 μm
Absolute On-Axis Accuracy		1.	.0 μm		1.0 µm		1.0 µm	
Resonant Frequency (No Load)	N/A	37	75 Hz	N/A	375 Hz	N/A	37	75 Hz
Resonant Frequency with 275 g (9.7oz) Load		20	00 Hz		200 Hz		20	00 Hz
Resonant Frequency with 575 g (20.3oz) Load		18	50 Hz		150 Hz		15	50 Hz
Compatible Piezo Controllers		BPC303 MDT693B MPZ601 KPZ101 MNA601/IR BNT001/IR	BPC303 MPZ601 KPZ101 with KSG101 MNA601/IR BNT001/IR		BPC303 MPZ601 KPZ101 with KSG101 MNA601/IR BNT001/IR		BPC303 MDT693B MPZ601 KPZ101 MNA601/IR BNT001/IR	BPC303 MPZ601 KPZ101 with KSG101 MNA601/IR BNT001/IR

Stepper Motor Specifications

Stepper Motor Specifications					
Item #	DRV001 ^a				
Backlash	<7 μm				
Max Acceleration	4 mm/s ²				
Velocity Range	40 μm/sec - 4 mm/s				
Min Achievable Incremental Movement	60 nm				
Bidirectional Repeatability	500 nm				
Home Location Accuracy	± 1.5 μm				
	X-Axis: 0.015°				
Pitch	Y-Axis: 0.015°				
	Z-Axis: 0.0047°				
	X-Axis: 0.0034°				
Yaw	Y-Axis: 0.0034°				
	Z-Axis: 0.0032°				
Limit Switches	Ceramic Tip Mechanical				
Manual Over Ride	Yes				
Compatible Stepper Motor Controllers	BSC203				
Companies Copper Motor Controllers	MST602				

This legacy item has been superseded by the DRV208.

Differential Micrometer Specifications

Item #	DRV3		
Travel Range	8 mm (0.31") Coarse, 300 μm Fine		
Coarse Adjustment (with Vernier Scale)	500 μm/rev		
Fine Adjustment (with Vernier Scale)	50 μm/rev		

Arcuate Cross Talk Specifications

The measured maximum cross talk to the Z axis, when a movement is demanded in X or Y is <88 μ m. The table below shows the theoretical amount of cross talk to the Z axis, for movement at various X positions (Y axis at zero). Cross talk at Y axis positions (with X at zero) would be the same.

Thorlabs.com - 3-Axis NanoMax Flexure Stages

X Axis Position (mm)	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	
Arcuate Motion in Z Axis (μm)	80.0	45.0	20.0	5.0	0.0	5.0	20.0	45.0	80.0	

The measured maximum cross talk to the X and Y axes, when a movement is demanded in Z is <66 µm.

The table below shows the typical amount of cross talk to the X axis, for movement at various Z axis positions (Y axis at zero). Cross talk to Y axis positions (with X axis at zero) would be the same.

Z Axis Position (mm)	0.0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
Arcuate Motion in X Axis (µm)	57.1	32.1	14.3	3.6	0.0	3.6	14.3	32.1	57.1

DRIVES

Modular Drive Options

All 3-Axis NanoMax system have a modular design that allows the drives to be removed and replaced at any time. This allows for mix-and-match customization of actuators depending on the amount of automation or resolution needed on each axis.

Replacing a drive is simple and can be done in three steps. First, retract the leadscrew of the actuator until it is no longer engaging the moving body of the stage. Then unscrew the knurled knob attaching the existing drive to the stage. Finally, attach the new drive to the stage using the same knurled knob.

The drives compatible with our 3-axis NanoMax stages are summarized below. Some drives have limited travel range when used with the NanoMax 3-axis flexure stages; see the table for more details. For more detailed information on each drive, please see the full presentation for our Stepper Motor Drive, Differential Micrometers and Thumbscrew Drives, or In-line Piezo Actuators.

Removing the Actuators

Click to Enlarge Step 2 Unscrew the Knurled Knob and Remove the Actuator

Click to Enlarge Step 1 Rotate the Actuator Counterclockwise to Disengage the Actuator from the Platform

Item #	DRV004	DRV3	DRV208	DRV120
Click Image to Enlarge	1	-	99	
Actuator Type	Thumbscrew	Differential Micrometer ^a	Stepper Motor ^b	Piezoelectric with Feedback
Travel Range	8 mm (0.31") ^c	Coarse: 8 mm (0.31") ^c Fine: 300 µm	8 mm (0.31") ^c	20 μm
Adjustment	500 μm/revolution	Coarse: 500 µm/revolution Fine: 50 µm/revolution		-
Resolution	-	-	3.2 µm/step 200 steps/rev of Leadscrew	5 nm ^d
Compatible Controllers		-	Benchtop: BSC200 Series Rack Module: MST602	Benchtop: BPC300 Series Rack Mount: MPZ601 K- and T-Cubes: KPZ101 with KSG101

- Included with MAX311D(/M), MAX312D(/M), and MAX313D(/M) Stages
- The legacy DRV001 is included with the MAX341(/M) and MAX343(/M) stepper-motor-actuated stages.
- Range Limited to 4 mm (0.16") by the NanoMax Stage
- · Closed Loop

PIN DIAGRAMS

7-Pin LEMO MaleMAX311D, MAX341, MAX301

Pin	Designation
1	+15 V
2	Oscillator +
3	0 V
4	Signal Out -
5	Signal Out +
6	-15 V
7	Travel

Piezo Drive Input SMC Male

MAX311D, MAX312D, MAX341, MAX301, MAX302

Nominal Maximum Input Voltage: 75 V Absolute Maximum Input Voltage: 100 V

DRV001 Stepper Motor Connector Pins D-Type Male MAX341, MAX343

Pin	Description	Pin	Description
1	Limit Switch Ground	6	Motor Phase A-
2	Not Connected	7	Motor Phase A+
3	CW Limit Switch	8 to	Reserved for Future
4	Motor Phase B-	14	Use
5	Motor Phase B+	15	Earth GND

MULTI-AX	IS STAGES		

Multi-Axis Stage Selection Guide

3-Axis Stages

Thorlabs offers three different 3-Axis Stage variations: NanoMax flexure stages, MicroBlock compact flexure stages, and RollerBlock long-travel stages. Each stage features a 62.5 mm nominal deck height. Our NanoMax line of 3-axis stages offers built-in closed- and open-loop piezos as well as modular drive options that include stepper motors, differential drives, or additional piezos. The MicroBlock stages are available with differential micrometer drives or fine thread thumbscrews; these drives are not removable. Finally, our RollerBlock stage drivers can be switched out for any actuator that has a Ø3/8" (9.5 mm) mounting barrel.

4- and 5-Axis Stages

Our 4- and 5-axis stages are ideal for the static positioning of waveguides or complex optical elements with respect to our 3-axis or 6-axis high-performance alignment stages. Thorlabs' 5-axis stages have nominal heights of 62.5 mm or 112.5 mm. The AMA554 Height Adapter can be used to raise the deck height of the 3-axis or 4-axis stages to 112.5 mm for compatibility with our 5-axis MicroBlock or 6-Axis NanoMax Stages.

Click to Enlarge
In the above application, a 3-Axis NanoMax flexure
stage is aligned in front of a 6-axis stage at the
proper 112.5 mm deck height using an AMA554
Height Adapter.

6-Axis Stages

Thorlabs' 6-Axis NanoMax Nanopositioners are ideal for complex, multi-axis positioning and have a nominal deck height of 112.5 mm. These stages offer a common point of rotation and a patented parallel flexure design that allows all actuators to be coupled directly to the base to minimize any unwanted motion in the system. Built-in closed- and open-loop piezo options are available. A selection of modular drive options allows any axis to be manual or motorized with the option for external piezos. Our units without included actuators are also available in right- or left-handed configurations. To increase the stage height of the 3-axis stages to 112.5 mm, we recommend our AMA554 Height Adapter, shown in the image to the right.

A complete selection and comparison of our multi-axis stages is available below.

3-Axis Stages

Item #	MAX313D	MAX312D	MAX311D	MAX343	MAX341	MAX303	MAX302	MAX301	MBT602	MBT616D	RB13M	RBL13D
Stage Type			Nano	oMax Flex	ure Stages	6			MicroBlock Flexure	•	RollerBlock Long Travel Stages	
Included Drives	DRV3 Di	fferential Mic	crometers	Steppe	DRV001 er Motor ators ^a		N/A		Fine Thread Thumbscrews	Differential Micrometers	148-801ST Micrometer Drives	DRV304 Differential Micrometers
Built-in Piezos	N/A	Open Loop	Closed Loop	N/A	Closed Loop	N/A	Open Loop	Closed Loop	N/A		N/A	
Travel (X, Y, Z)	4 mm (0.16")					13 mm (0.51")						
Deck Height (Nominal)		62.5 mm (2.46")										
Optical Axis Height (Nominal)		75 mm (2.95")										
Load Capacity (Max)	1 kg (2.2 lbs)						4.4 kg (9.7 lbs)					
Thermal Stability		1 μm/°C								-		
Weight				1.00 kg (2.	20 lbs)				0.64 kg (1.40 lbs)	0.59 kg	(1.30 lbs)

This legacy item has been superseded by the DRV208 actuator.

4-Axis Stages

Item #		MBT401D MBT401D/M	MBT402D MBT402D/M				
Stage Type		4-Axis Thin-Profile MicroBlock Device Stage	4-Axis Low-Profile MicroBlock Device Stage				
Included Drives		Differential Micrometers					
Built-in Piezos		N.	N/A				
	Horizontal Axis (Y) ^a	13 mm	(0.51")				
	Vertical Axis (Z)	6 mm	(0.24")				
Travel	Pitch (θ _y)	±5°					
	Yaw (θ _z)	±5°					
Deck H	eight (Nominal)	62.5 mm (2.46")					
Optical Axis Height (Nominal)		75 mm (2.95")					
Load C	apacity (Max)	0.5 kg (1.1 lbs)				

Perpendicular to the Optical Axis (X)

5-Axis Stages

Item #		MBT401D (MBT401D/M) or MBT402D (MBT402D/M) with MBT501	PY005
Stage Type		5-Axis MicroBlock Stage System	Compact 5-Axis Stage
Included Drives		Differential Micrometers	100 TPI Actuators
Built-in	Piezos	N/A	
	Optical Axis (X)	13 mm (0.51")	3 mm (0.12")
	Horizontal Axis (Y)	13 mm (0.51")	3 mm (0.12")
Travel	Vertical Axis (Z)	6 mm (0.24")	3 mm (0.12")
	Pitch (θ _y)	±5°	±3.5°
	Yaw (θ _z)	±5°	±5°
Deck He	eight (Nominal)	112.5 mm (4.43")	62.5 mm (2.46") ^a
Optical (Nomina	Axis Height al)	125 mm (4.92")	75 mm (2.95") ^a
Load Ca	apacity (Max)	0.5 kg (1.1 lbs)	0.23 kg (0.5 lbs)

Nominal deck height of 62.5 mm and optical axis height of 75 mm can only be achieved using the PY005A2 Height Adapter and MMP1 Mounting Plate.

6-Axis Stages

	MAX601D MAX601D/M	MAX602D MAX602D/M	MAX603D MAX603D/M	MAX604 MAX604/M	MAX605 MAX605/M	MAX606 MAX606/M	MAX607 MAX607/M MAX607L ^a MAX607L/M ^a	MAX608 MAX608/M MAX608L ^a MAX608L/M ^a	MAX609 MAX609/M MAX609L ^a MAX609L/M ^a		
				6-Axis I	NanoMax Fle	xure Stage					
Included Drives		Differential Micr	ometers	Legacy [ORV001 Step Actuators ^b	per Motor		N/A			
Built-in Piezos		Open Loop	Closed Loop	N/A	Open Loop	Closed Loop	N/A	Open Loop	Closed Loop		
X, Y, Z	4 mm (0.16")										
θ_x , θ_y , θ_z					6°						
t (Nominal)	112.5 mm (4.43")										
Optical Axis Height (Nominal)		125 mm (4.92")									
city (Max)					1.0 kg (2.2 lb	os)					
2	cos (X, Y, Z)	MAX601D/M ives DRV3 E cos N/A (, γ, Z (, γ, Z (, γ, θ _y , θ _z t (Nominal) is Height	MAX601D/M MAX602D/M ives DRV3 Differential Micro tos N/A Open Loop (, Y, Z O _x , θ _y , θ _z t (Nominal) is Height	MAX601D/M MAX602D/M MAX603D/M	MAX601D/M MAX602D/M MAX603D/M MAX604/M	MAX601D/M MAX602D/M MAX603D/M MAX604/M MAX605/M	MAX601D/M MAX602D/M MAX603D/M MAX604/M MAX605/M MAX606/M	MAX601D MAX602D MAX603D MAX603D MAX604 MAX605 MAX6066 MAX607La MAX601D/M MAX601D/M MAX603D/M MAX603D/M MAX604/M MAX605/M MAX606/M MAX607L/Ma	MAX601D MAX602D MAX603D MAX604 MAX605 MAX606 MAX607 MAX607 MAX608La MAX601D MAX601D MAX602D MAX603D MAX603D MAX604 MAX605 MAX605 MAX606 MAX607 MAX607 MAX608L MAX608L MAX607 MAX608L MAX608L MAX607 MAX608L MAX608L MAX607 MAX608L MAX608L MAX608L MAX607 MAX608L MAX608L		

- · Left-Handed Version
- This legacy item has been superseded by the DRV208 actuator.

3-Axis NanoMax Stage with Differential Adjusters

- Preconfigured with DRV3 Differential Micrometers for Manual Adjustments
- Available With or Without Internal Closed- or Open-Loop Piezos
- Piezo Actuators Offer 20 μm of Travel
- ► Modular Design Allows Drives to be Removed and Replaced
- All Adjusters Tied to a Common Ground and Side Mounted
- Ideal for Use in Professional Fiber Launch Systems
- PAA622 Piezo Feedback Cables are Included with the MAX311D(/M) Stage

Thorlabs' NanoMax Stages with Differential Adjusters provide 4 mm (0.16") of coarse travel and 300 μ m of fine travel. The coarse adjuster has a Vernier scale with 10 μ m graduations while the fine adjuster has a Vernier scale with 1 μ m graduations. This resolution and travel range make these stages ideal for optimizing the coupling efficiency in a fiber alignment or waveguide positioning system. The graduations also allow for a clear reference point for absolute positioning within a system. The modular design of the included drives allows them to be replaced at any time; please see the Drives tab for more details and our full selection of compatible actuators.

Click to Enlarge
MAX311D 3-Axis Stage with a PY005 5-Axis
Stage, PY005A2 Base, and MMP1 Top Plate
for Fiber Coupling
quaye sensor in the closed-loop

In addition to the features above, the MAX312D and MAX311D NanoMax Stages incorporate openand closed-loop piezoelectric actuators, respectively, with 20 µm of travel. The open-loop design does not contain an internal strain gauge sensor, limiting the resolution to 20 nm. The addition of a strain gauge sensor in the closed-loop

feedback design increases the resolution to 5 nm. This feedback loop is ideal for compensating for the hysteresis, creep, and thermal drift that is inherent to all piezoelectric elements. These piezo stages include three PAA100 Drive Cables and, in the case of closed-loop systems, three PAA622 Feebabck Converter

300 50	DRV3 nm (0.16") 0 μm Fine 00 μm/rev 0 μm/rev			
300 50	nm (0.16") 0 μm Fine 00 μm/rev			
300 50	0 μm Fine 00 μm/rev			
50	00 μm/rev			
	·			
50	0 μm/rev			
Op	pen Loop	Closed Loop		
	0 - 75 V			
	20 μm			
	20 nm	5 nm		
2	200 nm	50 nm		
	1.0 µm			
M N H	1DT693B MPZ601 KPZ101	BPC303 MPZ601 KPZ101 with KSG101 MNA601/IR		
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	200 nm		

- Full coarse travel range of the DRV3 Differential Actuator is 8 mm (0.31").
 This range is limited to 4 mm by the Stage.
- · Please see the Specs Tab for Complete Piezo Specifications
- Note that for the open-loop and closed-loop piezo-actuated stages, a separate open-loop or closed-loop piezo controller, respectively, is necessary for operation.

Imperial stages come with an MMP1 Top Plate, while metric stages come with an MMP1/M Top Plate. These mounting plates contain a central keyway that allows for easy and repeatable alignment of all of the accessories listed in the overview. If off-center or breadboard mounting is necessary, we also offer the RB13P1 Top Plate.

Part Number	Description	Price	Availability
MAX313D/M	3-Axis NanoMax Stage, Differential Drives, No Piezos, Metric	\$1,668.72	Today
MAX312D/M	3-Axis NanoMax Stage, Differential Drives, Open-Loop Piezos, Metric	\$2,190.96	Today
MAX311D/M	3-Axis NanoMax Stage, Differential Drives, Closed-Loop Piezos, Metric	\$3,025.32	Today
MAX313D	3-Axis NanoMax Stage, Differential Drives, No Piezos	\$1,668.72	Today
MAX312D	3-Axis NanoMax Stage, Differential Drives, Open-Loop Piezos	\$2,190.96	Today
MAX311D	3-Axis NanoMax Stage, Differential Drives, Closed-Loop Piezos	\$3,025.32	Today

3-Axis NanoMax Stage with Stepper Motor Actuators

- Preconfigured with DRV001 Stepper Motor Actuators for Automated Alignments
- Available with or Without Internal Closed-Loop Piezos
- Piezo Actuators Offer 20 μm of Travel
- Modular Design Allows Drives to be Removed and Replaced
- All Adjusters Tied to a Common Ground and Side Mounted
- PAA622 Piezo Feedback Cables and PAA100 Drive Cables are Included with the MAX341(/M) Stage

Thorlabs' NanoMax Stages with Stepper Motor Actuators provide 4 mm (0.16") of travel and are capable of 60 nm step increments with a minimum incremental movement of 60 nm. They also provide bidirectional repeatability of 500 nm. Ceramic-tipped high-precision limit switches provide a high repeatability ideal for homing the motors. This is critical for auto alignment applications that rely on a highly repeatable zero point. The high repeatability and small step size make these stages ideal for any high-precision automated fiber launch system or general application. The modular design of the included drives allows them to be replaced at any time; please see the *Drives* tab for more details and our full selection of compatible actuators.

In addition to the features above, the MAX341 NanoMax Stage offers closed-loop piezoelectric actuators that have a 20 μm travel range. The closed-loop piezo actuators have strain gauge displacement sensors that provide a feedback signal allowing for a resolution up to 5 nm. This feedback loop is ideal for compensating for the hysteresis, creep, and thermal drift that is inherent to all piezoelectric elements. These piezo stages include three PAA100 Drive Cables and three PAA622 Feebabck Converter Cables.

Imperial stages come with an MMP1 Top Plate, while metric stages come with an MMP1/M Top Plate. These mounting plates contain a central keyway that allows for easy and repeatable alignment of all of the accessories listed in the overview. If off-center or breadboard mounting is necessary, we also offer the RB13P1 Top Plate.

Item #	MAX343(/M)	MAX341(/M)		
Stepper Motor Drive Specifications ^a				
Item #	DRV001			
Travel Range ^b	4 mm	(0.16")		
Min Incremental Movement	60 nm			
Velocity Range	40.0 µm/s to 4 mm/s			
Max Acceleration	4 mm/s ²			
Compatible Stepper Motor Controllers ^c	BSC203 and MST602			
Piezo Specifications ^a				
Control		Closed Loop		
Voltage Range		0 - 75 V		
Travel Range		20 µm		
Theoretical Resolution		5 nm		
Bidirectional Repeatability		50 nm		
Absolute On-Axis Accuracy	N/A	1.0 µm		
Compatible Piezo Controllers ^c		BPC303 MPZ601 KPZ101 with KSG101 MNA601/IR BNT001/IR		

- Please see the Specs Tab for Complete Stepper Motor and Piezo Specifications
- Full travel range of the DRV001 Stepper Motors is 8 mm (0.31"). This
 range is limited to 4 mm by the Stage.
- Note that for the MAX343, a separate controller is required to operate the stepper motor actuators. For the MAX341, both a separate stepper motor controller and a closed-loop piezo controller are necessary for operation.

Description	Price	Availability
3-Axis NanoMax Stage, Stepper Motors, Metric	\$2,534.70	Today
3-Axis NanoMax Stage, Stepper Motors, Closed-Loop Piezos, Metric	\$3,807.66	Today
3-Axis NanoMax Stage, Stepper Motors	\$2,534.70	Lead Time
3-Axis NanoMax Stage, Stepper Motors, Closed-Loop Piezos	\$3,807.66	Lead Time
	3-Axis NanoMax Stage, Stepper Motors, Metric 3-Axis NanoMax Stage, Stepper Motors, Closed-Loop Piezos, Metric 3-Axis NanoMax Stage, Stepper Motors	3-Axis NanoMax Stage, Stepper Motors, Metric \$2,534.70 3-Axis NanoMax Stage, Stepper Motors, Closed-Loop Piezos, Metric \$3,807.66 3-Axis NanoMax Stage, Stepper Motors \$2,534.70

3-Axis NanoMax Stage

- No Preinstalled Actuators
- Available With or Without Internal Closed- or Open-Loop Piezos
- Piezo Actuators Offer 20 μm of Travel
- ▶ Modular Design Allows for a Variety of Drive Options (See *Drives* Tab for Details)
- All Adjusters Tied to a Common Ground and Side Mounted
- PAA622 Piezo Feedback Cables and PAA100 Drive Cables are Included with the MAX301(/M) Stage

Click to Enlarge MAX301 with a Stepper Motor, Thumbscrew, and Differential Actuator Attached to the X, Y, and Z Axis, Respectively

Thorlabs' NanoMax Stages Without Included Actuators are ideal for customizing the type of drive that will be installed on each axis. This allows each axis to be configured depending on the precision or automation needed. Whether the application is a multimode fiber launch system using thumbscrews or an automated alignment setup using stepper motor actuators, each axis can be configured to meet the demand. For a list of all compatible actuators, please see the *Drives* tab.

In addition to the features above, the MAX302 and MAX301 NanoMax Stages offer open- and closed-loop piezoelectric actuators, respectively, with 20 µm of travel. The open-loop design does not contain an internal strain gauge sensor, limiting the resolution to 20 nm. The addition of a strain gauge sensor in the closed-loop feedback design increases the resolution to 5 nm. This feedback loop is ideal for compensating for the hysteresis, creep, and thermal drift that is inherent to all piezoelectric elements. These piezo stages include three PAA100 Drive Cables and, in the case of closed-loop systems, three PAA622 Feebabck Converter Cables.

Item #	MAX303(/M)	MAX302(/M)	MAX301(/M)		
Internal Piezo Actuators ^a					
Control		Open Loop	Closed Loop		
Voltage Range		0 -	75 V		
Travel Range		20	20 μm		
Theoretical Resolution		20 nm	5 nm		
Bidirectional Repeatability		200 nm	50 nm		
Absolute On-Axis Accuracy	N/A	1.0 µm			
		BPC303	BPC303		
		MDT693B	MPZ601		
Commette Bloom Comment		MPZ601	KPZ101 with		
Compatible Piezo Controllers ^b		KPZ101	KSG101		
		MNA601/IR	MNA601/IR		
		BNT001/IR	BNT001/IR		

- Please see the Specs Tab for Complete Piezo Specifications
- Note that for the open-loop and closed-loop piezo-actuated stages, a separate open-loop or closed-loop piezo controller, respectively, is necessary for operation.

Imperial stages come with an MMP1 Top Plate, while metric stages come with an MMP1/M Top Plate. These mounting plates contain a central keyway that allows for easy and repeatable alignment of all of the accessories listed in the overview. If off-center or breadboard mounting is necessary, we also offer the RB13P1 Top Plate.

Part Number	Description	Price	Availability
MAX303/M	3-Axis NanoMax Stage, Actuators Not Included, Metric	\$947.58	Today
MAX302/M	3-Axis NanoMax Stage, Actuators Not Included, Open-Loop Piezos, Metric	\$1,314.78	Today
MAX301/M	3-Axis NanoMax Stage, Actuators Not Included, Closed-Loop Piezos, Metric	\$2,242.98	Today
MAX303	3-Axis NanoMax Stage, Actuators Not Included	\$947.58	Today
MAX302	3-Axis NanoMax Stage, Actuators Not Included, Open-Loop Piezos	\$1,314.78	Today
MAX301	3-Axis NanoMax Stage, Actuators Not Included, Closed-Loop Piezos	\$2,242.98	Today

Tapped Top Plates

- ▶ RB13P1 Adapter Plate for General Purpose Accessories and Components
 - Array of Thirteen 1/4"-20 (M6) and Twelve 8-32 (M4) Tapped Mounting Holes
- MMP1 Standard 3-Axis Stage Top Plate (Included with All 3-Axis Stages)
 - Two 3 mm Wide Central Keyways for Aligning Multi-Axis Stage Accessories
 - Sixteen 6-32 (M3) Taps for Mounting Cleats
 - Four 4-40 (M2) Taps
 - Nine 8-32 (M4) Taps

Click to Enlarge

Click to Enlarge
RB13P1 Top Plate Shown Replacing the MMP1 Crossed
Groove Mounting Plate on an MAX311D Flexure Stage

Item #	RB13P1	RB13P1/M	MMP1	MMP1/M
Mechanical Drawing	0	0	0	•

The RB13P1(/M) Adapter Plate is designed as a replacement option for the standard MMP1(/M) grooved top plate sold with the stages above. Four counterbores that accept 6-32 (M3) screws allow it to be attached to the above stages. The 2.36" x 2.36" (60 mm x 60 mm) mounting surface is the same as the MMP1(/M) top plate that is included with the

above stages. For complete details on the dimensions and tap locations of this top plate, please see the mechanical drawings below.

The MMP1(/M) Top Plate is included with the stages sold above but can be purchased separately as well. This plate features two 3 mm wide central keyways in a crossed pattern to allow for rapid configuration while maintaining accessory alignment, making this plate ideal for fiber launch applications. This "crossed groove" design allows for the NanoMax stages to be used in a left- or right-handed configuration. The plate also contains an array of 4-40 (M2), 6-32 (M3), and 8-32 (M4) tapped mounting holes for securing and mounting various components. For complete details on the dimensions and tap locations of this plate, please see the mechanical drawings below.

Part Number	Description	Price	Availability
RB13P1/M	Adapter Plate with M6 and M4 Taps	\$52.02	Today
MMP1/M	Replacement Mounting Plate for Flexure Stages with M4, M3, and M2 Taps	\$60.00	Today
RB13P1	Adapter Plate with 1/4"-20 and 8-32 Taps	\$52.02	Today
MMP1	Replacement Mounting Plate for Flexure Stages with 8-32, 6-32, and 4-40 Taps	\$60.00	Today

Visit the 3-Axis NanoMax Flexure Stages page for pricing and availability information: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=2386