Optical Systems

Free Space Isolators

E-O Devices

Spherical Singlets

Multi-Element

Polarization Optics

Filters & Attenuators

Gas Cells

Ø = Lens Diameter

 $M = \frac{S}{S}$ Magnification or Conjugate Ratio

Spherical Lens Parameters

f = EFL (Effective Focal Length)

 $\frac{1}{f} = \frac{1}{S} + \frac{1}{S'}$ Paraxial Lens Formula (assumes sin $\theta \approx \theta$)

S = Object Distance, positive for objects to the left

of the front principal point P.

 S^\prime = Image Distance, positive for images to the right of the rear rear principal point P^\prime

Transmission of Various Materials

GLASS	DESCRIPTION	TRANSMISSION		
BK7	BK7 is a high-quality optical glass commonly used to make lenses intended for laboratory use. It has excellent mechanical and optical properties as well as good transmission in the visible and IR.	350nm to 2.0µm	BK7 TRANSMISSION 100 100 100 100 100 100 100 10	1mm Thick Sample Surface Reflections Included
UV Fused Silica	UV fused silica is an excellent material for the transmission of UV light. It is durable and has good mechanical properties $T_{external} \ge 80\%/cm @ 185nm$ $T_{internal} \ge 88\%/cm @ 185nm$	185nm to 2.1μm	UV Fused Silica Transmission	1mm Thick Sample Surface Reflections Included
CaF ₂	Calcium fluoride provides great transmission from the UV to the IR. Synthetic CaF_2 is used to improve deep UV transmission and to increase the damage threshold.	180nm to 8.0µm	CaF ₂ Transmission 100 100 100 100 100 100 100 10	1mm Thick Sample Surface Reflections Included
MgF ₂	Magnesium fluoride, an extremely rugged and durable material, is transparent over an extensive range of wavelengths from the UV to the IR.	200nm to 6.0µm	MgF ₂ Transmission 100 100 100 100 100 100 100 10	1mm Thick Sample Surface Reflections Included

Spherical Singlet Anti-Reflection Coatings

Most of our standard optics are available with high-performance, multilayer AR coatings, which minimize surface reflections within the specified wavelength ranges. These coatings are designed for angles of incidence between 0° and 30° (0.5 NA). For optics intended to be used at large

- R < 0.5% Average Over Band at 0° Incidence
- Less Angular Sensitivity within Angular Range
- Frequently Run Coatings are Listed Below

angles, consider using a custom coating optimized at a 45° of incidence; these coatings are effective from 25° to 52°. The plot shown below indicates the performance of the standard coatings in this family as a function of wavelength for a single surface. Broadband coatings have a typical absorption of 0.25% that is not shown in the reflectivity plots.

Normal Incidence Broadband Multilayer Anti-Reflective Coating

COATING CODE	WAVELENGTH RANGE	DESIGN ANGLE OF INCIDENCE	USEFUL ANGLE OF INCIDENCE
-UV	290-370nm	0°	0 to 30°
-A	350-650nm	0°	0 to 30°
-B	650-1050nm	0°	0 to 30°
-C	1050-1620nm	0°	0 to 30°

Optical Systems

Free Space Isolators

E-O Devices

Spherical Singlets

Multi-Element

Cylindrical Lenses

Aspheric Lenses

BK7: Meniscus Lenses

When used to form a positive lens assembly, the Positive Meniscus lens can increase the NA of the system while decreasing the total spherical aberrations.

The Negative Meniscus lens is used to increase the focal length of another lens while maintaining the angular resolution of the optical assembly. This lens shape is best used when one conjugate is relatively far from the lens.

Specifications

- Material: BK7
- **Dia. Tolerance:** +0.00/-0.10mm
- Wavelength Range: 350nm-2.0μm
- **Design Wavelength:** 633nm, n=1.515
- **Focal Length Tolerance:** ±1%
- Scratch/Dig: 40/20
- **Centration:** ≤3arcmin
- Clear Aperture: >90%

Positive Meniscus Lenses: Material BK7

Diffusers & Lens Arrays	Positive Meniscus Lenses: Material BK7												
Windows	ITEM #	DIA (mm)	f (mm)	PRICE UNCOATED (For Coated) \$£			Coated Lens Add Suffix)€RMB		R ₂ (mm)	t _c (mm)	t _e ¹ (mm)	fb (mm)	SUGGESTED MOUNT ²
Prisms	LE1234 LE1156	25.4 25.4	100.0 125.0	\$ 18.00 \$ 17.90	£ 11.30 £ 11.30	€ 16,70 € 16,60	¥ 171.90 ¥ 170.90	32.1 40.6	82.2 106.9	3.6 3.3	2.0 2.0	96.2 121.6	
Gratings	LE1104 LE1202	25.4 25.4	150.0 200.0	\$ 17.90 \$ 17.70	£ 11.30 £ 11.20	€ 16,60 € 16,50	¥ 170.90 ¥ 169.00	49.1 66.2	131.6 182.2	3.1 2.8	2.0 2.0	146.8 197.1	
Polarization Optics	LE1157 LE1929	25.4 25.4	250.0 300.0	17.80 \$ 21.00	£ 11.20 £ 13.20	€ 16,60 € 19,50	¥ 170.00 ¥ 200.60	83.4 100.9	233.9 288.2	2.6 2.5	2.0 2.0	247.3 297.5	LMR1
Beamsplitters	LE1872 LE1261	25.4 25.4	400.0 500.0	\$ 18.70 \$ 17.90	£ 11.80 £ 11.30	€ 17,40 € 16,60	¥ 178.60 ¥ 170.90	136.5 172.9	402.4 523.9	2.4 2.3	2.0 2.0	397.6 497.7	
Filters & Attenuators	LE1458 LE1076	25.4 50.8	1000.0 100.0	\$ 18.60 \$ 34.30	£ 11.70 £ 21.60	€ 17,30 € 31,90	¥ 177.60 ¥ 327.60	371.6 30.3	1330.7 65.8	2.2 9.7	2.0	998.0 89.1	
Gas Cells	LE1527 LE1418	50.8 50.8	125.0 150.0	\$ 34.40 \$ 35.20	£ 21.70 £ 22.20	€ 32,00 € 32,70	¥ 328.50 ¥ 336.20	39.2 47.9	92.9 119.3	8.2 7.3	2.4	116.1 142.2	
	LE1015 LE1613 LE1985	50.8 50.8 50.8	200.0 250.0 300.0	\$ 40.00 \$ 37.40 \$ 31.70	£ 25.20 £ 23.60 £ 20.00	€ 37,20 € 34,80 € 29,50	¥ 382.00 ¥ 357.20 ¥ 302.70	65.2 82.5 100.1	171.6 224.7 279.1	6.2 5.5 5.1	2.9 3.0 3.0	193.6 244.3 294.8	LMR2
	LE1359 LE1153 LE1834	50.0 50.8 50.8	400.0 500.0 1000.0	\$ 31.40 \$ 31.60 \$ 33.00	£ 19.80 £ 19.90 £ 20.80	€ 29,20 € 29,40 € 30,70	¥ 299.90 ¥ 301.80 ¥ 315.20	135.8 172.3 371.6	393.4 515.7 1326.3	5.0 5.0 5.0	3.4 3.7 4.4	395.0 495.1 995.7	

1 Edge thickness given before 0.2mm @ 45° typ. chamfer. 2) See the Lens Mount Section, Starting on Page 153.

Standard Broadband AR Coatings To order the lens with a standard broadband AR Coating, add the coating code to the Item#, and then add the coating cost to the lens price.

DIA

COATING	WAVELENGTH	\$	£	€	RMB										
-A	350-650nm	\$ 9.20	£ 5.80	€ 8,60	¥ 87.9	90									
-B	650-1050nm	\$ 9.20	£ 5.80	€ 8,60	¥ 87.9	90									
-C	1050-1620nm	\$12.20	£ 7.70	€11,30	¥ 116.	50									
Example: LE1234 Coated with a 350-650nm Broadband AR Coating is LE1234-A,															
and the cost \$1	18.00 + \$9.20 = \$27.2	20.		and the cost $$18.00 + $9.20 = 27.20 .											

PRICE UNCOATED (For Coated Lens Add Suffix)

fb

and **Negative Meniscus Lenses: Material BK7**

AR
Coating
Plot on
Page 699

ITEM #	(mm)	(mm)	\$	£	€]	RMB	(mm)	(mm)	(mm)	(mm)	(mm)	MOUNT ²
LF1822	25.4	-100.0	\$ 21.50	£ 13.50	€ 20,00	¥	205.30	100.0	33.7	3.0	4.7	-99.0	
LF1510	25.4	-125.0	\$ 17.70	£ 11.20	€ 16,50	¥	169.00	100.0	38.8	3.0	4.3	-123.7	
LF1547	25.4	-150.0	\$ 17.90	£ 11.30	€ 16,60	¥	170.90	100.0	43.1	3.0	4.1	-148.5	
LF1097	25.4	-200.0	\$ 18.20	£ 11.50	€ 16,90	¥	173.80	100.0	50.2	3.0	3.8	-198.0	
LF1774	25.4	-250.0	\$ 18.70	£ 11.80	€ 17,40	¥	178.60	100.0	55.7	3.0	3.7	-247.5	LMR1
LF1015	25.4	-300.0	\$ 17.90	£ 11.30	€ 16,60	¥	170.90	250.0	95.1	3.0	3.5	-298.8	
LF1544	25.4	-400.0	\$ 18.40	£ 11.60	€ 17,10	¥	175.70	250.0	112.5	3.0	3.4	-398.4	
LF1988	25.4	-500.0	\$ 18.80	£ 11.80	€ 17,50	¥	179.50	250.0	126.3	3.0	3.3	-498.0	
LF1141	25.4	-1000.0	\$ 18.00	£ 11.30	€ 16,70	¥	171.90	500.0	253.2	3.0	3.2	-998.0	
LF1764	50.8	-100.0	\$ 36.70	£ 23.10	€ 34,10	¥	350.50	200.0	40.6	5.0	12.3	-99.2	
LF1736	50.8	-125.0	\$ 37.10	£ 23.40	€ 34,50	¥	354.30	200.0	48.3	5.0	10.6	-123.9	
LF1829	50.8	-150.0	\$ 42.90	£ 27.00	€ 39,90	¥	409.70	200.0	55.3	5.0	9.6	-148.7	
LF1338	50.8	-200.0	\$ 42.00	£ 26.50	€ 39,10	¥	401.10	200.0	67.4	5.0	8.4	-198.3	
LF1269	50.8	-250.0	\$ 37.10	£ 23.40	€ 34,50	¥	354.30	200.0	77.7	5.0	7.7	-247.9	LMR2
LF1129	50.8	-300.0	\$ 37.10	£ 23.40	€ 34,50	¥	354.30	300.0	101.4	5.0	7.2	-298.3	
LF1115	50.8	-400.0	\$ 35.80	£ 22.60	€ 33,30	¥	341.90	300.0	121.5	5.0	6.6	-397.7	
LF1089	50.8	-500.0	\$ 35.80	£ 22.60	€ 33,30	¥	341.90	300.0	137.8	5.0	6.3	-497.2	
LF1591	50.8	-1000.0	\$ 35.50	£ 22.40	€ 33,00	¥	339.00	500.0	252.9	5.0	5.6	-996.7	
1 Edge thickne	ess given be	fore 0.2mn	n @ 45° typ. cha	mfer. 2) See the	Lens Mount Sec	tion, S	tarting on Pa	ge 153.					

R₁

R₂

www.thorlabs.com

SUGGESTED

Application Note: Using Meniscus Lenses

- Achieve Tighter Focusing by Combining a Meniscus Lens With Plano-Convex Lenses
- Build Multi-Element Lens Systems to Achieve Higher NA Without Significant Increases in Aberrations

These figures illustrate the performance gains that can be achieved by using multi-element imaging systems. The combination of a meniscus lens and a plano-convex lens yields a $21 \mu m$ focused spot versus a $240 \mu m$ spot from the single plano-convex lens.

POSITIVE MENISCUS LENSES

Positive meniscus lenses are designed to minimize spherical aberration. They have one surface convex and the other concave. When used in combination with another lens, a positive meniscus lens will shorten the focal length and increase the NA of the system. Figure 1c shows a meniscus lens being used to shorten the focal length of a 100mm focal length plano-convex lens. In addition, the transverse and lateral aberrations are greatly reduced. The convex surface of both lenses should be facing the away from the image.

NEGATIVE MENISCUS LENSES

Negative meniscus lenses are commonly used in beam expanding applications since they increase the divergence of the beam without introducing any significant spherical aberration. Combining a negative meniscus lens with another lens will increase the focal length and decrease the NA of the system.

> Buying More Than 10 Pieces of an Optic? Call for a Discount!

Optical Systems

Free Space Isolators

E-O Devices

Spherical Singlets

Multi-Element Lenses

Cylindrical Lenses

Aspheric Lenses

Mirrors

Diffusers & Lens Arrays

Windows

Prisms

Gratings

Polarization Optics

Beamsplitters

Filters & Attenuators

Gas Cells

Laser Beam Profiler

- High Precision Analysis of Beam Quality and Spatial Power Distribution
- Powerful Graphical Interface
- USB 2.0

See Page 966

