Optics

Optical Systems

Free Space Isolators

E-O Devices

Spherical Singlets

Multi-Element Lenses

Cylindrical Lenses

Aspheric Lenses

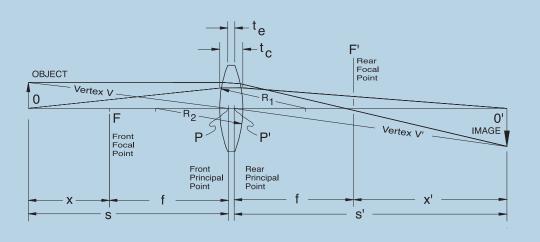
Mirrors

Diffusers & Lens Arrays

Windows

Prisms

Granings


Polarization Optics

Beamsplitters

Filters & Attenuators

Gas Cells

Spherical Lens Parameters

Ø = Lens Diameter

 $M = \frac{S'}{S}$ Magnification or Conjugate Ratio

f = EFL (Effective Focal Length)

 $\frac{1}{f} = \frac{1}{S} + \frac{1}{S'}$ Paraxial Lens Formula (assumes sin $\theta \approx \theta)$

S = Object Distance, positive for objects to the left of the front principal point P.

 S^\prime = Image Distance, positive for images to the right of the rear rear principal point P^\prime

Transmission of Various Materials

GLASS	DESCRIPTION	TRANSMISSION		
BK7	BK7 is a high-quality optical glass commonly used to make lenses intended for laboratory use. It has excellent mechanical and optical properties as well as good transmission in the visible and IR.	350nm to 2.0μm	BK7 TRANSMISSION 100 90 90 100 90 100 90 100 90 100 90 100 90 100 90 100 90 100 90 100 90 90 90 90 90 90 90 90 90 90 90 90 9	1mm Thick Sample Surface Reflections Included
UV Fused Silica	UV fused silica is an excellent material for the transmission of UV light. It is durable and has good mechanical properties Texternal ≥ 80%/cm @ 185nm Tinternal ≥ 88%/cm @ 185nm	185nm to 2.1μm	WV Fused Silica Transmission 80 80 60 200 700 1200 1700 2200 2700 3200 Wavelength (nm)	1mm Thick Sample Surface Reflections Included
CaF ₂	Calcium fluoride provides great transmission from the UV to the IR. Synthetic CaF ₂ is used to improve deep UV transmission and to increase the damage threshold.	180nm to 8.0μm	CaF ₂ Transmission 100 98 80 80 80 50 1700 3200 4700 6200 7700 9200 Wavelength (nm)	1mm Thick Sample Surface Reflections Included
${ m MgF}_2$	Magnesium fluoride, an extremely rugged and durable material, is transparent over an extensive range of wavelengths from the UV to the IR.	200nm to 6.0μm	MgF ₂ Transmission 100 90 90 88 80 70 86 60 50 200 1500 2800 4100 5400 6700 8000 Wavelength (nm)	1mm Thick Sample Surface Reflections Included

Optics

Optical Systems

E-O Devices

Free Space Isolators

Spherical Singlets

Multi-Element

Aspheric Lenses

Gratings

Polarization Optics

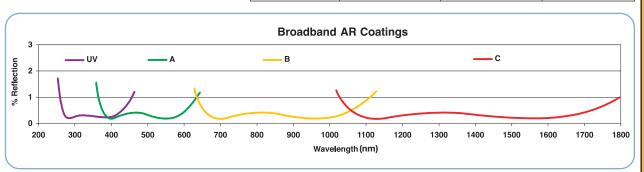
Filters & Attenuators

Gas Cells

GLASS	DESCRIPTION	TRANSMISSION	
SF11	This glass provides excellent chemical resistance and has a high refractive index, which allows for the same amount of refraction with less curvature. It is useful for constructing optics that would be extremely difficult to make from BK7.	420nm to 2.3μm	SF11 TRANSMISSION 1mm Thick Sample 5 90 8 00 5 90 8 00 1mm Thick Sample Surface Reflections Included Wavelength (nm)
Ge	The transmission characteristics of germanium in the IR region of the spectrum make it an ideal choice for imaging 2.0 - 16µm light. Ge plano-convex lenses are particularly well suited for more biomedical and military imaging applications.	2.0μm to 16μm	Germanium (Ge) 1mm Thick Sample 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ZnSe	With a transmission range from 600nm - 16µm, zinc selenide plano-convex lenses are ideal for IR applications. Due to the low absorption coefficient, these lenses are also particularly well suited for high-power CO laser applications. In contrast to Ge and Si, which also transmit in this spectral range, ZnSe transmits some visible light, thereby allowing for visual alignment of the optic.		Zinc Selenide (ZnSe) 1mm Thick Sample 5 8 80 100 100 100 100 100 100 100
Si	Silicon plano-convex lenses are an ideal choice for applications from 1.2 - 8µm and are particularly well suited for imaging, biomedical, and military applications.	1200nm to 8.0 μm	Silicon (Si) 1mm Thick Sample 2mg 40 2mg

Spherical Singlet Anti-Reflection Coatings

Most of our standard optics are available with high-performance, multilayer AR coatings, which minimize surface reflections within the specified wavelength ranges. These coatings are designed for angles of incidence between 0° and 30° (0.5 NA). For optics intended to be used at large


■ R < 0.5% Average Over Band at 0° Incidence

- Less Angular Sensitivity within Angular Range
- Frequently Run Coatings are Listed Below

angles, consider using a custom coating optimized at a 45° of incidence; these coatings are effective from 25° to 52°. The plot shown below indicates the performance of the standard coatings in this family as a function of wavelength for a single surface. Broadband coatings have a typical absorption of 0.25% that is not shown in the reflectivity plots.

Normal Incidence Broadband Multilayer Anti-Reflective Coating

COATING CODE	WAVELENGTH RANGE	DESIGN ANGLE OF INCIDENCE	USEFUL ANGLE OF INCIDENCE
-UV	290-370nm	0°	0 to 30°
-A	350-650nm	0°	0 to 30°
-В	650-1050nm	0°	0 to 30°
-C	1050-1620nm	0°	0 to 30°

Optics

Optical Systems

Free Space Isolators

E-O Devices

Spherical Singlets

Multi-Element

Cylindrical Lenses

Aspheric Lenses

...

Diffusers & Lens Arrays

Windows

Prisms

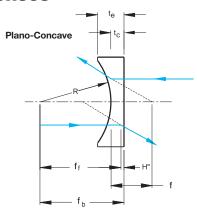
Gratings

Polarization Optics

Beamsplitters

& Attenuators

Gas Cells


AR
Coating
Plot on
Page 699

SF11 or BK7: Plano-Concave & Bi-Concave Lenses

Plano-Concave lenses have a negative focal length and are typically used to diverge collimated beams of light in instruments like Galilean type beam expanders or Telescopes. The spherical aberration introduced into the electromagnetic wavefront by a plano-concave lens is negative and, as a result, it can be used to balance the positive spherical aberration introduced by other lenses.

Specifications

- **Material:** BK7 or SF11
- Wavelength Range: BK7: 350nm-2.0μm SF11: 420nm-2.3μm
- **Design Wavelength:** 633nm
- **Dia. Tolerance:** +0.00/-0.10mm
- Focal Length Tolerance: ±1%
- Scratch/Dig: 40/20
- **Centration:** ≤3arcmin
- Clear Aperture: >90%

Plano-Concave Lenses: BK7 or SF11 Material

		DIA	f	PRICE UN	COATED (Fo	or Coated Len	s Add Suffix)	R	t _c	te1	fb	MATERIAL	SUGGESTED
	ITEM #	(mm)	(mm)	\$	£	€	RMB	(mm)	(mm)	(mm)	(mm)		MOUNT*
	LC2969	6.0	-6.0	\$ 19.90	£ 12.50	€ 18,50	¥ 190.00	-4.7	1.5	2.6	-6.8	SF11	
	LC2632	6.0	-12.0	\$ 21.00	£ 13.20	€ 19,50	¥ 200.60	-9.3	2.0	2.5	-13.1	SF11	LMRA6 &
	LC1035	6.0	-18.0	\$ 13.60	£ 8.60	€ 12,60	¥ 129.90	-9.3	2.0	2.5	-19.3	BK7	LMR05
	LC1975	6.0	-24.0	\$ 13.60	£ 8.60	€ 12,60	¥ 129.90	-12.4	2.0	2.4	-25.3	BK7	
	LC2067	9.0	-9.0	\$ 24.80	£ 15.60	€ 23,10	¥ 236.80	-7.0	2.0	3.6	-10.1	SF11	
	LC2873	9.0	-18.0	\$ 19.60	£ 12.30	€ 18,20	¥ 187.20	-14.0	2.5	3.2	-19.4	SF11	LMRA9 &
	LC1906	9.0	-27.0	\$ 14.10	£ 8.90	€ 13,10	¥ 134.70	-13.9	2.0	2.7	-28.3	BK7	LMR05
	LC2265	12.7	-15.0	\$ 26.60	£ 16.80	€ 24,70	¥ 254.00	-11.7	3.0	4.9	-16.7	SF11	
	LC1054	12.7	-25.0	\$ 15.00	£ 9.50	€ 14,00	¥ 143.30	-12.9	3.0	4.7	-27.0	BK7	LMR05
	LC1060	12.7	-30.0	\$ 14.90	£ 9.40	€ 13,90	¥ 142.30	-15.4	3.0	4.4	-32.0	BK7	LMKU
	LC1439	12.7	-50.0	\$ 14.70	£ 9.30	€ 13,70	¥ 140.40	-25.7	3.5	4.3	-52.3	BK7	
	LC2679	25.4	-30.0	\$ 27.20	£ 17.10	€ 25,30	¥ 259.80	-23.4	3.5	7.3	-32.0	SF11	
	LC1715	25.4	-50.0	\$ 17.40	£ 11.00	€ 16,20	¥ 166.20	-25.7	3.5	6.9	-52.3	BK7	LMR1
	LC1582	25.4	-75.0	\$ 17.40	£ 11.00	€ 16,20	¥ 166.20	-38.6	3.5	5.6	-77.3	BK7	LIVIKI
١	LC1120	25.4	-100.0	\$ 17.20	£ 10.80	€ 16,00	¥ 164.30	-51.5	4.0	5.6	-102.6	BK7	
	LC1315	50.8	-75.0	\$ 33.30	£ 21.00	€ 31,00	¥ 318.00	-38.6	3.5	13.0	-77.3	BK7	LH2
	LC1093	50.8	-100.0	\$ 28.20	£ 17.80	€ 26,20	¥ 269.30	-51.5	4.0	10.7	-102.6	BK7	LUZ
	LC1611	50.8	-150.0	\$ 27.00	£ 17.00	€ 25,10	¥ 257.90	-77.2	4.0	8.3	-152.6	BK7	LMR2

1 Edge Thickness given before 0.2mm @ 45° typ. Chamfer. 2) See the Lens Mount Section, Starting on Page 153.

Bi-Concave lenses have a negative focal length and are commonly used to increase the divergence of converging light.

Standard Broadband AR CoatingsTo order a lens with a standard broadband AR Coating, add the coating code to the Item#, and then add the coating cost to the lens price.

COATING	WAVELENGTH	\$	£	€	RMB
-A	350-650nm	\$ 9.20	£ 5.80	€ 8,60	¥ 87.90
-B	650-1050nm	\$ 9.20	£ 5.80	€ 8,60	¥ 87.90
-C	1050-1620nm	\$ 12.20	£ 7.70	€ 11,30	¥ 116.50

Example: LC2969 Coated with a 350-650nm Broadband AR Coating is LC2969-A, and the cost is \$19.90 + \$9.20 = \$29.10

Bi-Concave Lenses: BK7 or SF11 Material

	DIA	f	PRICE UN	ICOATED (F	or Co	ated Ler	ıs Ad	ld Suffix)	R	t _c	t _{e¹}	fb	MATERIAL	SUGGESTED
ITEM #	(mm)	(mm)	\$	£		€		RMB	(mm)	(mm)	(mm)	(mm)		MOUNT ²
LD2746	6.0	-6.0	\$ 23.40	£ 14.70	€	21,80	¥	223.50	-9.7	1.5	2.5	-6.4	SF11	LMRA6 &
LD2799	6.0	-12.0	\$ 22.90	£ 14.40	€	21,30	¥	218.70	-19.1	2.0	2.5	-12.5	SF11	LMR05
LD2568	9.0	-9.0	\$ 20.80	£ 13.10	€	19,30	¥	198.60	-14.4	2.0	3.4	-9.5	SF11	LMRA9 &
LD2181	9.0	-18.0	\$ 20.70	£ 13.00	€	19,30	¥	197.70	-28.6	2.5	3.2	-18.7	SF11	LMR05
LD2060	12.7	-15.0	\$ 26.10	£ 16.40	€	24,30	¥	249.30	-24.0	3.0	4.7	-15.8	SF11	
LD1569	12.7	-25.0	\$ 14.40	£ 9.10	€	13,40	¥	137.50	-26.2	2.5	4.1	-25.8	BK7	LMR05
LD1903	12.7	-30.0	\$ 14.30	£ 9.00	€	13,30	¥	136.60	-31.4	3.0	4.3	-31.0	BK7	
LD1357	12.7	-50.0	\$ 14.10	£ 8.90	€	13,10	¥	134.70	-52.1	3.5	4.3	-51.1	BK7	
LD2297	25.4	-25.0	\$ 31.20	£ 19.70	€	29,00	¥	298.00	-39.6	3.0	7.2	-25.8	SF11	
LD1464	25.4	-50.0	\$ 18.90	£ 11.90	€	17,60	¥	180.50	-52.0	3.0	6.1	-51.0	BK7	LMR1
LD1170	25.4	-75.0	\$ 18.20	£ 11.50	€	16,90	¥	173.80	-77.9	3.5	5.6	-76.1	BK7	
LD1613	25.4	-100.0	\$ 16.70	£ 10.50	€	15,50	¥	159.50	-103.7	4.0	5.6	-101.3	BK7	

¹ Edge Thickness given before 0.20mm @ 45° typ. Chamfer.

²⁾ See the Lens Mount Section, Starting on Page 153.