Thorlabs Inc.
Visit the Laser Viewing Cards page for pricing and availability information

Laser Viewing Cards

  • Detect Wavelengths from UV to MIR
  • Handheld Photosensitive and Liquid Crystal Cards

VRC1

VRC2

VRC5

VRC4

VRC6S

250 to 540 nm

400 to 640 nm
and 800 to 1700 nm

700 to 1400 nm

790 to 840 nm,
870 to 1070 nm,
and 1500 to 1590 nm

1.5 to >13.2 µm

Hide Overview

OVERVIEW

Features

  • Detector Cards for UV, Visible, NIR, or MIR Wavelength Ranges
  • Detect Radiation as Low as 1 nW/cm2
  • Absorption Wavelength Range(s) or Sensitivity Curve Printed on Card

Thorlabs offers a selection of detector cards for use with UV, Visible, Near-IR (NIR), or Mid-IR (MIR) radiation. These cards are fabricated from plastic with a liquid crystal photosensitive region. Each card's light-sensitive detector area allows for the easy location of a UV, Visible, NIR, or MIR laser beam and its focal point. To facilitate their use during alignment procedures, every card except the VRC5 has a detection region that extends all the way to the edge of the card and two engraved reticles for use in laser beam collimation.

Please note that these detector cards are not intended to be used as laser beam blocks, and appropriate safety measures should be taken when working with laser beams. See the Laser Safety tab for details.


Hide Graphs

GRAPHS

VRC1
Click to Enlarge

Wavelength Absorption from 250 - 540 nm
Wavelength Emission from 450 - 750 nm
VRC2
Click to Enlarge

Wavelength Absorption from 400 - 640 nm & 800 - 1700 nm
Wavelength Emission from ~580 - 750 nm
VRC4
Click to Enlarge

Wavelength Absorption from 790 - 840 nm & 870 - 1070 nm & 1500 - 1590 nm
Wavelength Emission from ~520 - 580 nm
VRC5
Click to Enlarge

Wavelength Absorption from 700 - 1400 nm
Visible Wavelength Emission

Hide Laser Safety

LASER SAFETY

Laser Safety and Classification

Safe practices and proper usage of safety equipment should be taken into consideration when operating lasers. The eye is susceptible to injury, even from very low levels of laser light. Thorlabs offers a range of laser safety accessories that can be used to reduce the risk of accidents or injuries. Laser emission in the visible and near infrared spectral ranges has the greatest potential for retinal injury, as the cornea and lens are transparent to those wavelengths, and the lens can focus the laser energy onto the retina. 

Laser Glasses Laser Curtains Blackout Materials
Enclosure Systems Laser Viewing Cards Alignment Tools
Shutter and Controllers Laser Safety Signs

Safe Practices and Light Safety Accessories

  • Thorlabs recommends the use of safety eyewear whenever working with laser beams with non-negligible powers (i.e., > Class 1) since metallic tools such as screwdrivers can accidentally redirect a beam.
  • Laser goggles designed for specific wavelengths should be clearly available near laser setups to protect the wearer from unintentional laser reflections.
  • Goggles are marked with the wavelength range over which protection is afforded and the minimum optical density within that range.
  • Laser Safety Curtains and Laser Safety Fabric shield other parts of the lab from high energy lasers.
  • Blackout Materials can prevent direct or reflected light from leaving the experimental setup area.
  • Thorlabs' Enclosure Systems can be used to contain optical setups to isolate or minimize laser hazards.
  • A fiber-pigtailed laser should always be turned off before connecting it to or disconnecting it from another fiber, especially when the laser is at power levels above 10 mW.
  • All beams should be terminated at the edge of the table, and laboratory doors should be closed whenever a laser is in use.
  • Do not place laser beams at eye level.
  • Carry out experiments on an optical table such that all laser beams travel horizontally.
  • Remove unnecessary reflective items such as reflective jewelry (e.g., rings, watches, etc.) while working near the beam path.
  • Be aware that lenses and other optical devices may reflect a portion of the incident beam from the front or rear surface.
  • Operate a laser at the minimum power necessary for any operation.
  • If possible, reduce the output power of a laser during alignment procedures.
  • Use beam shutters and filters to reduce the beam power.
  • Post appropriate warning signs or labels near laser setups or rooms.
  • Use a laser sign with a lightbox if operating Class 3R or 4 lasers (i.e., lasers requiring the use of a safety interlock).
  • Do not use Laser Viewing Cards in place of a proper Beam Trap.

 

Laser Classification

Lasers are categorized into different classes according to their ability to cause eye and other damage. The International Electrotechnical Commission (IEC) is a global organization that prepares and publishes international standards for all electrical, electronic, and related technologies. The IEC document 60825-1 outlines the safety of laser products. A description of each class of laser is given below:

Class Description Warning Label
1 This class of laser is safe under all conditions of normal use, including use with optical instruments for intrabeam viewing. Lasers in this class do not emit radiation at levels that may cause injury during normal operation, and therefore the maximum permissible exposure (MPE) cannot be exceeded. Class 1 lasers can also include enclosed, high-power lasers where exposure to the radiation is not possible without opening or shutting down the laser.  Class 1
1M Class 1M lasers are safe except when used in conjunction with optical components such as telescopes and microscopes. Lasers belonging to this class emit large-diameter or divergent beams, and the MPE cannot normally be exceeded unless focusing or imaging optics are used to narrow the beam. However, if the beam is refocused, the hazard may be increased and the class may be changed accordingly.  Class 1M
2 Class 2 lasers, which are limited to 1 mW of visible continuous-wave radiation, are safe because the blink reflex will limit the exposure in the eye to 0.25 seconds. This category only applies to visible radiation (400 - 700 nm).  Class 2
2M Because of the blink reflex, this class of laser is classified as safe as long as the beam is not viewed through optical instruments. This laser class also applies to larger-diameter or diverging laser beams.  Class 2M
3R Lasers in this class are considered safe as long as they are handled with restricted beam viewing. The MPE can be exceeded with this class of laser, however, this presents a low risk level to injury. Visible, continuous-wave lasers are limited to 5 mW of output power in this class.  Class 3R
3B Class 3B lasers are hazardous to the eye if exposed directly. However, diffuse reflections are not harmful. Safe handling of devices in this class includes wearing protective eyewear where direct viewing of the laser beam may occur. In addition, laser safety signs lightboxes should be used with lasers that require a safety interlock so that the laser cannot be used without the safety light turning on. Class-3B lasers must be equipped with a key switch and a safety interlock.  Class 3B
4 This class of laser may cause damage to the skin, and also to the eye, even from the viewing of diffuse reflections. These hazards may also apply to indirect or non-specular reflections of the beam, even from apparently matte surfaces. Great care must be taken when handling these lasers. They also represent a fire risk, because they may ignite combustible material. Class 4 lasers must be equipped with a key switch and a safety interlock.  Class 4
All class 2 lasers (and higher) must display, in addition to the corresponding sign above, this triangular warning sign  Warning Symbol

Hide Selection Guide 

SELECTION GUIDE 

Alignment Disk and Laser Viewing Card Selection Guide
(Click Representative
Drawing for Details;
Not to Scale)

Wavelengths Ø1/2” Unmounted Disk Ø1” Unmounted Diska Threaded Disk Cage-Plate-Mounted Disk Viewing Cards
250 - 540 nm - - VRC1SM1
(SM1 Threading)
- VRC1
400 - 640 nm
800 - 1700 nm
VRC2D05 VRC2D1 VRC2RMS
(RMS Threading)
- VRC2
VRC2SM1
(SM1 Threading)
700 - 1400 nm - - - - VRC5
790 - 840 nm,
870 - 1070 nm,
1500 to 1590 nm
VRC4D05 VRC4D1 VRC4SM1
(SM1 Threading)
VRC4CPT VRC4
1500 - >13 200 nm - - VRC6SM1
(SM1 Threading)
VRC6SCPT VRC6S
VRC6H

Hide UV/VIS Detector Card: 250 to 540 nm

UV/VIS Detector Card: 250 to 540 nm

VRC1 Specifications
Spectral
Absorption Wavelength Range 250 - 540 nm
Emission Wavelength Range 450 - 750 nm
Emission Center Wavelength 580 nm
Sensitivity Graph VRC1 Absorption and Emission Bands
Dimensional
Active Region 2.10" x 1.20" (53.3 mm x 30.5 mm)
Overall 2.10" x 3.40" (53.3 mm x 86.4 mm)
Complete info
Visible Emission Performance
Charging Required for Emission No
Minimum Pulsed Stimulation for Emissiona <8 W/cm2 at 337 nm, 4 ns Pulses, 20 Hz
<40 W/cm2 at 337 nm, 4 ns Pulses, 1 Hz
Minimum CW Stimulation for Emissiona <1 nW/cm2 at 450 nm
<1 nW/cm2 at 365 nm
Persistence of Emissionb 6 s to 4 min
Minimum Stimulation to Quench Emissiona 2 MW/cm2 at 1064 nm, Ten 7 ns Pulses
Damage Threshold, Single 7 ns Pulse
1064 nm 60 MW/cm2
337 nm 130 MW/cm2
  • Darkened Conditions
  • With stimulus removed. Persistence length depends on ambient light conditions.
  • Does Not Require Charging
  • Two Engraved Reticles for Use in Beam Collimation
  • Absorption Wavelength Range Printed on Card
  • Overall Dimensions (W x H): 2.10" x 3.40"

The VRC1 is a credit-card-sized detector card for viewing light in the 250 to 540 nm wavelength range. The lower front surface of this durable plastic card is photosensitive and enables the easy location of ultra-violet (UV) and visible (through 540 nm) light beams and focal points. As it is not necessary to charge the active region of the card before use, either CW or pulsed incident light will generate emission, even when the card is used in a darkened room.

To facilitate the use of the card during alignment procedures, the detection region extends all the way to the edge of the card and includes two engraved reticles for use in laser beam collimation. These reticles, formed from lines that are about 0.004" wide, feature two concentric circles that have diameters of approximately 0.063" and 0.288" with horizontal and vertical lines that are approximately 0.512" long. When the card is used in a darkened room with a sufficiently bright source, the fluorescence from the activated photosensitive region can be seen through the back of the card. The photosensitive region can also be activated by illuminating the back of the card, which is useful when aligning two beams to overlap.


Part Number
Description
Price
Availability
VRC1
UV/VIS Detector Card, 250 - 540 nm
$87.39
Today

Hide VIS/NIR Detector Card: 400 to 640 nm and 800 to 1700 nm

VIS/NIR Detector Card: 400 to 640 nm and 800 to 1700 nm

VRC2 Specifications
Spectral
Absorption Wavelength Ranges 400 - 640 nm
800 - 1700 nm
Emission Wavelength Range ~580 to 750 nm
Sensitivity Graph VRC2 Absorption and Emission Bands
Dimensional
Active Region 2.10" x 1.20" (53.3 mm x 30.5 mm)
Overall 2.10" x 3.40" (53.3 mm x 86.4 mm)
Complete info
Visible Emission Performance
Charging Required for Emission Yes
Minimum Pulsed Stimulation for Emisiona 250 kW/cm2 at 1064 nm, 7 ns Pulses, 10 Hz
Minimum CW Stimulation for Emissiona <2 µW/cm2 at 808 nm
<175 nW/cm2 at 960 nm
<100 µW/cm2 at 1550 nm
Damage Threshold, Single 7 ns Pulse
1064 nm 35 MW/cm2
  • Darkened Conditions
  • Requires Charging by Visible Light
  • Two Engraved Reticles for Use in Beam Collimation
  • Absorption Wavelength Ranges Printed on Card
  • Overall Dimensions (W x H): 2.10" x 3.40"

The VRC2 is a credit-card-sized detector card for viewing light in the 400 to 640 nm or the 800 to 1700 nm wavelength range. The lower front surface of this durable plastic card is photosensitive and enables the easy location of visible or near-infrared (NIR) light beams and focal points. Before using the card, it is necessary to charge the active region with visible light. As a consequence of the card needing to be charged to generate emission, during operation the user must move the position of the incident light spot around the active region to maintain the intensity of the excited emission.

To facilitate the use of the card during alignment procedures, the detection region extends all the way to the edge of the card and includes two engraved reticles for use in laser beam collimation. These reticles, formed from lines that are about 0.004" wide, feature two concentric circles that have diameters of approximately 0.063" and 0.288" with horizontal and vertical lines that are approximately 0.512" long.


Part Number
Description
Price
Availability
VRC2
VIS/IR Detector Card, 400 - 640 nm, 800 - 1700 nm
$87.39
Today

Hide NIR Detector Card: 700 to 1400 nm

NIR Detector Card: 700 to 1400 nm

VRC5 Specifications
Spectral
Absorption Wavelength Range 700 - 1400 nm
Emission Wavelength Range Visible
Sensitivity Graph VRC5 Absorption and Emission Bands
Dimensional
Active Region 1.50" x 0.75" (38.1 mm x 19.1 mm)
Overall 1.75" x 2.50" (44.5 mm x 63.5 mm)
Complete info
Visible Emission Performance
Charging Required for Emission Yes
  • Requires Charging by Visible Light
  • Sensitivity Curve Printed on Card
  • Overall Dimensions (W x H): 1.75" x 2.50"

The VRC5 laser viewing card is designed for operation in the 700 to 1400 nm wavelength range. The photosensitive area at the top of the card measures 1.50" x 0.75" and is laminated between sheets of durable clear plastic. Before the card is used, the active region must be charged with visible light. As a consequence of the card needing to be charged to generate emission, during operation the user must move the position of the incident light spot around the active region to maintain the intensity of the excited emission.


Part Number
Description
Price
Availability
VRC5
IR Detector Card, 700 - 1400 nm
$136.35
Today

Hide NIR Detector Card: 790 to 840 nm, 870 to 1070 nm, and 1500 to 1590 nm

NIR Detector Card: 790 to 840 nm, 870 to 1070 nm, and 1500 to 1590 nm

VRC4 Specifications
Spectral
Absorption Wavelength Ranges 790 - 840 nm
870 - 1070 nm
1500 - 1590 nm
Emission Wavelength Range
~520 - 580 nm
Sensitivity Graph VRC4 Absorption and Emission Bands
Dimensional
Active Region 2.10" x 1.20" (53.3 mm x 30.5 mm)
Overall 2.10" x 3.40" (53.3 mm x 86.4 mm)
Complete info
Visible Emission Performance
Charging Required for Emission No
Visible Emission,
Minimum Stimulation(Pulsed)a
250 kW/cm2 at 1064 nm, 7 ns Pulses, 10 Hz
Visible Emission,
Minimum Stimulation (CW)a
<2 µW/cm2 at 808 nm
<175 nW/cm2 at 960 nm
<100 µW/cm2 at 1550 nm
Damage Threshold, Single 7 ns Pulse
1064 nm 35 MW/cm2
  • Darkened Conditions
  • Does Not Require Charging by Visible Light
  • Two Engraved Reticles for Use in Beam Collimation
  • Absorption Wavelength Ranges Printed on Card
  • Overall Dimensions (W x H): 2.10" x 3.40"

The VRC4 is a credit-card-sized detector card for viewing light in the 790 to 840 nm, 870 to 1070 nm, and 1500 to 1590 nm wavelength ranges. The lower front surface of this durable plastic card is photosensitive and enables the easy location of near-infrared (NIR) light beams and focal points. As it is not necessary to charge the active region of the card before use, either CW or pulsed incident light will generate emission, even when the card is used in a darkened room.

To facilitate the use of the card during alignment procedures, the detection region extends all the way to the edge of the card and includes two engraved reticles for use in laser beam collimation. These reticles, formed from lines that are about 0.004" wide, feature two concentric circles that have diameters of approximately 0.063" and 0.288" with horizontal and vertical lines that are approximately 0.512" long. When the card is used in a darkened room with a sufficiently bright source, the fluorescence from the activated photosensitive region can be seen through the back of the card. The photosensitive region can also be activated by illuminating the back of the card, which is useful when aligning two beams to overlap.


Part Number
Description
Price
Availability
VRC4
IR Detector Card, 790 - 840 nm, 870 - 1070 nm, 1500 - 1590 nm
$87.39
Today

Hide MIR Detector Cards: 1.5 to >13.2 µm

MIR Detector Cards: 1.5 to >13.2 µm

Item # VRC6S VRC6H
Ambient Temperature
Usable Range 20 to 24 °C 25 to 30 °C
Peak Sensitivity 
22 °C 28 °C
Dimensional
Active Region 2.13" x 1.81" (54.0 mm x 46.0 mm)
Overall 2.13" x 3.37" (54.0 mm x 85.5 mm)
Complete info info
Sensitivity
Minimum Detectable Power Density 0.5 mW/mm2 at 1550 nm (22 °C, Ambient) 0.5 mW/mm2 at 1550 nm (28 °C, Ambient)
VRC6S Large Spot
Click to Enlarge

Ø8.0 mm Spot at
10 mW/mm2
VRC6S Small Spot
Click to Enlarge

Ø4.0 mm Spot at 2.0 mW/mm2
The spot generated on a VRC6S card by a 1550 nm laser with a Ø3.3 mm beam at two different power densities.
  • Liquid Crystal Film Changes Color When Exposed to MIR Light
  • Active Area: 2.13" x 1.81"
  • Recovery Time: <10 Seconds
  • Cards for Two Ambient Temperature Ranges Available:
    • VRC6S: 20 to 24 °C
    • VRC6H: 25 to 30 °C
  • Overall Dimensions (W x H): 2.13" x 3.37"

    The VRC6S and VRC6H MIR Liquid Crystal Detector Cards are designed to react to wavelengths from 1.5 µm to at least 13.2 µm. The detector area is a thin layer of thermochromic liquid crystals (TLC), which are temperature-sensitive organic chemicals with twisted helical molecular structures, protected by a mylar film. MIR light changes the temperature of the detector area, resulting in a color change. The detection region extends all the way to the edge of the card in order to facilitate the use of the card during alignment procedures, and each card features two engraved reticles for use in laser beam collimation. These cards feature enhanced sensitivity over competitor's offerings due to the TLC material used as well as the lack of backing on the detector area. The sensitivity achieved depends on the difference in temperature between the room and the LC material's activation temperature.

    The VRC6S laser card is recommended for use with an ambient temperature of 20 to 24 °C and begins to show color changes when the TLC material reaches approximately 23 °C. The peak sensitivity and responsivity occur at an ambient temperature of 22 °C. The detector area is black below approximately 23 °C and turns blue/violet around 28 °C.

    For room temperatures resting above the range of the VRC6S, the VRC6H is ideal. It is recommended for use with an ambient temperature of 25 to 30 °C and begins to show color changes when the TLC material reaches approximately 28 °C. The peak sensitivity and responsivity occur at an ambient temperature of 28 °C. The detector area is black below approximately 29 °C and turns blue/violet around 33 °C.

    To restore a card after beam exposure, rest is on a flat on a table top (i.e. an optical table with stainless steel surface) for a few minutes. The cards may take longer to recover after exposure to higher laser energy, and sometimes the color change may look permanent at room temperature. If this occurs, place the cards in a refrigerator at 0 to 4 °C for a few minutes to accelerate the recovery.

    Please Note: The spot size on these cards will vary depending on the beam power, as shown in the photos to the right.


    Part Number
    Description
    Price
    Availability
    VRC6S
    MIR Liquid Crystal Detector Card, 1.5 to >13.2 µm, 20 to 24 °C Ambient Temperature
    $27.58
    Today
    VRC6H
    MIR Liquid Crystal Detector Card, 1.5 to >13.2 µm, 25 to 30 °C Ambient Temperature
    $28.00
    Today