Our complete selection of laser diodes is available on the LD Selection Guide tab above.
Webpage Features
Clicking this icon opens a window that contains specifications and mechanical drawings.
Clicking this icon allows you to download our standard support documentation.
Choose Item
Clicking the words "Choose Item" opens a drop-down list containing all of the in-stock lasers around the desired center wavelength. The red icon next to the serial number then allows you to download L-I-V and spectral measurements for that serial-numbered device.
Features
Output Powers from 1 mW to 3000 mW
Center Wavelengths Available from 404 nm to 690 nm
Various Packages Available: TO Can and TO Pigtails
Compatible with Thorlabs' Laser Diode and TEC Controllers
This webpage contains Thorlabs' laser diodes with center wavelengths from 404 nm to 690 nm. Diodes are arranged by wavelength and then power. The tables below list basic specifications to help you narrow down your search quickly. The blue button in the Info column within the tables opens a pop-up window that contains more detailed specifications for each item, as well as mechanical drawings.
Notes on Center Wavelength While the center wavelength is listed for each laser diode, this is only a typical number. The center wavelength of a particular unit varies from production run to production run, so the diode you receive may not operate at the typical center wavelength. Diodes can be temperature tuned, which will alter the lasing wavelength. A number of items below are listed as Wavelength Tested, which means that the dominant wavelength of each unit has been measured and recorded. After clicking "Choose Item" below, a list will appear that contains the dominant wavelength, output power, and operating current of each in-stock unit. Clicking on the red Docs Icon next to the serial number provides access to a PDF with serial-number-specific L-I-V and spectral characteristics.
Packages and Mounts We offer these visible laser diodes in various packages including standard Ø3.8 mm, Ø5.6 mm, and Ø9 mm TO cans, as well as TO-46, Ø9.5 mm, and fiber-pigtailed TO cans with outputs of either standard fiber connectors or collimators. We have categorized the pin configuration of TO-packaged diodes in standard A, B, C, D, E, F, G, and H pin codes (see image below). This pin code allows the user to easily determine compatible mounts.
Spatial Mode and Linewidth We offer laser diodes with different output characteristics (power, wavelength, beam size, shape, etc.). Most lasers offered here are single spatial mode ("single mode") and a few are designed for higher-power multi-spatial-mode ("multimode") operation. For better side mode suppression ratio (SMSR) performance, other devices such as DFB lasers, DBR lasers, or external cavity lasers should be considered. Please see our Laser Diode Tutorial for more information on these topics and laser diodes in general.
Usage Tips Laser diodes are sensitive to electrostatic shock. Please take the proper precautions when handling the device; see electrostatic shock accessories. These lasers are also sensitive to optical feedback, which can cause significant fluctuations in the output power of the laser diode depending on the application.
For all of the pigtailed laser diodes with fiber connectors at the output, the laser should be off when connecting or disconnecting the device from other fibers, particularly for lasers with power levels above 10 mW. We recommend cleaning the fiber connector before each use if there is any chance that dust or other contaminants may have deposited on the surface. The laser intensity at the center of the fiber tip can be very high and may burn the tip of the fiber if contaminants are present. While the connectors on the pigtailed laser diodes are cleaned and capped before shipping, we cannot guarantee that they will remain free of contamination after they are removed from the package.
Members of our Tech Support staff are available to help you select a laser diode and to discuss possible operation issues.
Pin Codes
For warranty information for laser diodes, please refer to the LD Operation tab.
Pin Code
Monitor Photodiode
A
Yes
B
Yes
C
Yes
D
Yes
E
No
F
Yes
G
No
H
No
Choosing a Collimation Lens for Your Laser Diode
Since the output of a laser diode is highly divergent, collimating optics are necessary. Aspheric lenses do not introduce spherical aberration and are therefore are commonly chosen when the collimated laser beam is to be between one and five millimeters. A simple example will illustrate the key specifications to consider when choosing the correct lens for a given application.
Example
Laser Diode to be Used: L780P010
Desired Collimated Beam Diameter: Ø3 mm (Major Axis)
When choosing a collimation lens, it is essential to know the divergence angle of the source being used and the desired output diameter. The specifications for the L780P010 laser diode indicate that the typical parallel and perpendicular FWHM beam divergences are 10° and 30°, respectively. Therefore, as the light diverges, an elliptical beam will result. To collect as much light as possible during the collimation process, consider the larger of these two divergence angles in any calculations (i.e., in this case, use 30°). If you wish to convert your elliptical beam into a round one, we suggest using an Anamorphic Prism Pair, which magnifies one axis of your beam.
Ø = Beam Diameter
Θ = Divergence Angle
Assuming that the width of the lens is negligible compared to the radius of curvature, the thin lens approximation can be used to determine the appropriate focal length for the asphere. Assuming a divergence angle of 30° (FWHM) and desired beam diameter of 3 mm:
f = Focal Length
Note that the focal length is generally not equal to the needed distance between the light source and the lens.
With this information known, it is now time to choose the appropriate collimating lens. Thorlabs offers a large selection of aspheric lenses. For this application, the ideal lens is a molded glass aspheric lens with focal length near 5.6 mm and our -B antireflection coating, which covers 780 nm. The C171TMD-B (mounted) or 354171-B (unmounted) aspheric lenses have a focal length of 6.20 mm, which will result in a collimated beam diameter (major axis) of 3.3 mm. Next, check to see if the numerical aperture (NA) of the diode is smaller than the NA of the lens:
0.30 = NALens > NADiode ≈ sin(15°) = 0.26
Up to this point, we have been using the full-width at half maximum (FWHM) beam diameter to characterize the beam. However, a better practice is to use the 1/e2 beam diameter. For a Gaussian beam profile, the 1/e2 diameter is almost equal to 1.7X the FWHM diameter. The 1/e2 beam diameter therefore captures more of the laser diode's output light (for greater power delivery) and minimizes far-field diffraction (by clipping less of the incident light).
A good rule of thumb is to pick a lens with an NA twice that of the laser diode NA. For example, either the A390-B or the A390TM-B could be used as these lenses each have an NA of 0.53, which is more than twice the approximate NA of our laser diode (0.26). These lenses each have a focal length of 4.6 mm, resulting in an approximate major beam diameter of 2.5 mm. In general, using a collimating lens with a short focal length will result in a small collimated beam diameter and a large beam divergence, while a lens with a large focal length will result in a large collimated beam diameter and a small divergence.
Laser Diode and Laser Diode Pigtail Warranty
When operated within their specifications, laser diodes have extremely long lifetimes. Most failures occur from mishandling or operating the lasers beyond their maximum ratings. Laser Diodes are among the most static-sensitive devices currently made. Proper ESD Protection should be worn whenever handling a laser diode. Due to their extreme electrostatic sensitivity, laser diodes cannot be returned after their sealed package has been opened. Laser diodes in their original sealed package can be returned for a full refund or credit.
Handling and Storage Precautions
Due to their extreme susceptibility to damage from electrostatic discharge (ESD), care should be taken whenever handling and operating laser diodes:
Laser Diode Storage: When not in use, short the leads of the laser together to protect against ESD damage.
Operating and Safety Precautions
Use an Appropriate Driver: Laser diodes require precise control of operating current and voltage to avoid overdriving the laser diode. In addition, the laser driver should provide protection against power supply transients. Select a laser driver appropriate for your application. Do not use a voltage supply with a current limiting resistor since it does not provide sufficient regulation to protect the laser.
Power Meters: When setting up and calibrating a laser diode with its driver, use a NIST-traceable power meter to precisely measure the laser output. It is usually safest to measure the laser output directly before placing the laser in an optical system. If this is not possible, be sure to take all optical losses (transmissive, aperture stopping, etc.) into consideration when determining the total output of the laser.
Reflections: Flat surfaces in the optical system in front of a laser diode can cause some of the laser energy to reflect back onto the laser’s monitor photodiode giving an erroneously high photodiode current. If optical components are moved within the system and energy is no longer reflected onto the monitor photodiode, a constant power feedback loop will sense the drop in photodiode current and try to compensate by increasing the laser drive current and possibly overdriving the laser. Back reflections can also cause other malfunctions or damage to laser diodes. To avoid this, be sure that all surfaces are angled 5-10°, and when necessary, use optical isolators to attenuate direct feedback into the laser.
Heat Sinks: Laser diode lifetime is inversely proportional to operating temperature. Always mount the laser in a suitable heat sink to remove excess heat from the laser package.
Voltage and Current Overdrive: Be careful not to exceed the maximum voltage and drive current listed on the specification sheet with each laser diode, even momentarily. Also, reverse voltages as little as 3 V can damage a laser diode.
ESD Sensitive Device: Currently operating lasers are susceptible to ESD damage. This is particularly aggravated by using long interface cables between the laser diode and its driver due to the inductance that the cable presents. Avoid exposing the laser or its mounting apparatus to ESDs at all times.
ON/OFF and Power Supply Coupled Transients: Due to their fast response times, laser diodes can be easily damaged by transients less than 1 µs. High current devices such as soldering irons, vacuum pumps, and fluorescent lamps can cause large momentary transients. Thus, always use surge-protected outlets.
If you have any questions regarding laser diodes, please call your local Thorlabs Technical Support office for assistance.
Laser Safety and Classification
Safe practices and proper usage of safety equipment should be taken into consideration when operating lasers. The eye is susceptible to injury, even from very low levels of laser light. Thorlabs offers a range of laser safety accessories that can be used to reduce the risk of accidents or injuries. Laser emission in the visible and near infrared spectral ranges has the greatest potential for retinal injury, as the cornea and lens are transparent to those wavelengths, and the lens can focus the laser energy onto the retina.
Safe Practices and Light Safety Accessories
Thorlabs recommends the use of safety eyewear whenever working with laser beams with non-negligible powers (i.e., > Class 1) since metallic tools such as screwdrivers can accidentally redirect a beam.
Laser goggles designed for specific wavelengths should be clearly available near laser setups to protect the wearer from unintentional laser reflections.
Goggles are marked with the wavelength range over which protection is afforded and the minimum optical density within that range.
Blackout Materials can prevent direct or reflected light from leaving the experimental setup area.
Thorlabs' Enclosure Systems can be used to contain optical setups to isolate or minimize laser hazards.
A fiber-pigtailed laser should always be turned off before connecting it to or disconnecting it from another fiber, especially when the laser is at power levels above 10 mW.
All beams should be terminated at the edge of the table, and laboratory doors should be closed whenever a laser is in use.
Do not place laser beams at eye level.
Carry out experiments on an optical table such that all laser beams travel horizontally.
Remove unnecessary reflective items such as reflective jewelry (e.g., rings, watches, etc.) while working near the beam path.
Be aware that lenses and other optical devices may reflect a portion of the incident beam from the front or rear surface.
Operate a laser at the minimum power necessary for any operation.
If possible, reduce the output power of a laser during alignment procedures.
Post appropriate warning signs or labels near laser setups or rooms.
Use a laser sign with a lightbox if operating Class 3R or 4 lasers (i.e., lasers requiring the use of a safety interlock).
Do not use Laser Viewing Cards in place of a proper Beam Trap.
Laser Classification
Lasers are categorized into different classes according to their ability to cause eye and other damage. The International Electrotechnical Commission (IEC) is a global organization that prepares and publishes international standards for all electrical, electronic, and related technologies. The IEC document 60825-1 outlines the safety of laser products. A description of each class of laser is given below:
Class
Description
Warning Label
1
This class of laser is safe under all conditions of normal use, including use with optical instruments for intrabeam viewing. Lasers in this class do not emit radiation at levels that may cause injury during normal operation, and therefore the maximum permissible exposure (MPE) cannot be exceeded. Class 1 lasers can also include enclosed, high-power lasers where exposure to the radiation is not possible without opening or shutting down the laser.
1M
Class 1M lasers are safe except when used in conjunction with optical components such as telescopes and microscopes. Lasers belonging to this class emit large-diameter or divergent beams, and the MPE cannot normally be exceeded unless focusing or imaging optics are used to narrow the beam. However, if the beam is refocused, the hazard may be increased and the class may be changed accordingly.
2
Class 2 lasers, which are limited to 1 mW of visible continuous-wave radiation, are safe because the blink reflex will limit the exposure in the eye to 0.25 seconds. This category only applies to visible radiation (400 - 700 nm).
2M
Because of the blink reflex, this class of laser is classified as safe as long as the beam is not viewed through optical instruments. This laser class also applies to larger-diameter or diverging laser beams.
3R
Lasers in this class are considered safe as long as they are handled with restricted beam viewing. The MPE can be exceeded with this class of laser, however, this presents a low risk level to injury. Visible, continuous-wave lasers are limited to 5 mW of output power in this class.
3B
Class 3B lasers are hazardous to the eye if exposed directly. However, diffuse reflections are not harmful. Safe handling of devices in this class includes wearing protective eyewear where direct viewing of the laser beam may occur. In addition, laser safety signs lightboxes should be used with lasers that require a safety interlock so that the laser cannot be used without the safety light turning on. Class-3B lasers must be equipped with a key switch and a safety interlock.
4
This class of laser may cause damage to the skin, and also to the eye, even from the viewing of diffuse reflections. These hazards may also apply to indirect or non-specular reflections of the beam, even from apparently matte surfaces. Great care must be taken when handling these lasers. They also represent a fire risk, because they may ignite combustible material. Class 4 lasers must be equipped with a key switch and a safety interlock.
All class 2 lasers (and higher) must display, in addition to the corresponding sign above, this triangular warning sign
Insights into Beam Characterization
Scroll down to read about:
Beam Size Measurement Using a Chopper Wheel
Click here for more insights into lab practices and equipment.
Figure 1: An approximate measurement of beam size can be found using the illustrated setup. As the blade of the chopper wheel passes through the beam, an S-curve is traced out on the oscilloscope.
Figure 3: Rise time (tr ) of the intensity signal is typically measured between the 10% and 90% points on the curve. The rise time depends on the wheel's rotation rate and the beam diameter.
Camera and scanning-slit beam profilers are tools for characterizing beam size and shape, but these instruments cannot provide an accurate measurement if the beam size is too small or the wavelength is outside of the operating range.
A;chopper wheel, photodetector, and oscilloscope can provide an approximate measurement of the beam size (Figure 4). As the rotating chopper wheel's blade passes through the beam, an S-shaped trace is displayed on the oscilloscope.
When the blade sweeps through the angle θ , the rise or fall time of the S-curve is proportional to the size of the beam along the direction of the blade's travel (Figure 5). A point on the blade located a distance R from the center of the wheel sweeps through an arc length (Rθ ) that is approximately equal to the size of the beam along this direction.
To make this beam size measurement, the combined response of the detector and oscilloscope should be much faster than the signal's rate of change.
Example: S-Curve with Rising Edge The angle (θ = ftr ) subtended by the beam depends on the signal's rise time (Figure 6) and the wheel's rotation rate (f ), whose units are Hz or revolutions/s. The arc length (Rθ = R ⋅ ftr ) through the beam can be calculated using this angle. For a small Gaussian-shaped beam, a first approximation of the 1/e2 beam diameter (D ),
has a factor of 0.64 to account for measuring rise time between the 10% and 90% intensity points.
Date of Last Edit: Jan. 13, 2020
The rows shaded green below denote single-frequency lasers.
Hi,
Try to set up a high power laser diode (visible betw. 500 and 700nm) with very high power stability. I see your laser driver LD3000R but it is written that it supports A, D and E pin config. However most of your most powerful laser diodes (L638P700M, L638P200, L637G1, L520G1 etc) comes with different pin config. Can you recommend me a correct fit; please?
YLohia
 (posted 2019-11-18 11:10:43.0)
Hello, thank you for contacting Thorlabs. For these diodes, depending on the specific diode, we would recommend using the LDC220C driver. This provides up to +/-2 A current and is compatible with all of the diodes mentioned by you.
rawoodruff
 (posted 2018-09-15 10:30:46.96)
What spectral width would you expect from your UV and visible diodes: single mode and multimode?
YLohia
 (posted 2018-09-24 11:32:11.0)
Hello, thank you for contacting Thorlabs. We have linewidth test data for some of the diodes in the pigtailed laser diodes pages. Please note that these are Fabry-Perot diodes (with the exception of the DJ532) and cannot be used for single frequency applications. I have reached out to you directly to get a better sense of your application and what specific wavelengths you are interested in.
paul.janin
 (posted 2018-06-05 17:36:06.44)
Hello, I've been trying to modulate an L637P5 with a square wave around threshold. However, the diode seems to respond too slowly to the modulation to follow the square wave even at frequencies as low as 10kHz. Do you know what could be the cause of this slow response ? The diode manages to follow a sine modulation even at higher frequencies, although with some attenuation. Thank you.
YLohia
 (posted 2018-07-27 03:24:04.0)
Hello, thank you for contacting Thorlabs. Based on our discussion, the modulation bandwidth of the LDC201ULN driver you have is specified to be 3kHz. This bandwidth is only applicable to small signal sine wave modulation (not square wave). Another thing that can impact the bandwidth measurements is the terminating load resistance being used with your detector/oscilloscope. For fast measurements, a 50 Ohm load should be used (not 1 MOhm).
vjadrisko
 (posted 2017-05-19 14:03:07.04)
Hi there, i am interested in laser diode LP660-SF20 but would like to know is it polarized and if so which polarization it is ? Thank you.
tfrisch
 (posted 2017-05-19 05:05:17.0)
Hello, thank you for contacting Thorlabs. The light is polarized, but the state will be changed depending on bending and stressing of the SM fiber. We have fiber polarization management solutions in the link below. I will reach out to you to discuss these. https://www.thorlabs.com/navigation.cfm?guide_id=2089
ross.leyman
 (posted 2015-05-13 17:45:00.44)
Hi there,
Regarding the L520P120 - do you know what the beam diameter immediately at the diode package output window is? It looks like a clear aperture of 1.6mm but it's hard to tell of course.
Also, can this module be driven in pulse-mode operation or is it strictly CW only? And if pulse is ok, can a higher (peak) output power be achieved as one might expect?
Thanks in advance,
Ross
besembeson
 (posted 2015-08-28 10:42:41.0)
Response from Bweh at Thorlabs USA: Our UK office will provide the beam diameter estimate at the window to you. We don't have modulation specifications for this diode, which is why we specify the diode under cw conditions. We don't also recommend pulsing at high peak powers. While the diode can in theory be pulsed, we recommend applying a DC bias current to threshold and pulsing above that.
sinerkim
 (posted 2014-01-24 08:37:01.07)
Could you provide a LP520-SF15 without any fiber coupling?
I would like to know the linewidth of this laser source. Also what time of temperature controlled mount would you recommend for operating this laser? thanks
Jdogg
tcohen
 (posted 2013-08-22 14:49:00.0)
Response from Tim at Thorlabs: The linewidth of the LP785-SF100 is ~.5nm typical, max of 2nm. You can mount this with an LM9LP. We now show the individual tested datasheets corresponding to our current stock on our website. You can see measured spectrum by clicking the "Choose Item" link right next to the part number. In some cases, these plots will be limited to the spectral resolution of the spectrometer used. In this case, the spectrometer used has a resolution of <.6nm FWHM @633nm.
saktinst
 (posted 2013-06-18 16:05:00.883)
I am going to use diode laser to mark my organic material. Do you have any idea what kind of laser can i use? Is it also this diode laser provided by scanning head to mark barcode code? Thanks
jlow
 (posted 2013-06-20 10:50:00.0)
Response from Jeremy at Thorlabs: The correct laser to use would depend on the material that you are using and its absorption characteristic. I will get in contact with you directly to discuss about your application further.
Will be offered, in a near future, cheap lasers near 760nm ?
Thank you very much,
cristina
tcohen
 (posted 2013-04-25 12:57:00.0)
Response from Tim at Thorlabs to Cristina: Thank you for your inquiry. We will take your feedback into consideration as we look to expand our wavelength selection and I will contact you directly to discuss your application.
werneck
 (posted 2013-04-07 21:04:57.74)
1) On datasheet of LPM-660-SMA it reads slope efficiency=0,75 mW/mA, output power=22.5 mW and operating current 65 mA. However, for a current of 65 mA with a slope efficiency of .75 it would produce an output power of 48.8mW not 22.5 mW as stated.
On the other hand, if I want 22 mW output power, from the slope efficiency I calculate 29 mA which is below the threshold current. What is wrong?
2) "Monitor current" is the output current of PD when LD is at maximum output power?
jlow
 (posted 2013-04-09 12:11:00.0)
Response from Jeremy at Thorlabs: The slope efficiency is defined as ?P/?I and not P/I. The drive current below the threshold current of the laser diode does not contribute to light emission and therefore the slope is taken from the line in the laser power vs. current curve after the threshold current. In the characterization sheet sent with each laser diode pigtail, the monitor current is the current of the internal photodiode when the output is at 22mW.
olsonaj
 (posted 2013-03-16 17:51:31.903)
Do you know if anyone has used the LD785-SH300 in an external cavity diode laser configuration?
Any reason why you believe it may or may not work in such a setup?
jlow
 (posted 2013-03-28 08:36:00.0)
Response from Jeremy at Thorlabs: We do not have any data on using this laser diode in an external cavity. We will get in contact with you to discuss in more details about your application.
Tyler
 (posted 2012-07-31 17:52:43.0)
Hello Florian,
The 1418 Euro price is based on what it cost Thorlabs to purchase the laser diodes in 2008. I am sorry that this hasn't been updated to be consistent with the current cost of laser diodes. Thank you for taking the time to point out the price of the DL3146-151 laser diode to us. I will work on getting the price of the diode fixed right away. Sincerely, Tyler
florian.kehl
 (posted 2012-07-27 02:47:49.0)
Dear Sir or Madam,
we're frequent customers and so far happy with your products and service. But selling a DL3146-151 for 1418€ doesn't seem to be a fair price at all, since exactly the same product is being sold for only 18€, for example if you check: http://www.roithner-laser.com/pricelist.pdf.
How can this discrepancy be explained?
Thanks!
tcohen
 (posted 2012-04-03 10:46:00.0)
Response from Tim at Thorlabs: Laser diodes can be delicate and require precise drive electronics. Because there is a maximum current which cannot be exceeded even for a very limited amount of time, spikes in electronics will cause immediate damage. Because a tiny change in voltage can be a large change in current, as seen on a LD’s I-V curve, temperature and other fluctuations in electronics when using a voltage source can cause the maximum drive current to be exceeded and damage the LD. For this reason, current sources are typically used.
ZWJIORO
 (posted 2012-03-30 02:17:48.0)
Dear Thorlabs, could a voltage source drive the LD?Thanks!
jjurado
 (posted 2011-04-06 15:33:00.0)
Response from Javier at Thorlabs to last poster: Thank you very much for your feedback. We will split the presentation of the L375P020MLD laser diode into another page in order to make it more visible. The new page will go live shortly.
user
 (posted 2011-04-06 08:26:24.0)
L375P020MLD would get more attention if this group were titled NUV - Visible Laser Diodes
Thorlabs
 (posted 2010-08-31 13:51:26.0)
Response from Javier at Thorlabs: Most of our laser diodes operate in single transverse mode and multi-longitudinal mode. Laser diodes are highly divergent sources, with a full angle output usually in the range of 30 degrees. You can refer to the Collimation Tutorial tab for information on how to choose the most appropriate optic for collimating the output of your laser. I will contact you directly to discuss your application.
aroy25
 (posted 2010-08-27 18:58:42.0)
Are the single mode lasers also single transverse mode? I am looking for a TEM00 profile..what is the beam diameter?
regards
Adam
 (posted 2010-05-20 21:06:36.0)
A response from Adam at Thorlabs to chenli: The laser diode controller, ITC510, has been superceded by the ITC4001. This product is a laser diode current and temperature controller, which can output of to 1A for laser diode current control and 8A for laser diode temperature control. I will contact you directly to determine the exact information that you need.
chenli_hust
 (posted 2010-05-20 19:31:03.0)
I want to know some information about LASER DIODE COMBI CONTROLLER:ITC510,would you do me some help?
Im looking forward to your reply.
Laurie
 (posted 2010-03-29 17:37:27.0)
A response from Laurie at Thorlabs to mph: Thank you for your feedback on our website. Currently, we are in the process of giving this page a makeover of sorts, so I am unable to make the suggested change visible to the general public immediately. However, we will be sure to include your suggested change in the new version of this page, which should be available in a few weeks. Thanks again for taking the time to provide valuable feedback!
mph
 (posted 2010-03-29 17:24:13.0)
In the overview, you use `discreet incorrectly.
discreet:judicious in ones conduct or speech, esp. with regard to respecting privacy or maintaining silence about something of a delicate nature; prudent; circumspect.
You should change this to `discrete.
klee
 (posted 2009-07-17 15:33:25.0)
A response from Ken at Thorlabs to alessandro: There is no direct replacement for the HL785MG. The closest alternatives in terms of wavelength and power are HL7851G (785nm, 50mW) and DL4140-001S (785nm, 25mW).
alessandro
 (posted 2009-07-17 13:26:24.0)
Dear All,
What is the substitute of HL7859MG that was discontinued?
klee
 (posted 2009-06-22 18:58:36.0)
Response from Ken at Thorlabs to BiryukovAA: We do not carry any green laser diodes but we do offer a few green HeNe lasers.
BiryukovAA
 (posted 2009-06-22 09:15:28.0)
Our company is looking for Green Laser Diodes (543 nm). Can you offer any laser diodes operating on this wavelength.
thank you, Alexey Biryukov.
j.velde
 (posted 2009-03-17 06:11:13.0)
What is the mode field dia on this LD?
Also do Thorlabs offer AR coated LD?
Thank you!
Jeroen van de Velde
Applied Laser Technology
Laurie
 (posted 2009-02-12 10:05:29.0)
Response from Laurie at Thorlabs to dajun.wang: The HL6548FG is AR coated for the wavelength of the diode. We are in the process of trying to obtain more specific information and will update you shortly.
dajun.wang
 (posted 2009-02-09 19:06:13.0)
Hi,
We bought some these HL6548FG 658 diodes from thorlabs for scientific research. One special thing is we want to put these diodes in an external cavity configuration to control the emission wavelength. Is it possible to let us know the coating material on the output facet of these diodes? We need to put additional anti-reflection coating on them by ourselves to help wavelength control.
Your help is highly appreciated.
With best wishes,
Dajun
lsandstrom
 (posted 2008-06-26 10:16:47.0)
Are the lasers lateral or longitudinal multi-mode when you state in the spec. that the lasers are multi mode?
In response to acables comments, we have added a link to an excel file that shows the compatibility between our drivers and diodes. In the future, we hope to work with our web team to provide a selection.
acable
 (posted 2007-10-31 19:02:34.0)
It would be nice to have a link to the laser diode and TEC drivers from this page. It would be even better to have a linked selection guide to show all of the options for each of the lasers.
Dear rodolfls, I apologize for the delay in getting this information to you. We had to pass your inquiry to our technical support staff in Japan, who then in turn had to contact the vendor. According to the vendor, the wavelength variation/current variation is about 0.04 nm/mA and the wavelength variation/temerature variation is about 0.2 nm/K. We hope that this information is helpful to you.
rodolfls
 (posted 2007-10-14 01:04:05.0)
I would like to know some characteristics of Eudyna FLD6A2TK:
wavelenght variation/current variation = ? nm/mA and wavelenght variation/temperature variation = ? nm/K
Thank you,
Rodolfo.
melsscal
 (posted 2007-09-19 06:40:08.0)
Dear Mr.Mark Struzzi,
Can you please mail me the catalouge Page of the laser diode L980P200J asap.
Regards
for MEL SYSTEMS & SERVICES LTD.
Aroop Kanti Bose
Area Manager-Sales
Kolkata Branch
www.melssindia.com
Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
Laser diodes with a built-in monitor photodiode can operate at constant power.
A socket is included to assist with soldering. The leads on this diode have a larger 0.6 mm diameter than the typical 0.45 mm diameter for a Ø9 mm package. This makes it incompatible with mounts and sockets that are designed to fit a standard Ø9 mm TO can package.
This laser diode has a built in Zener diode to help protect against damage from small levels of electrostatic discharge and reverse potential on the laser diode.
This laser diode has a built in Zener diode to help protect against damage from small levels of electrostatic discharge and reverse potential on the laser diode. A temperature-controlled mount such as our LDM56F(/M) or LDM90(/M) is recommended for general use.
This socket is included with the purchase of the corresponding laser diode.
Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
Laser diodes with a built-in monitor photodiode can operate at constant power.
A socket is included to assist with soldering. The leads on this diode have a larger 0.6 mm diameter than the typical 0.45 mm diameter for a Ø9 mm package. This makes it incompatible with mounts and sockets that are designed to fit a standard Ø9 mm TO can package, such as our LDM90 mount.
This laser diode has a built in Zener diode to help protect against damage from small levels of electrostatic discharge and reverse potential on the laser diode.
532 nm
Item #
Info
Wavelength (nm)
Power (mW)a
Typical/Max Drive Currenta
Package
Pin Code
Monitor Photodiode
Compatible Socket
Wavelength Tested
Spatial Mode
DJ532-10b
532
10
220 mA / 250 mA
Ø9.5 mm (non-standard)c
A
Yesd
-
No
Single Mode
DJ532-40b
532
40
330 mA / 400 mA
Ø9.5 mm (non-standard)c
E
No
-
No
Single Mode
Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
Click here for more information on our 532 nm Diode Pumped Solid State Lasers.
These lasers have the same pin spacing as our Ø5.6 mm laser diodes. They are compatible with the LDM56 Laser Diode Mount using the LDM56DJ DPSS Laser Mounting Flange.
The monitor photodiode of the DJ532-10 measures the power of the pump source, not the 532 nm output. Therefore, we recommend operating these diodes in constant current mode.
Do not exceed the maximum optical power or maximum drive current, whichever occurs first.
Laser diodes with a built-in monitor photodiode can operate at constant power.
This socket is included with the purchase of the corresponding laser diode.
A socket is included to assist with soldering. The leads on this diode have a larger 0.6 mm diameter than the typical 0.45 mm diameter for a Ø9 mm package. This makes it incompatible with mounts and sockets that are designed to fit a standard Ø9 mm TO can package.